blob: 9aad1ed2c178271126958a9c8b85bef4d301ea46 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "radv_private.h"
void
radv_device_memory_init(struct radv_device_memory *mem, struct radv_device *device,
struct radeon_winsys_bo *bo)
{
memset(mem, 0, sizeof(*mem));
vk_object_base_init(&device->vk, &mem->base, VK_OBJECT_TYPE_DEVICE_MEMORY);
mem->bo = bo;
}
void
radv_device_memory_finish(struct radv_device_memory *mem)
{
vk_object_base_finish(&mem->base);
}
void
radv_free_memory(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
struct radv_device_memory *mem)
{
if (mem == NULL)
return;
#if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
if (mem->android_hardware_buffer)
AHardwareBuffer_release(mem->android_hardware_buffer);
#endif
if (mem->bo) {
radv_rmv_log_bo_destroy(device, mem->bo);
if (device->overallocation_disallowed) {
mtx_lock(&device->overallocation_mutex);
device->allocated_memory_size[mem->heap_index] -= mem->alloc_size;
mtx_unlock(&device->overallocation_mutex);
}
if (device->use_global_bo_list)
device->ws->buffer_make_resident(device->ws, mem->bo, false);
device->ws->buffer_destroy(device->ws, mem->bo);
mem->bo = NULL;
}
radv_rmv_log_resource_destroy(device, (uint64_t)radv_device_memory_to_handle(mem));
radv_device_memory_finish(mem);
vk_free2(&device->vk.alloc, pAllocator, mem);
}
VkResult
radv_alloc_memory(struct radv_device *device, const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMem, bool is_internal)
{
struct radv_device_memory *mem;
VkResult result;
enum radeon_bo_domain domain;
uint32_t flags = 0;
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
const VkImportMemoryFdInfoKHR *import_info =
vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
const VkMemoryDedicatedAllocateInfo *dedicate_info =
vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
const VkExportMemoryAllocateInfo *export_info =
vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
const struct VkImportAndroidHardwareBufferInfoANDROID *ahb_import_info =
vk_find_struct_const(pAllocateInfo->pNext, IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
const struct VkMemoryAllocateFlagsInfo *flags_info =
vk_find_struct_const(pAllocateInfo->pNext, MEMORY_ALLOCATE_FLAGS_INFO);
const struct wsi_memory_allocate_info *wsi_info =
vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
if (pAllocateInfo->allocationSize == 0 && !ahb_import_info &&
!(export_info && (export_info->handleTypes &
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID))) {
/* Apparently, this is allowed */
*pMem = VK_NULL_HANDLE;
return VK_SUCCESS;
}
mem =
vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (mem == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
radv_device_memory_init(mem, device, NULL);
if (dedicate_info) {
mem->image = radv_image_from_handle(dedicate_info->image);
mem->buffer = radv_buffer_from_handle(dedicate_info->buffer);
} else {
mem->image = NULL;
mem->buffer = NULL;
}
if (wsi_info && wsi_info->implicit_sync) {
flags |= RADEON_FLAG_IMPLICIT_SYNC;
/* Mark the linear prime buffer (aka the destination of the prime blit
* as uncached.
*/
if (mem->buffer)
flags |= RADEON_FLAG_VA_UNCACHED;
}
float priority_float = 0.5;
const struct VkMemoryPriorityAllocateInfoEXT *priority_ext =
vk_find_struct_const(pAllocateInfo->pNext, MEMORY_PRIORITY_ALLOCATE_INFO_EXT);
if (priority_ext)
priority_float = priority_ext->priority;
uint64_t replay_address = 0;
const VkMemoryOpaqueCaptureAddressAllocateInfo *replay_info =
vk_find_struct_const(pAllocateInfo->pNext, MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO);
if (replay_info && replay_info->opaqueCaptureAddress)
replay_address = replay_info->opaqueCaptureAddress;
unsigned priority = MIN2(RADV_BO_PRIORITY_APPLICATION_MAX - 1,
(int)(priority_float * RADV_BO_PRIORITY_APPLICATION_MAX));
mem->user_ptr = NULL;
#if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
mem->android_hardware_buffer = NULL;
#endif
if (ahb_import_info) {
result = radv_import_ahb_memory(device, mem, priority, ahb_import_info);
if (result != VK_SUCCESS)
goto fail;
} else if (export_info && (export_info->handleTypes &
VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)) {
result = radv_create_ahb_memory(device, mem, priority, pAllocateInfo);
if (result != VK_SUCCESS)
goto fail;
} else if (import_info) {
assert(import_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
import_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
result = device->ws->buffer_from_fd(device->ws, import_info->fd, priority, &mem->bo, NULL);
if (result != VK_SUCCESS) {
goto fail;
} else {
close(import_info->fd);
}
if (mem->image && mem->image->plane_count == 1 &&
!vk_format_is_depth_or_stencil(mem->image->vk.format) && mem->image->vk.samples == 1 &&
mem->image->vk.tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
struct radeon_bo_metadata metadata;
device->ws->buffer_get_metadata(device->ws, mem->bo, &metadata);
struct radv_image_create_info create_info = {.no_metadata_planes = true,
.bo_metadata = &metadata};
/* This gives a basic ability to import radeonsi images
* that don't have DCC. This is not guaranteed by any
* spec and can be removed after we support modifiers. */
result = radv_image_create_layout(device, create_info, NULL, NULL, mem->image);
if (result != VK_SUCCESS) {
device->ws->buffer_destroy(device->ws, mem->bo);
goto fail;
}
}
} else if (host_ptr_info) {
assert(host_ptr_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
result = device->ws->buffer_from_ptr(device->ws, host_ptr_info->pHostPointer,
pAllocateInfo->allocationSize, priority, &mem->bo);
if (result != VK_SUCCESS) {
goto fail;
} else {
mem->user_ptr = host_ptr_info->pHostPointer;
}
} else {
uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
uint32_t heap_index;
heap_index =
device->physical_device->memory_properties.memoryTypes[pAllocateInfo->memoryTypeIndex]
.heapIndex;
domain = device->physical_device->memory_domains[pAllocateInfo->memoryTypeIndex];
flags |= device->physical_device->memory_flags[pAllocateInfo->memoryTypeIndex];
if (export_info && export_info->handleTypes) {
/* Setting RADEON_FLAG_GTT_WC in case the bo is spilled to GTT. This is important when the
* foreign queue is the display engine of iGPU. The carveout of iGPU can be tiny and the
* kernel driver refuses to spill without the flag.
*
* This covers any external memory user, including WSI.
*/
if (domain == RADEON_DOMAIN_VRAM)
flags |= RADEON_FLAG_GTT_WC;
} else if (!import_info) {
/* neither export nor import */
flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING;
if (device->use_global_bo_list) {
flags |= RADEON_FLAG_PREFER_LOCAL_BO;
}
}
if (flags_info && flags_info->flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT)
flags |= RADEON_FLAG_REPLAYABLE;
if (device->instance->zero_vram)
flags |= RADEON_FLAG_ZERO_VRAM;
if (device->overallocation_disallowed) {
uint64_t total_size =
device->physical_device->memory_properties.memoryHeaps[heap_index].size;
mtx_lock(&device->overallocation_mutex);
if (device->allocated_memory_size[heap_index] + alloc_size > total_size) {
mtx_unlock(&device->overallocation_mutex);
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
goto fail;
}
device->allocated_memory_size[heap_index] += alloc_size;
mtx_unlock(&device->overallocation_mutex);
}
result = device->ws->buffer_create(device->ws, alloc_size,
device->physical_device->rad_info.max_alignment, domain,
flags, priority, replay_address, &mem->bo);
if (result != VK_SUCCESS) {
if (device->overallocation_disallowed) {
mtx_lock(&device->overallocation_mutex);
device->allocated_memory_size[heap_index] -= alloc_size;
mtx_unlock(&device->overallocation_mutex);
}
goto fail;
}
mem->heap_index = heap_index;
mem->alloc_size = alloc_size;
}
if (!wsi_info) {
if (device->use_global_bo_list) {
result = device->ws->buffer_make_resident(device->ws, mem->bo, true);
if (result != VK_SUCCESS)
goto fail;
}
}
*pMem = radv_device_memory_to_handle(mem);
radv_rmv_log_heap_create(device, *pMem, is_internal, flags_info ? flags_info->flags : 0);
return VK_SUCCESS;
fail:
radv_free_memory(device, pAllocator, mem);
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_AllocateMemory(VkDevice _device, const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMem)
{
RADV_FROM_HANDLE(radv_device, device, _device);
return radv_alloc_memory(device, pAllocateInfo, pAllocator, pMem, false);
}
VKAPI_ATTR void VKAPI_CALL
radv_FreeMemory(VkDevice _device, VkDeviceMemory _mem, const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, _mem);
radv_free_memory(device, pAllocator, mem);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_MapMemory2KHR(VkDevice _device, const VkMemoryMapInfoKHR *pMemoryMapInfo, void **ppData)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, pMemoryMapInfo->memory);
if (mem->user_ptr)
*ppData = mem->user_ptr;
else
*ppData = device->ws->buffer_map(mem->bo);
if (*ppData) {
vk_rmv_log_cpu_map(&device->vk, mem->bo->va, false);
*ppData = (uint8_t *)*ppData + pMemoryMapInfo->offset;
return VK_SUCCESS;
}
return vk_error(device, VK_ERROR_MEMORY_MAP_FAILED);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_UnmapMemory2KHR(VkDevice _device, const VkMemoryUnmapInfoKHR *pMemoryUnmapInfo)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, pMemoryUnmapInfo->memory);
vk_rmv_log_cpu_map(&device->vk, mem->bo->va, true);
if (mem->user_ptr == NULL)
device->ws->buffer_unmap(mem->bo);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_FlushMappedMemoryRanges(VkDevice _device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges)
{
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_InvalidateMappedMemoryRanges(VkDevice _device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges)
{
return VK_SUCCESS;
}
VKAPI_ATTR uint64_t VKAPI_CALL
radv_GetDeviceMemoryOpaqueCaptureAddress(VkDevice device,
const VkDeviceMemoryOpaqueCaptureAddressInfo *pInfo)
{
RADV_FROM_HANDLE(radv_device_memory, mem, pInfo->memory);
return radv_buffer_get_va(mem->bo);
}
VKAPI_ATTR void VKAPI_CALL
radv_GetDeviceMemoryCommitment(VkDevice device, VkDeviceMemory memory,
VkDeviceSize *pCommittedMemoryInBytes)
{
*pCommittedMemoryInBytes = 0;
}