blob: 3972429a38362a54199f0d151938dfb11e0d2069 [file] [log] [blame]
#include <vector>
#include <algorithm>
#include "aco_ir.h"
#include "common/sid.h"
#include "ac_shader_util.h"
#include "util/u_math.h"
namespace aco {
struct asm_context {
Program *program;
enum chip_class chip_class;
std::vector<std::pair<int, SOPP_instruction*>> branches;
std::vector<unsigned> constaddrs;
const int16_t* opcode;
// TODO: keep track of branch instructions referring blocks
// and, when emitting the block, correct the offset in instr
asm_context(Program* program) : program(program), chip_class(program->chip_class) {
if (chip_class <= GFX7)
opcode = &instr_info.opcode_gfx7[0];
else if (chip_class <= GFX9)
opcode = &instr_info.opcode_gfx9[0];
else if (chip_class >= GFX10)
opcode = &instr_info.opcode_gfx10[0];
}
int subvector_begin_pos = -1;
};
static uint32_t get_sdwa_sel(unsigned sel, PhysReg reg)
{
if (sel & sdwa_isra) {
unsigned size = sdwa_rasize & sel;
if (size == 1)
return reg.byte();
else /* size == 2 */
return sdwa_isword | (reg.byte() >> 1);
}
return sel & sdwa_asuint;
}
void emit_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
/* lower remaining pseudo-instructions */
if (instr->opcode == aco_opcode::p_constaddr) {
unsigned dest = instr->definitions[0].physReg();
unsigned offset = instr->operands[0].constantValue();
/* s_getpc_b64 dest[0:1] */
uint32_t encoding = (0b101111101 << 23);
uint32_t opcode = ctx.opcode[(int)aco_opcode::s_getpc_b64];
if (opcode >= 55 && ctx.chip_class <= GFX9) {
assert(ctx.chip_class == GFX9 && opcode < 60);
opcode = opcode - 4;
}
encoding |= dest << 16;
encoding |= opcode << 8;
out.push_back(encoding);
/* s_add_u32 dest[0], dest[0], ... */
encoding = (0b10 << 30);
encoding |= ctx.opcode[(int)aco_opcode::s_add_u32] << 23;
encoding |= dest << 16;
encoding |= dest;
encoding |= 255 << 8;
out.push_back(encoding);
ctx.constaddrs.push_back(out.size());
out.push_back(offset);
/* s_addc_u32 dest[1], dest[1], 0 */
encoding = (0b10 << 30);
encoding |= ctx.opcode[(int)aco_opcode::s_addc_u32] << 23;
encoding |= (dest + 1) << 16;
encoding |= dest + 1;
encoding |= 128 << 8;
out.push_back(encoding);
return;
}
uint32_t opcode = ctx.opcode[(int)instr->opcode];
if (opcode == (uint32_t)-1) {
fprintf(stderr, "Unsupported opcode: ");
aco_print_instr(instr, stderr);
abort();
}
switch (instr->format) {
case Format::SOP2: {
uint32_t encoding = (0b10 << 30);
encoding |= opcode << 23;
encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0;
encoding |= instr->operands.size() >= 2 ? instr->operands[1].physReg() << 8 : 0;
encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
out.push_back(encoding);
break;
}
case Format::SOPK: {
SOPK_instruction *sopk = static_cast<SOPK_instruction*>(instr);
if (instr->opcode == aco_opcode::s_subvector_loop_begin) {
assert(ctx.chip_class >= GFX10);
assert(ctx.subvector_begin_pos == -1);
ctx.subvector_begin_pos = out.size();
} else if (instr->opcode == aco_opcode::s_subvector_loop_end) {
assert(ctx.chip_class >= GFX10);
assert(ctx.subvector_begin_pos != -1);
/* Adjust s_subvector_loop_begin instruction to the address after the end */
out[ctx.subvector_begin_pos] |= (out.size() - ctx.subvector_begin_pos);
/* Adjust s_subvector_loop_end instruction to the address after the beginning */
sopk->imm = (uint16_t)(ctx.subvector_begin_pos - (int)out.size());
ctx.subvector_begin_pos = -1;
}
uint32_t encoding = (0b1011 << 28);
encoding |= opcode << 23;
encoding |=
!instr->definitions.empty() && !(instr->definitions[0].physReg() == scc) ?
instr->definitions[0].physReg() << 16 :
!instr->operands.empty() && instr->operands[0].physReg() <= 127 ?
instr->operands[0].physReg() << 16 : 0;
encoding |= sopk->imm;
out.push_back(encoding);
break;
}
case Format::SOP1: {
uint32_t encoding = (0b101111101 << 23);
if (opcode >= 55 && ctx.chip_class <= GFX9) {
assert(ctx.chip_class == GFX9 && opcode < 60);
opcode = opcode - 4;
}
encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0;
encoding |= opcode << 8;
encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
out.push_back(encoding);
break;
}
case Format::SOPC: {
uint32_t encoding = (0b101111110 << 23);
encoding |= opcode << 16;
encoding |= instr->operands.size() == 2 ? instr->operands[1].physReg() << 8 : 0;
encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
out.push_back(encoding);
break;
}
case Format::SOPP: {
SOPP_instruction* sopp = static_cast<SOPP_instruction*>(instr);
uint32_t encoding = (0b101111111 << 23);
encoding |= opcode << 16;
encoding |= (uint16_t) sopp->imm;
if (sopp->block != -1)
ctx.branches.emplace_back(out.size(), sopp);
out.push_back(encoding);
break;
}
case Format::SMEM: {
SMEM_instruction* smem = static_cast<SMEM_instruction*>(instr);
bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4);
bool is_load = !instr->definitions.empty();
uint32_t encoding = 0;
if (ctx.chip_class <= GFX7) {
encoding = (0b11000 << 27);
encoding |= opcode << 22;
encoding |= instr->definitions.size() ? instr->definitions[0].physReg() << 15 : 0;
encoding |= instr->operands.size() ? (instr->operands[0].physReg() >> 1) << 9 : 0;
if (instr->operands.size() >= 2) {
if (!instr->operands[1].isConstant() || instr->operands[1].constantValue() >= 1024) {
encoding |= instr->operands[1].physReg().reg();
} else {
encoding |= instr->operands[1].constantValue() >> 2;
encoding |= 1 << 8;
}
}
out.push_back(encoding);
/* SMRD instructions can take a literal on GFX6 & GFX7 */
if (instr->operands.size() >= 2 && instr->operands[1].isConstant() && instr->operands[1].constantValue() >= 1024)
out.push_back(instr->operands[1].constantValue() >> 2);
return;
}
if (ctx.chip_class <= GFX9) {
encoding = (0b110000 << 26);
assert(!smem->dlc); /* Device-level coherent is not supported on GFX9 and lower */
encoding |= smem->nv ? 1 << 15 : 0;
} else {
encoding = (0b111101 << 26);
assert(!smem->nv); /* Non-volatile is not supported on GFX10 */
encoding |= smem->dlc ? 1 << 14 : 0;
}
encoding |= opcode << 18;
encoding |= smem->glc ? 1 << 16 : 0;
if (ctx.chip_class <= GFX9) {
if (instr->operands.size() >= 2)
encoding |= instr->operands[1].isConstant() ? 1 << 17 : 0; /* IMM - immediate enable */
}
if (ctx.chip_class == GFX9) {
encoding |= soe ? 1 << 14 : 0;
}
if (is_load || instr->operands.size() >= 3) { /* SDATA */
encoding |= (is_load ? instr->definitions[0].physReg() : instr->operands[2].physReg()) << 6;
}
if (instr->operands.size() >= 1) { /* SBASE */
encoding |= instr->operands[0].physReg() >> 1;
}
out.push_back(encoding);
encoding = 0;
int32_t offset = 0;
uint32_t soffset = ctx.chip_class >= GFX10
? sgpr_null /* On GFX10 this is disabled by specifying SGPR_NULL */
: 0; /* On GFX9, it is disabled by the SOE bit (and it's not present on GFX8 and below) */
if (instr->operands.size() >= 2) {
const Operand &op_off1 = instr->operands[1];
if (ctx.chip_class <= GFX9) {
offset = op_off1.isConstant() ? op_off1.constantValue() : op_off1.physReg();
} else {
/* GFX10 only supports constants in OFFSET, so put the operand in SOFFSET if it's an SGPR */
if (op_off1.isConstant()) {
offset = op_off1.constantValue();
} else {
soffset = op_off1.physReg();
assert(!soe); /* There is no place to put the other SGPR offset, if any */
}
}
if (soe) {
const Operand &op_off2 = instr->operands.back();
assert(ctx.chip_class >= GFX9); /* GFX8 and below don't support specifying a constant and an SGPR at the same time */
assert(!op_off2.isConstant());
soffset = op_off2.physReg();
}
}
encoding |= offset;
encoding |= soffset << 25;
out.push_back(encoding);
return;
}
case Format::VOP2: {
uint32_t encoding = 0;
encoding |= opcode << 25;
encoding |= (0xFF & instr->definitions[0].physReg()) << 17;
encoding |= (0xFF & instr->operands[1].physReg()) << 9;
encoding |= instr->operands[0].physReg();
out.push_back(encoding);
break;
}
case Format::VOP1: {
uint32_t encoding = (0b0111111 << 25);
if (!instr->definitions.empty())
encoding |= (0xFF & instr->definitions[0].physReg()) << 17;
encoding |= opcode << 9;
if (!instr->operands.empty())
encoding |= instr->operands[0].physReg();
out.push_back(encoding);
break;
}
case Format::VOPC: {
uint32_t encoding = (0b0111110 << 25);
encoding |= opcode << 17;
encoding |= (0xFF & instr->operands[1].physReg()) << 9;
encoding |= instr->operands[0].physReg();
out.push_back(encoding);
break;
}
case Format::VINTRP: {
Interp_instruction* interp = static_cast<Interp_instruction*>(instr);
uint32_t encoding = 0;
if (instr->opcode == aco_opcode::v_interp_p1ll_f16 ||
instr->opcode == aco_opcode::v_interp_p1lv_f16 ||
instr->opcode == aco_opcode::v_interp_p2_legacy_f16 ||
instr->opcode == aco_opcode::v_interp_p2_f16) {
if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
encoding = (0b110100 << 26);
} else if (ctx.chip_class >= GFX10) {
encoding = (0b110101 << 26);
} else {
unreachable("Unknown chip_class.");
}
encoding |= opcode << 16;
encoding |= (0xFF & instr->definitions[0].physReg());
out.push_back(encoding);
encoding = 0;
encoding |= interp->attribute;
encoding |= interp->component << 6;
encoding |= instr->operands[0].physReg() << 9;
if (instr->opcode == aco_opcode::v_interp_p2_f16 ||
instr->opcode == aco_opcode::v_interp_p2_legacy_f16 ||
instr->opcode == aco_opcode::v_interp_p1lv_f16) {
encoding |= instr->operands[2].physReg() << 18;
}
out.push_back(encoding);
} else {
if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
encoding = (0b110101 << 26); /* Vega ISA doc says 110010 but it's wrong */
} else {
encoding = (0b110010 << 26);
}
assert(encoding);
encoding |= (0xFF & instr->definitions[0].physReg()) << 18;
encoding |= opcode << 16;
encoding |= interp->attribute << 10;
encoding |= interp->component << 8;
if (instr->opcode == aco_opcode::v_interp_mov_f32)
encoding |= (0x3 & instr->operands[0].constantValue());
else
encoding |= (0xFF & instr->operands[0].physReg());
out.push_back(encoding);
}
break;
}
case Format::DS: {
DS_instruction* ds = static_cast<DS_instruction*>(instr);
uint32_t encoding = (0b110110 << 26);
if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
encoding |= opcode << 17;
encoding |= (ds->gds ? 1 : 0) << 16;
} else {
encoding |= opcode << 18;
encoding |= (ds->gds ? 1 : 0) << 17;
}
encoding |= ((0xFF & ds->offset1) << 8);
encoding |= (0xFFFF & ds->offset0);
out.push_back(encoding);
encoding = 0;
unsigned reg = !instr->definitions.empty() ? instr->definitions[0].physReg() : 0;
encoding |= (0xFF & reg) << 24;
reg = instr->operands.size() >= 3 && !(instr->operands[2].physReg() == m0) ? instr->operands[2].physReg() : 0;
encoding |= (0xFF & reg) << 16;
reg = instr->operands.size() >= 2 && !(instr->operands[1].physReg() == m0) ? instr->operands[1].physReg() : 0;
encoding |= (0xFF & reg) << 8;
encoding |= (0xFF & instr->operands[0].physReg());
out.push_back(encoding);
break;
}
case Format::MUBUF: {
MUBUF_instruction* mubuf = static_cast<MUBUF_instruction*>(instr);
uint32_t encoding = (0b111000 << 26);
encoding |= opcode << 18;
encoding |= (mubuf->lds ? 1 : 0) << 16;
encoding |= (mubuf->glc ? 1 : 0) << 14;
encoding |= (mubuf->idxen ? 1 : 0) << 13;
assert(!mubuf->addr64 || ctx.chip_class <= GFX7);
if (ctx.chip_class == GFX6 || ctx.chip_class == GFX7)
encoding |= (mubuf->addr64 ? 1 : 0) << 15;
encoding |= (mubuf->offen ? 1 : 0) << 12;
if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
assert(!mubuf->dlc); /* Device-level coherent is not supported on GFX9 and lower */
encoding |= (mubuf->slc ? 1 : 0) << 17;
} else if (ctx.chip_class >= GFX10) {
encoding |= (mubuf->dlc ? 1 : 0) << 15;
}
encoding |= 0x0FFF & mubuf->offset;
out.push_back(encoding);
encoding = 0;
if (ctx.chip_class <= GFX7 || ctx.chip_class >= GFX10) {
encoding |= (mubuf->slc ? 1 : 0) << 22;
}
encoding |= instr->operands[2].physReg() << 24;
encoding |= (mubuf->tfe ? 1 : 0) << 23;
encoding |= (instr->operands[0].physReg() >> 2) << 16;
unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg() : instr->definitions[0].physReg();
encoding |= (0xFF & reg) << 8;
encoding |= (0xFF & instr->operands[1].physReg());
out.push_back(encoding);
break;
}
case Format::MTBUF: {
MTBUF_instruction* mtbuf = static_cast<MTBUF_instruction*>(instr);
uint32_t img_format = ac_get_tbuffer_format(ctx.chip_class, mtbuf->dfmt, mtbuf->nfmt);
uint32_t encoding = (0b111010 << 26);
assert(img_format <= 0x7F);
assert(!mtbuf->dlc || ctx.chip_class >= GFX10);
encoding |= (mtbuf->dlc ? 1 : 0) << 15; /* DLC bit replaces one bit of the OPCODE on GFX10 */
encoding |= (mtbuf->glc ? 1 : 0) << 14;
encoding |= (mtbuf->idxen ? 1 : 0) << 13;
encoding |= (mtbuf->offen ? 1 : 0) << 12;
encoding |= 0x0FFF & mtbuf->offset;
encoding |= (img_format << 19); /* Handles both the GFX10 FORMAT and the old NFMT+DFMT */
if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
encoding |= opcode << 15;
} else {
encoding |= (opcode & 0x07) << 16; /* 3 LSBs of 4-bit OPCODE */
}
out.push_back(encoding);
encoding = 0;
encoding |= instr->operands[2].physReg() << 24;
encoding |= (mtbuf->tfe ? 1 : 0) << 23;
encoding |= (mtbuf->slc ? 1 : 0) << 22;
encoding |= (instr->operands[0].physReg() >> 2) << 16;
unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg() : instr->definitions[0].physReg();
encoding |= (0xFF & reg) << 8;
encoding |= (0xFF & instr->operands[1].physReg());
if (ctx.chip_class >= GFX10) {
encoding |= (((opcode & 0x08) >> 3) << 21); /* MSB of 4-bit OPCODE */
}
out.push_back(encoding);
break;
}
case Format::MIMG: {
MIMG_instruction* mimg = static_cast<MIMG_instruction*>(instr);
uint32_t encoding = (0b111100 << 26);
encoding |= mimg->slc ? 1 << 25 : 0;
encoding |= opcode << 18;
encoding |= mimg->lwe ? 1 << 17 : 0;
encoding |= mimg->tfe ? 1 << 16 : 0;
encoding |= mimg->glc ? 1 << 13 : 0;
encoding |= mimg->unrm ? 1 << 12 : 0;
if (ctx.chip_class <= GFX9) {
assert(!mimg->dlc); /* Device-level coherent is not supported on GFX9 and lower */
assert(!mimg->r128);
encoding |= mimg->a16 ? 1 << 15 : 0;
encoding |= mimg->da ? 1 << 14 : 0;
} else {
encoding |= mimg->r128 ? 1 << 15 : 0; /* GFX10: A16 moved to 2nd word, R128 replaces it in 1st word */
encoding |= mimg->dim << 3; /* GFX10: dimensionality instead of declare array */
encoding |= mimg->dlc ? 1 << 7 : 0;
}
encoding |= (0xF & mimg->dmask) << 8;
out.push_back(encoding);
encoding = (0xFF & instr->operands[2].physReg()); /* VADDR */
if (!instr->definitions.empty()) {
encoding |= (0xFF & instr->definitions[0].physReg()) << 8; /* VDATA */
} else if (instr->operands[1].regClass().type() == RegType::vgpr) {
encoding |= (0xFF & instr->operands[1].physReg()) << 8; /* VDATA */
}
encoding |= (0x1F & (instr->operands[0].physReg() >> 2)) << 16; /* T# (resource) */
if (instr->operands[1].regClass().type() == RegType::sgpr)
encoding |= (0x1F & (instr->operands[1].physReg() >> 2)) << 21; /* sampler */
assert(!mimg->d16 || ctx.chip_class >= GFX9);
encoding |= mimg->d16 ? 1 << 15 : 0;
if (ctx.chip_class >= GFX10) {
encoding |= mimg->a16 ? 1 << 14 : 0; /* GFX10: A16 still exists, but is in a different place */
}
out.push_back(encoding);
break;
}
case Format::FLAT:
case Format::SCRATCH:
case Format::GLOBAL: {
FLAT_instruction *flat = static_cast<FLAT_instruction*>(instr);
uint32_t encoding = (0b110111 << 26);
encoding |= opcode << 18;
if (ctx.chip_class <= GFX9) {
assert(flat->offset <= 0x1fff);
encoding |= flat->offset & 0x1fff;
} else if (instr->format == Format::FLAT) {
/* GFX10 has a 12-bit immediate OFFSET field,
* but it has a hw bug: it ignores the offset, called FlatSegmentOffsetBug
*/
assert(flat->offset == 0);
} else {
assert(flat->offset <= 0xfff);
encoding |= flat->offset & 0xfff;
}
if (instr->format == Format::SCRATCH)
encoding |= 1 << 14;
else if (instr->format == Format::GLOBAL)
encoding |= 2 << 14;
encoding |= flat->lds ? 1 << 13 : 0;
encoding |= flat->glc ? 1 << 16 : 0;
encoding |= flat->slc ? 1 << 17 : 0;
if (ctx.chip_class >= GFX10) {
assert(!flat->nv);
encoding |= flat->dlc ? 1 << 12 : 0;
} else {
assert(!flat->dlc);
}
out.push_back(encoding);
encoding = (0xFF & instr->operands[0].physReg());
if (!instr->definitions.empty())
encoding |= (0xFF & instr->definitions[0].physReg()) << 24;
if (instr->operands.size() >= 3)
encoding |= (0xFF & instr->operands[2].physReg()) << 8;
if (!instr->operands[1].isUndefined()) {
assert(ctx.chip_class >= GFX10 || instr->operands[1].physReg() != 0x7F);
assert(instr->format != Format::FLAT);
encoding |= instr->operands[1].physReg() << 16;
} else if (instr->format != Format::FLAT || ctx.chip_class >= GFX10) { /* SADDR is actually used with FLAT on GFX10 */
if (ctx.chip_class <= GFX9)
encoding |= 0x7F << 16;
else
encoding |= sgpr_null << 16;
}
encoding |= flat->nv ? 1 << 23 : 0;
out.push_back(encoding);
break;
}
case Format::EXP: {
Export_instruction* exp = static_cast<Export_instruction*>(instr);
uint32_t encoding;
if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
encoding = (0b110001 << 26);
} else {
encoding = (0b111110 << 26);
}
encoding |= exp->valid_mask ? 0b1 << 12 : 0;
encoding |= exp->done ? 0b1 << 11 : 0;
encoding |= exp->compressed ? 0b1 << 10 : 0;
encoding |= exp->dest << 4;
encoding |= exp->enabled_mask;
out.push_back(encoding);
encoding = 0xFF & exp->operands[0].physReg();
encoding |= (0xFF & exp->operands[1].physReg()) << 8;
encoding |= (0xFF & exp->operands[2].physReg()) << 16;
encoding |= (0xFF & exp->operands[3].physReg()) << 24;
out.push_back(encoding);
break;
}
case Format::PSEUDO:
case Format::PSEUDO_BARRIER:
if (instr->opcode != aco_opcode::p_unit_test)
unreachable("Pseudo instructions should be lowered before assembly.");
break;
default:
if ((uint16_t) instr->format & (uint16_t) Format::VOP3A) {
VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr);
if ((uint16_t) instr->format & (uint16_t) Format::VOP2) {
opcode = opcode + 0x100;
} else if ((uint16_t) instr->format & (uint16_t) Format::VOP1) {
if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9)
opcode = opcode + 0x140;
else
opcode = opcode + 0x180;
} else if ((uint16_t) instr->format & (uint16_t) Format::VOPC) {
opcode = opcode + 0x0;
} else if ((uint16_t) instr->format & (uint16_t) Format::VINTRP) {
opcode = opcode + 0x270;
}
uint32_t encoding;
if (ctx.chip_class <= GFX9) {
encoding = (0b110100 << 26);
} else if (ctx.chip_class >= GFX10) {
encoding = (0b110101 << 26);
} else {
unreachable("Unknown chip_class.");
}
if (ctx.chip_class <= GFX7) {
encoding |= opcode << 17;
encoding |= (vop3->clamp ? 1 : 0) << 11;
} else {
encoding |= opcode << 16;
encoding |= (vop3->clamp ? 1 : 0) << 15;
}
encoding |= vop3->opsel << 11;
for (unsigned i = 0; i < 3; i++)
encoding |= vop3->abs[i] << (8+i);
if (instr->definitions.size() == 2)
encoding |= instr->definitions[1].physReg() << 8;
encoding |= (0xFF & instr->definitions[0].physReg());
out.push_back(encoding);
encoding = 0;
if (instr->opcode == aco_opcode::v_interp_mov_f32) {
encoding = 0x3 & instr->operands[0].constantValue();
} else {
for (unsigned i = 0; i < instr->operands.size(); i++)
encoding |= instr->operands[i].physReg() << (i * 9);
}
encoding |= vop3->omod << 27;
for (unsigned i = 0; i < 3; i++)
encoding |= vop3->neg[i] << (29+i);
out.push_back(encoding);
} else if (instr->format == Format::VOP3P) {
VOP3P_instruction* vop3 = static_cast<VOP3P_instruction*>(instr);
uint32_t encoding;
if (ctx.chip_class == GFX9) {
encoding = (0b110100111 << 23);
} else if (ctx.chip_class >= GFX10) {
encoding = (0b110011 << 26);
} else {
unreachable("Unknown chip_class.");
}
encoding |= opcode << 16;
encoding |= (vop3->clamp ? 1 : 0) << 15;
encoding |= vop3->opsel_lo << 11;
encoding |= (vop3->opsel_hi & 0x4) ? 1 : 0 << 14;
for (unsigned i = 0; i < 3; i++)
encoding |= vop3->neg_hi[i] << (8+i);
encoding |= (0xFF & instr->definitions[0].physReg());
out.push_back(encoding);
encoding = 0;
for (unsigned i = 0; i < instr->operands.size(); i++)
encoding |= instr->operands[i].physReg() << (i * 9);
encoding |= vop3->opsel_hi & 0x3 << 27;
for (unsigned i = 0; i < 3; i++)
encoding |= vop3->neg_lo[i] << (29+i);
out.push_back(encoding);
} else if (instr->isDPP()){
assert(ctx.chip_class >= GFX8);
/* first emit the instruction without the DPP operand */
Operand dpp_op = instr->operands[0];
instr->operands[0] = Operand(PhysReg{250}, v1);
instr->format = (Format) ((uint16_t) instr->format & ~(uint16_t)Format::DPP);
emit_instruction(ctx, out, instr);
DPP_instruction* dpp = static_cast<DPP_instruction*>(instr);
uint32_t encoding = (0xF & dpp->row_mask) << 28;
encoding |= (0xF & dpp->bank_mask) << 24;
encoding |= dpp->abs[1] << 23;
encoding |= dpp->neg[1] << 22;
encoding |= dpp->abs[0] << 21;
encoding |= dpp->neg[0] << 20;
if (ctx.chip_class >= GFX10)
encoding |= 1 << 18; /* set Fetch Inactive to match GFX9 behaviour */
encoding |= dpp->bound_ctrl << 19;
encoding |= dpp->dpp_ctrl << 8;
encoding |= (0xFF) & dpp_op.physReg();
out.push_back(encoding);
return;
} else if (instr->isSDWA()) {
/* first emit the instruction without the SDWA operand */
Operand sdwa_op = instr->operands[0];
instr->operands[0] = Operand(PhysReg{249}, v1);
instr->format = (Format) ((uint16_t) instr->format & ~(uint16_t)Format::SDWA);
emit_instruction(ctx, out, instr);
SDWA_instruction* sdwa = static_cast<SDWA_instruction*>(instr);
uint32_t encoding = 0;
if ((uint16_t)instr->format & (uint16_t)Format::VOPC) {
if (instr->definitions[0].physReg() != vcc) {
encoding |= instr->definitions[0].physReg() << 8;
encoding |= 1 << 15;
}
encoding |= (sdwa->clamp ? 1 : 0) << 13;
} else {
encoding |= get_sdwa_sel(sdwa->dst_sel, instr->definitions[0].physReg()) << 8;
uint32_t dst_u = sdwa->dst_sel & sdwa_sext ? 1 : 0;
if (sdwa->dst_preserve || (sdwa->dst_sel & sdwa_isra))
dst_u = 2;
encoding |= dst_u << 11;
encoding |= (sdwa->clamp ? 1 : 0) << 13;
encoding |= sdwa->omod << 14;
}
encoding |= get_sdwa_sel(sdwa->sel[0], sdwa_op.physReg()) << 16;
encoding |= sdwa->sel[0] & sdwa_sext ? 1 << 19 : 0;
encoding |= sdwa->abs[0] << 21;
encoding |= sdwa->neg[0] << 20;
if (instr->operands.size() >= 2) {
encoding |= get_sdwa_sel(sdwa->sel[1], instr->operands[1].physReg()) << 24;
encoding |= sdwa->sel[1] & sdwa_sext ? 1 << 27 : 0;
encoding |= sdwa->abs[1] << 29;
encoding |= sdwa->neg[1] << 28;
}
encoding |= 0xFF & sdwa_op.physReg();
encoding |= (sdwa_op.physReg() < 256) << 23;
if (instr->operands.size() >= 2)
encoding |= (instr->operands[1].physReg() < 256) << 31;
out.push_back(encoding);
} else {
unreachable("unimplemented instruction format");
}
break;
}
/* append literal dword */
for (const Operand& op : instr->operands) {
if (op.isLiteral()) {
out.push_back(op.constantValue());
break;
}
}
}
void emit_block(asm_context& ctx, std::vector<uint32_t>& out, Block& block)
{
for (aco_ptr<Instruction>& instr : block.instructions) {
#if 0
int start_idx = out.size();
std::cerr << "Encoding:\t" << std::endl;
aco_print_instr(&*instr, stderr);
std::cerr << std::endl;
#endif
emit_instruction(ctx, out, instr.get());
#if 0
for (int i = start_idx; i < out.size(); i++)
std::cerr << "encoding: " << "0x" << std::setfill('0') << std::setw(8) << std::hex << out[i] << std::endl;
#endif
}
}
void fix_exports(asm_context& ctx, std::vector<uint32_t>& out, Program* program)
{
bool exported = false;
for (Block& block : program->blocks) {
if (!(block.kind & block_kind_export_end))
continue;
std::vector<aco_ptr<Instruction>>::reverse_iterator it = block.instructions.rbegin();
while ( it != block.instructions.rend())
{
if ((*it)->format == Format::EXP) {
Export_instruction* exp = static_cast<Export_instruction*>((*it).get());
if (program->stage & (hw_vs | hw_ngg_gs)) {
if (exp->dest >= V_008DFC_SQ_EXP_POS && exp->dest <= (V_008DFC_SQ_EXP_POS + 3)) {
exp->done = true;
exported = true;
break;
}
} else {
exp->done = true;
exp->valid_mask = true;
exported = true;
break;
}
} else if ((*it)->definitions.size() && (*it)->definitions[0].physReg() == exec)
break;
++it;
}
}
if (!exported) {
/* Abort in order to avoid a GPU hang. */
fprintf(stderr, "Missing export in %s shader:\n", (program->stage & hw_vs) ? "vertex" : "fragment");
aco_print_program(program, stderr);
abort();
}
}
static void fix_branches_gfx10(asm_context& ctx, std::vector<uint32_t>& out)
{
/* Branches with an offset of 0x3f are buggy on GFX10, we workaround by inserting NOPs if needed. */
bool gfx10_3f_bug = false;
do {
auto buggy_branch_it = std::find_if(ctx.branches.begin(), ctx.branches.end(), [&ctx](const auto &branch) -> bool {
return ((int)ctx.program->blocks[branch.second->block].offset - branch.first - 1) == 0x3f;
});
gfx10_3f_bug = buggy_branch_it != ctx.branches.end();
if (gfx10_3f_bug) {
/* Insert an s_nop after the branch */
constexpr uint32_t s_nop_0 = 0xbf800000u;
int s_nop_pos = buggy_branch_it->first + 1;
auto out_pos = std::next(out.begin(), s_nop_pos);
out.insert(out_pos, s_nop_0);
/* Update the offset of each affected block */
for (Block& block : ctx.program->blocks) {
if (block.offset > (unsigned)buggy_branch_it->first)
block.offset++;
}
/* Update the branches following the current one */
for (auto branch_it = std::next(buggy_branch_it); branch_it != ctx.branches.end(); ++branch_it)
branch_it->first++;
/* Find first constant address after the inserted instruction */
auto caddr_it = std::find_if(ctx.constaddrs.begin(), ctx.constaddrs.end(), [s_nop_pos](const int &caddr_pos) -> bool {
return caddr_pos >= s_nop_pos;
});
/* Update the locations of constant addresses */
for (; caddr_it != ctx.constaddrs.end(); ++caddr_it)
(*caddr_it)++;
}
} while (gfx10_3f_bug);
}
void fix_branches(asm_context& ctx, std::vector<uint32_t>& out)
{
if (ctx.chip_class >= GFX10)
fix_branches_gfx10(ctx, out);
for (std::pair<int, SOPP_instruction*> &branch : ctx.branches) {
int offset = (int)ctx.program->blocks[branch.second->block].offset - branch.first - 1;
out[branch.first] |= (uint16_t) offset;
}
}
void fix_constaddrs(asm_context& ctx, std::vector<uint32_t>& out)
{
for (unsigned addr : ctx.constaddrs)
out[addr] += (out.size() - addr + 1u) * 4u;
}
unsigned emit_program(Program* program,
std::vector<uint32_t>& code)
{
asm_context ctx(program);
if (program->stage & (hw_vs | hw_fs | hw_ngg_gs))
fix_exports(ctx, code, program);
for (Block& block : program->blocks) {
block.offset = code.size();
emit_block(ctx, code, block);
}
fix_branches(ctx, code);
unsigned exec_size = code.size() * sizeof(uint32_t);
if (program->chip_class >= GFX10) {
/* Pad output with s_code_end so instruction prefetching doesn't cause
* page faults */
unsigned final_size = align(code.size() + 3 * 16, 16);
while (code.size() < final_size)
code.push_back(0xbf9f0000u);
}
fix_constaddrs(ctx, code);
while (program->constant_data.size() % 4u)
program->constant_data.push_back(0);
/* Copy constant data */
code.insert(code.end(), (uint32_t*)program->constant_data.data(),
(uint32_t*)(program->constant_data.data() + program->constant_data.size()));
return exec_size;
}
}