blob: 2ffdee3f16267ace149f53b409d4f62cce94b6c6 [file] [log] [blame]
/*
* Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <err.h>
#include "main/mtypes.h"
#include "compiler/glsl/glsl_to_nir.h"
#include "compiler/nir_types.h"
#include "compiler/nir/nir_builder.h"
#include "util/half_float.h"
#include "util/u_math.h"
#include "util/u_debug.h"
#include "util/u_dynarray.h"
#include "util/list.h"
#include "main/mtypes.h"
#include "midgard.h"
#include "midgard_nir.h"
#include "midgard_compile.h"
#include "midgard_ops.h"
#include "helpers.h"
#include "compiler.h"
#include "midgard_quirks.h"
#include "panfrost-quirks.h"
#include "panfrost/util/pan_lower_framebuffer.h"
#include "disassemble.h"
static const struct debug_named_value debug_options[] = {
{"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
{"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
{"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
DEBUG_NAMED_VALUE_END
};
DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
unsigned SHADER_DB_COUNT = 0;
int midgard_debug = 0;
#define DBG(fmt, ...) \
do { if (midgard_debug & MIDGARD_DBG_MSGS) \
fprintf(stderr, "%s:%d: "fmt, \
__FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
static midgard_block *
create_empty_block(compiler_context *ctx)
{
midgard_block *blk = rzalloc(ctx, midgard_block);
blk->base.predecessors = _mesa_set_create(blk,
_mesa_hash_pointer,
_mesa_key_pointer_equal);
blk->base.name = ctx->block_source_count++;
return blk;
}
static void
schedule_barrier(compiler_context *ctx)
{
midgard_block *temp = ctx->after_block;
ctx->after_block = create_empty_block(ctx);
ctx->block_count++;
list_addtail(&ctx->after_block->base.link, &ctx->blocks);
list_inithead(&ctx->after_block->base.instructions);
pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
ctx->current_block = ctx->after_block;
ctx->after_block = temp;
}
/* Helpers to generate midgard_instruction's using macro magic, since every
* driver seems to do it that way */
#define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
#define M_LOAD_STORE(name, store, T) \
static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
midgard_instruction i = { \
.type = TAG_LOAD_STORE_4, \
.mask = 0xF, \
.dest = ~0, \
.src = { ~0, ~0, ~0, ~0 }, \
.swizzle = SWIZZLE_IDENTITY_4, \
.op = midgard_op_##name, \
.load_store = { \
.address = address \
} \
}; \
\
if (store) { \
i.src[0] = ssa; \
i.src_types[0] = T; \
i.dest_type = T; \
} else { \
i.dest = ssa; \
i.dest_type = T; \
} \
return i; \
}
#define M_LOAD(name, T) M_LOAD_STORE(name, false, T)
#define M_STORE(name, T) M_LOAD_STORE(name, true, T)
M_LOAD(ld_attr_32, nir_type_uint32);
M_LOAD(ld_vary_32, nir_type_uint32);
M_LOAD(ld_ubo_int4, nir_type_uint32);
M_LOAD(ld_int4, nir_type_uint32);
M_STORE(st_int4, nir_type_uint32);
M_LOAD(ld_color_buffer_32u, nir_type_uint32);
M_LOAD(ld_color_buffer_as_fp16, nir_type_float16);
M_LOAD(ld_color_buffer_as_fp32, nir_type_float32);
M_STORE(st_vary_32, nir_type_uint32);
M_LOAD(ld_cubemap_coords, nir_type_uint32);
M_LOAD(ld_compute_id, nir_type_uint32);
static midgard_instruction
v_branch(bool conditional, bool invert)
{
midgard_instruction ins = {
.type = TAG_ALU_4,
.unit = ALU_ENAB_BRANCH,
.compact_branch = true,
.branch = {
.conditional = conditional,
.invert_conditional = invert
},
.dest = ~0,
.src = { ~0, ~0, ~0, ~0 },
};
return ins;
}
static void
attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
{
ins->has_constants = true;
memcpy(&ins->constants, constants, 16);
}
static int
glsl_type_size(const struct glsl_type *type, bool bindless)
{
return glsl_count_attribute_slots(type, false);
}
/* Lower fdot2 to a vector multiplication followed by channel addition */
static void
midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
{
if (alu->op != nir_op_fdot2)
return;
b->cursor = nir_before_instr(&alu->instr);
nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
nir_ssa_def *product = nir_fmul(b, src0, src1);
nir_ssa_def *sum = nir_fadd(b,
nir_channel(b, product, 0),
nir_channel(b, product, 1));
/* Replace the fdot2 with this sum */
nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
}
static bool
midgard_nir_lower_fdot2(nir_shader *shader)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (!function->impl) continue;
nir_builder _b;
nir_builder *b = &_b;
nir_builder_init(b, function->impl);
nir_foreach_block(block, function->impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_alu) continue;
nir_alu_instr *alu = nir_instr_as_alu(instr);
midgard_nir_lower_fdot2_body(b, alu);
progress |= true;
}
}
nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
}
return progress;
}
static const nir_variable *
search_var(nir_shader *nir, nir_variable_mode mode, unsigned driver_loc)
{
nir_foreach_variable_with_modes(var, nir, mode) {
if (var->data.driver_location == driver_loc)
return var;
}
return NULL;
}
/* Midgard can write all of color, depth and stencil in a single writeout
* operation, so we merge depth/stencil stores with color stores.
* If there are no color stores, we add a write to the "depth RT".
*/
static bool
midgard_nir_lower_zs_store(nir_shader *nir)
{
if (nir->info.stage != MESA_SHADER_FRAGMENT)
return false;
nir_variable *z_var = NULL, *s_var = NULL;
nir_foreach_shader_out_variable(var, nir) {
if (var->data.location == FRAG_RESULT_DEPTH)
z_var = var;
else if (var->data.location == FRAG_RESULT_STENCIL)
s_var = var;
}
if (!z_var && !s_var)
return false;
bool progress = false;
nir_foreach_function(function, nir) {
if (!function->impl) continue;
nir_intrinsic_instr *z_store = NULL, *s_store = NULL;
nir_foreach_block(block, function->impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_store_output)
continue;
if (z_var && nir_intrinsic_base(intr) == z_var->data.driver_location) {
assert(!z_store);
z_store = intr;
}
if (s_var && nir_intrinsic_base(intr) == s_var->data.driver_location) {
assert(!s_store);
s_store = intr;
}
}
}
if (!z_store && !s_store) continue;
bool replaced = false;
nir_foreach_block(block, function->impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_store_output)
continue;
const nir_variable *var = search_var(nir, nir_var_shader_out, nir_intrinsic_base(intr));
assert(var);
if (var->data.location != FRAG_RESULT_COLOR &&
var->data.location < FRAG_RESULT_DATA0)
continue;
if (var->data.index)
continue;
assert(nir_src_is_const(intr->src[1]) && "no indirect outputs");
nir_builder b;
nir_builder_init(&b, function->impl);
assert(!z_store || z_store->instr.block == instr->block);
assert(!s_store || s_store->instr.block == instr->block);
b.cursor = nir_after_block_before_jump(instr->block);
nir_intrinsic_instr *combined_store;
combined_store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_combined_output_pan);
combined_store->num_components = intr->src[0].ssa->num_components;
nir_intrinsic_set_base(combined_store, nir_intrinsic_base(intr));
unsigned writeout = PAN_WRITEOUT_C;
if (z_store)
writeout |= PAN_WRITEOUT_Z;
if (s_store)
writeout |= PAN_WRITEOUT_S;
nir_intrinsic_set_component(combined_store, writeout);
struct nir_ssa_def *zero = nir_imm_int(&b, 0);
struct nir_ssa_def *src[4] = {
intr->src[0].ssa,
intr->src[1].ssa,
z_store ? z_store->src[0].ssa : zero,
s_store ? s_store->src[0].ssa : zero,
};
for (int i = 0; i < 4; ++i)
combined_store->src[i] = nir_src_for_ssa(src[i]);
nir_builder_instr_insert(&b, &combined_store->instr);
nir_instr_remove(instr);
replaced = true;
}
}
/* Insert a store to the depth RT (0xff) if needed */
if (!replaced) {
nir_builder b;
nir_builder_init(&b, function->impl);
nir_block *block = NULL;
if (z_store && s_store)
assert(z_store->instr.block == s_store->instr.block);
if (z_store)
block = z_store->instr.block;
else
block = s_store->instr.block;
b.cursor = nir_after_block_before_jump(block);
nir_intrinsic_instr *combined_store;
combined_store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_combined_output_pan);
combined_store->num_components = 4;
unsigned base;
if (z_store)
base = nir_intrinsic_base(z_store);
else
base = nir_intrinsic_base(s_store);
nir_intrinsic_set_base(combined_store, base);
unsigned writeout = 0;
if (z_store)
writeout |= PAN_WRITEOUT_Z;
if (s_store)
writeout |= PAN_WRITEOUT_S;
nir_intrinsic_set_component(combined_store, writeout);
struct nir_ssa_def *zero = nir_imm_int(&b, 0);
struct nir_ssa_def *src[4] = {
nir_imm_vec4(&b, 0, 0, 0, 0),
zero,
z_store ? z_store->src[0].ssa : zero,
s_store ? s_store->src[0].ssa : zero,
};
for (int i = 0; i < 4; ++i)
combined_store->src[i] = nir_src_for_ssa(src[i]);
nir_builder_instr_insert(&b, &combined_store->instr);
}
if (z_store)
nir_instr_remove(&z_store->instr);
if (s_store)
nir_instr_remove(&s_store->instr);
nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
progress = true;
}
return progress;
}
/* Real writeout stores, which break execution, need to be moved to after
* dual-source stores, which are just standard register writes. */
static bool
midgard_nir_reorder_writeout(nir_shader *nir)
{
bool progress = false;
nir_foreach_function(function, nir) {
if (!function->impl) continue;
nir_foreach_block(block, function->impl) {
nir_instr *last_writeout = NULL;
nir_foreach_instr_reverse_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
if (intr->intrinsic != nir_intrinsic_store_output)
continue;
const nir_variable *var = search_var(nir, nir_var_shader_out, nir_intrinsic_base(intr));
if (var->data.index) {
if (!last_writeout)
last_writeout = instr;
continue;
}
if (!last_writeout)
continue;
/* This is a real store, so move it to after dual-source stores */
exec_node_remove(&instr->node);
exec_node_insert_after(&last_writeout->node, &instr->node);
progress = true;
}
}
}
return progress;
}
/* Flushes undefined values to zero */
static void
optimise_nir(nir_shader *nir, unsigned quirks, bool is_blend)
{
bool progress;
unsigned lower_flrp =
(nir->options->lower_flrp16 ? 16 : 0) |
(nir->options->lower_flrp32 ? 32 : 0) |
(nir->options->lower_flrp64 ? 64 : 0);
NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
nir_lower_tex_options lower_tex_options = {
.lower_txs_lod = true,
.lower_txp = ~0,
.lower_tex_without_implicit_lod =
(quirks & MIDGARD_EXPLICIT_LOD),
/* TODO: we have native gradient.. */
.lower_txd = true,
};
NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
/* Must lower fdot2 after tex is lowered */
NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
/* T720 is broken. */
if (quirks & MIDGARD_BROKEN_LOD)
NIR_PASS_V(nir, midgard_nir_lod_errata);
NIR_PASS(progress, nir, midgard_nir_lower_algebraic_early);
do {
progress = false;
NIR_PASS(progress, nir, nir_lower_var_copies);
NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
NIR_PASS(progress, nir, nir_copy_prop);
NIR_PASS(progress, nir, nir_opt_remove_phis);
NIR_PASS(progress, nir, nir_opt_dce);
NIR_PASS(progress, nir, nir_opt_dead_cf);
NIR_PASS(progress, nir, nir_opt_cse);
NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
NIR_PASS(progress, nir, nir_opt_algebraic);
NIR_PASS(progress, nir, nir_opt_constant_folding);
if (lower_flrp != 0) {
bool lower_flrp_progress = false;
NIR_PASS(lower_flrp_progress,
nir,
nir_lower_flrp,
lower_flrp,
false /* always_precise */,
nir->options->lower_ffma);
if (lower_flrp_progress) {
NIR_PASS(progress, nir,
nir_opt_constant_folding);
progress = true;
}
/* Nothing should rematerialize any flrps, so we only
* need to do this lowering once.
*/
lower_flrp = 0;
}
NIR_PASS(progress, nir, nir_opt_undef);
NIR_PASS(progress, nir, nir_undef_to_zero);
NIR_PASS(progress, nir, nir_opt_loop_unroll,
nir_var_shader_in |
nir_var_shader_out |
nir_var_function_temp);
NIR_PASS(progress, nir, nir_opt_vectorize);
} while (progress);
/* Run after opts so it can hit more */
if (!is_blend)
NIR_PASS(progress, nir, nir_fuse_io_16);
/* Must be run at the end to prevent creation of fsin/fcos ops */
NIR_PASS(progress, nir, midgard_nir_scale_trig);
do {
progress = false;
NIR_PASS(progress, nir, nir_opt_dce);
NIR_PASS(progress, nir, nir_opt_algebraic);
NIR_PASS(progress, nir, nir_opt_constant_folding);
NIR_PASS(progress, nir, nir_copy_prop);
} while (progress);
NIR_PASS(progress, nir, nir_opt_algebraic_late);
NIR_PASS(progress, nir, nir_opt_algebraic_distribute_src_mods);
/* We implement booleans as 32-bit 0/~0 */
NIR_PASS(progress, nir, nir_lower_bool_to_int32);
/* Now that booleans are lowered, we can run out late opts */
NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
NIR_PASS(progress, nir, midgard_nir_cancel_inot);
NIR_PASS(progress, nir, nir_copy_prop);
NIR_PASS(progress, nir, nir_opt_dce);
/* Take us out of SSA */
NIR_PASS(progress, nir, nir_lower_locals_to_regs);
NIR_PASS(progress, nir, nir_convert_from_ssa, true);
/* We are a vector architecture; write combine where possible */
NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
NIR_PASS(progress, nir, nir_lower_vec_to_movs);
NIR_PASS(progress, nir, nir_opt_dce);
}
/* Do not actually emit a load; instead, cache the constant for inlining */
static void
emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
{
nir_ssa_def def = instr->def;
midgard_constants *consts = rzalloc(NULL, midgard_constants);
assert(instr->def.num_components * instr->def.bit_size <= sizeof(*consts) * 8);
#define RAW_CONST_COPY(bits) \
nir_const_value_to_array(consts->u##bits, instr->value, \
instr->def.num_components, u##bits)
switch (instr->def.bit_size) {
case 64:
RAW_CONST_COPY(64);
break;
case 32:
RAW_CONST_COPY(32);
break;
case 16:
RAW_CONST_COPY(16);
break;
case 8:
RAW_CONST_COPY(8);
break;
default:
unreachable("Invalid bit_size for load_const instruction\n");
}
/* Shifted for SSA, +1 for off-by-one */
_mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, consts);
}
/* Normally constants are embedded implicitly, but for I/O and such we have to
* explicitly emit a move with the constant source */
static void
emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
{
void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
if (constant_value) {
midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
attach_constants(ctx, &ins, constant_value, node + 1);
emit_mir_instruction(ctx, ins);
}
}
static bool
nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
{
unsigned comp = src->swizzle[0];
for (unsigned c = 1; c < nr_components; ++c) {
if (src->swizzle[c] != comp)
return true;
}
return false;
}
#define ALU_CASE(nir, _op) \
case nir_op_##nir: \
op = midgard_alu_op_##_op; \
assert(src_bitsize == dst_bitsize); \
break;
#define ALU_CASE_RTZ(nir, _op) \
case nir_op_##nir: \
op = midgard_alu_op_##_op; \
roundmode = MIDGARD_RTZ; \
break;
#define ALU_CHECK_CMP(sext) \
assert(src_bitsize == 16 || src_bitsize == 32); \
assert(dst_bitsize == 16 || dst_bitsize == 32); \
#define ALU_CASE_BCAST(nir, _op, count) \
case nir_op_##nir: \
op = midgard_alu_op_##_op; \
broadcast_swizzle = count; \
ALU_CHECK_CMP(true); \
break;
#define ALU_CASE_CMP(nir, _op, sext) \
case nir_op_##nir: \
op = midgard_alu_op_##_op; \
ALU_CHECK_CMP(sext); \
break;
/* Compare mir_lower_invert */
static bool
nir_accepts_inot(nir_op op, unsigned src)
{
switch (op) {
case nir_op_ior:
case nir_op_iand: /* TODO: b2f16 */
case nir_op_ixor:
return true;
case nir_op_b32csel:
/* Only the condition */
return (src == 0);
default:
return false;
}
}
static bool
mir_accept_dest_mod(compiler_context *ctx, nir_dest **dest, nir_op op)
{
if (pan_has_dest_mod(dest, op)) {
assert((*dest)->is_ssa);
BITSET_SET(ctx->already_emitted, (*dest)->ssa.index);
return true;
}
return false;
}
/* Look for floating point mods. We have the mods fsat, fsat_signed,
* and fpos. We also have the relations (note 3 * 2 = 6 cases):
*
* fsat_signed(fpos(x)) = fsat(x)
* fsat_signed(fsat(x)) = fsat(x)
* fpos(fsat_signed(x)) = fsat(x)
* fpos(fsat(x)) = fsat(x)
* fsat(fsat_signed(x)) = fsat(x)
* fsat(fpos(x)) = fsat(x)
*
* So by cases any composition of output modifiers is equivalent to
* fsat alone.
*/
static unsigned
mir_determine_float_outmod(compiler_context *ctx, nir_dest **dest, unsigned prior_outmod)
{
bool fpos = mir_accept_dest_mod(ctx, dest, nir_op_fclamp_pos);
bool fsat = mir_accept_dest_mod(ctx, dest, nir_op_fsat);
bool ssat = mir_accept_dest_mod(ctx, dest, nir_op_fsat_signed);
bool prior = (prior_outmod != midgard_outmod_none);
int count = (int) prior + (int) fpos + (int) ssat + (int) fsat;
return ((count > 1) || fsat) ? midgard_outmod_sat :
fpos ? midgard_outmod_pos :
ssat ? midgard_outmod_sat_signed :
prior_outmod;
}
static void
mir_copy_src(midgard_instruction *ins, nir_alu_instr *instr, unsigned i, unsigned to, bool *abs, bool *neg, bool *not, enum midgard_roundmode *roundmode, bool is_int, unsigned bcast_count)
{
nir_alu_src src = instr->src[i];
if (!is_int) {
if (pan_has_source_mod(&src, nir_op_fneg))
*neg = !(*neg);
if (pan_has_source_mod(&src, nir_op_fabs))
*abs = true;
}
if (nir_accepts_inot(instr->op, i) && pan_has_source_mod(&src, nir_op_inot))
*not = true;
if (roundmode) {
if (pan_has_source_mod(&src, nir_op_fround_even))
*roundmode = MIDGARD_RTE;
if (pan_has_source_mod(&src, nir_op_ftrunc))
*roundmode = MIDGARD_RTZ;
if (pan_has_source_mod(&src, nir_op_ffloor))
*roundmode = MIDGARD_RTN;
if (pan_has_source_mod(&src, nir_op_fceil))
*roundmode = MIDGARD_RTP;
}
unsigned bits = nir_src_bit_size(src.src);
ins->src[to] = nir_src_index(NULL, &src.src);
ins->src_types[to] = nir_op_infos[instr->op].input_types[i] | bits;
for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c) {
ins->swizzle[to][c] = src.swizzle[
(!bcast_count || c < bcast_count) ? c :
(bcast_count - 1)];
}
}
/* Midgard features both fcsel and icsel, depending on whether you want int or
* float modifiers. NIR's csel is typeless, so we want a heuristic to guess if
* we should emit an int or float csel depending on what modifiers could be
* placed. In the absense of modifiers, this is probably arbitrary. */
static bool
mir_is_bcsel_float(nir_alu_instr *instr)
{
nir_op intmods[] = {
nir_op_i2i8, nir_op_i2i16,
nir_op_i2i32, nir_op_i2i64
};
nir_op floatmods[] = {
nir_op_fabs, nir_op_fneg,
nir_op_f2f16, nir_op_f2f32,
nir_op_f2f64
};
nir_op floatdestmods[] = {
nir_op_fsat, nir_op_fsat_signed, nir_op_fclamp_pos,
nir_op_f2f16, nir_op_f2f32
};
signed score = 0;
for (unsigned i = 1; i < 3; ++i) {
nir_alu_src s = instr->src[i];
for (unsigned q = 0; q < ARRAY_SIZE(intmods); ++q) {
if (pan_has_source_mod(&s, intmods[q]))
score--;
}
}
for (unsigned i = 1; i < 3; ++i) {
nir_alu_src s = instr->src[i];
for (unsigned q = 0; q < ARRAY_SIZE(floatmods); ++q) {
if (pan_has_source_mod(&s, floatmods[q]))
score++;
}
}
for (unsigned q = 0; q < ARRAY_SIZE(floatdestmods); ++q) {
nir_dest *dest = &instr->dest.dest;
if (pan_has_dest_mod(&dest, floatdestmods[q]))
score++;
}
return (score > 0);
}
static void
emit_alu(compiler_context *ctx, nir_alu_instr *instr)
{
nir_dest *dest = &instr->dest.dest;
if (dest->is_ssa && BITSET_TEST(ctx->already_emitted, dest->ssa.index))
return;
/* Derivatives end up emitted on the texture pipe, not the ALUs. This
* is handled elsewhere */
if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
midgard_emit_derivatives(ctx, instr);
return;
}
bool is_ssa = dest->is_ssa;
unsigned nr_components = nir_dest_num_components(*dest);
unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
unsigned op = 0;
/* Number of components valid to check for the instruction (the rest
* will be forced to the last), or 0 to use as-is. Relevant as
* ball-type instructions have a channel count in NIR but are all vec4
* in Midgard */
unsigned broadcast_swizzle = 0;
/* Should we swap arguments? */
bool flip_src12 = false;
unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
unsigned dst_bitsize = nir_dest_bit_size(*dest);
enum midgard_roundmode roundmode = MIDGARD_RTE;
switch (instr->op) {
ALU_CASE(fadd, fadd);
ALU_CASE(fmul, fmul);
ALU_CASE(fmin, fmin);
ALU_CASE(fmax, fmax);
ALU_CASE(imin, imin);
ALU_CASE(imax, imax);
ALU_CASE(umin, umin);
ALU_CASE(umax, umax);
ALU_CASE(ffloor, ffloor);
ALU_CASE(fround_even, froundeven);
ALU_CASE(ftrunc, ftrunc);
ALU_CASE(fceil, fceil);
ALU_CASE(fdot3, fdot3);
ALU_CASE(fdot4, fdot4);
ALU_CASE(iadd, iadd);
ALU_CASE(isub, isub);
ALU_CASE(imul, imul);
/* Zero shoved as second-arg */
ALU_CASE(iabs, iabsdiff);
ALU_CASE(mov, imov);
ALU_CASE_CMP(feq32, feq, false);
ALU_CASE_CMP(fneu32, fne, false);
ALU_CASE_CMP(flt32, flt, false);
ALU_CASE_CMP(ieq32, ieq, true);
ALU_CASE_CMP(ine32, ine, true);
ALU_CASE_CMP(ilt32, ilt, true);
ALU_CASE_CMP(ult32, ult, false);
/* We don't have a native b2f32 instruction. Instead, like many
* GPUs, we exploit booleans as 0/~0 for false/true, and
* correspondingly AND
* by 1.0 to do the type conversion. For the moment, prime us
* to emit:
*
* iand [whatever], #0
*
* At the end of emit_alu (as MIR), we'll fix-up the constant
*/
ALU_CASE_CMP(b2f32, iand, true);
ALU_CASE_CMP(b2f16, iand, true);
ALU_CASE_CMP(b2i32, iand, true);
/* Likewise, we don't have a dedicated f2b32 instruction, but
* we can do a "not equal to 0.0" test. */
ALU_CASE_CMP(f2b32, fne, false);
ALU_CASE_CMP(i2b32, ine, true);
ALU_CASE(frcp, frcp);
ALU_CASE(frsq, frsqrt);
ALU_CASE(fsqrt, fsqrt);
ALU_CASE(fexp2, fexp2);
ALU_CASE(flog2, flog2);
ALU_CASE_RTZ(f2i64, f2i_rte);
ALU_CASE_RTZ(f2u64, f2u_rte);
ALU_CASE_RTZ(i2f64, i2f_rte);
ALU_CASE_RTZ(u2f64, u2f_rte);
ALU_CASE_RTZ(f2i32, f2i_rte);
ALU_CASE_RTZ(f2u32, f2u_rte);
ALU_CASE_RTZ(i2f32, i2f_rte);
ALU_CASE_RTZ(u2f32, u2f_rte);
ALU_CASE_RTZ(f2i8, f2i_rte);
ALU_CASE_RTZ(f2u8, f2u_rte);
ALU_CASE_RTZ(f2i16, f2i_rte);
ALU_CASE_RTZ(f2u16, f2u_rte);
ALU_CASE_RTZ(i2f16, i2f_rte);
ALU_CASE_RTZ(u2f16, u2f_rte);
ALU_CASE(fsin, fsin);
ALU_CASE(fcos, fcos);
/* We'll get 0 in the second arg, so:
* ~a = ~(a | 0) = nor(a, 0) */
ALU_CASE(inot, inor);
ALU_CASE(iand, iand);
ALU_CASE(ior, ior);
ALU_CASE(ixor, ixor);
ALU_CASE(ishl, ishl);
ALU_CASE(ishr, iasr);
ALU_CASE(ushr, ilsr);
ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
ALU_CASE_CMP(b32all_fequal4, fball_eq, true);
ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
ALU_CASE_CMP(b32any_fnequal4, fbany_neq, true);
ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
ALU_CASE_CMP(b32all_iequal4, iball_eq, true);
ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
ALU_CASE_CMP(b32any_inequal4, ibany_neq, true);
/* Source mods will be shoved in later */
ALU_CASE(fabs, fmov);
ALU_CASE(fneg, fmov);
ALU_CASE(fsat, fmov);
ALU_CASE(fsat_signed, fmov);
ALU_CASE(fclamp_pos, fmov);
/* For size conversion, we use a move. Ideally though we would squash
* these ops together; maybe that has to happen after in NIR as part of
* propagation...? An earlier algebraic pass ensured we step down by
* only / exactly one size. If stepping down, we use a dest override to
* reduce the size; if stepping up, we use a larger-sized move with a
* half source and a sign/zero-extension modifier */
case nir_op_i2i8:
case nir_op_i2i16:
case nir_op_i2i32:
case nir_op_i2i64:
case nir_op_u2u8:
case nir_op_u2u16:
case nir_op_u2u32:
case nir_op_u2u64:
case nir_op_f2f16:
case nir_op_f2f32:
case nir_op_f2f64: {
if (instr->op == nir_op_f2f16 || instr->op == nir_op_f2f32 ||
instr->op == nir_op_f2f64)
op = midgard_alu_op_fmov;
else
op = midgard_alu_op_imov;
break;
}
/* For greater-or-equal, we lower to less-or-equal and flip the
* arguments */
case nir_op_fge:
case nir_op_fge32:
case nir_op_ige32:
case nir_op_uge32: {
op =
instr->op == nir_op_fge ? midgard_alu_op_fle :
instr->op == nir_op_fge32 ? midgard_alu_op_fle :
instr->op == nir_op_ige32 ? midgard_alu_op_ile :
instr->op == nir_op_uge32 ? midgard_alu_op_ule :
0;
flip_src12 = true;
ALU_CHECK_CMP(false);
break;
}
case nir_op_b32csel: {
bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
bool is_float = mir_is_bcsel_float(instr);
op = is_float ?
(mixed ? midgard_alu_op_fcsel_v : midgard_alu_op_fcsel) :
(mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel);
break;
}
case nir_op_unpack_32_2x16:
case nir_op_unpack_32_4x8:
case nir_op_pack_32_2x16:
case nir_op_pack_32_4x8: {
op = midgard_alu_op_imov;
break;
}
default:
DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
assert(0);
return;
}
/* Promote imov to fmov if it might help inline a constant */
if (op == midgard_alu_op_imov && nir_src_is_const(instr->src[0].src)
&& nir_src_bit_size(instr->src[0].src) == 32
&& nir_is_same_comp_swizzle(instr->src[0].swizzle,
nir_src_num_components(instr->src[0].src))) {
op = midgard_alu_op_fmov;
}
/* Midgard can perform certain modifiers on output of an ALU op */
unsigned outmod = 0;
bool is_int = midgard_is_integer_op(op);
if (midgard_is_integer_out_op(op)) {
outmod = midgard_outmod_int_wrap;
} else if (instr->op == nir_op_fsat) {
outmod = midgard_outmod_sat;
} else if (instr->op == nir_op_fsat_signed) {
outmod = midgard_outmod_sat_signed;
} else if (instr->op == nir_op_fclamp_pos) {
outmod = midgard_outmod_pos;
}
/* Fetch unit, quirks, etc information */
unsigned opcode_props = alu_opcode_props[op].props;
bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
if (!midgard_is_integer_out_op(op)) {
outmod = mir_determine_float_outmod(ctx, &dest, outmod);
}
midgard_instruction ins = {
.type = TAG_ALU_4,
.dest = nir_dest_index(dest),
.dest_type = nir_op_infos[instr->op].output_type
| nir_dest_bit_size(*dest),
.roundmode = roundmode,
};
enum midgard_roundmode *roundptr = (opcode_props & MIDGARD_ROUNDS) ?
&ins.roundmode : NULL;
for (unsigned i = nr_inputs; i < ARRAY_SIZE(ins.src); ++i)
ins.src[i] = ~0;
if (quirk_flipped_r24) {
ins.src[0] = ~0;
mir_copy_src(&ins, instr, 0, 1, &ins.src_abs[1], &ins.src_neg[1], &ins.src_invert[1], roundptr, is_int, broadcast_swizzle);
} else {
for (unsigned i = 0; i < nr_inputs; ++i) {
unsigned to = i;
if (instr->op == nir_op_b32csel) {
/* The condition is the first argument; move
* the other arguments up one to be a binary
* instruction for Midgard with the condition
* last */
if (i == 0)
to = 2;
else if (flip_src12)
to = 2 - i;
else
to = i - 1;
} else if (flip_src12) {
to = 1 - to;
}
mir_copy_src(&ins, instr, i, to, &ins.src_abs[to], &ins.src_neg[to], &ins.src_invert[to], roundptr, is_int, broadcast_swizzle);
/* (!c) ? a : b = c ? b : a */
if (instr->op == nir_op_b32csel && ins.src_invert[2]) {
ins.src_invert[2] = false;
flip_src12 ^= true;
}
}
}
if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
/* Lowered to move */
if (instr->op == nir_op_fneg)
ins.src_neg[1] ^= true;
if (instr->op == nir_op_fabs)
ins.src_abs[1] = true;
}
ins.mask = mask_of(nr_components);
/* Apply writemask if non-SSA, keeping in mind that we can't write to
* components that don't exist. Note modifier => SSA => !reg => no
* writemask, so we don't have to worry about writemasks here.*/
if (!is_ssa)
ins.mask &= instr->dest.write_mask;
ins.op = op;
ins.outmod = outmod;
/* Late fixup for emulated instructions */
if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
/* Presently, our second argument is an inline #0 constant.
* Switch over to an embedded 1.0 constant (that can't fit
* inline, since we're 32-bit, not 16-bit like the inline
* constants) */
ins.has_inline_constant = false;
ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
ins.src_types[1] = nir_type_float32;
ins.has_constants = true;
if (instr->op == nir_op_b2f32)
ins.constants.f32[0] = 1.0f;
else
ins.constants.i32[0] = 1;
for (unsigned c = 0; c < 16; ++c)
ins.swizzle[1][c] = 0;
} else if (instr->op == nir_op_b2f16) {
ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
ins.src_types[1] = nir_type_float16;
ins.has_constants = true;
ins.constants.i16[0] = _mesa_float_to_half(1.0);
for (unsigned c = 0; c < 16; ++c)
ins.swizzle[1][c] = 0;
} else if (nr_inputs == 1 && !quirk_flipped_r24) {
/* Lots of instructions need a 0 plonked in */
ins.has_inline_constant = false;
ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
ins.src_types[1] = ins.src_types[0];
ins.has_constants = true;
ins.constants.u32[0] = 0;
for (unsigned c = 0; c < 16; ++c)
ins.swizzle[1][c] = 0;
} else if (instr->op == nir_op_pack_32_2x16) {
ins.dest_type = nir_type_uint16;
ins.mask = mask_of(nr_components * 2);
ins.is_pack = true;
} else if (instr->op == nir_op_pack_32_4x8) {
ins.dest_type = nir_type_uint8;
ins.mask = mask_of(nr_components * 4);
ins.is_pack = true;
} else if (instr->op == nir_op_unpack_32_2x16) {
ins.dest_type = nir_type_uint32;
ins.mask = mask_of(nr_components >> 1);
ins.is_pack = true;
} else if (instr->op == nir_op_unpack_32_4x8) {
ins.dest_type = nir_type_uint32;
ins.mask = mask_of(nr_components >> 2);
ins.is_pack = true;
}
if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
/* To avoid duplicating the lookup tables (probably), true LUT
* instructions can only operate as if they were scalars. Lower
* them here by changing the component. */
unsigned orig_mask = ins.mask;
unsigned swizzle_back[MIR_VEC_COMPONENTS];
memcpy(&swizzle_back, ins.swizzle[0], sizeof(swizzle_back));
midgard_instruction ins_split[MIR_VEC_COMPONENTS];
unsigned ins_count = 0;
for (int i = 0; i < nr_components; ++i) {
/* Mask the associated component, dropping the
* instruction if needed */
ins.mask = 1 << i;
ins.mask &= orig_mask;
for (unsigned j = 0; j < ins_count; ++j) {
if (swizzle_back[i] == ins_split[j].swizzle[0][0]) {
ins_split[j].mask |= ins.mask;
ins.mask = 0;
break;
}
}
if (!ins.mask)
continue;
for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
ins.swizzle[0][j] = swizzle_back[i]; /* Pull from the correct component */
ins_split[ins_count] = ins;
++ins_count;
}
for (unsigned i = 0; i < ins_count; ++i) {
emit_mir_instruction(ctx, ins_split[i]);
}
} else {
emit_mir_instruction(ctx, ins);
}
}
#undef ALU_CASE
static void
mir_set_intr_mask(nir_instr *instr, midgard_instruction *ins, bool is_read)
{
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
unsigned nir_mask = 0;
unsigned dsize = 0;
if (is_read) {
nir_mask = mask_of(nir_intrinsic_dest_components(intr));
dsize = nir_dest_bit_size(intr->dest);
} else {
nir_mask = nir_intrinsic_write_mask(intr);
dsize = 32;
}
/* Once we have the NIR mask, we need to normalize to work in 32-bit space */
unsigned bytemask = pan_to_bytemask(dsize, nir_mask);
mir_set_bytemask(ins, bytemask);
ins->dest_type = nir_type_uint | dsize;
}
/* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
* optimized) versions of UBO #0 */
static midgard_instruction *
emit_ubo_read(
compiler_context *ctx,
nir_instr *instr,
unsigned dest,
unsigned offset,
nir_src *indirect_offset,
unsigned indirect_shift,
unsigned index)
{
/* TODO: half-floats */
midgard_instruction ins = m_ld_ubo_int4(dest, 0);
ins.constants.u32[0] = offset;
if (instr->type == nir_instr_type_intrinsic)
mir_set_intr_mask(instr, &ins, true);
if (indirect_offset) {
ins.src[2] = nir_src_index(ctx, indirect_offset);
ins.src_types[2] = nir_type_uint32;
ins.load_store.arg_2 = (indirect_shift << 5);
/* X component for the whole swizzle to prevent register
* pressure from ballooning from the extra components */
for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[2]); ++i)
ins.swizzle[2][i] = 0;
} else {
ins.load_store.arg_2 = 0x1E;
}
ins.load_store.arg_1 = index;
return emit_mir_instruction(ctx, ins);
}
/* Globals are like UBOs if you squint. And shared memory is like globals if
* you squint even harder */
static void
emit_global(
compiler_context *ctx,
nir_instr *instr,
bool is_read,
unsigned srcdest,
nir_src *offset,
bool is_shared)
{
/* TODO: types */
midgard_instruction ins;
if (is_read)
ins = m_ld_int4(srcdest, 0);
else
ins = m_st_int4(srcdest, 0);
mir_set_offset(ctx, &ins, offset, is_shared);
mir_set_intr_mask(instr, &ins, is_read);
emit_mir_instruction(ctx, ins);
}
static void
emit_varying_read(
compiler_context *ctx,
unsigned dest, unsigned offset,
unsigned nr_comp, unsigned component,
nir_src *indirect_offset, nir_alu_type type, bool flat)
{
/* XXX: Half-floats? */
/* TODO: swizzle, mask */
midgard_instruction ins = m_ld_vary_32(dest, offset);
ins.mask = mask_of(nr_comp);
ins.dest_type = type;
if (type == nir_type_float16) {
/* Ensure we are aligned so we can pack it later */
ins.mask = mask_of(ALIGN_POT(nr_comp, 2));
}
for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
midgard_varying_parameter p = {
.is_varying = 1,
.interpolation = midgard_interp_default,
.flat = flat,
};
unsigned u;
memcpy(&u, &p, sizeof(p));
ins.load_store.varying_parameters = u;
if (indirect_offset) {
ins.src[2] = nir_src_index(ctx, indirect_offset);
ins.src_types[2] = nir_type_uint32;
} else
ins.load_store.arg_2 = 0x1E;
ins.load_store.arg_1 = 0x9E;
/* Use the type appropriate load */
switch (type) {
case nir_type_uint32:
case nir_type_bool32:
ins.op = midgard_op_ld_vary_32u;
break;
case nir_type_int32:
ins.op = midgard_op_ld_vary_32i;
break;
case nir_type_float32:
ins.op = midgard_op_ld_vary_32;
break;
case nir_type_float16:
ins.op = midgard_op_ld_vary_16;
break;
default:
unreachable("Attempted to load unknown type");
break;
}
emit_mir_instruction(ctx, ins);
}
static void
emit_attr_read(
compiler_context *ctx,
unsigned dest, unsigned offset,
unsigned nr_comp, nir_alu_type t)
{
midgard_instruction ins = m_ld_attr_32(dest, offset);
ins.load_store.arg_1 = 0x1E;
ins.load_store.arg_2 = 0x1E;
ins.mask = mask_of(nr_comp);
/* Use the type appropriate load */
switch (t) {
case nir_type_uint:
case nir_type_bool:
ins.op = midgard_op_ld_attr_32u;
break;
case nir_type_int:
ins.op = midgard_op_ld_attr_32i;
break;
case nir_type_float:
ins.op = midgard_op_ld_attr_32;
break;
default:
unreachable("Attempted to load unknown type");
break;
}
emit_mir_instruction(ctx, ins);
}
static void
emit_sysval_read(compiler_context *ctx, nir_instr *instr,
unsigned nr_components, unsigned offset)
{
nir_dest nir_dest;
/* Figure out which uniform this is */
int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
unsigned dest = nir_dest_index(&nir_dest);
/* Sysvals are prefix uniforms */
unsigned uniform = ((uintptr_t) val) - 1;
/* Emit the read itself -- this is never indirect */
midgard_instruction *ins =
emit_ubo_read(ctx, instr, dest, (uniform * 16) + offset, NULL, 0, 0);
ins->mask = mask_of(nr_components);
}
static unsigned
compute_builtin_arg(nir_op op)
{
switch (op) {
case nir_intrinsic_load_work_group_id:
return 0x14;
case nir_intrinsic_load_local_invocation_id:
return 0x10;
default:
unreachable("Invalid compute paramater loaded");
}
}
static void
emit_fragment_store(compiler_context *ctx, unsigned src, unsigned src_z, unsigned src_s, enum midgard_rt_id rt)
{
assert(rt < ARRAY_SIZE(ctx->writeout_branch));
midgard_instruction *br = ctx->writeout_branch[rt];
assert(!br);
emit_explicit_constant(ctx, src, src);
struct midgard_instruction ins =
v_branch(false, false);
bool depth_only = (rt == MIDGARD_ZS_RT);
ins.writeout = depth_only ? 0 : PAN_WRITEOUT_C;
/* Add dependencies */
ins.src[0] = src;
ins.src_types[0] = nir_type_uint32;
ins.constants.u32[0] = depth_only ? 0xFF : (rt - MIDGARD_COLOR_RT0) * 0x100;
for (int i = 0; i < 4; ++i)
ins.swizzle[0][i] = i;
if (~src_z) {
emit_explicit_constant(ctx, src_z, src_z);
ins.src[2] = src_z;
ins.src_types[2] = nir_type_uint32;
ins.writeout |= PAN_WRITEOUT_Z;
}
if (~src_s) {
emit_explicit_constant(ctx, src_s, src_s);
ins.src[3] = src_s;
ins.src_types[3] = nir_type_uint32;
ins.writeout |= PAN_WRITEOUT_S;
}
/* Emit the branch */
br = emit_mir_instruction(ctx, ins);
schedule_barrier(ctx);
ctx->writeout_branch[rt] = br;
/* Push our current location = current block count - 1 = where we'll
* jump to. Maybe a bit too clever for my own good */
br->branch.target_block = ctx->block_count - 1;
}
static void
emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
{
unsigned reg = nir_dest_index(&instr->dest);
midgard_instruction ins = m_ld_compute_id(reg, 0);
ins.mask = mask_of(3);
ins.swizzle[0][3] = COMPONENT_X; /* xyzx */
ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
emit_mir_instruction(ctx, ins);
}
static unsigned
vertex_builtin_arg(nir_op op)
{
switch (op) {
case nir_intrinsic_load_vertex_id:
return PAN_VERTEX_ID;
case nir_intrinsic_load_instance_id:
return PAN_INSTANCE_ID;
default:
unreachable("Invalid vertex builtin");
}
}
static void
emit_vertex_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
{
unsigned reg = nir_dest_index(&instr->dest);
emit_attr_read(ctx, reg, vertex_builtin_arg(instr->intrinsic), 1, nir_type_int);
}
static void
emit_msaa_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
{
unsigned reg = nir_dest_index(&instr->dest);
midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
ld.op = midgard_op_ld_color_buffer_32u_old;
ld.load_store.address = 97;
ld.load_store.arg_2 = 0x1E;
for (int i = 0; i < 4; ++i)
ld.swizzle[0][i] = COMPONENT_X;
emit_mir_instruction(ctx, ld);
}
static void
emit_control_barrier(compiler_context *ctx)
{
midgard_instruction ins = {
.type = TAG_TEXTURE_4,
.dest = ~0,
.src = { ~0, ~0, ~0, ~0 },
.op = TEXTURE_OP_BARRIER,
};
emit_mir_instruction(ctx, ins);
}
static unsigned
mir_get_branch_cond(nir_src *src, bool *invert)
{
/* Wrap it. No swizzle since it's a scalar */
nir_alu_src alu = {
.src = *src
};
*invert = pan_has_source_mod(&alu, nir_op_inot);
return nir_src_index(NULL, &alu.src);
}
static uint8_t
output_load_rt_addr(compiler_context *ctx, nir_intrinsic_instr *instr)
{
if (ctx->is_blend)
return ctx->blend_rt;
const nir_variable *var;
var = search_var(ctx->nir, nir_var_shader_out, nir_intrinsic_base(instr));
assert(var);
unsigned loc = var->data.location;
if (loc == FRAG_RESULT_COLOR)
loc = FRAG_RESULT_DATA0;
if (loc >= FRAG_RESULT_DATA0)
return loc - FRAG_RESULT_DATA0;
if (loc == FRAG_RESULT_DEPTH)
return 0x1F;
if (loc == FRAG_RESULT_STENCIL)
return 0x1E;
unreachable("Invalid RT to load from");
}
static void
emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
{
unsigned offset = 0, reg;
switch (instr->intrinsic) {
case nir_intrinsic_discard_if:
case nir_intrinsic_discard: {
bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
struct midgard_instruction discard = v_branch(conditional, false);
discard.branch.target_type = TARGET_DISCARD;
if (conditional) {
discard.src[0] = mir_get_branch_cond(&instr->src[0],
&discard.branch.invert_conditional);
discard.src_types[0] = nir_type_uint32;
}
emit_mir_instruction(ctx, discard);
schedule_barrier(ctx);
break;
}
case nir_intrinsic_load_uniform:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_global:
case nir_intrinsic_load_shared:
case nir_intrinsic_load_input:
case nir_intrinsic_load_interpolated_input: {
bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
bool is_global = instr->intrinsic == nir_intrinsic_load_global;
bool is_shared = instr->intrinsic == nir_intrinsic_load_shared;
bool is_flat = instr->intrinsic == nir_intrinsic_load_input;
bool is_interp = instr->intrinsic == nir_intrinsic_load_interpolated_input;
/* Get the base type of the intrinsic */
/* TODO: Infer type? Does it matter? */
nir_alu_type t =
(is_ubo || is_global || is_shared) ? nir_type_uint :
(is_interp) ? nir_type_float :
nir_intrinsic_type(instr);
t = nir_alu_type_get_base_type(t);
if (!(is_ubo || is_global)) {
offset = nir_intrinsic_base(instr);
}
unsigned nr_comp = nir_intrinsic_dest_components(instr);
nir_src *src_offset = nir_get_io_offset_src(instr);
bool direct = nir_src_is_const(*src_offset);
nir_src *indirect_offset = direct ? NULL : src_offset;
if (direct)
offset += nir_src_as_uint(*src_offset);
/* We may need to apply a fractional offset */
int component = (is_flat || is_interp) ?
nir_intrinsic_component(instr) : 0;
reg = nir_dest_index(&instr->dest);
if (is_uniform && !ctx->is_blend) {
emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysvals.sysval_count + offset) * 16, indirect_offset, 4, 0);
} else if (is_ubo) {
nir_src index = instr->src[0];
/* TODO: Is indirect block number possible? */
assert(nir_src_is_const(index));
uint32_t uindex = nir_src_as_uint(index) + 1;
emit_ubo_read(ctx, &instr->instr, reg, offset, indirect_offset, 0, uindex);
} else if (is_global || is_shared) {
emit_global(ctx, &instr->instr, true, reg, src_offset, is_shared);
} else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
emit_varying_read(ctx, reg, offset, nr_comp, component, indirect_offset, t | nir_dest_bit_size(instr->dest), is_flat);
} else if (ctx->is_blend) {
/* ctx->blend_input will be precoloured to r0/r2, where
* the input is preloaded */
unsigned *input = offset ? &ctx->blend_src1 : &ctx->blend_input;
if (*input == ~0)
*input = reg;
else
emit_mir_instruction(ctx, v_mov(*input, reg));
} else if (ctx->stage == MESA_SHADER_VERTEX) {
emit_attr_read(ctx, reg, offset, nr_comp, t);
} else {
DBG("Unknown load\n");
assert(0);
}
break;
}
/* Artefact of load_interpolated_input. TODO: other barycentric modes */
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_centroid:
break;
/* Reads 128-bit value raw off the tilebuffer during blending, tasty */
case nir_intrinsic_load_raw_output_pan: {
reg = nir_dest_index(&instr->dest);
/* T720 and below use different blend opcodes with slightly
* different semantics than T760 and up */
midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
ld.load_store.arg_2 = output_load_rt_addr(ctx, instr);
if (nir_src_is_const(instr->src[0])) {
ld.load_store.arg_1 = nir_src_as_uint(instr->src[0]);
} else {
ld.load_store.varying_parameters = 2;
ld.src[1] = nir_src_index(ctx, &instr->src[0]);
ld.src_types[1] = nir_type_int32;
}
if (ctx->quirks & MIDGARD_OLD_BLEND) {
ld.op = midgard_op_ld_color_buffer_32u_old;
ld.load_store.address = 16;
ld.load_store.arg_2 = 0x1E;
}
emit_mir_instruction(ctx, ld);
break;
}
case nir_intrinsic_load_output: {
reg = nir_dest_index(&instr->dest);
unsigned bits = nir_dest_bit_size(instr->dest);
midgard_instruction ld;
if (bits == 16)
ld = m_ld_color_buffer_as_fp16(reg, 0);
else
ld = m_ld_color_buffer_as_fp32(reg, 0);
ld.load_store.arg_2 = output_load_rt_addr(ctx, instr);
for (unsigned c = 4; c < 16; ++c)
ld.swizzle[0][c] = 0;
if (ctx->quirks & MIDGARD_OLD_BLEND) {
if (bits == 16)
ld.op = midgard_op_ld_color_buffer_as_fp16_old;
else
ld.op = midgard_op_ld_color_buffer_as_fp32_old;
ld.load_store.address = 1;
ld.load_store.arg_2 = 0x1E;
}
emit_mir_instruction(ctx, ld);
break;
}
case nir_intrinsic_load_blend_const_color_rgba: {
assert(ctx->is_blend);
reg = nir_dest_index(&instr->dest);
/* Blend constants are embedded directly in the shader and
* patched in, so we use some magic routing */
midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
ins.has_constants = true;
ins.has_blend_constant = true;
emit_mir_instruction(ctx, ins);
break;
}
case nir_intrinsic_store_output:
case nir_intrinsic_store_combined_output_pan:
assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
reg = nir_src_index(ctx, &instr->src[0]);
if (ctx->stage == MESA_SHADER_FRAGMENT) {
bool combined = instr->intrinsic ==
nir_intrinsic_store_combined_output_pan;
const nir_variable *var;
var = search_var(ctx->nir, nir_var_shader_out,
nir_intrinsic_base(instr));
assert(var);
/* Dual-source blend writeout is done by leaving the
* value in r2 for the blend shader to use. */
if (var->data.index) {
if (instr->src[0].is_ssa) {
emit_explicit_constant(ctx, reg, reg);
unsigned out = make_compiler_temp(ctx);
midgard_instruction ins = v_mov(reg, out);
emit_mir_instruction(ctx, ins);
ctx->blend_src1 = out;
} else {
ctx->blend_src1 = reg;
}
break;
}
enum midgard_rt_id rt;
if (var->data.location == FRAG_RESULT_COLOR)
rt = MIDGARD_COLOR_RT0;
else if (var->data.location >= FRAG_RESULT_DATA0)
rt = MIDGARD_COLOR_RT0 + var->data.location -
FRAG_RESULT_DATA0;
else if (combined)
rt = MIDGARD_ZS_RT;
else
assert(0);
unsigned reg_z = ~0, reg_s = ~0;
if (combined) {
unsigned writeout = nir_intrinsic_component(instr);
if (writeout & PAN_WRITEOUT_Z)
reg_z = nir_src_index(ctx, &instr->src[2]);
if (writeout & PAN_WRITEOUT_S)
reg_s = nir_src_index(ctx, &instr->src[3]);
}
emit_fragment_store(ctx, reg, reg_z, reg_s, rt);
} else if (ctx->stage == MESA_SHADER_VERTEX) {
assert(instr->intrinsic == nir_intrinsic_store_output);
/* We should have been vectorized, though we don't
* currently check that st_vary is emitted only once
* per slot (this is relevant, since there's not a mask
* parameter available on the store [set to 0 by the
* blob]). We do respect the component by adjusting the
* swizzle. If this is a constant source, we'll need to
* emit that explicitly. */
emit_explicit_constant(ctx, reg, reg);
unsigned dst_component = nir_intrinsic_component(instr);
unsigned nr_comp = nir_src_num_components(instr->src[0]);
midgard_instruction st = m_st_vary_32(reg, offset);
st.load_store.arg_1 = 0x9E;
st.load_store.arg_2 = 0x1E;
switch (nir_alu_type_get_base_type(nir_intrinsic_type(instr))) {
case nir_type_uint:
case nir_type_bool:
st.op = midgard_op_st_vary_32u;
break;
case nir_type_int:
st.op = midgard_op_st_vary_32i;
break;
case nir_type_float:
st.op = midgard_op_st_vary_32;
break;
default:
unreachable("Attempted to store unknown type");
break;
}
/* nir_intrinsic_component(store_intr) encodes the
* destination component start. Source component offset
* adjustment is taken care of in
* install_registers_instr(), when offset_swizzle() is
* called.
*/
unsigned src_component = COMPONENT_X;
assert(nr_comp > 0);
for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle); ++i) {
st.swizzle[0][i] = src_component;
if (i >= dst_component && i < dst_component + nr_comp - 1)
src_component++;
}
emit_mir_instruction(ctx, st);
} else {
DBG("Unknown store\n");
assert(0);
}
break;
/* Special case of store_output for lowered blend shaders */
case nir_intrinsic_store_raw_output_pan:
assert (ctx->stage == MESA_SHADER_FRAGMENT);
reg = nir_src_index(ctx, &instr->src[0]);
emit_fragment_store(ctx, reg, ~0, ~0, ctx->blend_rt);
break;
case nir_intrinsic_store_global:
case nir_intrinsic_store_shared:
reg = nir_src_index(ctx, &instr->src[0]);
emit_explicit_constant(ctx, reg, reg);
emit_global(ctx, &instr->instr, false, reg, &instr->src[1], instr->intrinsic == nir_intrinsic_store_shared);
break;
case nir_intrinsic_load_ssbo_address:
emit_sysval_read(ctx, &instr->instr, 1, 0);
break;
case nir_intrinsic_get_buffer_size:
emit_sysval_read(ctx, &instr->instr, 1, 8);
break;
case nir_intrinsic_load_viewport_scale:
case nir_intrinsic_load_viewport_offset:
case nir_intrinsic_load_num_work_groups:
case nir_intrinsic_load_sampler_lod_parameters_pan:
emit_sysval_read(ctx, &instr->instr, 3, 0);
break;
case nir_intrinsic_load_work_group_id:
case nir_intrinsic_load_local_invocation_id:
emit_compute_builtin(ctx, instr);
break;
case nir_intrinsic_load_vertex_id:
case nir_intrinsic_load_instance_id:
emit_vertex_builtin(ctx, instr);
break;
case nir_intrinsic_load_sample_id:
emit_msaa_builtin(ctx, instr);
break;
case nir_intrinsic_memory_barrier_buffer:
case nir_intrinsic_memory_barrier_shared:
break;
case nir_intrinsic_control_barrier:
schedule_barrier(ctx);
emit_control_barrier(ctx);
schedule_barrier(ctx);
break;
default:
fprintf(stderr, "Unhandled intrinsic %s\n", nir_intrinsic_infos[instr->intrinsic].name);
assert(0);
break;
}
}
/* Returns dimension with 0 special casing cubemaps */
static unsigned
midgard_tex_format(enum glsl_sampler_dim dim)
{
switch (dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_BUF:
return 1;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_MS:
case GLSL_SAMPLER_DIM_EXTERNAL:
case GLSL_SAMPLER_DIM_RECT:
return 2;
case GLSL_SAMPLER_DIM_3D:
return 3;
case GLSL_SAMPLER_DIM_CUBE:
return 0;
default:
DBG("Unknown sampler dim type\n");
assert(0);
return 0;
}
}
/* Tries to attach an explicit LOD or bias as a constant. Returns whether this
* was successful */
static bool
pan_attach_constant_bias(
compiler_context *ctx,
nir_src lod,
midgard_texture_word *word)
{
/* To attach as constant, it has to *be* constant */
if (!nir_src_is_const(lod))
return false;
float f = nir_src_as_float(lod);
/* Break into fixed-point */
signed lod_int = f;
float lod_frac = f - lod_int;
/* Carry over negative fractions */
if (lod_frac < 0.0) {
lod_int--;
lod_frac += 1.0;
}
/* Encode */
word->bias = float_to_ubyte(lod_frac);
word->bias_int = lod_int;
return true;
}
static void
emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
unsigned midgard_texop)
{
/* TODO */
//assert (!instr->sampler);
nir_dest *dest = &instr->dest;
int texture_index = instr->texture_index;
int sampler_index = texture_index;
nir_alu_type dest_base = nir_alu_type_get_base_type(instr->dest_type);
nir_alu_type dest_type = dest_base | nir_dest_bit_size(*dest);
/* texture instructions support float outmods */
unsigned outmod = midgard_outmod_none;
if (dest_base == nir_type_float) {
outmod = mir_determine_float_outmod(ctx, &dest, 0);
}
midgard_instruction ins = {
.type = TAG_TEXTURE_4,
.mask = 0xF,
.dest = nir_dest_index(dest),
.src = { ~0, ~0, ~0, ~0 },
.dest_type = dest_type,
.swizzle = SWIZZLE_IDENTITY_4,
.outmod = outmod,
.op = midgard_texop,
.texture = {
.format = midgard_tex_format(instr->sampler_dim),
.texture_handle = texture_index,
.sampler_handle = sampler_index,
.shadow = instr->is_shadow,
}
};
if (instr->is_shadow && !instr->is_new_style_shadow)
for (int i = 0; i < 4; ++i)
ins.swizzle[0][i] = COMPONENT_X;
/* We may need a temporary for the coordinate */
bool needs_temp_coord =
(midgard_texop == TEXTURE_OP_TEXEL_FETCH) ||
(instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) ||
(instr->is_shadow);
unsigned coords = needs_temp_coord ? make_compiler_temp_reg(ctx) : 0;
for (unsigned i = 0; i < instr->num_srcs; ++i) {
int index = nir_src_index(ctx, &instr->src[i].src);
unsigned nr_components = nir_src_num_components(instr->src[i].src);
unsigned sz = nir_src_bit_size(instr->src[i].src);
nir_alu_type T = nir_tex_instr_src_type(instr, i) | sz;
switch (instr->src[i].src_type) {
case nir_tex_src_coord: {
emit_explicit_constant(ctx, index, index);
unsigned coord_mask = mask_of(instr->coord_components);
bool flip_zw = (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) && (coord_mask & (1 << COMPONENT_Z));
if (flip_zw)
coord_mask ^= ((1 << COMPONENT_Z) | (1 << COMPONENT_W));
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
/* texelFetch is undefined on samplerCube */
assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
/* For cubemaps, we use a special ld/st op to
* select the face and copy the xy into the
* texture register */
midgard_instruction ld = m_ld_cubemap_coords(coords, 0);
ld.src[1] = index;
ld.src_types[1] = T;
ld.mask = 0x3; /* xy */
ld.load_store.arg_1 = 0x20;
ld.swizzle[1][3] = COMPONENT_X;
emit_mir_instruction(ctx, ld);
/* xyzw -> xyxx */
ins.swizzle[1][2] = instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
ins.swizzle[1][3] = COMPONENT_X;
} else if (needs_temp_coord) {
/* mov coord_temp, coords */
midgard_instruction mov = v_mov(index, coords);
mov.mask = coord_mask;
if (flip_zw)
mov.swizzle[1][COMPONENT_W] = COMPONENT_Z;
emit_mir_instruction(ctx, mov);
} else {
coords = index;
}
ins.src[1] = coords;
ins.src_types[1] = T;
/* Texelfetch coordinates uses all four elements
* (xyz/index) regardless of texture dimensionality,
* which means it's necessary to zero the unused
* components to keep everything happy */
if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
/* mov index.zw, #0, or generalized */
midgard_instruction mov =
v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), coords);
mov.has_constants = true;
mov.mask = coord_mask ^ 0xF;
emit_mir_instruction(ctx, mov);
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
/* Array component in w but NIR wants it in z,
* but if we have a temp coord we already fixed
* that up */
if (nr_components == 3) {
ins.swizzle[1][2] = COMPONENT_Z;
ins.swizzle[1][3] = needs_temp_coord ? COMPONENT_W : COMPONENT_Z;
} else if (nr_components == 2) {
ins.swizzle[1][2] =
instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
ins.swizzle[1][3] = COMPONENT_X;
} else
unreachable("Invalid texture 2D components");
}
if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
/* We zeroed */
ins.swizzle[1][2] = COMPONENT_Z;
ins.swizzle[1][3] = COMPONENT_W;
}
break;
}
case nir_tex_src_bias:
case nir_tex_src_lod: {
/* Try as a constant if we can */
bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
break;
ins.texture.lod_register = true;
ins.src[2] = index;
ins.src_types[2] = T;
for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
ins.swizzle[2][c] = COMPONENT_X;
emit_explicit_constant(ctx, index, index);
break;
};
case nir_tex_src_offset: {
ins.texture.offset_register = true;
ins.src[3] = index;
ins.src_types[3] = T;
for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
ins.swizzle[3][c] = (c > COMPONENT_Z) ? 0 : c;
emit_explicit_constant(ctx, index, index);
break;
};
case nir_tex_src_comparator:
case nir_tex_src_ms_index: {
unsigned comp = COMPONENT_Z;
/* mov coord_temp.foo, coords */
midgard_instruction mov = v_mov(index, coords);
mov.mask = 1 << comp;
for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i)
mov.swizzle[1][i] = COMPONENT_X;
emit_mir_instruction(ctx, mov);
break;
}
default: {
fprintf(stderr, "Unknown texture source type: %d\n", instr->src[i].src_type);
assert(0);
}
}
}
emit_mir_instruction(ctx, ins);
}
static void
emit_tex(compiler_context *ctx, nir_tex_instr *instr)
{
switch (instr->op) {
case nir_texop_tex:
case nir_texop_txb:
emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
break;
case nir_texop_txl:
emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
break;
case nir_texop_txf:
case nir_texop_txf_ms:
emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
break;
case nir_texop_txs:
emit_sysval_read(ctx, &instr->instr, 4, 0);
break;
default: {
fprintf(stderr, "Unhandled texture op: %d\n", instr->op);
assert(0);
}
}
}
static void
emit_jump(compiler_context *ctx, nir_jump_instr *instr)
{
switch (instr->type) {
case nir_jump_break: {
/* Emit a branch out of the loop */
struct midgard_instruction br = v_branch(false, false);
br.branch.target_type = TARGET_BREAK;
br.branch.target_break = ctx->current_loop_depth;
emit_mir_instruction(ctx, br);
break;
}
default:
DBG("Unknown jump type %d\n", instr->type);
break;
}
}
static void
emit_instr(compiler_context *ctx, struct nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_load_const:
emit_load_const(ctx, nir_instr_as_load_const(instr));
break;
case nir_instr_type_intrinsic:
emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_alu:
emit_alu(ctx, nir_instr_as_alu(instr));
break;
case nir_instr_type_tex:
emit_tex(ctx, nir_instr_as_tex(instr));
break;
case nir_instr_type_jump:
emit_jump(ctx, nir_instr_as_jump(instr));
break;
case nir_instr_type_ssa_undef:
/* Spurious */
break;
default:
DBG("Unhandled instruction type\n");
break;
}
}
/* ALU instructions can inline or embed constants, which decreases register
* pressure and saves space. */
#define CONDITIONAL_ATTACH(idx) { \
void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
\
if (entry) { \
attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
} \
}
static void
inline_alu_constants(compiler_context *ctx, midgard_block *block)
{
mir_foreach_instr_in_block(block, alu) {
/* Other instructions cannot inline constants */
if (alu->type != TAG_ALU_4) continue;
if (alu->compact_branch) continue;
/* If there is already a constant here, we can do nothing */
if (alu->has_constants) continue;
CONDITIONAL_ATTACH(0);
if (!alu->has_constants) {
CONDITIONAL_ATTACH(1)
} else if (!alu->inline_constant) {
/* Corner case: _two_ vec4 constants, for instance with a
* csel. For this case, we can only use a constant
* register for one, we'll have to emit a move for the
* other. */
void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
unsigned scratch = make_compiler_temp(ctx);
if (entry) {
midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
attach_constants(ctx, &ins, entry, alu->src[1] + 1);
/* Set the source */
alu->src[1] = scratch;
/* Inject us -before- the last instruction which set r31 */
mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
}
}
}
}
unsigned
max_bitsize_for_alu(midgard_instruction *ins)
{
unsigned max_bitsize = 0;
for (int i = 0; i < MIR_SRC_COUNT; i++) {
if (ins->src[i] == ~0) continue;
unsigned src_bitsize = nir_alu_type_get_type_size(ins->src_types[i]);
max_bitsize = MAX2(src_bitsize, max_bitsize);
}
unsigned dst_bitsize = nir_alu_type_get_type_size(ins->dest_type);
max_bitsize = MAX2(dst_bitsize, max_bitsize);
/* We don't have fp16 LUTs, so we'll want to emit code like:
*
* vlut.fsinr hr0, hr0
*
* where both input and output are 16-bit but the operation is carried
* out in 32-bit
*/
switch (ins->op) {
case midgard_alu_op_fsqrt:
case midgard_alu_op_frcp:
case midgard_alu_op_frsqrt:
case midgard_alu_op_fsin:
case midgard_alu_op_fcos:
case midgard_alu_op_fexp2:
case midgard_alu_op_flog2:
max_bitsize = MAX2(max_bitsize, 32);
break;
default:
break;
}
return max_bitsize;
}
midgard_reg_mode
reg_mode_for_bitsize(unsigned bitsize)
{
switch (bitsize) {
/* use 16 pipe for 8 since we don't support vec16 yet */
case 8:
case 16:
return midgard_reg_mode_16;
case 32:
return midgard_reg_mode_32;
case 64:
return midgard_reg_mode_64;
default:
unreachable("invalid bit size");
}
}
/* Midgard supports two types of constants, embedded constants (128-bit) and
* inline constants (16-bit). Sometimes, especially with scalar ops, embedded
* constants can be demoted to inline constants, for space savings and
* sometimes a performance boost */
static void
embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
{
mir_foreach_instr_in_block(block, ins) {
if (!ins->has_constants) continue;
if (ins->has_inline_constant) continue;
/* Blend constants must not be inlined by definition */
if (ins->has_blend_constant) continue;
unsigned max_bitsize = max_bitsize_for_alu(ins);
/* We can inline 32-bit (sometimes) or 16-bit (usually) */
bool is_16 = max_bitsize == 16;
bool is_32 = max_bitsize == 32;
if (!(is_16 || is_32))
continue;
/* src1 cannot be an inline constant due to encoding
* restrictions. So, if possible we try to flip the arguments
* in that case */
int op = ins->op;
if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT) &&
alu_opcode_props[op].props & OP_COMMUTES) {
mir_flip(ins);
}
if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
/* Component is from the swizzle. Take a nonzero component */
assert(ins->mask);
unsigned first_comp = ffs(ins->mask) - 1;
unsigned component = ins->swizzle[1][first_comp];
/* Scale constant appropriately, if we can legally */
int16_t scaled_constant = 0;
if (is_16) {
scaled_constant = ins->constants.u16[component];
} else if (midgard_is_integer_op(op)) {
scaled_constant = ins->constants.u32[component];
/* Constant overflow after resize */
if (scaled_constant != ins->constants.u32[component])
continue;
} else {
float original = ins->constants.f32[component];
scaled_constant = _mesa_float_to_half(original);
/* Check for loss of precision. If this is
* mediump, we don't care, but for a highp
* shader, we need to pay attention. NIR
* doesn't yet tell us which mode we're in!
* Practically this prevents most constants
* from being inlined, sadly. */
float fp32 = _mesa_half_to_float(scaled_constant);
if (fp32 != original)
continue;
}
/* Should've been const folded */
if (ins->src_abs[1] || ins->src_neg[1])
continue;
/* Make sure that the constant is not itself a vector
* by checking if all accessed values are the same. */
const midgard_constants *cons = &ins->constants;
uint32_t value = is_16 ? cons->u16[component] : cons->u32[component];
bool is_vector = false;
unsigned mask = effective_writemask(ins->op, ins->mask);
for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
/* We only care if this component is actually used */
if (!(mask & (1 << c)))
continue;
uint32_t test = is_16 ?
cons->u16[ins->swizzle[1][c]] :
cons->u32[ins->swizzle[1][c]];
if (test != value) {
is_vector = true;
break;
}
}
if (is_vector)
continue;
/* Get rid of the embedded constant */
ins->has_constants = false;
ins->src[1] = ~0;
ins->has_inline_constant = true;
ins->inline_constant = scaled_constant;
}
}
}
/* Dead code elimination for branches at the end of a block - only one branch
* per block is legal semantically */
static void
midgard_cull_dead_branch(compiler_context *ctx, midgard_block *block)
{
bool branched = false;
mir_foreach_instr_in_block_safe(block, ins) {
if (!midgard_is_branch_unit(ins->unit)) continue;
if (branched)
mir_remove_instruction(ins);
branched = true;
}
}
/* We want to force the invert on AND/OR to the second slot to legalize into
* iandnot/iornot. The relevant patterns are for AND (and OR respectively)
*
* ~a & #b = ~a & ~(#~b)
* ~a & b = b & ~a
*/
static void
midgard_legalize_invert(compiler_context *ctx, midgard_block *block)
{
mir_foreach_instr_in_block(block, ins) {
if (ins->type != TAG_ALU_4) continue;
if (ins->op != midgard_alu_op_iand &&
ins->op != midgard_alu_op_ior) continue;
if (ins->src_invert[1] || !ins->src_invert[0]) continue;
if (ins->has_inline_constant) {
/* ~(#~a) = ~(~#a) = a, so valid, and forces both
* inverts on */
ins->inline_constant = ~ins->inline_constant;
ins->src_invert[1] = true;
} else {
/* Flip to the right invert order. Note
* has_inline_constant false by assumption on the
* branch, so flipping makes sense. */
mir_flip(ins);
}
}
}
static unsigned
emit_fragment_epilogue(compiler_context *ctx, unsigned rt)
{
/* Loop to ourselves */
midgard_instruction *br = ctx->writeout_branch[rt];
struct midgard_instruction ins = v_branch(false, false);
ins.writeout = br->writeout;
ins.branch.target_block = ctx->block_count - 1;
ins.constants.u32[0] = br->constants.u32[0];
memcpy(&ins.src_types, &br->src_types, sizeof(ins.src_types));
emit_mir_instruction(ctx, ins);
ctx->current_block->epilogue = true;
schedule_barrier(ctx);
return ins.branch.target_block;
}
static midgard_block *
emit_block_init(compiler_context *ctx)
{
midgard_block *this_block = ctx->after_block;
ctx->after_block = NULL;
if (!this_block)
this_block = create_empty_block(ctx);
list_addtail(&this_block->base.link, &ctx->blocks);
this_block->scheduled = false;
++ctx->block_count;
/* Set up current block */
list_inithead(&this_block->base.instructions);
ctx->current_block = this_block;
return this_block;
}
static midgard_block *
emit_block(compiler_context *ctx, nir_block *block)
{
midgard_block *this_block = emit_block_init(ctx);
nir_foreach_instr(instr, block) {
emit_instr(ctx, instr);
++ctx->instruction_count;
}
return this_block;
}
static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
static void
emit_if(struct compiler_context *ctx, nir_if *nif)
{
midgard_block *before_block = ctx->current_block;
/* Speculatively emit the branch, but we can't fill it in until later */
bool inv = false;
EMIT(branch, true, true);
midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
then_branch->src[0] = mir_get_branch_cond(&nif->condition, &inv);
then_branch->src_types[0] = nir_type_uint32;
then_branch->branch.invert_conditional = !inv;
/* Emit the two subblocks. */
midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
midgard_block *end_then_block = ctx->current_block;
/* Emit a jump from the end of the then block to the end of the else */
EMIT(branch, false, false);
midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
/* Emit second block, and check if it's empty */
int else_idx = ctx->block_count;
int count_in = ctx->instruction_count;
midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
midgard_block *end_else_block = ctx->current_block;
int after_else_idx = ctx->block_count;
/* Now that we have the subblocks emitted, fix up the branches */
assert(then_block);
assert(else_block);
if (ctx->instruction_count == count_in) {
/* The else block is empty, so don't emit an exit jump */
mir_remove_instruction(then_exit);
then_branch->branch.target_block = after_else_idx;
} else {
then_branch->branch.target_block = else_idx;
then_exit->branch.target_block = after_else_idx;
}
/* Wire up the successors */
ctx->after_block = create_empty_block(ctx);
pan_block_add_successor(&before_block->base, &then_block->base);
pan_block_add_successor(&before_block->base, &else_block->base);
pan_block_add_successor(&end_then_block->base, &ctx->after_block->base);
pan_block_add_successor(&end_else_block->base, &ctx->after_block->base);
}
static void
emit_loop(struct compiler_context *ctx, nir_loop *nloop)
{
/* Remember where we are */
midgard_block *start_block = ctx->current_block;
/* Allocate a loop number, growing the current inner loop depth */
int loop_idx = ++ctx->current_loop_depth;
/* Get index from before the body so we can loop back later */
int start_idx = ctx->block_count;
/* Emit the body itself */
midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
/* Branch back to loop back */
struct midgard_instruction br_back = v_branch(false, false);
br_back.branch.target_block = start_idx;
emit_mir_instruction(ctx, br_back);
/* Mark down that branch in the graph. */
pan_block_add_successor(&start_block->base, &loop_block->base);
pan_block_add_successor(&ctx->current_block->base, &loop_block->base);
/* Find the index of the block about to follow us (note: we don't add
* one; blocks are 0-indexed so we get a fencepost problem) */
int break_block_idx = ctx->block_count;
/* Fix up the break statements we emitted to point to the right place,
* now that we can allocate a block number for them */
ctx->after_block = create_empty_block(ctx);
mir_foreach_block_from(ctx, start_block, _block) {
mir_foreach_instr_in_block(((midgard_block *) _block), ins) {
if (ins->type != TAG_ALU_4) continue;
if (!ins->compact_branch) continue;
/* We found a branch -- check the type to see if we need to do anything */
if (ins->branch.target_type != TARGET_BREAK) continue;
/* It's a break! Check if it's our break */
if (ins->branch.target_break != loop_idx) continue;
/* Okay, cool, we're breaking out of this loop.
* Rewrite from a break to a goto */
ins->branch.target_type = TARGET_GOTO;
ins->branch.target_block = break_block_idx;
pan_block_add_successor(_block, &ctx->after_block->base);
}
}
/* Now that we've finished emitting the loop, free up the depth again
* so we play nice with recursion amid nested loops */
--ctx->current_loop_depth;
/* Dump loop stats */
++ctx->loop_count;
}
static midgard_block *
emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
{
midgard_block *start_block = NULL;
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block: {
midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
if (!start_block)
start_block = block;
break;
}
case nir_cf_node_if:
emit_if(ctx, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
emit_loop(ctx, nir_cf_node_as_loop(node));
break;
case nir_cf_node_function:
assert(0);
break;
}
}
return start_block;
}
/* Due to lookahead, we need to report the first tag executed in the command
* stream and in branch targets. An initial block might be empty, so iterate
* until we find one that 'works' */
unsigned
midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
{
midgard_block *initial_block = mir_get_block(ctx, block_idx);
mir_foreach_block_from(ctx, initial_block, _v) {
midgard_block *v = (midgard_block *) _v;
if (v->quadword_count) {
midgard_bundle *initial_bundle =
util_dynarray_element(&v->bundles, midgard_bundle, 0);
return initial_bundle->tag;
}
}
/* Default to a tag 1 which will break from the shader, in case we jump
* to the exit block (i.e. `return` in a compute shader) */
return 1;
}
/* For each fragment writeout instruction, generate a writeout loop to
* associate with it */
static void
mir_add_writeout_loops(compiler_context *ctx)
{
for (unsigned rt = 0; rt < ARRAY_SIZE(ctx->writeout_branch); ++rt) {
midgard_instruction *br = ctx->writeout_branch[rt];
if (!br) continue;
unsigned popped = br->branch.target_block;
pan_block_add_successor(&(mir_get_block(ctx, popped - 1)->base), &ctx->current_block->base);
br->branch.target_block = emit_fragment_epilogue(ctx, rt);
br->branch.target_type = TARGET_GOTO;
/* If we have more RTs, we'll need to restore back after our
* loop terminates */
if ((rt + 1) < ARRAY_SIZE(ctx->writeout_branch) && ctx->writeout_branch[rt + 1]) {
midgard_instruction uncond = v_branch(false, false);
uncond.branch.target_block = popped;
uncond.branch.target_type = TARGET_GOTO;
emit_mir_instruction(ctx, uncond);
pan_block_add_successor(&ctx->current_block->base, &(mir_get_block(ctx, popped)->base));
schedule_barrier(ctx);
} else {
/* We're last, so we can terminate here */
br->last_writeout = true;
}
}
}
int
midgard_compile_shader_nir(nir_shader *nir, panfrost_program *program, bool is_blend, unsigned blend_rt, unsigned gpu_id, bool shaderdb, bool silent)
{
struct util_dynarray *compiled = &program->compiled;
midgard_debug = debug_get_option_midgard_debug();
/* TODO: Bound against what? */
compiler_context *ctx = rzalloc(NULL, compiler_context);
ctx->nir = nir;
ctx->stage = nir->info.stage;
ctx->is_blend = is_blend;
ctx->blend_rt = MIDGARD_COLOR_RT0 + blend_rt;
ctx->blend_input = ~0;
ctx->blend_src1 = ~0;
ctx->quirks = midgard_get_quirks(gpu_id);
/* Start off with a safe cutoff, allowing usage of all 16 work
* registers. Later, we'll promote uniform reads to uniform registers
* if we determine it is beneficial to do so */
ctx->uniform_cutoff = 8;
/* Initialize at a global (not block) level hash tables */
ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
/* Lower gl_Position pre-optimisation, but after lowering vars to ssa
* (so we don't accidentally duplicate the epilogue since mesa/st has
* messed with our I/O quite a bit already) */
NIR_PASS_V(nir, nir_lower_vars_to_ssa);
if (ctx->stage == MESA_SHADER_VERTEX) {
NIR_PASS_V(nir, nir_lower_viewport_transform);
NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
}
NIR_PASS_V(nir, nir_lower_var_copies);
NIR_PASS_V(nir, nir_lower_vars_to_ssa);
NIR_PASS_V(nir, nir_split_var_copies);
NIR_PASS_V(nir, nir_lower_var_copies);
NIR_PASS_V(nir, nir_lower_global_vars_to_local);
NIR_PASS_V(nir, nir_lower_var_copies);
NIR_PASS_V(nir, nir_lower_vars_to_ssa);
unsigned pan_quirks = panfrost_get_quirks(gpu_id);
NIR_PASS_V(nir, pan_lower_framebuffer,
program->rt_formats, is_blend, pan_quirks);
NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in | nir_var_shader_out,
glsl_type_size, 0);
NIR_PASS_V(nir, nir_lower_ssbo);
NIR_PASS_V(nir, midgard_nir_lower_zs_store);
/* Optimisation passes */
optimise_nir(nir, ctx->quirks, is_blend);
NIR_PASS_V(nir, midgard_nir_reorder_writeout);
if ((midgard_debug & MIDGARD_DBG_SHADERS) && !silent) {
nir_print_shader(nir, stdout);
}
/* Assign sysvals and counts, now that we're sure
* (post-optimisation) */
panfrost_nir_assign_sysvals(&ctx->sysvals, ctx, nir);
program->sysval_count = ctx->sysvals.sysval_count;
memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
nir_foreach_function(func, nir) {
if (!func->impl)
continue;
list_inithead(&ctx->blocks);
ctx->block_count = 0;
ctx->func = func;
ctx->already_emitted = calloc(BITSET_WORDS(func->impl->ssa_alloc), sizeof(BITSET_WORD));
if (nir->info.outputs_read && !is_blend) {
emit_block_init(ctx);
struct midgard_instruction wait = v_branch(false, false);
wait.branch.target_type = TARGET_TILEBUF_WAIT;
emit_mir_instruction(ctx, wait);
++ctx->instruction_count;
}
emit_cf_list(ctx, &func->impl->body);
free(ctx->already_emitted);
break; /* TODO: Multi-function shaders */
}
util_dynarray_init(compiled, NULL);
/* Per-block lowering before opts */
mir_foreach_block(ctx, _block) {
midgard_block *block = (midgard_block *) _block;
inline_alu_constants(ctx, block);
embedded_to_inline_constant(ctx, block);
}
/* MIR-level optimizations */
bool progress = false;
do {
progress = false;
progress |= midgard_opt_dead_code_eliminate(ctx);
mir_foreach_block(ctx, _block) {
midgard_block *block = (midgard_block *) _block;
progress |= midgard_opt_copy_prop(ctx, block);
progress |= midgard_opt_combine_projection(ctx, block);
progress |= midgard_opt_varying_projection(ctx, block);
}
} while (progress);
mir_foreach_block(ctx, _block) {
midgard_block *block = (midgard_block *) _block;
midgard_lower_derivatives(ctx, block);
midgard_legalize_invert(ctx, block);
midgard_cull_dead_branch(ctx, block);
}
if (ctx->stage == MESA_SHADER_FRAGMENT)
mir_add_writeout_loops(ctx);
/* Analyze now that the code is known but before scheduling creates
* pipeline registers which are harder to track */
mir_analyze_helper_terminate(ctx);
mir_analyze_helper_requirements(ctx);
/* Schedule! */
midgard_schedule_program(ctx);
mir_ra(ctx);
/* Emit flat binary from the instruction arrays. Iterate each block in
* sequence. Save instruction boundaries such that lookahead tags can
* be assigned easily */
/* Cache _all_ bundles in source order for lookahead across failed branches */
int bundle_count = 0;
mir_foreach_block(ctx, _block) {
midgard_block *block = (midgard_block *) _block;
bundle_count += block->bundles.size / sizeof(midgard_bundle);
}
midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
int bundle_idx = 0;
mir_foreach_block(ctx, _block) {
midgard_block *block = (midgard_block *) _block;
util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
source_order_bundles[bundle_idx++] = bundle;
}
}
int current_bundle = 0;
/* Midgard prefetches instruction types, so during emission we
* need to lookahead. Unless this is the last instruction, in
* which we return 1. */
mir_foreach_block(ctx, _block) {
midgard_block *block = (midgard_block *) _block;
mir_foreach_bundle_in_block(block, bundle) {
int lookahead = 1;
if (!bundle->last_writeout && (current_bundle + 1 < bundle_count))
lookahead = source_order_bundles[current_bundle + 1]->tag;
emit_binary_bundle(ctx, block, bundle, compiled, lookahead);
++current_bundle;
}
/* TODO: Free deeper */
//util_dynarray_fini(&block->instructions);
}
free(source_order_bundles);
/* Report the very first tag executed */
program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
/* Deal with off-by-one related to the fencepost problem */
program->work_register_count = ctx->work_registers + 1;
program->uniform_cutoff = ctx->uniform_cutoff;
program->blend_patch_offset = ctx->blend_constant_offset;
program->tls_size = ctx->tls_size;
if ((midgard_debug & MIDGARD_DBG_SHADERS) && !silent)
disassemble_midgard(stdout, program->compiled.data, program->compiled.size, gpu_id, ctx->stage);
if ((midgard_debug & MIDGARD_DBG_SHADERDB || shaderdb) && !silent) {
unsigned nr_bundles = 0, nr_ins = 0;
/* Count instructions and bundles */
mir_foreach_block(ctx, _block) {
midgard_block *block = (midgard_block *) _block;
nr_bundles += util_dynarray_num_elements(
&block->bundles, midgard_bundle);
mir_foreach_bundle_in_block(block, bun)
nr_ins += bun->instruction_count;
}
/* Calculate thread count. There are certain cutoffs by
* register count for thread count */
unsigned nr_registers = program->work_register_count;
unsigned nr_threads =
(nr_registers <= 4) ? 4 :
(nr_registers <= 8) ? 2 :
1;
/* Dump stats */
fprintf(stderr, "shader%d - %s shader: "
"%u inst, %u bundles, %u quadwords, "
"%u registers, %u threads, %u loops, "
"%u:%u spills:fills\n",
SHADER_DB_COUNT++,
ctx->is_blend ? "PAN_SHADER_BLEND" :
gl_shader_stage_name(ctx->stage),
nr_ins, nr_bundles, ctx->quadword_count,
nr_registers, nr_threads,
ctx->loop_count,
ctx->spills, ctx->fills);
}
ralloc_free(ctx);
return 0;
}