blob: d2a92518863e67b73a83f605873888b4c0939d70 [file] [log] [blame]
/*
* Copyright (c) 2014 Scott Mansell
* Copyright © 2014 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <inttypes.h>
#include "util/format/u_format.h"
#include "util/crc32.h"
#include "util/u_helpers.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/ralloc.h"
#include "util/hash_table.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_parse.h"
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "compiler/nir_types.h"
#include "nir/tgsi_to_nir.h"
#include "vc4_context.h"
#include "vc4_qpu.h"
#include "vc4_qir.h"
static struct qreg
ntq_get_src(struct vc4_compile *c, nir_src src, int i);
static void
ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
static int
type_size(const struct glsl_type *type, bool bindless)
{
return glsl_count_attribute_slots(type, false);
}
static void
resize_qreg_array(struct vc4_compile *c,
struct qreg **regs,
uint32_t *size,
uint32_t decl_size)
{
if (*size >= decl_size)
return;
uint32_t old_size = *size;
*size = MAX2(*size * 2, decl_size);
*regs = reralloc(c, *regs, struct qreg, *size);
if (!*regs) {
fprintf(stderr, "Malloc failure\n");
abort();
}
for (uint32_t i = old_size; i < *size; i++)
(*regs)[i] = c->undef;
}
static void
ntq_emit_thrsw(struct vc4_compile *c)
{
if (!c->fs_threaded)
return;
/* Always thread switch after each texture operation for now.
*
* We could do better by batching a bunch of texture fetches up and
* then doing one thread switch and collecting all their results
* afterward.
*/
qir_emit_nondef(c, qir_inst(QOP_THRSW, c->undef,
c->undef, c->undef));
c->last_thrsw_at_top_level = (c->execute.file == QFILE_NULL);
}
static struct qreg
indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
{
struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
/* Clamp to [0, array size). Note that MIN/MAX are signed. */
uint32_t range = nir_intrinsic_range(intr);
indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
indirect_offset = qir_MIN_NOIMM(c, indirect_offset,
qir_uniform_ui(c, range - 4));
qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
indirect_offset,
qir_uniform(c, QUNIFORM_UBO0_ADDR,
nir_intrinsic_base(intr)));
c->num_texture_samples++;
ntq_emit_thrsw(c);
return qir_TEX_RESULT(c);
}
static struct qreg
vc4_ubo_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
{
int buffer_index = nir_src_as_uint(intr->src[0]);
assert(buffer_index == 1);
assert(c->stage == QSTAGE_FRAG);
struct qreg offset = ntq_get_src(c, intr->src[1], 0);
/* Clamp to [0, array size). Note that MIN/MAX are signed. */
offset = qir_MAX(c, offset, qir_uniform_ui(c, 0));
offset = qir_MIN_NOIMM(c, offset,
qir_uniform_ui(c, c->fs_key->ubo_1_size - 4));
qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
offset,
qir_uniform(c, QUNIFORM_UBO1_ADDR, 0));
c->num_texture_samples++;
ntq_emit_thrsw(c);
return qir_TEX_RESULT(c);
}
nir_ssa_def *
vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
{
switch (swiz) {
default:
case PIPE_SWIZZLE_NONE:
fprintf(stderr, "warning: unknown swizzle\n");
/* FALLTHROUGH */
case PIPE_SWIZZLE_0:
return nir_imm_float(b, 0.0);
case PIPE_SWIZZLE_1:
return nir_imm_float(b, 1.0);
case PIPE_SWIZZLE_X:
case PIPE_SWIZZLE_Y:
case PIPE_SWIZZLE_Z:
case PIPE_SWIZZLE_W:
return srcs[swiz];
}
}
static struct qreg *
ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
{
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
def->num_components);
_mesa_hash_table_insert(c->def_ht, def, qregs);
return qregs;
}
/**
* This function is responsible for getting QIR results into the associated
* storage for a NIR instruction.
*
* If it's a NIR SSA def, then we just set the associated hash table entry to
* the new result.
*
* If it's a NIR reg, then we need to update the existing qreg assigned to the
* NIR destination with the incoming value. To do that without introducing
* new MOVs, we require that the incoming qreg either be a uniform, or be
* SSA-defined by the previous QIR instruction in the block and rewritable by
* this function. That lets us sneak ahead and insert the SF flag beforehand
* (knowing that the previous instruction doesn't depend on flags) and rewrite
* its destination to be the NIR reg's destination
*/
static void
ntq_store_dest(struct vc4_compile *c, nir_dest *dest, int chan,
struct qreg result)
{
struct qinst *last_inst = NULL;
if (!list_is_empty(&c->cur_block->instructions))
last_inst = (struct qinst *)c->cur_block->instructions.prev;
assert(result.file == QFILE_UNIF ||
(result.file == QFILE_TEMP &&
last_inst && last_inst == c->defs[result.index]));
if (dest->is_ssa) {
assert(chan < dest->ssa.num_components);
struct qreg *qregs;
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, &dest->ssa);
if (entry)
qregs = entry->data;
else
qregs = ntq_init_ssa_def(c, &dest->ssa);
qregs[chan] = result;
} else {
nir_register *reg = dest->reg.reg;
assert(dest->reg.base_offset == 0);
assert(reg->num_array_elems == 0);
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, reg);
struct qreg *qregs = entry->data;
/* Insert a MOV if the source wasn't an SSA def in the
* previous instruction.
*/
if (result.file == QFILE_UNIF) {
result = qir_MOV(c, result);
last_inst = c->defs[result.index];
}
/* We know they're both temps, so just rewrite index. */
c->defs[last_inst->dst.index] = NULL;
last_inst->dst.index = qregs[chan].index;
/* If we're in control flow, then make this update of the reg
* conditional on the execution mask.
*/
if (c->execute.file != QFILE_NULL) {
last_inst->dst.index = qregs[chan].index;
/* Set the flags to the current exec mask. To insert
* the SF, we temporarily remove our SSA instruction.
*/
list_del(&last_inst->link);
qir_SF(c, c->execute);
list_addtail(&last_inst->link,
&c->cur_block->instructions);
last_inst->cond = QPU_COND_ZS;
last_inst->cond_is_exec_mask = true;
}
}
}
static struct qreg *
ntq_get_dest(struct vc4_compile *c, nir_dest *dest)
{
if (dest->is_ssa) {
struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa);
for (int i = 0; i < dest->ssa.num_components; i++)
qregs[i] = c->undef;
return qregs;
} else {
nir_register *reg = dest->reg.reg;
assert(dest->reg.base_offset == 0);
assert(reg->num_array_elems == 0);
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, reg);
return entry->data;
}
}
static struct qreg
ntq_get_src(struct vc4_compile *c, nir_src src, int i)
{
struct hash_entry *entry;
if (src.is_ssa) {
entry = _mesa_hash_table_search(c->def_ht, src.ssa);
assert(i < src.ssa->num_components);
} else {
nir_register *reg = src.reg.reg;
entry = _mesa_hash_table_search(c->def_ht, reg);
assert(reg->num_array_elems == 0);
assert(src.reg.base_offset == 0);
assert(i < reg->num_components);
}
struct qreg *qregs = entry->data;
return qregs[i];
}
static struct qreg
ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
unsigned src)
{
assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
unsigned chan = ffs(instr->dest.write_mask) - 1;
struct qreg r = ntq_get_src(c, instr->src[src].src,
instr->src[src].swizzle[chan]);
assert(!instr->src[src].abs);
assert(!instr->src[src].negate);
return r;
};
static inline struct qreg
qir_SAT(struct vc4_compile *c, struct qreg val)
{
return qir_FMAX(c,
qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
qir_uniform_f(c, 0.0));
}
static struct qreg
ntq_rcp(struct vc4_compile *c, struct qreg x)
{
struct qreg r = qir_RCP(c, x);
/* Apply a Newton-Raphson step to improve the accuracy. */
r = qir_FMUL(c, r, qir_FSUB(c,
qir_uniform_f(c, 2.0),
qir_FMUL(c, x, r)));
return r;
}
static struct qreg
ntq_rsq(struct vc4_compile *c, struct qreg x)
{
struct qreg r = qir_RSQ(c, x);
/* Apply a Newton-Raphson step to improve the accuracy. */
r = qir_FMUL(c, r, qir_FSUB(c,
qir_uniform_f(c, 1.5),
qir_FMUL(c,
qir_uniform_f(c, 0.5),
qir_FMUL(c, x,
qir_FMUL(c, r, r)))));
return r;
}
static struct qreg
ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
{
struct qreg src0_hi = qir_SHR(c, src0,
qir_uniform_ui(c, 24));
struct qreg src1_hi = qir_SHR(c, src1,
qir_uniform_ui(c, 24));
struct qreg hilo = qir_MUL24(c, src0_hi, src1);
struct qreg lohi = qir_MUL24(c, src0, src1_hi);
struct qreg lolo = qir_MUL24(c, src0, src1);
return qir_ADD(c, lolo, qir_SHL(c,
qir_ADD(c, hilo, lohi),
qir_uniform_ui(c, 24)));
}
static struct qreg
ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src)
{
struct qreg depthf = qir_ITOF(c, qir_SHR(c, src,
qir_uniform_ui(c, 8)));
return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff));
}
/**
* Emits a lowered TXF_MS from an MSAA texture.
*
* The addressing math has been lowered in NIR, and now we just need to read
* it like a UBO.
*/
static void
ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr)
{
uint32_t tile_width = 32;
uint32_t tile_height = 32;
uint32_t tile_size = (tile_height * tile_width *
VC4_MAX_SAMPLES * sizeof(uint32_t));
unsigned unit = instr->texture_index;
uint32_t w = align(c->key->tex[unit].msaa_width, tile_width);
uint32_t w_tiles = w / tile_width;
uint32_t h = align(c->key->tex[unit].msaa_height, tile_height);
uint32_t h_tiles = h / tile_height;
uint32_t size = w_tiles * h_tiles * tile_size;
struct qreg addr;
assert(instr->num_srcs == 1);
assert(instr->src[0].src_type == nir_tex_src_coord);
addr = ntq_get_src(c, instr->src[0].src, 0);
/* Perform the clamping required by kernel validation. */
addr = qir_MAX(c, addr, qir_uniform_ui(c, 0));
addr = qir_MIN_NOIMM(c, addr, qir_uniform_ui(c, size - 4));
qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit));
ntq_emit_thrsw(c);
struct qreg tex = qir_TEX_RESULT(c);
c->num_texture_samples++;
enum pipe_format format = c->key->tex[unit].format;
if (util_format_is_depth_or_stencil(format)) {
struct qreg scaled = ntq_scale_depth_texture(c, tex);
for (int i = 0; i < 4; i++)
ntq_store_dest(c, &instr->dest, i, qir_MOV(c, scaled));
} else {
for (int i = 0; i < 4; i++)
ntq_store_dest(c, &instr->dest, i,
qir_UNPACK_8_F(c, tex, i));
}
}
static void
ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
{
struct qreg s, t, r, lod, compare;
bool is_txb = false, is_txl = false;
unsigned unit = instr->texture_index;
if (instr->op == nir_texop_txf) {
ntq_emit_txf(c, instr);
return;
}
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_coord:
s = ntq_get_src(c, instr->src[i].src, 0);
if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
t = qir_uniform_f(c, 0.5);
else
t = ntq_get_src(c, instr->src[i].src, 1);
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
r = ntq_get_src(c, instr->src[i].src, 2);
break;
case nir_tex_src_bias:
lod = ntq_get_src(c, instr->src[i].src, 0);
is_txb = true;
break;
case nir_tex_src_lod:
lod = ntq_get_src(c, instr->src[i].src, 0);
is_txl = true;
break;
case nir_tex_src_comparator:
compare = ntq_get_src(c, instr->src[i].src, 0);
break;
default:
unreachable("unknown texture source");
}
}
if (c->stage != QSTAGE_FRAG && !is_txl) {
/* From the GLSL 1.20 spec:
*
* "If it is mip-mapped and running on the vertex shader,
* then the base texture is used."
*/
is_txl = true;
lod = qir_uniform_ui(c, 0);
}
if (c->key->tex[unit].force_first_level) {
lod = qir_uniform(c, QUNIFORM_TEXTURE_FIRST_LEVEL, unit);
is_txl = true;
is_txb = false;
}
struct qreg texture_u[] = {
qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
qir_uniform(c, QUNIFORM_CONSTANT, 0),
qir_uniform(c, QUNIFORM_CONSTANT, 0),
};
uint32_t next_texture_u = 0;
/* There is no native support for GL texture rectangle coordinates, so
* we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
* 1]).
*/
if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
s = qir_FMUL(c, s,
qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit));
t = qir_FMUL(c, t,
qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit));
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
unit | (is_txl << 16));
}
struct qinst *tmu;
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0), r);
tmu->src[qir_get_tex_uniform_src(tmu)] =
texture_u[next_texture_u++];
} else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0),
qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR,
unit));
tmu->src[qir_get_tex_uniform_src(tmu)] =
texture_u[next_texture_u++];
}
if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
s = qir_SAT(c, s);
}
if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
t = qir_SAT(c, t);
}
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_T, 0), t);
tmu->src[qir_get_tex_uniform_src(tmu)] =
texture_u[next_texture_u++];
if (is_txl || is_txb) {
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_B, 0), lod);
tmu->src[qir_get_tex_uniform_src(tmu)] =
texture_u[next_texture_u++];
}
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_S, 0), s);
tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++];
c->num_texture_samples++;
ntq_emit_thrsw(c);
struct qreg tex = qir_TEX_RESULT(c);
enum pipe_format format = c->key->tex[unit].format;
struct qreg *dest = ntq_get_dest(c, &instr->dest);
if (util_format_is_depth_or_stencil(format)) {
struct qreg normalized = ntq_scale_depth_texture(c, tex);
struct qreg depth_output;
struct qreg u0 = qir_uniform_f(c, 0.0f);
struct qreg u1 = qir_uniform_f(c, 1.0f);
if (c->key->tex[unit].compare_mode) {
/* From the GL_ARB_shadow spec:
*
* "Let Dt (D subscript t) be the depth texture
* value, in the range [0, 1]. Let R be the
* interpolated texture coordinate clamped to the
* range [0, 1]."
*/
compare = qir_SAT(c, compare);
switch (c->key->tex[unit].compare_func) {
case PIPE_FUNC_NEVER:
depth_output = qir_uniform_f(c, 0.0f);
break;
case PIPE_FUNC_ALWAYS:
depth_output = u1;
break;
case PIPE_FUNC_EQUAL:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0);
break;
case PIPE_FUNC_NOTEQUAL:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0);
break;
case PIPE_FUNC_GREATER:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
break;
case PIPE_FUNC_GEQUAL:
qir_SF(c, qir_FSUB(c, normalized, compare));
depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
break;
case PIPE_FUNC_LESS:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
break;
case PIPE_FUNC_LEQUAL:
qir_SF(c, qir_FSUB(c, normalized, compare));
depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
break;
}
} else {
depth_output = normalized;
}
for (int i = 0; i < 4; i++)
dest[i] = depth_output;
} else {
for (int i = 0; i < 4; i++)
dest[i] = qir_UNPACK_8_F(c, tex, i);
}
}
/**
* Computes x - floor(x), which is tricky because our FTOI truncates (rounds
* to zero).
*/
static struct qreg
ntq_ffract(struct vc4_compile *c, struct qreg src)
{
struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
struct qreg diff = qir_FSUB(c, src, trunc);
qir_SF(c, diff);
qir_FADD_dest(c, diff,
diff, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
return qir_MOV(c, diff);
}
/**
* Computes floor(x), which is tricky because our FTOI truncates (rounds to
* zero).
*/
static struct qreg
ntq_ffloor(struct vc4_compile *c, struct qreg src)
{
struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
/* This will be < 0 if we truncated and the truncation was of a value
* that was < 0 in the first place.
*/
qir_SF(c, qir_FSUB(c, src, result));
struct qinst *sub = qir_FSUB_dest(c, result,
result, qir_uniform_f(c, 1.0));
sub->cond = QPU_COND_NS;
return qir_MOV(c, result);
}
/**
* Computes ceil(x), which is tricky because our FTOI truncates (rounds to
* zero).
*/
static struct qreg
ntq_fceil(struct vc4_compile *c, struct qreg src)
{
struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
/* This will be < 0 if we truncated and the truncation was of a value
* that was > 0 in the first place.
*/
qir_SF(c, qir_FSUB(c, result, src));
qir_FADD_dest(c, result,
result, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
return qir_MOV(c, result);
}
static struct qreg
ntq_shrink_sincos_input_range(struct vc4_compile *c, struct qreg x)
{
/* Since we're using a Taylor approximation, we want to have a small
* number of coefficients and take advantage of sin/cos repeating
* every 2pi. We keep our x as close to 0 as we can, since the series
* will be less accurate as |x| increases. (Also, be careful of
* shifting the input x value to be tricky with sin/cos relations,
* because getting accurate values for x==0 is very important for SDL
* rendering)
*/
struct qreg scaled_x =
qir_FMUL(c, x,
qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
/* Note: FTOI truncates toward 0. */
struct qreg x_frac = qir_FSUB(c, scaled_x,
qir_ITOF(c, qir_FTOI(c, scaled_x)));
/* Map [0.5, 1] to [-0.5, 0] */
qir_SF(c, qir_FSUB(c, x_frac, qir_uniform_f(c, 0.5)));
qir_FSUB_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NC;
/* Map [-1, -0.5] to [0, 0.5] */
qir_SF(c, qir_FADD(c, x_frac, qir_uniform_f(c, 0.5)));
qir_FADD_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
return x_frac;
}
static struct qreg
ntq_fsin(struct vc4_compile *c, struct qreg src)
{
float coeff[] = {
2.0 * M_PI,
-pow(2.0 * M_PI, 3) / (3 * 2 * 1),
pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
-pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
};
struct qreg x = ntq_shrink_sincos_input_range(c, src);
struct qreg x2 = qir_FMUL(c, x, x);
struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
x = qir_FMUL(c, x, x2);
sum = qir_FADD(c,
sum,
qir_FMUL(c,
x,
qir_uniform_f(c, coeff[i])));
}
return sum;
}
static struct qreg
ntq_fcos(struct vc4_compile *c, struct qreg src)
{
float coeff[] = {
1.0f,
-pow(2.0 * M_PI, 2) / (2 * 1),
pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
-pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
-pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
};
struct qreg x_frac = ntq_shrink_sincos_input_range(c, src);
struct qreg sum = qir_uniform_f(c, coeff[0]);
struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
struct qreg x = x2; /* Current x^2, x^4, or x^6 */
for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
if (i != 1)
x = qir_FMUL(c, x, x2);
sum = qir_FADD(c, qir_FMUL(c,
x,
qir_uniform_f(c, coeff[i])),
sum);
}
return sum;
}
static struct qreg
ntq_fsign(struct vc4_compile *c, struct qreg src)
{
struct qreg t = qir_get_temp(c);
qir_SF(c, src);
qir_MOV_dest(c, t, qir_uniform_f(c, 0.0));
qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC;
qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS;
return qir_MOV(c, t);
}
static void
emit_vertex_input(struct vc4_compile *c, int attr)
{
enum pipe_format format = c->vs_key->attr_formats[attr];
uint32_t attr_size = util_format_get_blocksize(format);
c->vattr_sizes[attr] = align(attr_size, 4);
for (int i = 0; i < align(attr_size, 4) / 4; i++) {
c->inputs[attr * 4 + i] =
qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i));
c->num_inputs++;
}
}
static void
emit_fragcoord_input(struct vc4_compile *c, int attr)
{
c->inputs[attr * 4 + 0] = qir_ITOF(c, qir_reg(QFILE_FRAG_X, 0));
c->inputs[attr * 4 + 1] = qir_ITOF(c, qir_reg(QFILE_FRAG_Y, 0));
c->inputs[attr * 4 + 2] =
qir_FMUL(c,
qir_ITOF(c, qir_FRAG_Z(c)),
qir_uniform_f(c, 1.0 / 0xffffff));
c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
}
static struct qreg
emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
uint8_t swizzle)
{
uint32_t i = c->num_input_slots++;
struct qreg vary = {
QFILE_VARY,
i
};
if (c->num_input_slots >= c->input_slots_array_size) {
c->input_slots_array_size =
MAX2(4, c->input_slots_array_size * 2);
c->input_slots = reralloc(c, c->input_slots,
struct vc4_varying_slot,
c->input_slots_array_size);
}
c->input_slots[i].slot = slot;
c->input_slots[i].swizzle = swizzle;
return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
}
static void
emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
{
for (int i = 0; i < 4; i++) {
c->inputs[attr * 4 + i] =
emit_fragment_varying(c, slot, i);
c->num_inputs++;
}
}
static void
add_output(struct vc4_compile *c,
uint32_t decl_offset,
uint8_t slot,
uint8_t swizzle)
{
uint32_t old_array_size = c->outputs_array_size;
resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
decl_offset + 1);
if (old_array_size != c->outputs_array_size) {
c->output_slots = reralloc(c,
c->output_slots,
struct vc4_varying_slot,
c->outputs_array_size);
}
c->output_slots[decl_offset].slot = slot;
c->output_slots[decl_offset].swizzle = swizzle;
}
static bool
ntq_src_is_only_ssa_def_user(nir_src *src)
{
if (!src->is_ssa)
return false;
if (!list_is_empty(&src->ssa->if_uses))
return false;
return (src->ssa->uses.next == &src->use_link &&
src->ssa->uses.next->next == &src->ssa->uses);
}
/**
* In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
* bit set.
*
* However, as an optimization, it tries to find the instructions generating
* the sources to be packed and just emit the pack flag there, if possible.
*/
static void
ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
{
struct qreg result = qir_get_temp(c);
struct nir_alu_instr *vec4 = NULL;
/* If packing from a vec4 op (as expected), identify it so that we can
* peek back at what generated its sources.
*/
if (instr->src[0].src.is_ssa &&
instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
nir_op_vec4) {
vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
}
/* If the pack is replicating the same channel 4 times, use the 8888
* pack flag. This is common for blending using the alpha
* channel.
*/
if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] &&
instr->src[0].swizzle[0] == instr->src[0].swizzle[2] &&
instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) {
struct qreg rep = ntq_get_src(c,
instr->src[0].src,
instr->src[0].swizzle[0]);
ntq_store_dest(c, &instr->dest.dest, 0, qir_PACK_8888_F(c, rep));
return;
}
for (int i = 0; i < 4; i++) {
int swiz = instr->src[0].swizzle[i];
struct qreg src;
if (vec4) {
src = ntq_get_src(c, vec4->src[swiz].src,
vec4->src[swiz].swizzle[0]);
} else {
src = ntq_get_src(c, instr->src[0].src, swiz);
}
if (vec4 &&
ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
src.file == QFILE_TEMP &&
c->defs[src.index] &&
qir_is_mul(c->defs[src.index]) &&
!c->defs[src.index]->dst.pack) {
struct qinst *rewrite = c->defs[src.index];
c->defs[src.index] = NULL;
rewrite->dst = result;
rewrite->dst.pack = QPU_PACK_MUL_8A + i;
continue;
}
qir_PACK_8_F(c, result, src, i);
}
ntq_store_dest(c, &instr->dest.dest, 0, qir_MOV(c, result));
}
/** Handles sign-extended bitfield extracts for 16 bits. */
static struct qreg
ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
struct qreg bits)
{
assert(bits.file == QFILE_UNIF &&
c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
c->uniform_data[bits.index] == 16);
assert(offset.file == QFILE_UNIF &&
c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
int offset_bit = c->uniform_data[offset.index];
assert(offset_bit % 16 == 0);
return qir_UNPACK_16_I(c, base, offset_bit / 16);
}
/** Handles unsigned bitfield extracts for 8 bits. */
static struct qreg
ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
struct qreg bits)
{
assert(bits.file == QFILE_UNIF &&
c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
c->uniform_data[bits.index] == 8);
assert(offset.file == QFILE_UNIF &&
c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
int offset_bit = c->uniform_data[offset.index];
assert(offset_bit % 8 == 0);
return qir_UNPACK_8_I(c, base, offset_bit / 8);
}
/**
* If compare_instr is a valid comparison instruction, emits the
* compare_instr's comparison and returns the sel_instr's return value based
* on the compare_instr's result.
*/
static bool
ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest,
nir_alu_instr *compare_instr,
nir_alu_instr *sel_instr)
{
enum qpu_cond cond;
switch (compare_instr->op) {
case nir_op_feq32:
case nir_op_ieq32:
case nir_op_seq:
cond = QPU_COND_ZS;
break;
case nir_op_fneu32:
case nir_op_ine32:
case nir_op_sne:
cond = QPU_COND_ZC;
break;
case nir_op_fge32:
case nir_op_ige32:
case nir_op_uge32:
case nir_op_sge:
cond = QPU_COND_NC;
break;
case nir_op_flt32:
case nir_op_ilt32:
case nir_op_slt:
cond = QPU_COND_NS;
break;
default:
return false;
}
struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
unsigned unsized_type =
nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]);
if (unsized_type == nir_type_float)
qir_SF(c, qir_FSUB(c, src0, src1));
else
qir_SF(c, qir_SUB(c, src0, src1));
switch (sel_instr->op) {
case nir_op_seq:
case nir_op_sne:
case nir_op_sge:
case nir_op_slt:
*dest = qir_SEL(c, cond,
qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0));
break;
case nir_op_b32csel:
*dest = qir_SEL(c, cond,
ntq_get_alu_src(c, sel_instr, 1),
ntq_get_alu_src(c, sel_instr, 2));
break;
default:
*dest = qir_SEL(c, cond,
qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0));
break;
}
/* Make the temporary for nir_store_dest(). */
*dest = qir_MOV(c, *dest);
return true;
}
/**
* Attempts to fold a comparison generating a boolean result into the
* condition code for selecting between two values, instead of comparing the
* boolean result against 0 to generate the condition code.
*/
static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr,
struct qreg *src)
{
if (!instr->src[0].src.is_ssa)
goto out;
if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
goto out;
nir_alu_instr *compare =
nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
if (!compare)
goto out;
struct qreg dest;
if (ntq_emit_comparison(c, &dest, compare, instr))
return dest;
out:
qir_SF(c, src[0]);
return qir_MOV(c, qir_SEL(c, QPU_COND_NS, src[1], src[2]));
}
static struct qreg
ntq_fddx(struct vc4_compile *c, struct qreg src)
{
/* Make sure that we have a bare temp to use for MUL rotation, so it
* can be allocated to an accumulator.
*/
if (src.pack || src.file != QFILE_TEMP)
src = qir_MOV(c, src);
struct qreg from_left = qir_ROT_MUL(c, src, 1);
struct qreg from_right = qir_ROT_MUL(c, src, 15);
/* Distinguish left/right pixels of the quad. */
qir_SF(c, qir_AND(c, qir_reg(QFILE_QPU_ELEMENT, 0),
qir_uniform_ui(c, 1)));
return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
qir_FSUB(c, from_right, src),
qir_FSUB(c, src, from_left)));
}
static struct qreg
ntq_fddy(struct vc4_compile *c, struct qreg src)
{
if (src.pack || src.file != QFILE_TEMP)
src = qir_MOV(c, src);
struct qreg from_bottom = qir_ROT_MUL(c, src, 2);
struct qreg from_top = qir_ROT_MUL(c, src, 14);
/* Distinguish top/bottom pixels of the quad. */
qir_SF(c, qir_AND(c,
qir_reg(QFILE_QPU_ELEMENT, 0),
qir_uniform_ui(c, 2)));
return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
qir_FSUB(c, from_top, src),
qir_FSUB(c, src, from_bottom)));
}
static void
ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
{
/* This should always be lowered to ALU operations for VC4. */
assert(!instr->dest.saturate);
/* Vectors are special in that they have non-scalarized writemasks,
* and just take the first swizzle channel for each argument in order
* into each writemask channel.
*/
if (instr->op == nir_op_vec2 ||
instr->op == nir_op_vec3 ||
instr->op == nir_op_vec4) {
struct qreg srcs[4];
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
srcs[i] = ntq_get_src(c, instr->src[i].src,
instr->src[i].swizzle[0]);
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
ntq_store_dest(c, &instr->dest.dest, i,
qir_MOV(c, srcs[i]));
return;
}
if (instr->op == nir_op_pack_unorm_4x8) {
ntq_emit_pack_unorm_4x8(c, instr);
return;
}
if (instr->op == nir_op_unpack_unorm_4x8) {
struct qreg src = ntq_get_src(c, instr->src[0].src,
instr->src[0].swizzle[0]);
for (int i = 0; i < 4; i++) {
if (instr->dest.write_mask & (1 << i))
ntq_store_dest(c, &instr->dest.dest, i,
qir_UNPACK_8_F(c, src, i));
}
return;
}
/* General case: We can just grab the one used channel per src. */
struct qreg src[nir_op_infos[instr->op].num_inputs];
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
src[i] = ntq_get_alu_src(c, instr, i);
}
struct qreg result;
switch (instr->op) {
case nir_op_mov:
result = qir_MOV(c, src[0]);
break;
case nir_op_fmul:
result = qir_FMUL(c, src[0], src[1]);
break;
case nir_op_fadd:
result = qir_FADD(c, src[0], src[1]);
break;
case nir_op_fsub:
result = qir_FSUB(c, src[0], src[1]);
break;
case nir_op_fmin:
result = qir_FMIN(c, src[0], src[1]);
break;
case nir_op_fmax:
result = qir_FMAX(c, src[0], src[1]);
break;
case nir_op_f2i32:
case nir_op_f2u32:
result = qir_FTOI(c, src[0]);
break;
case nir_op_i2f32:
case nir_op_u2f32:
result = qir_ITOF(c, src[0]);
break;
case nir_op_b2f32:
result = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
break;
case nir_op_b2i32:
result = qir_AND(c, src[0], qir_uniform_ui(c, 1));
break;
case nir_op_i2b32:
case nir_op_f2b32:
qir_SF(c, src[0]);
result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC,
qir_uniform_ui(c, ~0),
qir_uniform_ui(c, 0)));
break;
case nir_op_iadd:
result = qir_ADD(c, src[0], src[1]);
break;
case nir_op_ushr:
result = qir_SHR(c, src[0], src[1]);
break;
case nir_op_isub:
result = qir_SUB(c, src[0], src[1]);
break;
case nir_op_ishr:
result = qir_ASR(c, src[0], src[1]);
break;
case nir_op_ishl:
result = qir_SHL(c, src[0], src[1]);
break;
case nir_op_imin:
result = qir_MIN(c, src[0], src[1]);
break;
case nir_op_imax:
result = qir_MAX(c, src[0], src[1]);
break;
case nir_op_iand:
result = qir_AND(c, src[0], src[1]);
break;
case nir_op_ior:
result = qir_OR(c, src[0], src[1]);
break;
case nir_op_ixor:
result = qir_XOR(c, src[0], src[1]);
break;
case nir_op_inot:
result = qir_NOT(c, src[0]);
break;
case nir_op_imul:
result = ntq_umul(c, src[0], src[1]);
break;
case nir_op_seq:
case nir_op_sne:
case nir_op_sge:
case nir_op_slt:
case nir_op_feq32:
case nir_op_fneu32:
case nir_op_fge32:
case nir_op_flt32:
case nir_op_ieq32:
case nir_op_ine32:
case nir_op_ige32:
case nir_op_uge32:
case nir_op_ilt32:
if (!ntq_emit_comparison(c, &result, instr, instr)) {
fprintf(stderr, "Bad comparison instruction\n");
}
break;
case nir_op_b32csel:
result = ntq_emit_bcsel(c, instr, src);
break;
case nir_op_fcsel:
qir_SF(c, src[0]);
result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC, src[1], src[2]));
break;
case nir_op_frcp:
result = ntq_rcp(c, src[0]);
break;
case nir_op_frsq:
result = ntq_rsq(c, src[0]);
break;
case nir_op_fexp2:
result = qir_EXP2(c, src[0]);
break;
case nir_op_flog2:
result = qir_LOG2(c, src[0]);
break;
case nir_op_ftrunc:
result = qir_ITOF(c, qir_FTOI(c, src[0]));
break;
case nir_op_fceil:
result = ntq_fceil(c, src[0]);
break;
case nir_op_ffract:
result = ntq_ffract(c, src[0]);
break;
case nir_op_ffloor:
result = ntq_ffloor(c, src[0]);
break;
case nir_op_fsin:
result = ntq_fsin(c, src[0]);
break;
case nir_op_fcos:
result = ntq_fcos(c, src[0]);
break;
case nir_op_fsign:
result = ntq_fsign(c, src[0]);
break;
case nir_op_fabs:
result = qir_FMAXABS(c, src[0], src[0]);
break;
case nir_op_iabs:
result = qir_MAX(c, src[0],
qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
break;
case nir_op_ibitfield_extract:
result = ntq_emit_ibfe(c, src[0], src[1], src[2]);
break;
case nir_op_ubitfield_extract:
result = ntq_emit_ubfe(c, src[0], src[1], src[2]);
break;
case nir_op_usadd_4x8:
result = qir_V8ADDS(c, src[0], src[1]);
break;
case nir_op_ussub_4x8:
result = qir_V8SUBS(c, src[0], src[1]);
break;
case nir_op_umin_4x8:
result = qir_V8MIN(c, src[0], src[1]);
break;
case nir_op_umax_4x8:
result = qir_V8MAX(c, src[0], src[1]);
break;
case nir_op_umul_unorm_4x8:
result = qir_V8MULD(c, src[0], src[1]);
break;
case nir_op_fddx:
case nir_op_fddx_coarse:
case nir_op_fddx_fine:
result = ntq_fddx(c, src[0]);
break;
case nir_op_fddy:
case nir_op_fddy_coarse:
case nir_op_fddy_fine:
result = ntq_fddy(c, src[0]);
break;
default:
fprintf(stderr, "unknown NIR ALU inst: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
/* We have a scalar result, so the instruction should only have a
* single channel written to.
*/
assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
ntq_store_dest(c, &instr->dest.dest,
ffs(instr->dest.write_mask) - 1, result);
}
static void
emit_frag_end(struct vc4_compile *c)
{
struct qreg color;
if (c->output_color_index != -1) {
color = c->outputs[c->output_color_index];
} else {
color = qir_uniform_ui(c, 0);
}
uint32_t discard_cond = QPU_COND_ALWAYS;
if (c->s->info.fs.uses_discard) {
qir_SF(c, c->discard);
discard_cond = QPU_COND_ZS;
}
if (c->fs_key->stencil_enabled) {
qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
qir_uniform(c, QUNIFORM_STENCIL, 0));
if (c->fs_key->stencil_twoside) {
qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
qir_uniform(c, QUNIFORM_STENCIL, 1));
}
if (c->fs_key->stencil_full_writemasks) {
qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
qir_uniform(c, QUNIFORM_STENCIL, 2));
}
}
if (c->output_sample_mask_index != -1) {
qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
}
if (c->fs_key->depth_enabled) {
if (c->output_position_index != -1) {
qir_FTOI_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
qir_FMUL(c,
c->outputs[c->output_position_index],
qir_uniform_f(c, 0xffffff)))->cond = discard_cond;
} else {
qir_MOV_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
qir_FRAG_Z(c))->cond = discard_cond;
}
}
if (!c->msaa_per_sample_output) {
qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE, 0),
color)->cond = discard_cond;
} else {
for (int i = 0; i < VC4_MAX_SAMPLES; i++) {
qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE_MS, 0),
c->sample_colors[i])->cond = discard_cond;
}
}
}
static void
emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
{
struct qreg packed = qir_get_temp(c);
for (int i = 0; i < 2; i++) {
struct qreg scale =
qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
struct qreg packed_chan = packed;
packed_chan.pack = QPU_PACK_A_16A + i;
qir_FTOI_dest(c, packed_chan,
qir_FMUL(c,
qir_FMUL(c,
c->outputs[c->output_position_index + i],
scale),
rcp_w));
}
qir_VPM_WRITE(c, packed);
}
static void
emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
{
struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
c->outputs[c->output_position_index + 2],
zscale),
rcp_w),
zoffset));
}
static void
emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
{
qir_VPM_WRITE(c, rcp_w);
}
static void
emit_point_size_write(struct vc4_compile *c)
{
struct qreg point_size;
if (c->output_point_size_index != -1)
point_size = c->outputs[c->output_point_size_index];
else
point_size = qir_uniform_f(c, 1.0);
qir_VPM_WRITE(c, point_size);
}
/**
* Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
*
* The simulator insists that there be at least one vertex attribute, so
* vc4_draw.c will emit one if it wouldn't have otherwise. The simulator also
* insists that all vertex attributes loaded get read by the VS/CS, so we have
* to consume it here.
*/
static void
emit_stub_vpm_read(struct vc4_compile *c)
{
if (c->num_inputs)
return;
c->vattr_sizes[0] = 4;
(void)qir_MOV(c, qir_reg(QFILE_VPM, 0));
c->num_inputs++;
}
static void
emit_vert_end(struct vc4_compile *c,
struct vc4_varying_slot *fs_inputs,
uint32_t num_fs_inputs)
{
struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
emit_stub_vpm_read(c);
emit_scaled_viewport_write(c, rcp_w);
emit_zs_write(c, rcp_w);
emit_rcp_wc_write(c, rcp_w);
if (c->vs_key->per_vertex_point_size)
emit_point_size_write(c);
for (int i = 0; i < num_fs_inputs; i++) {
struct vc4_varying_slot *input = &fs_inputs[i];
int j;
for (j = 0; j < c->num_outputs; j++) {
struct vc4_varying_slot *output =
&c->output_slots[j];
if (input->slot == output->slot &&
input->swizzle == output->swizzle) {
qir_VPM_WRITE(c, c->outputs[j]);
break;
}
}
/* Emit padding if we didn't find a declared VS output for
* this FS input.
*/
if (j == c->num_outputs)
qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
}
}
static void
emit_coord_end(struct vc4_compile *c)
{
struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
emit_stub_vpm_read(c);
for (int i = 0; i < 4; i++)
qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
emit_scaled_viewport_write(c, rcp_w);
emit_zs_write(c, rcp_w);
emit_rcp_wc_write(c, rcp_w);
if (c->vs_key->per_vertex_point_size)
emit_point_size_write(c);
}
static void
vc4_optimize_nir(struct nir_shader *s)
{
bool progress;
unsigned lower_flrp =
(s->options->lower_flrp16 ? 16 : 0) |
(s->options->lower_flrp32 ? 32 : 0) |
(s->options->lower_flrp64 ? 64 : 0);
do {
progress = false;
NIR_PASS_V(s, nir_lower_vars_to_ssa);
NIR_PASS(progress, s, nir_lower_alu_to_scalar, NULL, NULL);
NIR_PASS(progress, s, nir_lower_phis_to_scalar);
NIR_PASS(progress, s, nir_copy_prop);
NIR_PASS(progress, s, nir_opt_remove_phis);
NIR_PASS(progress, s, nir_opt_dce);
NIR_PASS(progress, s, nir_opt_dead_cf);
NIR_PASS(progress, s, nir_opt_cse);
NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
NIR_PASS(progress, s, nir_opt_algebraic);
NIR_PASS(progress, s, nir_opt_constant_folding);
if (lower_flrp != 0) {
bool lower_flrp_progress = false;
NIR_PASS(lower_flrp_progress, s, nir_lower_flrp,
lower_flrp,
false /* always_precise */,
s->options->lower_ffma);
if (lower_flrp_progress) {
NIR_PASS(progress, s, nir_opt_constant_folding);
progress = true;
}
/* Nothing should rematerialize any flrps, so we only
* need to do this lowering once.
*/
lower_flrp = 0;
}
NIR_PASS(progress, s, nir_opt_undef);
NIR_PASS(progress, s, nir_opt_loop_unroll,
nir_var_shader_in |
nir_var_shader_out |
nir_var_function_temp);
} while (progress);
}
static int
driver_location_compare(const void *in_a, const void *in_b)
{
const nir_variable *const *a = in_a;
const nir_variable *const *b = in_b;
return (*a)->data.driver_location - (*b)->data.driver_location;
}
static void
ntq_setup_inputs(struct vc4_compile *c)
{
unsigned num_entries = 0;
nir_foreach_shader_in_variable(var, c->s)
num_entries++;
nir_variable *vars[num_entries];
unsigned i = 0;
nir_foreach_shader_in_variable(var, c->s)
vars[i++] = var;
/* Sort the variables so that we emit the input setup in
* driver_location order. This is required for VPM reads, whose data
* is fetched into the VPM in driver_location (TGSI register index)
* order.
*/
qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
for (unsigned i = 0; i < num_entries; i++) {
nir_variable *var = vars[i];
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
unsigned loc = var->data.driver_location;
assert(array_len == 1);
(void)array_len;
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
(loc + 1) * 4);
if (c->stage == QSTAGE_FRAG) {
if (var->data.location == VARYING_SLOT_POS) {
emit_fragcoord_input(c, loc);
} else if (util_varying_is_point_coord(var->data.location,
c->fs_key->point_sprite_mask)) {
c->inputs[loc * 4 + 0] = c->point_x;
c->inputs[loc * 4 + 1] = c->point_y;
} else {
emit_fragment_input(c, loc, var->data.location);
}
} else {
emit_vertex_input(c, loc);
}
}
}
static void
ntq_setup_outputs(struct vc4_compile *c)
{
nir_foreach_shader_out_variable(var, c->s) {
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
unsigned loc = var->data.driver_location * 4;
assert(array_len == 1);
(void)array_len;
for (int i = 0; i < 4; i++)
add_output(c, loc + i, var->data.location, i);
if (c->stage == QSTAGE_FRAG) {
switch (var->data.location) {
case FRAG_RESULT_COLOR:
case FRAG_RESULT_DATA0:
c->output_color_index = loc;
break;
case FRAG_RESULT_DEPTH:
c->output_position_index = loc;
break;
case FRAG_RESULT_SAMPLE_MASK:
c->output_sample_mask_index = loc;
break;
}
} else {
switch (var->data.location) {
case VARYING_SLOT_POS:
c->output_position_index = loc;
break;
case VARYING_SLOT_PSIZ:
c->output_point_size_index = loc;
break;
}
}
}
}
/**
* Sets up the mapping from nir_register to struct qreg *.
*
* Each nir_register gets a struct qreg per 32-bit component being stored.
*/
static void
ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_register, nir_reg, node, list) {
unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
array_len *
nir_reg->num_components);
_mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
for (int i = 0; i < array_len * nir_reg->num_components; i++)
qregs[i] = qir_get_temp(c);
}
}
static void
ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
{
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
for (int i = 0; i < instr->def.num_components; i++)
qregs[i] = qir_uniform_ui(c, instr->value[i].u32);
_mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
}
static void
ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
{
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
/* QIR needs there to be *some* value, so pick 0 (same as for
* ntq_setup_registers().
*/
for (int i = 0; i < instr->def.num_components; i++)
qregs[i] = qir_uniform_ui(c, 0);
}
static void
ntq_emit_color_read(struct vc4_compile *c, nir_intrinsic_instr *instr)
{
assert(nir_src_as_uint(instr->src[0]) == 0);
/* Reads of the per-sample color need to be done in
* order.
*/
int sample_index = (nir_intrinsic_base(instr) -
VC4_NIR_TLB_COLOR_READ_INPUT);
for (int i = 0; i <= sample_index; i++) {
if (c->color_reads[i].file == QFILE_NULL) {
c->color_reads[i] =
qir_TLB_COLOR_READ(c);
}
}
ntq_store_dest(c, &instr->dest, 0,
qir_MOV(c, c->color_reads[sample_index]));
}
static void
ntq_emit_load_input(struct vc4_compile *c, nir_intrinsic_instr *instr)
{
assert(instr->num_components == 1);
assert(nir_src_is_const(instr->src[0]) &&
"vc4 doesn't support indirect inputs");
if (c->stage == QSTAGE_FRAG &&
nir_intrinsic_base(instr) >= VC4_NIR_TLB_COLOR_READ_INPUT) {
ntq_emit_color_read(c, instr);
return;
}
uint32_t offset = nir_intrinsic_base(instr) +
nir_src_as_uint(instr->src[0]);
int comp = nir_intrinsic_component(instr);
ntq_store_dest(c, &instr->dest, 0,
qir_MOV(c, c->inputs[offset * 4 + comp]));
}
static void
ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
{
unsigned offset;
switch (instr->intrinsic) {
case nir_intrinsic_load_uniform:
assert(instr->num_components == 1);
if (nir_src_is_const(instr->src[0])) {
offset = nir_intrinsic_base(instr) +
nir_src_as_uint(instr->src[0]);
assert(offset % 4 == 0);
/* We need dwords */
offset = offset / 4;
ntq_store_dest(c, &instr->dest, 0,
qir_uniform(c, QUNIFORM_UNIFORM,
offset));
} else {
ntq_store_dest(c, &instr->dest, 0,
indirect_uniform_load(c, instr));
}
break;
case nir_intrinsic_load_ubo:
assert(instr->num_components == 1);
ntq_store_dest(c, &instr->dest, 0, vc4_ubo_load(c, instr));
break;
case nir_intrinsic_load_user_clip_plane:
for (int i = 0; i < nir_intrinsic_dest_components(instr); i++) {
ntq_store_dest(c, &instr->dest, i,
qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
nir_intrinsic_ucp_id(instr) *
4 + i));
}
break;
case nir_intrinsic_load_blend_const_color_r_float:
case nir_intrinsic_load_blend_const_color_g_float:
case nir_intrinsic_load_blend_const_color_b_float:
case nir_intrinsic_load_blend_const_color_a_float:
ntq_store_dest(c, &instr->dest, 0,
qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_X +
(instr->intrinsic -
nir_intrinsic_load_blend_const_color_r_float),
0));
break;
case nir_intrinsic_load_blend_const_color_rgba8888_unorm:
ntq_store_dest(c, &instr->dest, 0,
qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_RGBA,
0));
break;
case nir_intrinsic_load_blend_const_color_aaaa8888_unorm:
ntq_store_dest(c, &instr->dest, 0,
qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_AAAA,
0));
break;
case nir_intrinsic_load_alpha_ref_float:
ntq_store_dest(c, &instr->dest, 0,
qir_uniform(c, QUNIFORM_ALPHA_REF, 0));
break;
case nir_intrinsic_load_sample_mask_in:
ntq_store_dest(c, &instr->dest, 0,
qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0));
break;
case nir_intrinsic_load_front_face:
/* The register contains 0 (front) or 1 (back), and we need to
* turn it into a NIR bool where true means front.
*/
ntq_store_dest(c, &instr->dest, 0,
qir_ADD(c,
qir_uniform_ui(c, -1),
qir_reg(QFILE_FRAG_REV_FLAG, 0)));
break;
case nir_intrinsic_load_input:
ntq_emit_load_input(c, instr);
break;
case nir_intrinsic_store_output:
assert(nir_src_is_const(instr->src[1]) &&
"vc4 doesn't support indirect outputs");
offset = nir_intrinsic_base(instr) +
nir_src_as_uint(instr->src[1]);
/* MSAA color outputs are the only case where we have an
* output that's not lowered to being a store of a single 32
* bit value.
*/
if (c->stage == QSTAGE_FRAG && instr->num_components == 4) {
assert(offset == c->output_color_index);
for (int i = 0; i < 4; i++) {
c->sample_colors[i] =
qir_MOV(c, ntq_get_src(c, instr->src[0],
i));
}
} else {
offset = offset * 4 + nir_intrinsic_component(instr);
assert(instr->num_components == 1);
c->outputs[offset] =
qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
c->num_outputs = MAX2(c->num_outputs, offset + 1);
}
break;
case nir_intrinsic_discard:
if (c->execute.file != QFILE_NULL) {
qir_SF(c, c->execute);
qir_MOV_cond(c, QPU_COND_ZS, c->discard,
qir_uniform_ui(c, ~0));
} else {
qir_MOV_dest(c, c->discard, qir_uniform_ui(c, ~0));
}
break;
case nir_intrinsic_discard_if: {
/* true (~0) if we're discarding */
struct qreg cond = ntq_get_src(c, instr->src[0], 0);
if (c->execute.file != QFILE_NULL) {
/* execute == 0 means the channel is active. Invert
* the condition so that we can use zero as "executing
* and discarding."
*/
qir_SF(c, qir_AND(c, c->execute, qir_NOT(c, cond)));
qir_MOV_cond(c, QPU_COND_ZS, c->discard, cond);
} else {
qir_OR_dest(c, c->discard, c->discard,
ntq_get_src(c, instr->src[0], 0));
}
break;
}
default:
fprintf(stderr, "Unknown intrinsic: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
break;
}
}
/* Clears (activates) the execute flags for any channels whose jump target
* matches this block.
*/
static void
ntq_activate_execute_for_block(struct vc4_compile *c)
{
qir_SF(c, qir_SUB(c,
c->execute,
qir_uniform_ui(c, c->cur_block->index)));
qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, 0));
}
static void
ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
{
if (!c->vc4->screen->has_control_flow) {
fprintf(stderr,
"IF statement support requires updated kernel.\n");
return;
}
nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
bool empty_else_block =
(nir_else_block == nir_if_last_else_block(if_stmt) &&
exec_list_is_empty(&nir_else_block->instr_list));
struct qblock *then_block = qir_new_block(c);
struct qblock *after_block = qir_new_block(c);
struct qblock *else_block;
if (empty_else_block)
else_block = after_block;
else
else_block = qir_new_block(c);
bool was_top_level = false;
if (c->execute.file == QFILE_NULL) {
c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
was_top_level = true;
}
/* Set ZS for executing (execute == 0) and jumping (if->condition ==
* 0) channels, and then update execute flags for those to point to
* the ELSE block.
*/
qir_SF(c, qir_OR(c,
c->execute,
ntq_get_src(c, if_stmt->condition, 0)));
qir_MOV_cond(c, QPU_COND_ZS, c->execute,
qir_uniform_ui(c, else_block->index));
/* Jump to ELSE if nothing is active for THEN, otherwise fall
* through.
*/
qir_SF(c, c->execute);
qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZC);
qir_link_blocks(c->cur_block, else_block);
qir_link_blocks(c->cur_block, then_block);
/* Process the THEN block. */
qir_set_emit_block(c, then_block);
ntq_emit_cf_list(c, &if_stmt->then_list);
if (!empty_else_block) {
/* Handle the end of the THEN block. First, all currently
* active channels update their execute flags to point to
* ENDIF
*/
qir_SF(c, c->execute);
qir_MOV_cond(c, QPU_COND_ZS, c->execute,
qir_uniform_ui(c, after_block->index));
/* If everything points at ENDIF, then jump there immediately. */
qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, after_block->index)));
qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
qir_link_blocks(c->cur_block, after_block);
qir_link_blocks(c->cur_block, else_block);
qir_set_emit_block(c, else_block);
ntq_activate_execute_for_block(c);
ntq_emit_cf_list(c, &if_stmt->else_list);
}
qir_link_blocks(c->cur_block, after_block);
qir_set_emit_block(c, after_block);
if (was_top_level) {
c->execute = c->undef;
c->last_top_block = c->cur_block;
} else {
ntq_activate_execute_for_block(c);
}
}
static void
ntq_emit_jump(struct vc4_compile *c, nir_jump_instr *jump)
{
struct qblock *jump_block;
switch (jump->type) {
case nir_jump_break:
jump_block = c->loop_break_block;
break;
case nir_jump_continue:
jump_block = c->loop_cont_block;
break;
default:
unreachable("Unsupported jump type\n");
}
qir_SF(c, c->execute);
qir_MOV_cond(c, QPU_COND_ZS, c->execute,
qir_uniform_ui(c, jump_block->index));
/* Jump to the destination block if everyone has taken the jump. */
qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, jump_block->index)));
qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
struct qblock *new_block = qir_new_block(c);
qir_link_blocks(c->cur_block, jump_block);
qir_link_blocks(c->cur_block, new_block);
qir_set_emit_block(c, new_block);
}
static void
ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu:
ntq_emit_alu(c, nir_instr_as_alu(instr));
break;
case nir_instr_type_intrinsic:
ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_load_const:
ntq_emit_load_const(c, nir_instr_as_load_const(instr));
break;
case nir_instr_type_ssa_undef:
ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_tex:
ntq_emit_tex(c, nir_instr_as_tex(instr));
break;
case nir_instr_type_jump:
ntq_emit_jump(c, nir_instr_as_jump(instr));
break;
default:
fprintf(stderr, "Unknown NIR instr type: ");
nir_print_instr(instr, stderr);
fprintf(stderr, "\n");
abort();
}
}
static void
ntq_emit_block(struct vc4_compile *c, nir_block *block)
{
nir_foreach_instr(instr, block) {
ntq_emit_instr(c, instr);
}
}
static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
static void
ntq_emit_loop(struct vc4_compile *c, nir_loop *loop)
{
if (!c->vc4->screen->has_control_flow) {
fprintf(stderr,
"loop support requires updated kernel.\n");
ntq_emit_cf_list(c, &loop->body);
return;
}
bool was_top_level = false;
if (c->execute.file == QFILE_NULL) {
c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
was_top_level = true;
}
struct qblock *save_loop_cont_block = c->loop_cont_block;
struct qblock *save_loop_break_block = c->loop_break_block;
c->loop_cont_block = qir_new_block(c);
c->loop_break_block = qir_new_block(c);
qir_link_blocks(c->cur_block, c->loop_cont_block);
qir_set_emit_block(c, c->loop_cont_block);
ntq_activate_execute_for_block(c);
ntq_emit_cf_list(c, &loop->body);
/* If anything had explicitly continued, or is here at the end of the
* loop, then we need to loop again. SF updates are masked by the
* instruction's condition, so we can do the OR of the two conditions
* within SF.
*/
qir_SF(c, c->execute);
struct qinst *cont_check =
qir_SUB_dest(c,
c->undef,
c->execute,
qir_uniform_ui(c, c->loop_cont_block->index));
cont_check->cond = QPU_COND_ZC;
cont_check->sf = true;
qir_BRANCH(c, QPU_COND_BRANCH_ANY_ZS);
qir_link_blocks(c->cur_block, c->loop_cont_block);
qir_link_blocks(c->cur_block, c->loop_break_block);
qir_set_emit_block(c, c->loop_break_block);
if (was_top_level) {
c->execute = c->undef;
c->last_top_block = c->cur_block;
} else {
ntq_activate_execute_for_block(c);
}
c->loop_break_block = save_loop_break_block;
c->loop_cont_block = save_loop_cont_block;
}
static void
ntq_emit_function(struct vc4_compile *c, nir_function_impl *func)
{
fprintf(stderr, "FUNCTIONS not handled.\n");
abort();
}
static void
ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block:
ntq_emit_block(c, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
ntq_emit_if(c, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
ntq_emit_loop(c, nir_cf_node_as_loop(node));
break;
case nir_cf_node_function:
ntq_emit_function(c, nir_cf_node_as_function(node));
break;
default:
fprintf(stderr, "Unknown NIR node type\n");
abort();
}
}
}
static void
ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
{
ntq_setup_registers(c, &impl->registers);
ntq_emit_cf_list(c, &impl->body);
}
static void
nir_to_qir(struct vc4_compile *c)
{
if (c->stage == QSTAGE_FRAG && c->s->info.fs.uses_discard)
c->discard = qir_MOV(c, qir_uniform_ui(c, 0));
ntq_setup_inputs(c);
ntq_setup_outputs(c);
/* Find the main function and emit the body. */
nir_foreach_function(function, c->s) {
assert(strcmp(function->name, "main") == 0);
assert(function->impl);
ntq_emit_impl(c, function->impl);
}
}
static const nir_shader_compiler_options nir_options = {
.lower_all_io_to_temps = true,
.lower_extract_byte = true,
.lower_extract_word = true,
.lower_fdiv = true,
.lower_ffma = true,
.lower_flrp32 = true,
.lower_fmod = true,
.lower_fpow = true,
.lower_fsat = true,
.lower_fsqrt = true,
.lower_ldexp = true,
.lower_negate = true,
.lower_rotate = true,
.lower_to_scalar = true,
.max_unroll_iterations = 32,
};
const void *
vc4_screen_get_compiler_options(struct pipe_screen *pscreen,
enum pipe_shader_ir ir,
enum pipe_shader_type shader)
{
return &nir_options;
}
static int
count_nir_instrs(nir_shader *nir)
{
int count = 0;
nir_foreach_function(function, nir) {
if (!function->impl)
continue;
nir_foreach_block(block, function->impl) {
nir_foreach_instr(instr, block)
count++;
}
}
return count;
}
static struct vc4_compile *
vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
struct vc4_key *key, bool fs_threaded)
{
struct vc4_compile *c = qir_compile_init();
c->vc4 = vc4;
c->stage = stage;
c->shader_state = &key->shader_state->base;
c->program_id = key->shader_state->program_id;
c->variant_id =
p_atomic_inc_return(&key->shader_state->compiled_variant_count);
c->fs_threaded = fs_threaded;
c->key = key;
switch (stage) {
case QSTAGE_FRAG:
c->fs_key = (struct vc4_fs_key *)key;
if (c->fs_key->is_points) {
c->point_x = emit_fragment_varying(c, ~0, 0);
c->point_y = emit_fragment_varying(c, ~0, 0);
} else if (c->fs_key->is_lines) {
c->line_x = emit_fragment_varying(c, ~0, 0);
}
break;
case QSTAGE_VERT:
c->vs_key = (struct vc4_vs_key *)key;
break;
case QSTAGE_COORD:
c->vs_key = (struct vc4_vs_key *)key;
break;
}
c->s = nir_shader_clone(c, key->shader_state->base.ir.nir);
if (stage == QSTAGE_FRAG) {
if (c->fs_key->alpha_test_func != COMPARE_FUNC_ALWAYS) {
NIR_PASS_V(c->s, nir_lower_alpha_test,
c->fs_key->alpha_test_func,
c->fs_key->sample_alpha_to_one &&
c->fs_key->msaa,
NULL);
}
NIR_PASS_V(c->s, vc4_nir_lower_blend, c);
}
struct nir_lower_tex_options tex_options = {
/* We would need to implement txs, but we don't want the
* int/float conversions
*/
.lower_rect = false,
.lower_txp = ~0,
/* Apply swizzles to all samplers. */
.swizzle_result = ~0,
};
/* Lower the format swizzle and ARB_texture_swizzle-style swizzle.
* The format swizzling applies before sRGB decode, and
* ARB_texture_swizzle is the last thing before returning the sample.
*/
for (int i = 0; i < ARRAY_SIZE(key->tex); i++) {
enum pipe_format format = c->key->tex[i].format;
if (!format)
continue;
const uint8_t *format_swizzle = vc4_get_format_swizzle(format);
for (int j = 0; j < 4; j++) {
uint8_t arb_swiz = c->key->tex[i].swizzle[j];
if (arb_swiz <= 3) {
tex_options.swizzles[i][j] =
format_swizzle[arb_swiz];
} else {
tex_options.swizzles[i][j] = arb_swiz;
}
}
if (util_format_is_srgb(format))
tex_options.lower_srgb |= (1 << i);
}
NIR_PASS_V(c->s, nir_lower_tex, &tex_options);
if (c->fs_key && c->fs_key->light_twoside)
NIR_PASS_V(c->s, nir_lower_two_sided_color, true);
if (c->vs_key && c->vs_key->clamp_color)
NIR_PASS_V(c->s, nir_lower_clamp_color_outputs);
if (c->key->ucp_enables) {
if (stage == QSTAGE_FRAG) {
NIR_PASS_V(c->s, nir_lower_clip_fs,
c->key->ucp_enables, false);
} else {
NIR_PASS_V(c->s, nir_lower_clip_vs,
c->key->ucp_enables, false, false, NULL);
NIR_PASS_V(c->s, nir_lower_io_to_scalar,
nir_var_shader_out);
}
}
/* FS input scalarizing must happen after nir_lower_two_sided_color,
* which only handles a vec4 at a time. Similarly, VS output
* scalarizing must happen after nir_lower_clip_vs.
*/
if (c->stage == QSTAGE_FRAG)
NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_in);
else
NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_out);
NIR_PASS_V(c->s, vc4_nir_lower_io, c);
NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c);
NIR_PASS_V(c->s, nir_lower_idiv, nir_lower_idiv_fast);
vc4_optimize_nir(c->s);
/* Do late algebraic optimization to turn add(a, neg(b)) back into
* subs, then the mandatory cleanup after algebraic. Note that it may
* produce fnegs, and if so then we need to keep running to squash
* fneg(fneg(a)).
*/
bool more_late_algebraic = true;
while (more_late_algebraic) {
more_late_algebraic = false;
NIR_PASS(more_late_algebraic, c->s, nir_opt_algebraic_late);
NIR_PASS_V(c->s, nir_opt_constant_folding);
NIR_PASS_V(c->s, nir_copy_prop);
NIR_PASS_V(c->s, nir_opt_dce);
NIR_PASS_V(c->s, nir_opt_cse);
}
NIR_PASS_V(c->s, nir_lower_bool_to_int32);
NIR_PASS_V(c->s, nir_convert_from_ssa, true);
if (vc4_debug & VC4_DEBUG_SHADERDB) {
fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id,
count_nir_instrs(c->s));
}
if (vc4_debug & VC4_DEBUG_NIR) {
fprintf(stderr, "%s prog %d/%d NIR:\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id);
nir_print_shader(c->s, stderr);
}
nir_to_qir(c);
switch (stage) {
case QSTAGE_FRAG:
/* FS threading requires that the thread execute
* QPU_SIG_LAST_THREAD_SWITCH exactly once before terminating
* (with no other THRSW afterwards, obviously). If we didn't
* fetch a texture at a top level block, this wouldn't be
* true.
*/
if (c->fs_threaded && !c->last_thrsw_at_top_level) {
c->failed = true;
return c;
}
emit_frag_end(c);
break;
case QSTAGE_VERT:
emit_vert_end(c,
c->vs_key->fs_inputs->input_slots,
c->vs_key->fs_inputs->num_inputs);
break;
case QSTAGE_COORD:
emit_coord_end(c);
break;
}
if (vc4_debug & VC4_DEBUG_QIR) {
fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id);
qir_dump(c);
fprintf(stderr, "\n");
}
qir_optimize(c);
qir_lower_uniforms(c);
qir_schedule_instructions(c);
qir_emit_uniform_stream_resets(c);
if (vc4_debug & VC4_DEBUG_QIR) {
fprintf(stderr, "%s prog %d/%d QIR:\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id);
qir_dump(c);
fprintf(stderr, "\n");
}
qir_reorder_uniforms(c);
vc4_generate_code(vc4, c);
if (vc4_debug & VC4_DEBUG_SHADERDB) {
fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id,
c->qpu_inst_count);
fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id,
c->num_uniforms);
}
ralloc_free(c->s);
return c;
}
static void *
vc4_shader_state_create(struct pipe_context *pctx,
const struct pipe_shader_state *cso)
{
struct vc4_context *vc4 = vc4_context(pctx);
struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
if (!so)
return NULL;
so->program_id = vc4->next_uncompiled_program_id++;
nir_shader *s;
if (cso->type == PIPE_SHADER_IR_NIR) {
/* The backend takes ownership of the NIR shader on state
* creation.
*/
s = cso->ir.nir;
} else {
assert(cso->type == PIPE_SHADER_IR_TGSI);
if (vc4_debug & VC4_DEBUG_TGSI) {
fprintf(stderr, "prog %d TGSI:\n",
so->program_id);
tgsi_dump(cso->tokens, 0);
fprintf(stderr, "\n");
}
s = tgsi_to_nir(cso->tokens, pctx->screen, false);
}
if (s->info.stage == MESA_SHADER_VERTEX)
NIR_PASS_V(s, nir_lower_point_size, 1.0f, 0.0f);
NIR_PASS_V(s, nir_lower_io, nir_var_shader_in | nir_var_shader_out,
type_size, (nir_lower_io_options)0);
NIR_PASS_V(s, nir_lower_regs_to_ssa);
NIR_PASS_V(s, nir_normalize_cubemap_coords);
NIR_PASS_V(s, nir_lower_load_const_to_scalar);
vc4_optimize_nir(s);
NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp, NULL);
/* Garbage collect dead instructions */
nir_sweep(s);
so->base.type = PIPE_SHADER_IR_NIR;
so->base.ir.nir = s;
if (vc4_debug & VC4_DEBUG_NIR) {
fprintf(stderr, "%s prog %d NIR:\n",
gl_shader_stage_name(s->info.stage),
so->program_id);
nir_print_shader(s, stderr);
fprintf(stderr, "\n");
}
return so;
}
static void
copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
struct vc4_compile *c)
{
int count = c->num_uniforms;
struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
uinfo->count = count;
uinfo->data = ralloc_array(shader, uint32_t, count);
memcpy(uinfo->data, c->uniform_data,
count * sizeof(*uinfo->data));
uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
memcpy(uinfo->contents, c->uniform_contents,
count * sizeof(*uinfo->contents));
uinfo->num_texture_samples = c->num_texture_samples;
vc4_set_shader_uniform_dirty_flags(shader);
}
static void
vc4_setup_compiled_fs_inputs(struct vc4_context *vc4, struct vc4_compile *c,
struct vc4_compiled_shader *shader)
{
struct vc4_fs_inputs inputs;
memset(&inputs, 0, sizeof(inputs));
inputs.input_slots = ralloc_array(shader,
struct vc4_varying_slot,
c->num_input_slots);
bool input_live[c->num_input_slots];
memset(input_live, 0, sizeof(input_live));
qir_for_each_inst_inorder(inst, c) {
for (int i = 0; i < qir_get_nsrc(inst); i++) {
if (inst->src[i].file == QFILE_VARY)
input_live[inst->src[i].index] = true;
}
}
for (int i = 0; i < c->num_input_slots; i++) {
struct vc4_varying_slot *slot = &c->input_slots[i];
if (!input_live[i])
continue;
/* Skip non-VS-output inputs. */
if (slot->slot == (uint8_t)~0)
continue;
if (slot->slot == VARYING_SLOT_COL0 ||
slot->slot == VARYING_SLOT_COL1 ||
slot->slot == VARYING_SLOT_BFC0 ||
slot->slot == VARYING_SLOT_BFC1) {
shader->color_inputs |= (1 << inputs.num_inputs);
}
inputs.input_slots[inputs.num_inputs] = *slot;
inputs.num_inputs++;
}
shader->num_inputs = inputs.num_inputs;
/* Add our set of inputs to the set of all inputs seen. This way, we
* can have a single pointer that identifies an FS inputs set,
* allowing VS to avoid recompiling when the FS is recompiled (or a
* new one is bound using separate shader objects) but the inputs
* don't change.
*/
struct set_entry *entry = _mesa_set_search(vc4->fs_inputs_set, &inputs);
if (entry) {
shader->fs_inputs = entry->key;
ralloc_free(inputs.input_slots);
} else {
struct vc4_fs_inputs *alloc_inputs;
alloc_inputs = rzalloc(vc4->fs_inputs_set, struct vc4_fs_inputs);
memcpy(alloc_inputs, &inputs, sizeof(inputs));
ralloc_steal(alloc_inputs, inputs.input_slots);
_mesa_set_add(vc4->fs_inputs_set, alloc_inputs);
shader->fs_inputs = alloc_inputs;
}
}
static struct vc4_compiled_shader *
vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
struct vc4_key *key)
{
struct hash_table *ht;
uint32_t key_size;
bool try_threading;
if (stage == QSTAGE_FRAG) {
ht = vc4->fs_cache;
key_size = sizeof(struct vc4_fs_key);
try_threading = vc4->screen->has_threaded_fs;
} else {
ht = vc4->vs_cache;
key_size = sizeof(struct vc4_vs_key);
try_threading = false;
}
struct vc4_compiled_shader *shader;
struct hash_entry *entry = _mesa_hash_table_search(ht, key);
if (entry)
return entry->data;
struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key, try_threading);
/* If the FS failed to compile threaded, fall back to single threaded. */
if (try_threading && c->failed) {
qir_compile_destroy(c);
c = vc4_shader_ntq(vc4, stage, key, false);
}
shader = rzalloc(NULL, struct vc4_compiled_shader);
shader->program_id = vc4->next_compiled_program_id++;
if (stage == QSTAGE_FRAG) {
vc4_setup_compiled_fs_inputs(vc4, c, shader);
/* Note: the temporary clone in c->s has been freed. */
nir_shader *orig_shader = key->shader_state->base.ir.nir;
if (orig_shader->info.outputs_written & (1 << FRAG_RESULT_DEPTH))
shader->disable_early_z = true;
} else {
shader->num_inputs = c->num_inputs;
shader->vattr_offsets[0] = 0;
for (int i = 0; i < 8; i++) {
shader->vattr_offsets[i + 1] =
shader->vattr_offsets[i] + c->vattr_sizes[i];
if (c->vattr_sizes[i])
shader->vattrs_live |= (1 << i);
}
}
shader->failed = c->failed;
if (c->failed) {
shader->failed = true;
} else {
copy_uniform_state_to_shader(shader, c);
shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
c->qpu_inst_count *
sizeof(uint64_t));
}
shader->fs_threaded = c->fs_threaded;
if ((vc4_debug & VC4_DEBUG_SHADERDB) && stage == QSTAGE_FRAG) {
fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d FS threads\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id,
1 + shader->fs_threaded);
}
qir_compile_destroy(c);
struct vc4_key *dup_key;
dup_key = rzalloc_size(shader, key_size); /* TODO: don't use rzalloc */
memcpy(dup_key, key, key_size);
_mesa_hash_table_insert(ht, dup_key, shader);
return shader;
}
static void
vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
struct vc4_texture_stateobj *texstate)
{
for (int i = 0; i < texstate->num_textures; i++) {
struct pipe_sampler_view *sampler = texstate->textures[i];
struct vc4_sampler_view *vc4_sampler = vc4_sampler_view(sampler);
struct pipe_sampler_state *sampler_state =
texstate->samplers[i];
if (!sampler)
continue;
key->tex[i].format = sampler->format;
key->tex[i].swizzle[0] = sampler->swizzle_r;
key->tex[i].swizzle[1] = sampler->swizzle_g;
key->tex[i].swizzle[2] = sampler->swizzle_b;
key->tex[i].swizzle[3] = sampler->swizzle_a;
if (sampler->texture->nr_samples > 1) {
key->tex[i].msaa_width = sampler->texture->width0;
key->tex[i].msaa_height = sampler->texture->height0;
} else if (sampler){
key->tex[i].compare_mode = sampler_state->compare_mode;
key->tex[i].compare_func = sampler_state->compare_func;
key->tex[i].wrap_s = sampler_state->wrap_s;
key->tex[i].wrap_t = sampler_state->wrap_t;
key->tex[i].force_first_level =
vc4_sampler->force_first_level;
}
}
key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
}
static void
vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
{
struct vc4_job *job = vc4->job;
struct vc4_fs_key local_key;
struct vc4_fs_key *key = &local_key;
if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
VC4_DIRTY_BLEND |
VC4_DIRTY_FRAMEBUFFER |
VC4_DIRTY_ZSA |
VC4_DIRTY_RASTERIZER |
VC4_DIRTY_SAMPLE_MASK |
VC4_DIRTY_FRAGTEX |
VC4_DIRTY_UNCOMPILED_FS |
VC4_DIRTY_UBO_1_SIZE))) {
return;
}
memset(key, 0, sizeof(*key));
vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
key->base.shader_state = vc4->prog.bind_fs;
key->is_points = (prim_mode == PIPE_PRIM_POINTS);
key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
prim_mode <= PIPE_PRIM_LINE_STRIP);
key->blend = vc4->blend->rt[0];
if (vc4->blend->logicop_enable) {
key->logicop_func = vc4->blend->logicop_func;
} else {
key->logicop_func = PIPE_LOGICOP_COPY;
}
if (job->msaa) {
key->msaa = vc4->rasterizer->base.multisample;
key->sample_coverage = (vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1);
key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage;
key->sample_alpha_to_one = vc4->blend->alpha_to_one;
}
if (vc4->framebuffer.cbufs[0])
key->color_format = vc4->framebuffer.cbufs[0]->format;
key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
key->depth_enabled = (vc4->zsa->base.depth.enabled ||
key->stencil_enabled);
if (vc4->zsa->base.alpha.enabled)
key->alpha_test_func = vc4->zsa->base.alpha.func;
else
key->alpha_test_func = COMPARE_FUNC_ALWAYS;
if (key->is_points) {
key->point_sprite_mask =
vc4->rasterizer->base.sprite_coord_enable;
key->point_coord_upper_left =
(vc4->rasterizer->base.sprite_coord_mode ==
PIPE_SPRITE_COORD_UPPER_LEFT);
}
key->ubo_1_size = vc4->constbuf[PIPE_SHADER_FRAGMENT].cb[1].buffer_size;
key->light_twoside = vc4->rasterizer->base.light_twoside;
struct vc4_compiled_shader *old_fs = vc4->prog.fs;
vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
if (vc4->prog.fs == old_fs)
return;
vc4->dirty |= VC4_DIRTY_COMPILED_FS;
if (vc4->rasterizer->base.flatshade &&
(!old_fs || vc4->prog.fs->color_inputs != old_fs->color_inputs)) {
vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
}
if (!old_fs || vc4->prog.fs->fs_inputs != old_fs->fs_inputs)
vc4->dirty |= VC4_DIRTY_FS_INPUTS;
}
static void
vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
{
struct vc4_vs_key local_key;
struct vc4_vs_key *key = &local_key;
if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
VC4_DIRTY_RASTERIZER |
VC4_DIRTY_VERTTEX |
VC4_DIRTY_VTXSTATE |
VC4_DIRTY_UNCOMPILED_VS |
VC4_DIRTY_FS_INPUTS))) {
return;
}
memset(key, 0, sizeof(*key));
vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
key->base.shader_state = vc4->prog.bind_vs;
key->fs_inputs = vc4->prog.fs->fs_inputs;
key->clamp_color = vc4->rasterizer->base.clamp_vertex_color;
for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
key->per_vertex_point_size =
(prim_mode == PIPE_PRIM_POINTS &&
vc4->rasterizer->base.point_size_per_vertex);
struct vc4_compiled_shader *vs =
vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
if (vs != vc4->prog.vs) {
vc4->prog.vs = vs;
vc4->dirty |= VC4_DIRTY_COMPILED_VS;
}
key->is_coord = true;
/* Coord shaders don't care what the FS inputs are. */
key->fs_inputs = NULL;
struct vc4_compiled_shader *cs =
vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
if (cs != vc4->prog.cs) {
vc4->prog.cs = cs;
vc4->dirty |= VC4_DIRTY_COMPILED_CS;
}
}
bool
vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
{
vc4_update_compiled_fs(vc4, prim_mode);
vc4_update_compiled_vs(vc4, prim_mode);
return !(vc4->prog.cs->failed ||
vc4->prog.vs->failed ||
vc4->prog.fs->failed);
}
static uint32_t
fs_cache_hash(const void *key)
{
return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
}
static uint32_t
vs_cache_hash(const void *key)
{
return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
}
static bool
fs_cache_compare(const void *key1, const void *key2)
{
return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
}
static bool
vs_cache_compare(const void *key1, const void *key2)
{
return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
}
static uint32_t
fs_inputs_hash(const void *key)
{
const struct vc4_fs_inputs *inputs = key;
return _mesa_hash_data(inputs->input_slots,
sizeof(*inputs->input_slots) *
inputs->num_inputs);
}
static bool
fs_inputs_compare(const void *key1, const void *key2)
{
const struct vc4_fs_inputs *inputs1 = key1;
const struct vc4_fs_inputs *inputs2 = key2;
return (inputs1->num_inputs == inputs2->num_inputs &&
memcmp(inputs1->input_slots,
inputs2->input_slots,
sizeof(*inputs1->input_slots) *
inputs1->num_inputs) == 0);
}
static void
delete_from_cache_if_matches(struct hash_table *ht,
struct vc4_compiled_shader **last_compile,
struct hash_entry *entry,
struct vc4_uncompiled_shader *so)
{
const struct vc4_key *key = entry->key;
if (key->shader_state == so) {
struct vc4_compiled_shader *shader = entry->data;
_mesa_hash_table_remove(ht, entry);
vc4_bo_unreference(&shader->bo);
if (shader == *last_compile)
*last_compile = NULL;
ralloc_free(shader);
}
}
static void
vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
{
struct vc4_context *vc4 = vc4_context(pctx);
struct vc4_uncompiled_shader *so = hwcso;
hash_table_foreach(vc4->fs_cache, entry) {
delete_from_cache_if_matches(vc4->fs_cache, &vc4->prog.fs,
entry, so);
}
hash_table_foreach(vc4->vs_cache, entry) {
delete_from_cache_if_matches(vc4->vs_cache, &vc4->prog.vs,
entry, so);
}
ralloc_free(so->base.ir.nir);
free(so);
}
static void
vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
{
struct vc4_context *vc4 = vc4_context(pctx);
vc4->prog.bind_fs = hwcso;
vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
}
static void
vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
{
struct vc4_context *vc4 = vc4_context(pctx);
vc4->prog.bind_vs = hwcso;
vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
}
void
vc4_program_init(struct pipe_context *pctx)
{
struct vc4_context *vc4 = vc4_context(pctx);
pctx->create_vs_state = vc4_shader_state_create;
pctx->delete_vs_state = vc4_shader_state_delete;
pctx->create_fs_state = vc4_shader_state_create;
pctx->delete_fs_state = vc4_shader_state_delete;
pctx->bind_fs_state = vc4_fp_state_bind;
pctx->bind_vs_state = vc4_vp_state_bind;
vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
fs_cache_compare);
vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
vs_cache_compare);
vc4->fs_inputs_set = _mesa_set_create(pctx, fs_inputs_hash,
fs_inputs_compare);
}
void
vc4_program_fini(struct pipe_context *pctx)
{
struct vc4_context *vc4 = vc4_context(pctx);
hash_table_foreach(vc4->fs_cache, entry) {
struct vc4_compiled_shader *shader = entry->data;
vc4_bo_unreference(&shader->bo);
ralloc_free(shader);
_mesa_hash_table_remove(vc4->fs_cache, entry);
}
hash_table_foreach(vc4->vs_cache, entry) {
struct vc4_compiled_shader *shader = entry->data;
vc4_bo_unreference(&shader->bo);
ralloc_free(shader);
_mesa_hash_table_remove(vc4->vs_cache, entry);
}
}