blob: a97126cb0d8a715fb351436eb18bbdc6394bafe3 [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir.h"
#include "nir/nir_builder.h"
#include "nir_constant_expressions.h"
#include "nir_control_flow.h"
#include "nir_loop_analyze.h"
static nir_ssa_def *clone_alu_and_replace_src_defs(nir_builder *b,
const nir_alu_instr *alu,
nir_ssa_def **src_defs);
/**
* Gets the single block that jumps back to the loop header. Already assumes
* there is exactly one such block.
*/
static nir_block*
find_continue_block(nir_loop *loop)
{
nir_block *header_block = nir_loop_first_block(loop);
nir_block *prev_block =
nir_cf_node_as_block(nir_cf_node_prev(&loop->cf_node));
assert(header_block->predecessors->entries == 2);
set_foreach(header_block->predecessors, pred_entry) {
if (pred_entry->key != prev_block)
return (nir_block*)pred_entry->key;
}
unreachable("Continue block not found!");
}
/**
* Does a phi have one constant value from outside a loop and one from inside?
*/
static bool
phi_has_constant_from_outside_and_one_from_inside_loop(nir_phi_instr *phi,
const nir_block *entry_block,
bool *entry_val,
bool *continue_val)
{
/* We already know we have exactly one continue */
assert(exec_list_length(&phi->srcs) == 2);
*entry_val = false;
*continue_val = false;
nir_foreach_phi_src(src, phi) {
if (!nir_src_is_const(src->src))
return false;
if (src->pred != entry_block) {
*continue_val = nir_src_as_bool(src->src);
} else {
*entry_val = nir_src_as_bool(src->src);
}
}
return true;
}
/**
* This optimization detects if statements at the tops of loops where the
* condition is a phi node of two constants and moves half of the if to above
* the loop and the other half of the if to the end of the loop. A simple for
* loop "for (int i = 0; i < 4; i++)", when run through the SPIR-V front-end,
* ends up looking something like this:
*
* vec1 32 ssa_0 = load_const (0x00000000)
* vec1 32 ssa_1 = load_const (0xffffffff)
* loop {
* block block_1:
* vec1 32 ssa_2 = phi block_0: ssa_0, block_7: ssa_5
* vec1 32 ssa_3 = phi block_0: ssa_0, block_7: ssa_1
* if ssa_3 {
* block block_2:
* vec1 32 ssa_4 = load_const (0x00000001)
* vec1 32 ssa_5 = iadd ssa_2, ssa_4
* } else {
* block block_3:
* }
* block block_4:
* vec1 32 ssa_6 = load_const (0x00000004)
* vec1 32 ssa_7 = ilt ssa_5, ssa_6
* if ssa_7 {
* block block_5:
* } else {
* block block_6:
* break
* }
* block block_7:
* }
*
* This turns it into something like this:
*
* // Stuff from block 1
* // Stuff from block 3
* loop {
* block block_1:
* vec1 32 ssa_2 = phi block_0: ssa_0, block_7: ssa_5
* vec1 32 ssa_6 = load_const (0x00000004)
* vec1 32 ssa_7 = ilt ssa_2, ssa_6
* if ssa_7 {
* block block_5:
* } else {
* block block_6:
* break
* }
* block block_7:
* // Stuff from block 1
* // Stuff from block 2
* vec1 32 ssa_4 = load_const (0x00000001)
* vec1 32 ssa_5 = iadd ssa_2, ssa_4
* }
*/
static bool
opt_peel_loop_initial_if(nir_loop *loop)
{
nir_block *header_block = nir_loop_first_block(loop);
nir_block *const prev_block =
nir_cf_node_as_block(nir_cf_node_prev(&loop->cf_node));
/* It would be insane if this were not true */
assert(_mesa_set_search(header_block->predecessors, prev_block));
/* The loop must have exactly one continue block which could be a block
* ending in a continue instruction or the "natural" continue from the
* last block in the loop back to the top.
*/
if (header_block->predecessors->entries != 2)
return false;
nir_cf_node *if_node = nir_cf_node_next(&header_block->cf_node);
if (!if_node || if_node->type != nir_cf_node_if)
return false;
nir_if *nif = nir_cf_node_as_if(if_node);
assert(nif->condition.is_ssa);
nir_ssa_def *cond = nif->condition.ssa;
if (cond->parent_instr->type != nir_instr_type_phi)
return false;
nir_phi_instr *cond_phi = nir_instr_as_phi(cond->parent_instr);
if (cond->parent_instr->block != header_block)
return false;
bool entry_val = false, continue_val = false;
if (!phi_has_constant_from_outside_and_one_from_inside_loop(cond_phi,
prev_block,
&entry_val,
&continue_val))
return false;
/* If they both execute or both don't execute, this is a job for
* nir_dead_cf, not this pass.
*/
if ((entry_val && continue_val) || (!entry_val && !continue_val))
return false;
struct exec_list *continue_list, *entry_list;
if (continue_val) {
continue_list = &nif->then_list;
entry_list = &nif->else_list;
} else {
continue_list = &nif->else_list;
entry_list = &nif->then_list;
}
/* We want to be moving the contents of entry_list to above the loop so it
* can't contain any break or continue instructions.
*/
foreach_list_typed(nir_cf_node, cf_node, node, entry_list) {
nir_foreach_block_in_cf_node(block, cf_node) {
nir_instr *last_instr = nir_block_last_instr(block);
if (last_instr && last_instr->type == nir_instr_type_jump)
return false;
}
}
/* We're about to re-arrange a bunch of blocks so make sure that we don't
* have deref uses which cross block boundaries. We don't want a deref
* accidentally ending up in a phi.
*/
nir_rematerialize_derefs_in_use_blocks_impl(
nir_cf_node_get_function(&loop->cf_node));
/* Before we do anything, convert the loop to LCSSA. We're about to
* replace a bunch of SSA defs with registers and this will prevent any of
* it from leaking outside the loop.
*/
nir_convert_loop_to_lcssa(loop);
nir_block *after_if_block =
nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node));
/* Get rid of phis in the header block since we will be duplicating it */
nir_lower_phis_to_regs_block(header_block);
/* Get rid of phis after the if since dominance will change */
nir_lower_phis_to_regs_block(after_if_block);
/* Get rid of SSA defs in the pieces we're about to move around */
nir_lower_ssa_defs_to_regs_block(header_block);
nir_foreach_block_in_cf_node(block, &nif->cf_node)
nir_lower_ssa_defs_to_regs_block(block);
nir_cf_list header, tmp;
nir_cf_extract(&header, nir_before_block(header_block),
nir_after_block(header_block));
nir_cf_list_clone(&tmp, &header, &loop->cf_node, NULL);
nir_cf_reinsert(&tmp, nir_before_cf_node(&loop->cf_node));
nir_cf_extract(&tmp, nir_before_cf_list(entry_list),
nir_after_cf_list(entry_list));
nir_cf_reinsert(&tmp, nir_before_cf_node(&loop->cf_node));
nir_cf_reinsert(&header,
nir_after_block_before_jump(find_continue_block(loop)));
bool continue_list_jumps =
nir_block_ends_in_jump(exec_node_data(nir_block,
exec_list_get_tail(continue_list),
cf_node.node));
nir_cf_extract(&tmp, nir_before_cf_list(continue_list),
nir_after_cf_list(continue_list));
/* Get continue block again as the previous reinsert might have removed the
* block. Also, if both the continue list and the continue block ends in
* jump instructions, removes the jump from the latter, as it will not be
* executed if we insert the continue list before it. */
nir_block *continue_block = find_continue_block(loop);
if (continue_list_jumps) {
nir_instr *last_instr = nir_block_last_instr(continue_block);
if (last_instr && last_instr->type == nir_instr_type_jump)
nir_instr_remove(last_instr);
}
nir_cf_reinsert(&tmp,
nir_after_block_before_jump(continue_block));
nir_cf_node_remove(&nif->cf_node);
return true;
}
static bool
alu_instr_is_comparison(const nir_alu_instr *alu)
{
switch (alu->op) {
case nir_op_flt32:
case nir_op_fge32:
case nir_op_feq32:
case nir_op_fneu32:
case nir_op_ilt32:
case nir_op_ult32:
case nir_op_ige32:
case nir_op_uge32:
case nir_op_ieq32:
case nir_op_ine32:
return true;
default:
return nir_alu_instr_is_comparison(alu);
}
}
static bool
alu_instr_is_type_conversion(const nir_alu_instr *alu)
{
return nir_op_infos[alu->op].num_inputs == 1 &&
nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type) !=
nir_alu_type_get_base_type(nir_op_infos[alu->op].input_types[0]);
}
/**
* Splits ALU instructions that have a source that is a phi node
*
* ALU instructions in the header block of a loop that meet the following
* criteria can be split.
*
* - The loop has no continue instructions other than the "natural" continue
* at the bottom of the loop.
*
* - At least one source of the instruction is a phi node from the header block.
*
* - The phi node selects a constant or undef from the block before the loop.
*
* - Any non-phi sources of the ALU instruction come from a block that
* dominates the block before the loop. The most common failure mode for
* this check is sources that are generated in the loop header block.
*
* The split process splits the original ALU instruction into two, one at the
* bottom of the loop and one at the block before the loop. The instruction
* before the loop computes the value on the first iteration, and the
* instruction at the bottom computes the value on the second, third, and so
* on. A new phi node is added to the header block that selects either the
* instruction before the loop or the one at the end, and uses of the original
* instruction are replaced by this phi.
*
* The splitting transforms a loop like:
*
* vec1 32 ssa_8 = load_const (0x00000001)
* vec1 32 ssa_10 = load_const (0x00000000)
* // succs: block_1
* loop {
* block block_1:
* // preds: block_0 block_4
* vec1 32 ssa_11 = phi block_0: ssa_10, block_4: ssa_15
* vec1 32 ssa_12 = phi block_0: ssa_1, block_4: ssa_15
* vec1 32 ssa_13 = phi block_0: ssa_10, block_4: ssa_16
* vec1 32 ssa_14 = iadd ssa_11, ssa_8
* vec1 32 ssa_15 = b32csel ssa_13, ssa_14, ssa_12
* ...
* // succs: block_1
* }
*
* into:
*
* vec1 32 ssa_8 = load_const (0x00000001)
* vec1 32 ssa_10 = load_const (0x00000000)
* vec1 32 ssa_22 = iadd ssa_10, ssa_8
* // succs: block_1
* loop {
* block block_1:
* // preds: block_0 block_4
* vec1 32 ssa_11 = phi block_0: ssa_10, block_4: ssa_15
* vec1 32 ssa_12 = phi block_0: ssa_1, block_4: ssa_15
* vec1 32 ssa_13 = phi block_0: ssa_10, block_4: ssa_16
* vec1 32 ssa_21 = phi block_0: ssa_22, block_4: ssa_20
* vec1 32 ssa_15 = b32csel ssa_13, ssa_21, ssa_12
* ...
* vec1 32 ssa_20 = iadd ssa_15, ssa_8
* // succs: block_1
* }
*/
static bool
opt_split_alu_of_phi(nir_builder *b, nir_loop *loop)
{
bool progress = false;
nir_block *header_block = nir_loop_first_block(loop);
nir_block *const prev_block =
nir_cf_node_as_block(nir_cf_node_prev(&loop->cf_node));
/* It would be insane if this were not true */
assert(_mesa_set_search(header_block->predecessors, prev_block));
/* The loop must have exactly one continue block which could be a block
* ending in a continue instruction or the "natural" continue from the
* last block in the loop back to the top.
*/
if (header_block->predecessors->entries != 2)
return false;
nir_foreach_instr_safe(instr, header_block) {
if (instr->type != nir_instr_type_alu)
continue;
nir_alu_instr *const alu = nir_instr_as_alu(instr);
/* nir_op_vec{2,3,4} and nir_op_mov are excluded because they can easily
* lead to infinite optimization loops. Splitting comparisons can lead
* to loop unrolling not recognizing loop termintators, and type
* conversions also lead to regressions.
*/
if (nir_op_is_vec(alu->op) ||
alu_instr_is_comparison(alu) ||
alu_instr_is_type_conversion(alu))
continue;
bool has_phi_src_from_prev_block = false;
bool all_non_phi_exist_in_prev_block = true;
bool is_prev_result_undef = true;
bool is_prev_result_const = true;
nir_ssa_def *prev_srcs[8]; // FINISHME: Array size?
nir_ssa_def *continue_srcs[8]; // FINISHME: Array size?
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
nir_instr *const src_instr = alu->src[i].src.ssa->parent_instr;
/* If the source is a phi in the loop header block, then the
* prev_srcs and continue_srcs will come from the different sources
* of the phi.
*/
if (src_instr->type == nir_instr_type_phi &&
src_instr->block == header_block) {
nir_phi_instr *const phi = nir_instr_as_phi(src_instr);
/* Only strictly need to NULL out the pointers when the assertions
* (below) are compiled in. Debugging a NULL pointer deref in the
* wild is easier than debugging a random pointer deref, so set
* NULL unconditionally just to be safe.
*/
prev_srcs[i] = NULL;
continue_srcs[i] = NULL;
nir_foreach_phi_src(src_of_phi, phi) {
if (src_of_phi->pred == prev_block) {
if (src_of_phi->src.ssa->parent_instr->type !=
nir_instr_type_ssa_undef) {
is_prev_result_undef = false;
}
if (src_of_phi->src.ssa->parent_instr->type !=
nir_instr_type_load_const) {
is_prev_result_const = false;
}
prev_srcs[i] = src_of_phi->src.ssa;
has_phi_src_from_prev_block = true;
} else
continue_srcs[i] = src_of_phi->src.ssa;
}
assert(prev_srcs[i] != NULL);
assert(continue_srcs[i] != NULL);
} else {
/* If the source is not a phi (or a phi in a block other than the
* loop header), then the value must exist in prev_block.
*/
if (!nir_block_dominates(src_instr->block, prev_block)) {
all_non_phi_exist_in_prev_block = false;
break;
}
prev_srcs[i] = alu->src[i].src.ssa;
continue_srcs[i] = alu->src[i].src.ssa;
}
}
if (has_phi_src_from_prev_block && all_non_phi_exist_in_prev_block &&
(is_prev_result_undef || is_prev_result_const)) {
nir_block *const continue_block = find_continue_block(loop);
b->cursor = nir_after_block(prev_block);
nir_ssa_def *prev_value = clone_alu_and_replace_src_defs(b, alu, prev_srcs);
/* Make a copy of the original ALU instruction. Replace the sources
* of the new instruction that read a phi with an undef source from
* prev_block with the non-undef source of that phi.
*
* Insert the new instruction at the end of the continue block.
*/
b->cursor = nir_after_block_before_jump(continue_block);
nir_ssa_def *const alu_copy =
clone_alu_and_replace_src_defs(b, alu, continue_srcs);
/* Make a new phi node that selects a value from prev_block and the
* result of the new instruction from continue_block.
*/
nir_phi_instr *const phi = nir_phi_instr_create(b->shader);
nir_phi_src *phi_src;
phi_src = ralloc(phi, nir_phi_src);
phi_src->pred = prev_block;
phi_src->src = nir_src_for_ssa(prev_value);
exec_list_push_tail(&phi->srcs, &phi_src->node);
phi_src = ralloc(phi, nir_phi_src);
phi_src->pred = continue_block;
phi_src->src = nir_src_for_ssa(alu_copy);
exec_list_push_tail(&phi->srcs, &phi_src->node);
nir_ssa_dest_init(&phi->instr, &phi->dest,
alu_copy->num_components, alu_copy->bit_size, NULL);
b->cursor = nir_after_phis(header_block);
nir_builder_instr_insert(b, &phi->instr);
/* Modify all readers of the original ALU instruction to read the
* result of the phi.
*/
nir_foreach_use_safe(use_src, &alu->dest.dest.ssa) {
nir_instr_rewrite_src(use_src->parent_instr,
use_src,
nir_src_for_ssa(&phi->dest.ssa));
}
nir_foreach_if_use_safe(use_src, &alu->dest.dest.ssa) {
nir_if_rewrite_condition(use_src->parent_if,
nir_src_for_ssa(&phi->dest.ssa));
}
/* Since the original ALU instruction no longer has any readers, just
* remove it.
*/
nir_instr_remove_v(&alu->instr);
ralloc_free(alu);
progress = true;
}
}
return progress;
}
/**
* Get the SSA value from a phi node that corresponds to a specific block
*/
static nir_ssa_def *
ssa_for_phi_from_block(nir_phi_instr *phi, nir_block *block)
{
nir_foreach_phi_src(src, phi) {
if (src->pred == block)
return src->src.ssa;
}
assert(!"Block is not a predecessor of phi.");
return NULL;
}
/**
* Simplify a bcsel whose sources are all phi nodes from the loop header block
*
* bcsel instructions in a loop that meet the following criteria can be
* converted to phi nodes:
*
* - The loop has no continue instructions other than the "natural" continue
* at the bottom of the loop.
*
* - All of the sources of the bcsel are phi nodes in the header block of the
* loop.
*
* - The phi node representing the condition of the bcsel instruction chooses
* only constant values.
*
* The contant value from the condition will select one of the other sources
* when entered from outside the loop and the remaining source when entered
* from the continue block. Since each of these sources is also a phi node in
* the header block, the value of the phi node can be "evaluated." These
* evaluated phi nodes provide the sources for a new phi node. All users of
* the bcsel result are updated to use the phi node result.
*
* The replacement transforms loops like:
*
* vec1 32 ssa_7 = undefined
* vec1 32 ssa_8 = load_const (0x00000001)
* vec1 32 ssa_9 = load_const (0x000000c8)
* vec1 32 ssa_10 = load_const (0x00000000)
* // succs: block_1
* loop {
* block block_1:
* // preds: block_0 block_4
* vec1 32 ssa_11 = phi block_0: ssa_1, block_4: ssa_14
* vec1 32 ssa_12 = phi block_0: ssa_10, block_4: ssa_15
* vec1 32 ssa_13 = phi block_0: ssa_7, block_4: ssa_25
* vec1 32 ssa_14 = b32csel ssa_12, ssa_13, ssa_11
* vec1 32 ssa_16 = ige32 ssa_14, ssa_9
* ...
* vec1 32 ssa_15 = load_const (0xffffffff)
* ...
* vec1 32 ssa_25 = iadd ssa_14, ssa_8
* // succs: block_1
* }
*
* into:
*
* vec1 32 ssa_7 = undefined
* vec1 32 ssa_8 = load_const (0x00000001)
* vec1 32 ssa_9 = load_const (0x000000c8)
* vec1 32 ssa_10 = load_const (0x00000000)
* // succs: block_1
* loop {
* block block_1:
* // preds: block_0 block_4
* vec1 32 ssa_11 = phi block_0: ssa_1, block_4: ssa_14
* vec1 32 ssa_12 = phi block_0: ssa_10, block_4: ssa_15
* vec1 32 ssa_13 = phi block_0: ssa_7, block_4: ssa_25
* vec1 32 sss_26 = phi block_0: ssa_1, block_4: ssa_25
* vec1 32 ssa_16 = ige32 ssa_26, ssa_9
* ...
* vec1 32 ssa_15 = load_const (0xffffffff)
* ...
* vec1 32 ssa_25 = iadd ssa_26, ssa_8
* // succs: block_1
* }
*
* \note
* It may be possible modify this function to not require a phi node as the
* source of the bcsel that is selected when entering from outside the loop.
* The only restriction is that the source must be geneated outside the loop
* (since it will become the source of a phi node in the header block of the
* loop).
*/
static bool
opt_simplify_bcsel_of_phi(nir_builder *b, nir_loop *loop)
{
bool progress = false;
nir_block *header_block = nir_loop_first_block(loop);
nir_block *const prev_block =
nir_cf_node_as_block(nir_cf_node_prev(&loop->cf_node));
/* It would be insane if this were not true */
assert(_mesa_set_search(header_block->predecessors, prev_block));
/* The loop must have exactly one continue block which could be a block
* ending in a continue instruction or the "natural" continue from the
* last block in the loop back to the top.
*/
if (header_block->predecessors->entries != 2)
return false;
/* We can move any bcsel that can guaranteed to execut on every iteration
* of a loop. For now this is accomplished by only taking bcsels from the
* header_block. In the future, this could be expanced to include any
* bcsel that must come before any break.
*
* For more details, see
* https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/170#note_110305
*/
nir_foreach_instr_safe(instr, header_block) {
if (instr->type != nir_instr_type_alu)
continue;
nir_alu_instr *const bcsel = nir_instr_as_alu(instr);
if (bcsel->op != nir_op_bcsel &&
bcsel->op != nir_op_b32csel &&
bcsel->op != nir_op_fcsel)
continue;
bool match = true;
for (unsigned i = 0; i < 3; i++) {
/* FINISHME: The abs and negate cases could be handled by adding
* move instructions at the bottom of the continue block and more
* phi nodes in the header_block.
*/
if (!bcsel->src[i].src.is_ssa ||
bcsel->src[i].src.ssa->parent_instr->type != nir_instr_type_phi ||
bcsel->src[i].src.ssa->parent_instr->block != header_block ||
bcsel->src[i].negate || bcsel->src[i].abs) {
match = false;
break;
}
}
if (!match)
continue;
nir_phi_instr *const cond_phi =
nir_instr_as_phi(bcsel->src[0].src.ssa->parent_instr);
bool entry_val = false, continue_val = false;
if (!phi_has_constant_from_outside_and_one_from_inside_loop(cond_phi,
prev_block,
&entry_val,
&continue_val))
continue;
/* If they both execute or both don't execute, this is a job for
* nir_dead_cf, not this pass.
*/
if ((entry_val && continue_val) || (!entry_val && !continue_val))
continue;
const unsigned entry_src = entry_val ? 1 : 2;
const unsigned continue_src = entry_val ? 2 : 1;
/* Create a new phi node that selects the value for prev_block from
* the bcsel source that is selected by entry_val and the value for
* continue_block from the other bcsel source. Both sources have
* already been verified to be phi nodes.
*/
nir_block *const continue_block = find_continue_block(loop);
nir_phi_instr *const phi = nir_phi_instr_create(b->shader);
nir_phi_src *phi_src;
phi_src = ralloc(phi, nir_phi_src);
phi_src->pred = prev_block;
phi_src->src =
nir_src_for_ssa(ssa_for_phi_from_block(nir_instr_as_phi(bcsel->src[entry_src].src.ssa->parent_instr),
prev_block));
exec_list_push_tail(&phi->srcs, &phi_src->node);
phi_src = ralloc(phi, nir_phi_src);
phi_src->pred = continue_block;
phi_src->src =
nir_src_for_ssa(ssa_for_phi_from_block(nir_instr_as_phi(bcsel->src[continue_src].src.ssa->parent_instr),
continue_block));
exec_list_push_tail(&phi->srcs, &phi_src->node);
nir_ssa_dest_init(&phi->instr,
&phi->dest,
nir_dest_num_components(bcsel->dest.dest),
nir_dest_bit_size(bcsel->dest.dest),
NULL);
b->cursor = nir_after_phis(header_block);
nir_builder_instr_insert(b, &phi->instr);
/* Modify all readers of the bcsel instruction to read the result of
* the phi.
*/
nir_foreach_use_safe(use_src, &bcsel->dest.dest.ssa) {
nir_instr_rewrite_src(use_src->parent_instr,
use_src,
nir_src_for_ssa(&phi->dest.ssa));
}
nir_foreach_if_use_safe(use_src, &bcsel->dest.dest.ssa) {
nir_if_rewrite_condition(use_src->parent_if,
nir_src_for_ssa(&phi->dest.ssa));
}
/* Since the original bcsel instruction no longer has any readers,
* just remove it.
*/
nir_instr_remove_v(&bcsel->instr);
ralloc_free(bcsel);
progress = true;
}
return progress;
}
static bool
is_block_empty(nir_block *block)
{
return nir_cf_node_is_last(&block->cf_node) &&
exec_list_is_empty(&block->instr_list);
}
static bool
nir_block_ends_in_continue(nir_block *block)
{
if (exec_list_is_empty(&block->instr_list))
return false;
nir_instr *instr = nir_block_last_instr(block);
return instr->type == nir_instr_type_jump &&
nir_instr_as_jump(instr)->type == nir_jump_continue;
}
/**
* This optimization turns:
*
* loop {
* ...
* if (cond) {
* do_work_1();
* continue;
* } else {
* }
* do_work_2();
* }
*
* into:
*
* loop {
* ...
* if (cond) {
* do_work_1();
* continue;
* } else {
* do_work_2();
* }
* }
*
* The continue should then be removed by nir_opt_trivial_continues() and the
* loop can potentially be unrolled.
*
* Note: Unless the function param aggressive_last_continue==true do_work_2()
* is only ever blocks and nested loops. We avoid nesting other if-statments
* in the branch as this can result in increased register pressure, and in
* the i965 driver it causes a large amount of spilling in shader-db.
* For RADV however nesting these if-statements allows further continues to be
* remove and provides a significant FPS boost in Doom, which is why we have
* opted for this special bool to enable more aggresive optimisations.
* TODO: The GCM pass solves most of the spilling regressions in i965, if it
* is ever enabled we should consider removing the aggressive_last_continue
* param.
*/
static bool
opt_if_loop_last_continue(nir_loop *loop, bool aggressive_last_continue)
{
nir_if *nif;
bool then_ends_in_continue = false;
bool else_ends_in_continue = false;
/* Scan the control flow of the loop from the last to the first node
* looking for an if-statement we can optimise.
*/
nir_block *last_block = nir_loop_last_block(loop);
nir_cf_node *if_node = nir_cf_node_prev(&last_block->cf_node);
while (if_node) {
if (if_node->type == nir_cf_node_if) {
nif = nir_cf_node_as_if(if_node);
nir_block *then_block = nir_if_last_then_block(nif);
nir_block *else_block = nir_if_last_else_block(nif);
then_ends_in_continue = nir_block_ends_in_continue(then_block);
else_ends_in_continue = nir_block_ends_in_continue(else_block);
/* If both branches end in a jump do nothing, this should be handled
* by nir_opt_dead_cf().
*/
if ((then_ends_in_continue || nir_block_ends_in_break(then_block)) &&
(else_ends_in_continue || nir_block_ends_in_break(else_block)))
return false;
/* If continue found stop scanning and attempt optimisation, or
*/
if (then_ends_in_continue || else_ends_in_continue ||
!aggressive_last_continue)
break;
}
if_node = nir_cf_node_prev(if_node);
}
/* If we didn't find an if to optimise return */
if (!then_ends_in_continue && !else_ends_in_continue)
return false;
/* If there is nothing after the if-statement we bail */
if (&nif->cf_node == nir_cf_node_prev(&last_block->cf_node) &&
exec_list_is_empty(&last_block->instr_list))
return false;
/* Move the last block of the loop inside the last if-statement */
nir_cf_list tmp;
nir_cf_extract(&tmp, nir_after_cf_node(if_node),
nir_after_block(last_block));
if (then_ends_in_continue)
nir_cf_reinsert(&tmp, nir_after_cf_list(&nif->else_list));
else
nir_cf_reinsert(&tmp, nir_after_cf_list(&nif->then_list));
/* In order to avoid running nir_lower_regs_to_ssa_impl() every time an if
* opt makes progress we leave nir_opt_trivial_continues() to remove the
* continue now that the end of the loop has been simplified.
*/
return true;
}
/* Walk all the phis in the block immediately following the if statement and
* swap the blocks.
*/
static void
rewrite_phi_predecessor_blocks(nir_if *nif,
nir_block *old_then_block,
nir_block *old_else_block,
nir_block *new_then_block,
nir_block *new_else_block)
{
nir_block *after_if_block =
nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node));
nir_foreach_instr(instr, after_if_block) {
if (instr->type != nir_instr_type_phi)
continue;
nir_phi_instr *phi = nir_instr_as_phi(instr);
foreach_list_typed(nir_phi_src, src, node, &phi->srcs) {
if (src->pred == old_then_block) {
src->pred = new_then_block;
} else if (src->pred == old_else_block) {
src->pred = new_else_block;
}
}
}
}
/**
* This optimization turns:
*
* if (cond) {
* } else {
* do_work();
* }
*
* into:
*
* if (!cond) {
* do_work();
* } else {
* }
*/
static bool
opt_if_simplification(nir_builder *b, nir_if *nif)
{
/* Only simplify if the then block is empty and the else block is not. */
if (!is_block_empty(nir_if_first_then_block(nif)) ||
is_block_empty(nir_if_first_else_block(nif)))
return false;
/* Make sure the condition is a comparison operation. */
nir_instr *src_instr = nif->condition.ssa->parent_instr;
if (src_instr->type != nir_instr_type_alu)
return false;
nir_alu_instr *alu_instr = nir_instr_as_alu(src_instr);
if (!nir_alu_instr_is_comparison(alu_instr))
return false;
/* Insert the inverted instruction and rewrite the condition. */
b->cursor = nir_after_instr(&alu_instr->instr);
nir_ssa_def *new_condition =
nir_inot(b, &alu_instr->dest.dest.ssa);
nir_if_rewrite_condition(nif, nir_src_for_ssa(new_condition));
/* Grab pointers to the last then/else blocks for fixing up the phis. */
nir_block *then_block = nir_if_last_then_block(nif);
nir_block *else_block = nir_if_last_else_block(nif);
if (nir_block_ends_in_jump(else_block)) {
/* Even though this if statement has a jump on one side, we may still have
* phis afterwards. Single-source phis can be produced by loop unrolling
* or dead control-flow passes and are perfectly legal. Run a quick phi
* removal on the block after the if to clean up any such phis.
*/
nir_block *const next_block =
nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node));
nir_opt_remove_phis_block(next_block);
}
rewrite_phi_predecessor_blocks(nif, then_block, else_block, else_block,
then_block);
/* Finally, move the else block to the then block. */
nir_cf_list tmp;
nir_cf_extract(&tmp, nir_before_cf_list(&nif->else_list),
nir_after_cf_list(&nif->else_list));
nir_cf_reinsert(&tmp, nir_before_cf_list(&nif->then_list));
return true;
}
/**
* This optimization simplifies potential loop terminators which then allows
* other passes such as opt_if_simplification() and loop unrolling to progress
* further:
*
* if (cond) {
* ... then block instructions ...
* } else {
* ...
* break;
* }
*
* into:
*
* if (cond) {
* } else {
* ...
* break;
* }
* ... then block instructions ...
*/
static bool
opt_if_loop_terminator(nir_if *nif)
{
nir_block *break_blk = NULL;
nir_block *continue_from_blk = NULL;
bool continue_from_then = true;
nir_block *last_then = nir_if_last_then_block(nif);
nir_block *last_else = nir_if_last_else_block(nif);
if (nir_block_ends_in_break(last_then)) {
break_blk = last_then;
continue_from_blk = last_else;
continue_from_then = false;
} else if (nir_block_ends_in_break(last_else)) {
break_blk = last_else;
continue_from_blk = last_then;
}
/* Continue if the if-statement contained no jumps at all */
if (!break_blk)
return false;
/* If the continue from block is empty then return as there is nothing to
* move.
*/
nir_block *first_continue_from_blk = continue_from_then ?
nir_if_first_then_block(nif) :
nir_if_first_else_block(nif);
if (is_block_empty(first_continue_from_blk))
return false;
if (nir_block_ends_in_jump(continue_from_blk))
return false;
/* Even though this if statement has a jump on one side, we may still have
* phis afterwards. Single-source phis can be produced by loop unrolling
* or dead control-flow passes and are perfectly legal. Run a quick phi
* removal on the block after the if to clean up any such phis.
*/
nir_opt_remove_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node)));
/* Finally, move the continue from branch after the if-statement. */
nir_cf_list tmp;
nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk),
nir_after_block(continue_from_blk));
nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node));
return true;
}
static bool
evaluate_if_condition(nir_if *nif, nir_cursor cursor, bool *value)
{
nir_block *use_block = nir_cursor_current_block(cursor);
if (nir_block_dominates(nir_if_first_then_block(nif), use_block)) {
*value = true;
return true;
} else if (nir_block_dominates(nir_if_first_else_block(nif), use_block)) {
*value = false;
return true;
} else {
return false;
}
}
static nir_ssa_def *
clone_alu_and_replace_src_defs(nir_builder *b, const nir_alu_instr *alu,
nir_ssa_def **src_defs)
{
nir_alu_instr *nalu = nir_alu_instr_create(b->shader, alu->op);
nalu->exact = alu->exact;
nir_ssa_dest_init(&nalu->instr, &nalu->dest.dest,
alu->dest.dest.ssa.num_components,
alu->dest.dest.ssa.bit_size, alu->dest.dest.ssa.name);
nalu->dest.saturate = alu->dest.saturate;
nalu->dest.write_mask = alu->dest.write_mask;
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
assert(alu->src[i].src.is_ssa);
nalu->src[i].src = nir_src_for_ssa(src_defs[i]);
nalu->src[i].negate = alu->src[i].negate;
nalu->src[i].abs = alu->src[i].abs;
memcpy(nalu->src[i].swizzle, alu->src[i].swizzle,
sizeof(nalu->src[i].swizzle));
}
nir_builder_instr_insert(b, &nalu->instr);
return &nalu->dest.dest.ssa;;
}
/*
* This propagates if condition evaluation down the chain of some alu
* instructions. For example by checking the use of some of the following alu
* instruction we can eventually replace ssa_107 with NIR_TRUE.
*
* loop {
* block block_1:
* vec1 32 ssa_85 = load_const (0x00000002)
* vec1 32 ssa_86 = ieq ssa_48, ssa_85
* vec1 32 ssa_87 = load_const (0x00000001)
* vec1 32 ssa_88 = ieq ssa_48, ssa_87
* vec1 32 ssa_89 = ior ssa_86, ssa_88
* vec1 32 ssa_90 = ieq ssa_48, ssa_0
* vec1 32 ssa_91 = ior ssa_89, ssa_90
* if ssa_86 {
* block block_2:
* ...
* break
* } else {
* block block_3:
* }
* block block_4:
* if ssa_88 {
* block block_5:
* ...
* break
* } else {
* block block_6:
* }
* block block_7:
* if ssa_90 {
* block block_8:
* ...
* break
* } else {
* block block_9:
* }
* block block_10:
* vec1 32 ssa_107 = inot ssa_91
* if ssa_107 {
* block block_11:
* break
* } else {
* block block_12:
* }
* }
*/
static bool
propagate_condition_eval(nir_builder *b, nir_if *nif, nir_src *use_src,
nir_src *alu_use, nir_alu_instr *alu,
bool is_if_condition)
{
bool bool_value;
b->cursor = nir_before_src(alu_use, is_if_condition);
if (!evaluate_if_condition(nif, b->cursor, &bool_value))
return false;
nir_ssa_def *def[4] = {0};
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
if (alu->src[i].src.ssa == use_src->ssa) {
def[i] = nir_imm_bool(b, bool_value);
} else {
def[i] = alu->src[i].src.ssa;
}
}
nir_ssa_def *nalu = clone_alu_and_replace_src_defs(b, alu, def);
/* Rewrite use to use new alu instruction */
nir_src new_src = nir_src_for_ssa(nalu);
if (is_if_condition)
nir_if_rewrite_condition(alu_use->parent_if, new_src);
else
nir_instr_rewrite_src(alu_use->parent_instr, alu_use, new_src);
return true;
}
static bool
can_propagate_through_alu(nir_src *src)
{
if (src->parent_instr->type != nir_instr_type_alu)
return false;
nir_alu_instr *alu = nir_instr_as_alu(src->parent_instr);
switch (alu->op) {
case nir_op_ior:
case nir_op_iand:
case nir_op_inot:
case nir_op_b2i32:
return true;
case nir_op_bcsel:
return src == &alu->src[0].src;
default:
return false;
}
}
static bool
evaluate_condition_use(nir_builder *b, nir_if *nif, nir_src *use_src,
bool is_if_condition)
{
bool progress = false;
b->cursor = nir_before_src(use_src, is_if_condition);
bool bool_value;
if (evaluate_if_condition(nif, b->cursor, &bool_value)) {
/* Rewrite use to use const */
nir_src imm_src = nir_src_for_ssa(nir_imm_bool(b, bool_value));
if (is_if_condition)
nir_if_rewrite_condition(use_src->parent_if, imm_src);
else
nir_instr_rewrite_src(use_src->parent_instr, use_src, imm_src);
progress = true;
}
if (!is_if_condition && can_propagate_through_alu(use_src)) {
nir_alu_instr *alu = nir_instr_as_alu(use_src->parent_instr);
nir_foreach_use_safe(alu_use, &alu->dest.dest.ssa) {
progress |= propagate_condition_eval(b, nif, use_src, alu_use, alu,
false);
}
nir_foreach_if_use_safe(alu_use, &alu->dest.dest.ssa) {
progress |= propagate_condition_eval(b, nif, use_src, alu_use, alu,
true);
}
}
return progress;
}
static bool
opt_if_evaluate_condition_use(nir_builder *b, nir_if *nif)
{
bool progress = false;
/* Evaluate any uses of the if condition inside the if branches */
assert(nif->condition.is_ssa);
nir_foreach_use_safe(use_src, nif->condition.ssa) {
progress |= evaluate_condition_use(b, nif, use_src, false);
}
nir_foreach_if_use_safe(use_src, nif->condition.ssa) {
if (use_src->parent_if != nif)
progress |= evaluate_condition_use(b, nif, use_src, true);
}
return progress;
}
static void
simple_merge_if(nir_if *dest_if, nir_if *src_if, bool dest_if_then,
bool src_if_then)
{
/* Now merge the if branch */
nir_block *dest_blk = dest_if_then ? nir_if_last_then_block(dest_if)
: nir_if_last_else_block(dest_if);
struct exec_list *list = src_if_then ? &src_if->then_list
: &src_if->else_list;
nir_cf_list if_cf_list;
nir_cf_extract(&if_cf_list, nir_before_cf_list(list),
nir_after_cf_list(list));
nir_cf_reinsert(&if_cf_list, nir_after_block(dest_blk));
}
static bool
opt_if_merge(nir_if *nif)
{
bool progress = false;
nir_block *next_blk = nir_cf_node_cf_tree_next(&nif->cf_node);
if (next_blk && nif->condition.is_ssa) {
nir_if *next_if = nir_block_get_following_if(next_blk);
if (next_if && next_if->condition.is_ssa) {
/* Here we merge two consecutive ifs that have the same
* condition e.g:
*
* if ssa_12 {
* ...
* } else {
* ...
* }
* if ssa_12 {
* ...
* } else {
* ...
* }
*
* Note: This only merges if-statements when the block between them
* is empty. The reason we don't try to merge ifs that just have phis
* between them is because this can results in increased register
* pressure. For example when merging if ladders created by indirect
* indexing.
*/
if (nif->condition.ssa == next_if->condition.ssa &&
exec_list_is_empty(&next_blk->instr_list)) {
simple_merge_if(nif, next_if, true, true);
simple_merge_if(nif, next_if, false, false);
nir_block *new_then_block = nir_if_last_then_block(nif);
nir_block *new_else_block = nir_if_last_else_block(nif);
nir_block *old_then_block = nir_if_last_then_block(next_if);
nir_block *old_else_block = nir_if_last_else_block(next_if);
/* Rewrite the predecessor block for any phis following the second
* if-statement.
*/
rewrite_phi_predecessor_blocks(next_if, old_then_block,
old_else_block,
new_then_block,
new_else_block);
/* Move phis after merged if to avoid them being deleted when we
* remove the merged if-statement.
*/
nir_block *after_next_if_block =
nir_cf_node_as_block(nir_cf_node_next(&next_if->cf_node));
nir_foreach_instr_safe(instr, after_next_if_block) {
if (instr->type != nir_instr_type_phi)
break;
exec_node_remove(&instr->node);
exec_list_push_tail(&next_blk->instr_list, &instr->node);
instr->block = next_blk;
}
nir_cf_node_remove(&next_if->cf_node);
progress = true;
}
}
}
return progress;
}
static bool
opt_if_cf_list(nir_builder *b, struct exec_list *cf_list,
bool aggressive_last_continue)
{
bool progress = false;
foreach_list_typed(nir_cf_node, cf_node, node, cf_list) {
switch (cf_node->type) {
case nir_cf_node_block:
break;
case nir_cf_node_if: {
nir_if *nif = nir_cf_node_as_if(cf_node);
progress |= opt_if_cf_list(b, &nif->then_list,
aggressive_last_continue);
progress |= opt_if_cf_list(b, &nif->else_list,
aggressive_last_continue);
progress |= opt_if_loop_terminator(nif);
progress |= opt_if_merge(nif);
progress |= opt_if_simplification(b, nif);
break;
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(cf_node);
progress |= opt_if_cf_list(b, &loop->body,
aggressive_last_continue);
progress |= opt_simplify_bcsel_of_phi(b, loop);
progress |= opt_if_loop_last_continue(loop,
aggressive_last_continue);
break;
}
case nir_cf_node_function:
unreachable("Invalid cf type");
}
}
return progress;
}
static bool
opt_peel_loop_initial_if_cf_list(struct exec_list *cf_list)
{
bool progress = false;
foreach_list_typed(nir_cf_node, cf_node, node, cf_list) {
switch (cf_node->type) {
case nir_cf_node_block:
break;
case nir_cf_node_if: {
nir_if *nif = nir_cf_node_as_if(cf_node);
progress |= opt_peel_loop_initial_if_cf_list(&nif->then_list);
progress |= opt_peel_loop_initial_if_cf_list(&nif->else_list);
break;
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(cf_node);
progress |= opt_peel_loop_initial_if_cf_list(&loop->body);
progress |= opt_peel_loop_initial_if(loop);
break;
}
case nir_cf_node_function:
unreachable("Invalid cf type");
}
}
return progress;
}
/**
* These optimisations depend on nir_metadata_block_index and therefore must
* not do anything to cause the metadata to become invalid.
*/
static bool
opt_if_safe_cf_list(nir_builder *b, struct exec_list *cf_list)
{
bool progress = false;
foreach_list_typed(nir_cf_node, cf_node, node, cf_list) {
switch (cf_node->type) {
case nir_cf_node_block:
break;
case nir_cf_node_if: {
nir_if *nif = nir_cf_node_as_if(cf_node);
progress |= opt_if_safe_cf_list(b, &nif->then_list);
progress |= opt_if_safe_cf_list(b, &nif->else_list);
progress |= opt_if_evaluate_condition_use(b, nif);
break;
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(cf_node);
progress |= opt_if_safe_cf_list(b, &loop->body);
progress |= opt_split_alu_of_phi(b, loop);
break;
}
case nir_cf_node_function:
unreachable("Invalid cf type");
}
}
return progress;
}
bool
nir_opt_if(nir_shader *shader, bool aggressive_last_continue)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl == NULL)
continue;
nir_builder b;
nir_builder_init(&b, function->impl);
nir_metadata_require(function->impl, nir_metadata_block_index |
nir_metadata_dominance);
progress = opt_if_safe_cf_list(&b, &function->impl->body);
nir_metadata_preserve(function->impl, nir_metadata_block_index |
nir_metadata_dominance);
bool preserve = true;
if (opt_if_cf_list(&b, &function->impl->body, aggressive_last_continue)) {
preserve = false;
progress = true;
}
if (opt_peel_loop_initial_if_cf_list(&function->impl->body)) {
preserve = false;
progress = true;
/* If that made progress, we're no longer really in SSA form. We
* need to convert registers back into SSA defs and clean up SSA defs
* that don't dominate their uses.
*/
nir_lower_regs_to_ssa_impl(function->impl);
}
if (preserve) {
nir_metadata_preserve(function->impl, nir_metadata_none);
} else {
nir_metadata_preserve(function->impl, nir_metadata_all);
}
}
return progress;
}