blob: 4910e1b8958e872fca4bc825ad672bec5659d6b6 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "nir.h"
#include "nir_builder.h"
#include "c99_math.h"
#include <float.h>
/*
* Lowers some unsupported double operations, using only:
*
* - pack/unpackDouble2x32
* - conversion to/from single-precision
* - double add, mul, and fma
* - conditional select
* - 32-bit integer and floating point arithmetic
*/
/* Creates a double with the exponent bits set to a given integer value */
static nir_ssa_def *
set_exponent(nir_builder *b, nir_ssa_def *src, nir_ssa_def *exp)
{
/* Split into bits 0-31 and 32-63 */
nir_ssa_def *lo = nir_unpack_64_2x32_split_x(b, src);
nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src);
/* The exponent is bits 52-62, or 20-30 of the high word, so set the exponent
* to 1023
*/
nir_ssa_def *new_hi = nir_bitfield_insert(b, hi, exp,
nir_imm_int(b, 20),
nir_imm_int(b, 11));
/* recombine */
return nir_pack_64_2x32_split(b, lo, new_hi);
}
static nir_ssa_def *
get_exponent(nir_builder *b, nir_ssa_def *src)
{
/* get bits 32-63 */
nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src);
/* extract bits 20-30 of the high word */
return nir_ubitfield_extract(b, hi, nir_imm_int(b, 20), nir_imm_int(b, 11));
}
/* Return infinity with the sign of the given source which is +/-0 */
static nir_ssa_def *
get_signed_inf(nir_builder *b, nir_ssa_def *zero)
{
nir_ssa_def *zero_hi = nir_unpack_64_2x32_split_y(b, zero);
/* The bit pattern for infinity is 0x7ff0000000000000, where the sign bit
* is the highest bit. Only the sign bit can be non-zero in the passed in
* source. So we essentially need to OR the infinity and the zero, except
* the low 32 bits are always 0 so we can construct the correct high 32
* bits and then pack it together with zero low 32 bits.
*/
nir_ssa_def *inf_hi = nir_ior(b, nir_imm_int(b, 0x7ff00000), zero_hi);
return nir_pack_64_2x32_split(b, nir_imm_int(b, 0), inf_hi);
}
/*
* Generates the correctly-signed infinity if the source was zero, and flushes
* the result to 0 if the source was infinity or the calculated exponent was
* too small to be representable.
*/
static nir_ssa_def *
fix_inv_result(nir_builder *b, nir_ssa_def *res, nir_ssa_def *src,
nir_ssa_def *exp)
{
/* If the exponent is too small or the original input was infinity/NaN,
* force the result to 0 (flush denorms) to avoid the work of handling
* denorms properly. Note that this doesn't preserve positive/negative
* zeros, but GLSL doesn't require it.
*/
res = nir_bcsel(b, nir_ior(b, nir_ige(b, nir_imm_int(b, 0), exp),
nir_feq(b, nir_fabs(b, src),
nir_imm_double(b, INFINITY))),
nir_imm_double(b, 0.0f), res);
/* If the original input was 0, generate the correctly-signed infinity */
res = nir_bcsel(b, nir_fneu(b, src, nir_imm_double(b, 0.0f)),
res, get_signed_inf(b, src));
return res;
}
static nir_ssa_def *
lower_rcp(nir_builder *b, nir_ssa_def *src)
{
/* normalize the input to avoid range issues */
nir_ssa_def *src_norm = set_exponent(b, src, nir_imm_int(b, 1023));
/* cast to float, do an rcp, and then cast back to get an approximate
* result
*/
nir_ssa_def *ra = nir_f2f64(b, nir_frcp(b, nir_f2f32(b, src_norm)));
/* Fixup the exponent of the result - note that we check if this is too
* small below.
*/
nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra),
nir_isub(b, get_exponent(b, src),
nir_imm_int(b, 1023)));
ra = set_exponent(b, ra, new_exp);
/* Do a few Newton-Raphson steps to improve precision.
*
* Each step doubles the precision, and we started off with around 24 bits,
* so we only need to do 2 steps to get to full precision. The step is:
*
* x_new = x * (2 - x*src)
*
* But we can re-arrange this to improve precision by using another fused
* multiply-add:
*
* x_new = x + x * (1 - x*src)
*
* See https://en.wikipedia.org/wiki/Division_algorithm for more details.
*/
ra = nir_ffma(b, nir_fneg(b, ra), nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra);
ra = nir_ffma(b, nir_fneg(b, ra), nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra);
return fix_inv_result(b, ra, src, new_exp);
}
static nir_ssa_def *
lower_sqrt_rsq(nir_builder *b, nir_ssa_def *src, bool sqrt)
{
/* We want to compute:
*
* 1/sqrt(m * 2^e)
*
* When the exponent is even, this is equivalent to:
*
* 1/sqrt(m) * 2^(-e/2)
*
* and then the exponent is odd, this is equal to:
*
* 1/sqrt(m * 2) * 2^(-(e - 1)/2)
*
* where the m * 2 is absorbed into the exponent. So we want the exponent
* inside the square root to be 1 if e is odd and 0 if e is even, and we
* want to subtract off e/2 from the final exponent, rounded to negative
* infinity. We can do the former by first computing the unbiased exponent,
* and then AND'ing it with 1 to get 0 or 1, and we can do the latter by
* shifting right by 1.
*/
nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src),
nir_imm_int(b, 1023));
nir_ssa_def *even = nir_iand(b, unbiased_exp, nir_imm_int(b, 1));
nir_ssa_def *half = nir_ishr(b, unbiased_exp, nir_imm_int(b, 1));
nir_ssa_def *src_norm = set_exponent(b, src,
nir_iadd(b, nir_imm_int(b, 1023),
even));
nir_ssa_def *ra = nir_f2f64(b, nir_frsq(b, nir_f2f32(b, src_norm)));
nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra), half);
ra = set_exponent(b, ra, new_exp);
/*
* The following implements an iterative algorithm that's very similar
* between sqrt and rsqrt. We start with an iteration of Goldschmit's
* algorithm, which looks like:
*
* a = the source
* y_0 = initial (single-precision) rsqrt estimate
*
* h_0 = .5 * y_0
* g_0 = a * y_0
* r_0 = .5 - h_0 * g_0
* g_1 = g_0 * r_0 + g_0
* h_1 = h_0 * r_0 + h_0
*
* Now g_1 ~= sqrt(a), and h_1 ~= 1/(2 * sqrt(a)). We could continue
* applying another round of Goldschmit, but since we would never refer
* back to a (the original source), we would add too much rounding error.
* So instead, we do one last round of Newton-Raphson, which has better
* rounding characteristics, to get the final rounding correct. This is
* split into two cases:
*
* 1. sqrt
*
* Normally, doing a round of Newton-Raphson for sqrt involves taking a
* reciprocal of the original estimate, which is slow since it isn't
* supported in HW. But we can take advantage of the fact that we already
* computed a good estimate of 1/(2 * g_1) by rearranging it like so:
*
* g_2 = .5 * (g_1 + a / g_1)
* = g_1 + .5 * (a / g_1 - g_1)
* = g_1 + (.5 / g_1) * (a - g_1^2)
* = g_1 + h_1 * (a - g_1^2)
*
* The second term represents the error, and by splitting it out we can get
* better precision by computing it as part of a fused multiply-add. Since
* both Newton-Raphson and Goldschmit approximately double the precision of
* the result, these two steps should be enough.
*
* 2. rsqrt
*
* First off, note that the first round of the Goldschmit algorithm is
* really just a Newton-Raphson step in disguise:
*
* h_1 = h_0 * (.5 - h_0 * g_0) + h_0
* = h_0 * (1.5 - h_0 * g_0)
* = h_0 * (1.5 - .5 * a * y_0^2)
* = (.5 * y_0) * (1.5 - .5 * a * y_0^2)
*
* which is the standard formula multiplied by .5. Unlike in the sqrt case,
* we don't need the inverse to do a Newton-Raphson step; we just need h_1,
* so we can skip the calculation of g_1. Instead, we simply do another
* Newton-Raphson step:
*
* y_1 = 2 * h_1
* r_1 = .5 - h_1 * y_1 * a
* y_2 = y_1 * r_1 + y_1
*
* Where the difference from Goldschmit is that we calculate y_1 * a
* instead of using g_1. Doing it this way should be as fast as computing
* y_1 up front instead of h_1, and it lets us share the code for the
* initial Goldschmit step with the sqrt case.
*
* Putting it together, the computations are:
*
* h_0 = .5 * y_0
* g_0 = a * y_0
* r_0 = .5 - h_0 * g_0
* h_1 = h_0 * r_0 + h_0
* if sqrt:
* g_1 = g_0 * r_0 + g_0
* r_1 = a - g_1 * g_1
* g_2 = h_1 * r_1 + g_1
* else:
* y_1 = 2 * h_1
* r_1 = .5 - y_1 * (h_1 * a)
* y_2 = y_1 * r_1 + y_1
*
* For more on the ideas behind this, see "Software Division and Square
* Root Using Goldschmit's Algorithms" by Markstein and the Wikipedia page
* on square roots
* (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots).
*/
nir_ssa_def *one_half = nir_imm_double(b, 0.5);
nir_ssa_def *h_0 = nir_fmul(b, one_half, ra);
nir_ssa_def *g_0 = nir_fmul(b, src, ra);
nir_ssa_def *r_0 = nir_ffma(b, nir_fneg(b, h_0), g_0, one_half);
nir_ssa_def *h_1 = nir_ffma(b, h_0, r_0, h_0);
nir_ssa_def *res;
if (sqrt) {
nir_ssa_def *g_1 = nir_ffma(b, g_0, r_0, g_0);
nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, g_1), g_1, src);
res = nir_ffma(b, h_1, r_1, g_1);
} else {
nir_ssa_def *y_1 = nir_fmul(b, nir_imm_double(b, 2.0), h_1);
nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, y_1), nir_fmul(b, h_1, src),
one_half);
res = nir_ffma(b, y_1, r_1, y_1);
}
if (sqrt) {
/* Here, the special cases we need to handle are
* 0 -> 0 and
* +inf -> +inf
*/
const bool preserve_denorms =
b->shader->info.float_controls_execution_mode &
FLOAT_CONTROLS_DENORM_PRESERVE_FP64;
nir_ssa_def *src_flushed = src;
if (!preserve_denorms) {
src_flushed = nir_bcsel(b,
nir_flt(b, nir_fabs(b, src),
nir_imm_double(b, DBL_MIN)),
nir_imm_double(b, 0.0),
src);
}
res = nir_bcsel(b, nir_ior(b, nir_feq(b, src_flushed, nir_imm_double(b, 0.0)),
nir_feq(b, src, nir_imm_double(b, INFINITY))),
src_flushed, res);
} else {
res = fix_inv_result(b, res, src, new_exp);
}
return res;
}
static nir_ssa_def *
lower_trunc(nir_builder *b, nir_ssa_def *src)
{
nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src),
nir_imm_int(b, 1023));
nir_ssa_def *frac_bits = nir_isub(b, nir_imm_int(b, 52), unbiased_exp);
/*
* Decide the operation to apply depending on the unbiased exponent:
*
* if (unbiased_exp < 0)
* return 0
* else if (unbiased_exp > 52)
* return src
* else
* return src & (~0 << frac_bits)
*
* Notice that the else branch is a 64-bit integer operation that we need
* to implement in terms of 32-bit integer arithmetics (at least until we
* support 64-bit integer arithmetics).
*/
/* Compute "~0 << frac_bits" in terms of hi/lo 32-bit integer math */
nir_ssa_def *mask_lo =
nir_bcsel(b,
nir_ige(b, frac_bits, nir_imm_int(b, 32)),
nir_imm_int(b, 0),
nir_ishl(b, nir_imm_int(b, ~0), frac_bits));
nir_ssa_def *mask_hi =
nir_bcsel(b,
nir_ilt(b, frac_bits, nir_imm_int(b, 33)),
nir_imm_int(b, ~0),
nir_ishl(b,
nir_imm_int(b, ~0),
nir_isub(b, frac_bits, nir_imm_int(b, 32))));
nir_ssa_def *src_lo = nir_unpack_64_2x32_split_x(b, src);
nir_ssa_def *src_hi = nir_unpack_64_2x32_split_y(b, src);
return
nir_bcsel(b,
nir_ilt(b, unbiased_exp, nir_imm_int(b, 0)),
nir_imm_double(b, 0.0),
nir_bcsel(b, nir_ige(b, unbiased_exp, nir_imm_int(b, 53)),
src,
nir_pack_64_2x32_split(b,
nir_iand(b, mask_lo, src_lo),
nir_iand(b, mask_hi, src_hi))));
}
static nir_ssa_def *
lower_floor(nir_builder *b, nir_ssa_def *src)
{
/*
* For x >= 0, floor(x) = trunc(x)
* For x < 0,
* - if x is integer, floor(x) = x
* - otherwise, floor(x) = trunc(x) - 1
*/
nir_ssa_def *tr = nir_ftrunc(b, src);
nir_ssa_def *positive = nir_fge(b, src, nir_imm_double(b, 0.0));
return nir_bcsel(b,
nir_ior(b, positive, nir_feq(b, src, tr)),
tr,
nir_fsub(b, tr, nir_imm_double(b, 1.0)));
}
static nir_ssa_def *
lower_ceil(nir_builder *b, nir_ssa_def *src)
{
/* if x < 0, ceil(x) = trunc(x)
* else if (x - trunc(x) == 0), ceil(x) = x
* else, ceil(x) = trunc(x) + 1
*/
nir_ssa_def *tr = nir_ftrunc(b, src);
nir_ssa_def *negative = nir_flt(b, src, nir_imm_double(b, 0.0));
return nir_bcsel(b,
nir_ior(b, negative, nir_feq(b, src, tr)),
tr,
nir_fadd(b, tr, nir_imm_double(b, 1.0)));
}
static nir_ssa_def *
lower_fract(nir_builder *b, nir_ssa_def *src)
{
return nir_fsub(b, src, nir_ffloor(b, src));
}
static nir_ssa_def *
lower_round_even(nir_builder *b, nir_ssa_def *src)
{
/* Add and subtract 2**52 to round off any fractional bits. */
nir_ssa_def *two52 = nir_imm_double(b, (double)(1ull << 52));
nir_ssa_def *sign = nir_iand(b, nir_unpack_64_2x32_split_y(b, src),
nir_imm_int(b, 1ull << 31));
b->exact = true;
nir_ssa_def *res = nir_fsub(b, nir_fadd(b, nir_fabs(b, src), two52), two52);
b->exact = false;
return nir_bcsel(b, nir_flt(b, nir_fabs(b, src), two52),
nir_pack_64_2x32_split(b, nir_unpack_64_2x32_split_x(b, res),
nir_ior(b, nir_unpack_64_2x32_split_y(b, res), sign)), src);
}
static nir_ssa_def *
lower_mod(nir_builder *b, nir_ssa_def *src0, nir_ssa_def *src1)
{
/* mod(x,y) = x - y * floor(x/y)
*
* If the division is lowered, it could add some rounding errors that make
* floor() to return the quotient minus one when x = N * y. If this is the
* case, we should return zero because mod(x, y) output value is [0, y).
* But fortunately Vulkan spec allows this kind of errors; from Vulkan
* spec, appendix A (Precision and Operation of SPIR-V instructions:
*
* "The OpFRem and OpFMod instructions use cheap approximations of
* remainder, and the error can be large due to the discontinuity in
* trunc() and floor(). This can produce mathematically unexpected
* results in some cases, such as FMod(x,x) computing x rather than 0,
* and can also cause the result to have a different sign than the
* infinitely precise result."
*
* In practice this means the output value is actually in the interval
* [0, y].
*
* While Vulkan states this behaviour explicitly, OpenGL does not, and thus
* we need to assume that value should be in range [0, y); but on the other
* hand, mod(a,b) is defined as "a - b * floor(a/b)" and OpenGL allows for
* some error in division, so a/a could actually end up being 1.0 - 1ULP;
* so in this case floor(a/a) would end up as 0, and hence mod(a,a) == a.
*
* In summary, in the practice mod(a,a) can be "a" both for OpenGL and
* Vulkan.
*/
nir_ssa_def *floor = nir_ffloor(b, nir_fdiv(b, src0, src1));
return nir_fsub(b, src0, nir_fmul(b, src1, floor));
}
static nir_ssa_def *
lower_doubles_instr_to_soft(nir_builder *b, nir_alu_instr *instr,
const nir_shader *softfp64,
nir_lower_doubles_options options)
{
if (!(options & nir_lower_fp64_full_software))
return NULL;
assert(instr->dest.dest.is_ssa);
const char *name;
const struct glsl_type *return_type = glsl_uint64_t_type();
switch (instr->op) {
case nir_op_f2i64:
if (instr->src[0].src.ssa->bit_size != 64)
return false;
name = "__fp64_to_int64";
return_type = glsl_int64_t_type();
break;
case nir_op_f2u64:
if (instr->src[0].src.ssa->bit_size != 64)
return false;
name = "__fp64_to_uint64";
break;
case nir_op_f2f64:
name = "__fp32_to_fp64";
break;
case nir_op_f2f32:
name = "__fp64_to_fp32";
return_type = glsl_float_type();
break;
case nir_op_f2i32:
name = "__fp64_to_int";
return_type = glsl_int_type();
break;
case nir_op_f2u32:
name = "__fp64_to_uint";
return_type = glsl_uint_type();
break;
case nir_op_f2b1:
case nir_op_f2b32:
name = "__fp64_to_bool";
return_type = glsl_bool_type();
break;
case nir_op_b2f64:
name = "__bool_to_fp64";
break;
case nir_op_i2f64:
if (instr->src[0].src.ssa->bit_size == 64)
name = "__int64_to_fp64";
else
name = "__int_to_fp64";
break;
case nir_op_u2f64:
if (instr->src[0].src.ssa->bit_size == 64)
name = "__uint64_to_fp64";
else
name = "__uint_to_fp64";
break;
case nir_op_fabs:
name = "__fabs64";
break;
case nir_op_fneg:
name = "__fneg64";
break;
case nir_op_fround_even:
name = "__fround64";
break;
case nir_op_ftrunc:
name = "__ftrunc64";
break;
case nir_op_ffloor:
name = "__ffloor64";
break;
case nir_op_ffract:
name = "__ffract64";
break;
case nir_op_fsign:
name = "__fsign64";
break;
case nir_op_feq:
name = "__feq64";
return_type = glsl_bool_type();
break;
case nir_op_fneu:
name = "__fneu64";
return_type = glsl_bool_type();
break;
case nir_op_flt:
name = "__flt64";
return_type = glsl_bool_type();
break;
case nir_op_fge:
name = "__fge64";
return_type = glsl_bool_type();
break;
case nir_op_fmin:
name = "__fmin64";
break;
case nir_op_fmax:
name = "__fmax64";
break;
case nir_op_fadd:
name = "__fadd64";
break;
case nir_op_fmul:
name = "__fmul64";
break;
case nir_op_ffma:
name = "__ffma64";
break;
case nir_op_fsat:
name = "__fsat64";
break;
default:
return false;
}
nir_function *func = NULL;
nir_foreach_function(function, softfp64) {
if (strcmp(function->name, name) == 0) {
func = function;
break;
}
}
if (!func || !func->impl) {
fprintf(stderr, "Cannot find function \"%s\"\n", name);
assert(func);
}
nir_ssa_def *params[4] = { NULL, };
nir_variable *ret_tmp =
nir_local_variable_create(b->impl, return_type, "return_tmp");
nir_deref_instr *ret_deref = nir_build_deref_var(b, ret_tmp);
params[0] = &ret_deref->dest.ssa;
assert(nir_op_infos[instr->op].num_inputs + 1 == func->num_params);
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
assert(i + 1 < ARRAY_SIZE(params));
params[i + 1] = nir_mov_alu(b, instr->src[i], 1);
}
nir_inline_function_impl(b, func->impl, params);
return nir_load_deref(b, ret_deref);
}
nir_lower_doubles_options
nir_lower_doubles_op_to_options_mask(nir_op opcode)
{
switch (opcode) {
case nir_op_frcp: return nir_lower_drcp;
case nir_op_fsqrt: return nir_lower_dsqrt;
case nir_op_frsq: return nir_lower_drsq;
case nir_op_ftrunc: return nir_lower_dtrunc;
case nir_op_ffloor: return nir_lower_dfloor;
case nir_op_fceil: return nir_lower_dceil;
case nir_op_ffract: return nir_lower_dfract;
case nir_op_fround_even: return nir_lower_dround_even;
case nir_op_fmod: return nir_lower_dmod;
case nir_op_fsub: return nir_lower_dsub;
case nir_op_fdiv: return nir_lower_ddiv;
default: return 0;
}
}
struct lower_doubles_data {
const nir_shader *softfp64;
nir_lower_doubles_options options;
};
static bool
should_lower_double_instr(const nir_instr *instr, const void *_data)
{
const struct lower_doubles_data *data = _data;
const nir_lower_doubles_options options = data->options;
if (instr->type != nir_instr_type_alu)
return false;
const nir_alu_instr *alu = nir_instr_as_alu(instr);
assert(alu->dest.dest.is_ssa);
bool is_64 = alu->dest.dest.ssa.bit_size == 64;
unsigned num_srcs = nir_op_infos[alu->op].num_inputs;
for (unsigned i = 0; i < num_srcs; i++) {
is_64 |= (nir_src_bit_size(alu->src[i].src) == 64);
}
if (!is_64)
return false;
if (options & nir_lower_fp64_full_software)
return true;
return options & nir_lower_doubles_op_to_options_mask(alu->op);
}
static nir_ssa_def *
lower_doubles_instr(nir_builder *b, nir_instr *instr, void *_data)
{
const struct lower_doubles_data *data = _data;
const nir_lower_doubles_options options = data->options;
nir_alu_instr *alu = nir_instr_as_alu(instr);
nir_ssa_def *soft_def =
lower_doubles_instr_to_soft(b, alu, data->softfp64, options);
if (soft_def)
return soft_def;
if (!(options & nir_lower_doubles_op_to_options_mask(alu->op)))
return NULL;
nir_ssa_def *src = nir_mov_alu(b, alu->src[0],
alu->dest.dest.ssa.num_components);
switch (alu->op) {
case nir_op_frcp:
return lower_rcp(b, src);
case nir_op_fsqrt:
return lower_sqrt_rsq(b, src, true);
case nir_op_frsq:
return lower_sqrt_rsq(b, src, false);
case nir_op_ftrunc:
return lower_trunc(b, src);
case nir_op_ffloor:
return lower_floor(b, src);
case nir_op_fceil:
return lower_ceil(b, src);
case nir_op_ffract:
return lower_fract(b, src);
case nir_op_fround_even:
return lower_round_even(b, src);
case nir_op_fdiv:
case nir_op_fsub:
case nir_op_fmod: {
nir_ssa_def *src1 = nir_mov_alu(b, alu->src[1],
alu->dest.dest.ssa.num_components);
switch (alu->op) {
case nir_op_fdiv:
return nir_fmul(b, src, nir_frcp(b, src1));
case nir_op_fsub:
return nir_fadd(b, src, nir_fneg(b, src1));
case nir_op_fmod:
return lower_mod(b, src, src1);
default:
unreachable("unhandled opcode");
}
}
default:
unreachable("unhandled opcode");
}
}
static bool
nir_lower_doubles_impl(nir_function_impl *impl,
const nir_shader *softfp64,
nir_lower_doubles_options options)
{
struct lower_doubles_data data = {
.softfp64 = softfp64,
.options = options,
};
bool progress =
nir_function_impl_lower_instructions(impl,
should_lower_double_instr,
lower_doubles_instr,
&data);
if (progress && (options & nir_lower_fp64_full_software)) {
/* SSA and register indices are completely messed up now */
nir_index_ssa_defs(impl);
nir_index_local_regs(impl);
nir_metadata_preserve(impl, nir_metadata_none);
/* And we have deref casts we need to clean up thanks to function
* inlining.
*/
nir_opt_deref_impl(impl);
} else if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
} else {
nir_metadata_preserve(impl, nir_metadata_all);
}
return progress;
}
bool
nir_lower_doubles(nir_shader *shader,
const nir_shader *softfp64,
nir_lower_doubles_options options)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl) {
progress |= nir_lower_doubles_impl(function->impl, softfp64, options);
}
}
return progress;
}