blob: f56eb76b02d2ed0444c0a97f3165f8851f7fd76a [file] [log] [blame]
/*
* Copyright © 2014-2015 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir.h"
#include "nir_builder.h"
struct alu_to_scalar_data {
nir_instr_filter_cb cb;
const void *data;
};
/** @file nir_lower_alu_to_scalar.c
*
* Replaces nir_alu_instr operations with more than one channel used in the
* arguments with individual per-channel operations.
*/
static bool
inst_is_vector_alu(const nir_instr *instr, const void *_state)
{
if (instr->type != nir_instr_type_alu)
return false;
nir_alu_instr *alu = nir_instr_as_alu(instr);
/* There is no ALU instruction which has a scalar destination, scalar
* src[0], and some other vector source.
*/
assert(alu->dest.dest.is_ssa);
assert(alu->src[0].src.is_ssa);
return alu->dest.dest.ssa.num_components > 1 ||
nir_op_infos[alu->op].input_sizes[0] > 1;
}
static void
nir_alu_ssa_dest_init(nir_alu_instr *alu, unsigned num_components,
unsigned bit_size)
{
nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components,
bit_size, NULL);
alu->dest.write_mask = (1 << num_components) - 1;
}
static nir_ssa_def *
lower_reduction(nir_alu_instr *alu, nir_op chan_op, nir_op merge_op,
nir_builder *builder)
{
unsigned num_components = nir_op_infos[alu->op].input_sizes[0];
nir_ssa_def *last = NULL;
for (unsigned i = 0; i < num_components; i++) {
nir_alu_instr *chan = nir_alu_instr_create(builder->shader, chan_op);
nir_alu_ssa_dest_init(chan, 1, alu->dest.dest.ssa.bit_size);
nir_alu_src_copy(&chan->src[0], &alu->src[0], chan);
chan->src[0].swizzle[0] = chan->src[0].swizzle[i];
if (nir_op_infos[chan_op].num_inputs > 1) {
assert(nir_op_infos[chan_op].num_inputs == 2);
nir_alu_src_copy(&chan->src[1], &alu->src[1], chan);
chan->src[1].swizzle[0] = chan->src[1].swizzle[i];
}
chan->exact = alu->exact;
nir_builder_instr_insert(builder, &chan->instr);
if (i == 0) {
last = &chan->dest.dest.ssa;
} else {
last = nir_build_alu(builder, merge_op,
last, &chan->dest.dest.ssa, NULL, NULL);
}
}
return last;
}
static nir_ssa_def *
lower_alu_instr_scalar(nir_builder *b, nir_instr *instr, void *_data)
{
struct alu_to_scalar_data *data = _data;
nir_alu_instr *alu = nir_instr_as_alu(instr);
unsigned num_src = nir_op_infos[alu->op].num_inputs;
unsigned i, chan;
assert(alu->dest.dest.is_ssa);
assert(alu->dest.write_mask != 0);
b->cursor = nir_before_instr(&alu->instr);
b->exact = alu->exact;
if (data->cb && !data->cb(instr, data->data))
return NULL;
#define LOWER_REDUCTION(name, chan, merge) \
case name##2: \
case name##3: \
case name##4: \
case name##8: \
case name##16: \
return lower_reduction(alu, chan, merge, b); \
switch (alu->op) {
case nir_op_vec16:
case nir_op_vec8:
case nir_op_vec4:
case nir_op_vec3:
case nir_op_vec2:
case nir_op_cube_face_coord:
case nir_op_cube_face_index:
/* We don't need to scalarize these ops, they're the ones generated to
* group up outputs into a value that can be SSAed.
*/
return NULL;
case nir_op_pack_half_2x16: {
if (!b->shader->options->lower_pack_half_2x16)
return NULL;
nir_ssa_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0);
return nir_pack_half_2x16_split(b, nir_channel(b, src_vec2, 0),
nir_channel(b, src_vec2, 1));
}
case nir_op_unpack_unorm_4x8:
case nir_op_unpack_snorm_4x8:
case nir_op_unpack_unorm_2x16:
case nir_op_unpack_snorm_2x16:
/* There is no scalar version of these ops, unless we were to break it
* down to bitshifts and math (which is definitely not intended).
*/
return NULL;
case nir_op_unpack_half_2x16_flush_to_zero:
case nir_op_unpack_half_2x16: {
if (!b->shader->options->lower_unpack_half_2x16)
return NULL;
nir_ssa_def *packed = nir_ssa_for_alu_src(b, alu, 0);
if (alu->op == nir_op_unpack_half_2x16_flush_to_zero) {
return nir_vec2(b,
nir_unpack_half_2x16_split_x_flush_to_zero(b,
packed),
nir_unpack_half_2x16_split_y_flush_to_zero(b,
packed));
} else {
return nir_vec2(b,
nir_unpack_half_2x16_split_x(b, packed),
nir_unpack_half_2x16_split_y(b, packed));
}
}
case nir_op_pack_uvec2_to_uint: {
assert(b->shader->options->lower_pack_snorm_2x16 ||
b->shader->options->lower_pack_unorm_2x16);
nir_ssa_def *word = nir_extract_u16(b, nir_ssa_for_alu_src(b, alu, 0),
nir_imm_int(b, 0));
return nir_ior(b, nir_ishl(b, nir_channel(b, word, 1),
nir_imm_int(b, 16)),
nir_channel(b, word, 0));
}
case nir_op_pack_uvec4_to_uint: {
assert(b->shader->options->lower_pack_snorm_4x8 ||
b->shader->options->lower_pack_unorm_4x8);
nir_ssa_def *byte = nir_extract_u8(b, nir_ssa_for_alu_src(b, alu, 0),
nir_imm_int(b, 0));
return nir_ior(b, nir_ior(b, nir_ishl(b, nir_channel(b, byte, 3),
nir_imm_int(b, 24)),
nir_ishl(b, nir_channel(b, byte, 2),
nir_imm_int(b, 16))),
nir_ior(b, nir_ishl(b, nir_channel(b, byte, 1),
nir_imm_int(b, 8)),
nir_channel(b, byte, 0)));
}
case nir_op_fdph: {
nir_ssa_def *src0_vec = nir_ssa_for_alu_src(b, alu, 0);
nir_ssa_def *src1_vec = nir_ssa_for_alu_src(b, alu, 1);
nir_ssa_def *sum[4];
for (unsigned i = 0; i < 3; i++) {
sum[i] = nir_fmul(b, nir_channel(b, src0_vec, i),
nir_channel(b, src1_vec, i));
}
sum[3] = nir_channel(b, src1_vec, 3);
return nir_fadd(b, nir_fadd(b, sum[0], sum[1]),
nir_fadd(b, sum[2], sum[3]));
}
case nir_op_unpack_64_2x32:
case nir_op_unpack_64_4x16:
case nir_op_unpack_32_2x16:
return NULL;
LOWER_REDUCTION(nir_op_fdot, nir_op_fmul, nir_op_fadd);
LOWER_REDUCTION(nir_op_ball_fequal, nir_op_feq, nir_op_iand);
LOWER_REDUCTION(nir_op_ball_iequal, nir_op_ieq, nir_op_iand);
LOWER_REDUCTION(nir_op_bany_fnequal, nir_op_fneu, nir_op_ior);
LOWER_REDUCTION(nir_op_bany_inequal, nir_op_ine, nir_op_ior);
LOWER_REDUCTION(nir_op_b8all_fequal, nir_op_feq8, nir_op_iand);
LOWER_REDUCTION(nir_op_b8all_iequal, nir_op_ieq8, nir_op_iand);
LOWER_REDUCTION(nir_op_b8any_fnequal, nir_op_fneu8, nir_op_ior);
LOWER_REDUCTION(nir_op_b8any_inequal, nir_op_ine8, nir_op_ior);
LOWER_REDUCTION(nir_op_b16all_fequal, nir_op_feq16, nir_op_iand);
LOWER_REDUCTION(nir_op_b16all_iequal, nir_op_ieq16, nir_op_iand);
LOWER_REDUCTION(nir_op_b16any_fnequal, nir_op_fneu16, nir_op_ior);
LOWER_REDUCTION(nir_op_b16any_inequal, nir_op_ine16, nir_op_ior);
LOWER_REDUCTION(nir_op_b32all_fequal, nir_op_feq32, nir_op_iand);
LOWER_REDUCTION(nir_op_b32all_iequal, nir_op_ieq32, nir_op_iand);
LOWER_REDUCTION(nir_op_b32any_fnequal, nir_op_fneu32, nir_op_ior);
LOWER_REDUCTION(nir_op_b32any_inequal, nir_op_ine32, nir_op_ior);
LOWER_REDUCTION(nir_op_fall_equal, nir_op_seq, nir_op_fmin);
LOWER_REDUCTION(nir_op_fany_nequal, nir_op_sne, nir_op_fmax);
default:
break;
}
if (alu->dest.dest.ssa.num_components == 1)
return NULL;
unsigned num_components = alu->dest.dest.ssa.num_components;
nir_ssa_def *comps[NIR_MAX_VEC_COMPONENTS] = { NULL };
for (chan = 0; chan < NIR_MAX_VEC_COMPONENTS; chan++) {
if (!(alu->dest.write_mask & (1 << chan)))
continue;
nir_alu_instr *lower = nir_alu_instr_create(b->shader, alu->op);
for (i = 0; i < num_src; i++) {
/* We only handle same-size-as-dest (input_sizes[] == 0) or scalar
* args (input_sizes[] == 1).
*/
assert(nir_op_infos[alu->op].input_sizes[i] < 2);
unsigned src_chan = (nir_op_infos[alu->op].input_sizes[i] == 1 ?
0 : chan);
nir_alu_src_copy(&lower->src[i], &alu->src[i], lower);
for (int j = 0; j < NIR_MAX_VEC_COMPONENTS; j++)
lower->src[i].swizzle[j] = alu->src[i].swizzle[src_chan];
}
nir_alu_ssa_dest_init(lower, 1, alu->dest.dest.ssa.bit_size);
lower->dest.saturate = alu->dest.saturate;
comps[chan] = &lower->dest.dest.ssa;
lower->exact = alu->exact;
nir_builder_instr_insert(b, &lower->instr);
}
return nir_vec(b, comps, num_components);
}
bool
nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *_data)
{
struct alu_to_scalar_data data = {
.cb = cb,
.data = _data,
};
return nir_shader_lower_instructions(shader,
inst_is_vector_alu,
lower_alu_instr_scalar,
&data);
}