blob: 25176a95e57cad242621cf6fcab513b7ce92051e [file] [log] [blame]
/*
* Copyright © 2014 Connor Abbott
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Connor Abbott (cwabbott0@gmail.com)
*
*/
#ifndef NIR_H
#define NIR_H
#include "util/hash_table.h"
#include "compiler/glsl/list.h"
#include "GL/gl.h" /* GLenum */
#include "util/list.h"
#include "util/ralloc.h"
#include "util/set.h"
#include "util/bitscan.h"
#include "util/bitset.h"
#include "util/macros.h"
#include "util/format/u_format.h"
#include "compiler/nir_types.h"
#include "compiler/shader_enums.h"
#include "compiler/shader_info.h"
#define XXH_INLINE_ALL
#include "util/xxhash.h"
#include <stdio.h>
#ifndef NDEBUG
#include "util/debug.h"
#endif /* NDEBUG */
#include "nir_opcodes.h"
#if defined(_WIN32) && !defined(snprintf)
#define snprintf _snprintf
#endif
#ifdef __cplusplus
extern "C" {
#endif
#define NIR_FALSE 0u
#define NIR_TRUE (~0u)
#define NIR_MAX_VEC_COMPONENTS 16
#define NIR_MAX_MATRIX_COLUMNS 4
#define NIR_STREAM_PACKED (1 << 8)
typedef uint16_t nir_component_mask_t;
static inline bool
nir_num_components_valid(unsigned num_components)
{
return (num_components >= 1 &&
num_components <= 4) ||
num_components == 8 ||
num_components == 16;
}
/** Defines a cast function
*
* This macro defines a cast function from in_type to out_type where
* out_type is some structure type that contains a field of type out_type.
*
* Note that you have to be a bit careful as the generated cast function
* destroys constness.
*/
#define NIR_DEFINE_CAST(name, in_type, out_type, field, \
type_field, type_value) \
static inline out_type * \
name(const in_type *parent) \
{ \
assert(parent && parent->type_field == type_value); \
return exec_node_data(out_type, parent, field); \
}
struct nir_function;
struct nir_shader;
struct nir_instr;
struct nir_builder;
/**
* Description of built-in state associated with a uniform
*
* \sa nir_variable::state_slots
*/
typedef struct {
gl_state_index16 tokens[STATE_LENGTH];
uint16_t swizzle;
} nir_state_slot;
typedef enum {
nir_var_shader_in = (1 << 0),
nir_var_shader_out = (1 << 1),
nir_var_shader_temp = (1 << 2),
nir_var_function_temp = (1 << 3),
nir_var_uniform = (1 << 4),
nir_var_mem_ubo = (1 << 5),
nir_var_system_value = (1 << 6),
nir_var_mem_ssbo = (1 << 7),
nir_var_mem_shared = (1 << 8),
nir_var_mem_global = (1 << 9),
nir_var_mem_push_const = (1 << 10), /* not actually used for variables */
nir_num_variable_modes = 11,
nir_var_all = (1 << nir_num_variable_modes) - 1,
} nir_variable_mode;
/**
* Rounding modes.
*/
typedef enum {
nir_rounding_mode_undef = 0,
nir_rounding_mode_rtne = 1, /* round to nearest even */
nir_rounding_mode_ru = 2, /* round up */
nir_rounding_mode_rd = 3, /* round down */
nir_rounding_mode_rtz = 4, /* round towards zero */
} nir_rounding_mode;
typedef union {
bool b;
float f32;
double f64;
int8_t i8;
uint8_t u8;
int16_t i16;
uint16_t u16;
int32_t i32;
uint32_t u32;
int64_t i64;
uint64_t u64;
} nir_const_value;
#define nir_const_value_to_array(arr, c, components, m) \
{ \
for (unsigned i = 0; i < components; ++i) \
arr[i] = c[i].m; \
} while (false)
static inline nir_const_value
nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
{
nir_const_value v;
memset(&v, 0, sizeof(v));
switch (bit_size) {
case 1: v.b = x; break;
case 8: v.u8 = x; break;
case 16: v.u16 = x; break;
case 32: v.u32 = x; break;
case 64: v.u64 = x; break;
default:
unreachable("Invalid bit size");
}
return v;
}
static inline nir_const_value
nir_const_value_for_int(int64_t i, unsigned bit_size)
{
nir_const_value v;
memset(&v, 0, sizeof(v));
assert(bit_size <= 64);
if (bit_size < 64) {
assert(i >= (-(1ll << (bit_size - 1))));
assert(i < (1ll << (bit_size - 1)));
}
return nir_const_value_for_raw_uint(i, bit_size);
}
static inline nir_const_value
nir_const_value_for_uint(uint64_t u, unsigned bit_size)
{
nir_const_value v;
memset(&v, 0, sizeof(v));
assert(bit_size <= 64);
if (bit_size < 64)
assert(u < (1ull << bit_size));
return nir_const_value_for_raw_uint(u, bit_size);
}
static inline nir_const_value
nir_const_value_for_bool(bool b, unsigned bit_size)
{
/* Booleans use a 0/-1 convention */
return nir_const_value_for_int(-(int)b, bit_size);
}
/* This one isn't inline because it requires half-float conversion */
nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
static inline int64_t
nir_const_value_as_int(nir_const_value value, unsigned bit_size)
{
switch (bit_size) {
/* int1_t uses 0/-1 convention */
case 1: return -(int)value.b;
case 8: return value.i8;
case 16: return value.i16;
case 32: return value.i32;
case 64: return value.i64;
default:
unreachable("Invalid bit size");
}
}
static inline uint64_t
nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
{
switch (bit_size) {
case 1: return value.b;
case 8: return value.u8;
case 16: return value.u16;
case 32: return value.u32;
case 64: return value.u64;
default:
unreachable("Invalid bit size");
}
}
static inline bool
nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
{
int64_t i = nir_const_value_as_int(value, bit_size);
/* Booleans of any size use 0/-1 convention */
assert(i == 0 || i == -1);
return i;
}
/* This one isn't inline because it requires half-float conversion */
double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
typedef struct nir_constant {
/**
* Value of the constant.
*
* The field used to back the values supplied by the constant is determined
* by the type associated with the \c nir_variable. Constants may be
* scalars, vectors, or matrices.
*/
nir_const_value values[NIR_MAX_VEC_COMPONENTS];
/* we could get this from the var->type but makes clone *much* easier to
* not have to care about the type.
*/
unsigned num_elements;
/* Array elements / Structure Fields */
struct nir_constant **elements;
} nir_constant;
/**
* \brief Layout qualifiers for gl_FragDepth.
*
* The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
* with a layout qualifier.
*/
typedef enum {
nir_depth_layout_none, /**< No depth layout is specified. */
nir_depth_layout_any,
nir_depth_layout_greater,
nir_depth_layout_less,
nir_depth_layout_unchanged
} nir_depth_layout;
/**
* Enum keeping track of how a variable was declared.
*/
typedef enum {
/**
* Normal declaration.
*/
nir_var_declared_normally = 0,
/**
* Variable is implicitly generated by the compiler and should not be
* visible via the API.
*/
nir_var_hidden,
} nir_var_declaration_type;
/**
* Either a uniform, global variable, shader input, or shader output. Based on
* ir_variable - it should be easy to translate between the two.
*/
typedef struct nir_variable {
struct exec_node node;
/**
* Declared type of the variable
*/
const struct glsl_type *type;
/**
* Declared name of the variable
*/
char *name;
struct nir_variable_data {
/**
* Storage class of the variable.
*
* \sa nir_variable_mode
*/
unsigned mode:11;
/**
* Is the variable read-only?
*
* This is set for variables declared as \c const, shader inputs,
* and uniforms.
*/
unsigned read_only:1;
unsigned centroid:1;
unsigned sample:1;
unsigned patch:1;
unsigned invariant:1;
/**
* Precision qualifier.
*
* In desktop GLSL we do not care about precision qualifiers at all, in
* fact, the spec says that precision qualifiers are ignored.
*
* To make things easy, we make it so that this field is always
* GLSL_PRECISION_NONE on desktop shaders. This way all the variables
* have the same precision value and the checks we add in the compiler
* for this field will never break a desktop shader compile.
*/
unsigned precision:2;
/**
* Can this variable be coalesced with another?
*
* This is set by nir_lower_io_to_temporaries to say that any
* copies involving this variable should stay put. Propagating it can
* duplicate the resulting load/store, which is not wanted, and may
* result in a load/store of the variable with an indirect offset which
* the backend may not be able to handle.
*/
unsigned cannot_coalesce:1;
/**
* When separate shader programs are enabled, only input/outputs between
* the stages of a multi-stage separate program can be safely removed
* from the shader interface. Other input/outputs must remains active.
*
* This is also used to make sure xfb varyings that are unused by the
* fragment shader are not removed.
*/
unsigned always_active_io:1;
/**
* Interpolation mode for shader inputs / outputs
*
* \sa glsl_interp_mode
*/
unsigned interpolation:3;
/**
* If non-zero, then this variable may be packed along with other variables
* into a single varying slot, so this offset should be applied when
* accessing components. For example, an offset of 1 means that the x
* component of this variable is actually stored in component y of the
* location specified by \c location.
*/
unsigned location_frac:2;
/**
* If true, this variable represents an array of scalars that should
* be tightly packed. In other words, consecutive array elements
* should be stored one component apart, rather than one slot apart.
*/
unsigned compact:1;
/**
* Whether this is a fragment shader output implicitly initialized with
* the previous contents of the specified render target at the
* framebuffer location corresponding to this shader invocation.
*/
unsigned fb_fetch_output:1;
/**
* Non-zero if this variable is considered bindless as defined by
* ARB_bindless_texture.
*/
unsigned bindless:1;
/**
* Was an explicit binding set in the shader?
*/
unsigned explicit_binding:1;
/**
* Was the location explicitly set in the shader?
*
* If the location is explicitly set in the shader, it \b cannot be changed
* by the linker or by the API (e.g., calls to \c glBindAttribLocation have
* no effect).
*/
unsigned explicit_location:1;
/**
* Was a transfer feedback buffer set in the shader?
*/
unsigned explicit_xfb_buffer:1;
/**
* Was a transfer feedback stride set in the shader?
*/
unsigned explicit_xfb_stride:1;
/**
* Was an explicit offset set in the shader?
*/
unsigned explicit_offset:1;
/**
* Layout of the matrix. Uses glsl_matrix_layout values.
*/
unsigned matrix_layout:2;
/**
* Non-zero if this variable was created by lowering a named interface
* block.
*/
unsigned from_named_ifc_block:1;
/**
* How the variable was declared. See nir_var_declaration_type.
*
* This is used to detect variables generated by the compiler, so should
* not be visible via the API.
*/
unsigned how_declared:2;
/**
* Is this variable per-view? If so, we know it must be an array with
* size corresponding to the number of views.
*/
unsigned per_view:1;
/**
* \brief Layout qualifier for gl_FragDepth. See nir_depth_layout.
*
* This is not equal to \c ir_depth_layout_none if and only if this
* variable is \c gl_FragDepth and a layout qualifier is specified.
*/
unsigned depth_layout:3;
/**
* Vertex stream output identifier.
*
* For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
* indicate the stream of the i-th component.
*/
unsigned stream:9;
/**
* See gl_access_qualifier.
*
* Access flags for memory variables (SSBO/global), image uniforms, and
* bindless images in uniforms/inputs/outputs.
*/
unsigned access:8;
/**
* Descriptor set binding for sampler or UBO.
*/
unsigned descriptor_set:5;
/**
* output index for dual source blending.
*/
unsigned index;
/**
* Initial binding point for a sampler or UBO.
*
* For array types, this represents the binding point for the first element.
*/
unsigned binding;
/**
* Storage location of the base of this variable
*
* The precise meaning of this field depends on the nature of the variable.
*
* - Vertex shader input: one of the values from \c gl_vert_attrib.
* - Vertex shader output: one of the values from \c gl_varying_slot.
* - Geometry shader input: one of the values from \c gl_varying_slot.
* - Geometry shader output: one of the values from \c gl_varying_slot.
* - Fragment shader input: one of the values from \c gl_varying_slot.
* - Fragment shader output: one of the values from \c gl_frag_result.
* - Uniforms: Per-stage uniform slot number for default uniform block.
* - Uniforms: Index within the uniform block definition for UBO members.
* - Non-UBO Uniforms: uniform slot number.
* - Other: This field is not currently used.
*
* If the variable is a uniform, shader input, or shader output, and the
* slot has not been assigned, the value will be -1.
*/
int location;
/**
* The actual location of the variable in the IR. Only valid for inputs,
* outputs, and uniforms (including samplers and images).
*/
unsigned driver_location;
/**
* Location an atomic counter or transform feedback is stored at.
*/
unsigned offset;
union {
struct {
/** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
enum pipe_format format;
} image;
struct {
/**
* Transform feedback buffer.
*/
uint16_t buffer:2;
/**
* Transform feedback stride.
*/
uint16_t stride;
} xfb;
};
} data;
/**
* Identifier for this variable generated by nir_index_vars() that is unique
* among other variables in the same exec_list.
*/
unsigned index;
/* Number of nir_variable_data members */
uint16_t num_members;
/**
* Built-in state that backs this uniform
*
* Once set at variable creation, \c state_slots must remain invariant.
* This is because, ideally, this array would be shared by all clones of
* this variable in the IR tree. In other words, we'd really like for it
* to be a fly-weight.
*
* If the variable is not a uniform, \c num_state_slots will be zero and
* \c state_slots will be \c NULL.
*/
/*@{*/
uint16_t num_state_slots; /**< Number of state slots used */
nir_state_slot *state_slots; /**< State descriptors. */
/*@}*/
/**
* Constant expression assigned in the initializer of the variable
*
* This field should only be used temporarily by creators of NIR shaders
* and then lower_constant_initializers can be used to get rid of them.
* Most of the rest of NIR ignores this field or asserts that it's NULL.
*/
nir_constant *constant_initializer;
/**
* Global variable assigned in the initializer of the variable
* This field should only be used temporarily by creators of NIR shaders
* and then lower_constant_initializers can be used to get rid of them.
* Most of the rest of NIR ignores this field or asserts that it's NULL.
*/
struct nir_variable *pointer_initializer;
/**
* For variables that are in an interface block or are an instance of an
* interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
*
* \sa ir_variable::location
*/
const struct glsl_type *interface_type;
/**
* Description of per-member data for per-member struct variables
*
* This is used for variables which are actually an amalgamation of
* multiple entities such as a struct of built-in values or a struct of
* inputs each with their own layout specifier. This is only allowed on
* variables with a struct or array of array of struct type.
*/
struct nir_variable_data *members;
} nir_variable;
static inline bool
_nir_shader_variable_has_mode(nir_variable *var, unsigned modes)
{
/* This isn't a shader variable */
assert(!(modes & nir_var_function_temp));
return var->data.mode & modes;
}
#define nir_foreach_variable_in_list(var, var_list) \
foreach_list_typed(nir_variable, var, node, var_list)
#define nir_foreach_variable_in_list_safe(var, var_list) \
foreach_list_typed_safe(nir_variable, var, node, var_list)
#define nir_foreach_variable_in_shader(var, shader) \
nir_foreach_variable_in_list(var, &(shader)->variables)
#define nir_foreach_variable_in_shader_safe(var, shader) \
nir_foreach_variable_in_list_safe(var, &(shader)->variables)
#define nir_foreach_variable_with_modes(var, shader, modes) \
nir_foreach_variable_in_shader(var, shader) \
if (_nir_shader_variable_has_mode(var, modes))
#define nir_foreach_variable_with_modes_safe(var, shader, modes) \
nir_foreach_variable_in_shader_safe(var, shader) \
if (_nir_shader_variable_has_mode(var, modes))
#define nir_foreach_shader_in_variable(var, shader) \
nir_foreach_variable_with_modes(var, shader, nir_var_shader_in)
#define nir_foreach_shader_in_variable_safe(var, shader) \
nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_in)
#define nir_foreach_shader_out_variable(var, shader) \
nir_foreach_variable_with_modes(var, shader, nir_var_shader_out)
#define nir_foreach_shader_out_variable_safe(var, shader) \
nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_out)
#define nir_foreach_uniform_variable(var, shader) \
nir_foreach_variable_with_modes(var, shader, nir_var_uniform)
#define nir_foreach_uniform_variable_safe(var, shader) \
nir_foreach_variable_with_modes_safe(var, shader, nir_var_uniform)
static inline bool
nir_variable_is_global(const nir_variable *var)
{
return var->data.mode != nir_var_function_temp;
}
typedef struct nir_register {
struct exec_node node;
unsigned num_components; /** < number of vector components */
unsigned num_array_elems; /** < size of array (0 for no array) */
/* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
uint8_t bit_size;
/** generic register index. */
unsigned index;
/** only for debug purposes, can be NULL */
const char *name;
/** set of nir_srcs where this register is used (read from) */
struct list_head uses;
/** set of nir_dests where this register is defined (written to) */
struct list_head defs;
/** set of nir_ifs where this register is used as a condition */
struct list_head if_uses;
} nir_register;
#define nir_foreach_register(reg, reg_list) \
foreach_list_typed(nir_register, reg, node, reg_list)
#define nir_foreach_register_safe(reg, reg_list) \
foreach_list_typed_safe(nir_register, reg, node, reg_list)
typedef enum PACKED {
nir_instr_type_alu,
nir_instr_type_deref,
nir_instr_type_call,
nir_instr_type_tex,
nir_instr_type_intrinsic,
nir_instr_type_load_const,
nir_instr_type_jump,
nir_instr_type_ssa_undef,
nir_instr_type_phi,
nir_instr_type_parallel_copy,
} nir_instr_type;
typedef struct nir_instr {
struct exec_node node;
struct nir_block *block;
nir_instr_type type;
/* A temporary for optimization and analysis passes to use for storing
* flags. For instance, DCE uses this to store the "dead/live" info.
*/
uint8_t pass_flags;
/** generic instruction index. */
unsigned index;
} nir_instr;
static inline nir_instr *
nir_instr_next(nir_instr *instr)
{
struct exec_node *next = exec_node_get_next(&instr->node);
if (exec_node_is_tail_sentinel(next))
return NULL;
else
return exec_node_data(nir_instr, next, node);
}
static inline nir_instr *
nir_instr_prev(nir_instr *instr)
{
struct exec_node *prev = exec_node_get_prev(&instr->node);
if (exec_node_is_head_sentinel(prev))
return NULL;
else
return exec_node_data(nir_instr, prev, node);
}
static inline bool
nir_instr_is_first(const nir_instr *instr)
{
return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
}
static inline bool
nir_instr_is_last(const nir_instr *instr)
{
return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
}
typedef struct nir_ssa_def {
/** for debugging only, can be NULL */
const char* name;
/** generic SSA definition index. */
unsigned index;
/** Index into the live_in and live_out bitfields */
unsigned live_index;
/** Instruction which produces this SSA value. */
nir_instr *parent_instr;
/** set of nir_instrs where this register is used (read from) */
struct list_head uses;
/** set of nir_ifs where this register is used as a condition */
struct list_head if_uses;
uint8_t num_components;
/* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
uint8_t bit_size;
/**
* True if this SSA value may have different values in different SIMD
* invocations of the shader. This is set by nir_divergence_analysis.
*/
bool divergent;
} nir_ssa_def;
struct nir_src;
typedef struct {
nir_register *reg;
struct nir_src *indirect; /** < NULL for no indirect offset */
unsigned base_offset;
/* TODO use-def chain goes here */
} nir_reg_src;
typedef struct {
nir_instr *parent_instr;
struct list_head def_link;
nir_register *reg;
struct nir_src *indirect; /** < NULL for no indirect offset */
unsigned base_offset;
/* TODO def-use chain goes here */
} nir_reg_dest;
struct nir_if;
typedef struct nir_src {
union {
/** Instruction that consumes this value as a source. */
nir_instr *parent_instr;
struct nir_if *parent_if;
};
struct list_head use_link;
union {
nir_reg_src reg;
nir_ssa_def *ssa;
};
bool is_ssa;
} nir_src;
static inline nir_src
nir_src_init(void)
{
nir_src src = { { NULL } };
return src;
}
#define NIR_SRC_INIT nir_src_init()
#define nir_foreach_use(src, reg_or_ssa_def) \
list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
#define nir_foreach_use_safe(src, reg_or_ssa_def) \
list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
#define nir_foreach_if_use(src, reg_or_ssa_def) \
list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
#define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
typedef struct {
union {
nir_reg_dest reg;
nir_ssa_def ssa;
};
bool is_ssa;
} nir_dest;
static inline nir_dest
nir_dest_init(void)
{
nir_dest dest = { { { NULL } } };
return dest;
}
#define NIR_DEST_INIT nir_dest_init()
#define nir_foreach_def(dest, reg) \
list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
#define nir_foreach_def_safe(dest, reg) \
list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
static inline nir_src
nir_src_for_ssa(nir_ssa_def *def)
{
nir_src src = NIR_SRC_INIT;
src.is_ssa = true;
src.ssa = def;
return src;
}
static inline nir_src
nir_src_for_reg(nir_register *reg)
{
nir_src src = NIR_SRC_INIT;
src.is_ssa = false;
src.reg.reg = reg;
src.reg.indirect = NULL;
src.reg.base_offset = 0;
return src;
}
static inline nir_dest
nir_dest_for_reg(nir_register *reg)
{
nir_dest dest = NIR_DEST_INIT;
dest.reg.reg = reg;
return dest;
}
static inline unsigned
nir_src_bit_size(nir_src src)
{
return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
}
static inline unsigned
nir_src_num_components(nir_src src)
{
return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
}
static inline bool
nir_src_is_const(nir_src src)
{
return src.is_ssa &&
src.ssa->parent_instr->type == nir_instr_type_load_const;
}
static inline bool
nir_src_is_divergent(nir_src src)
{
assert(src.is_ssa);
return src.ssa->divergent;
}
static inline unsigned
nir_dest_bit_size(nir_dest dest)
{
return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
}
static inline unsigned
nir_dest_num_components(nir_dest dest)
{
return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
}
static inline bool
nir_dest_is_divergent(nir_dest dest)
{
assert(dest.is_ssa);
return dest.ssa.divergent;
}
/* Are all components the same, ie. .xxxx */
static inline bool
nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
{
for (unsigned i = 1; i < nr_comp; i++)
if (swiz[i] != swiz[0])
return false;
return true;
}
/* Are all components sequential, ie. .yzw */
static inline bool
nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
{
for (unsigned i = 1; i < nr_comp; i++)
if (swiz[i] != (swiz[0] + i))
return false;
return true;
}
void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
typedef struct {
nir_src src;
/**
* \name input modifiers
*/
/*@{*/
/**
* For inputs interpreted as floating point, flips the sign bit. For
* inputs interpreted as integers, performs the two's complement negation.
*/
bool negate;
/**
* Clears the sign bit for floating point values, and computes the integer
* absolute value for integers. Note that the negate modifier acts after
* the absolute value modifier, therefore if both are set then all inputs
* will become negative.
*/
bool abs;
/*@}*/
/**
* For each input component, says which component of the register it is
* chosen from. Note that which elements of the swizzle are used and which
* are ignored are based on the write mask for most opcodes - for example,
* a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
* a swizzle of {2, x, 1, 0} where x means "don't care."
*/
uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
} nir_alu_src;
typedef struct {
nir_dest dest;
/**
* \name saturate output modifier
*
* Only valid for opcodes that output floating-point numbers. Clamps the
* output to between 0.0 and 1.0 inclusive.
*/
bool saturate;
unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
} nir_alu_dest;
/** NIR sized and unsized types
*
* The values in this enum are carefully chosen so that the sized type is
* just the unsized type OR the number of bits.
*/
typedef enum PACKED {
nir_type_invalid = 0, /* Not a valid type */
nir_type_int = 2,
nir_type_uint = 4,
nir_type_bool = 6,
nir_type_float = 128,
nir_type_bool1 = 1 | nir_type_bool,
nir_type_bool8 = 8 | nir_type_bool,
nir_type_bool16 = 16 | nir_type_bool,
nir_type_bool32 = 32 | nir_type_bool,
nir_type_int1 = 1 | nir_type_int,
nir_type_int8 = 8 | nir_type_int,
nir_type_int16 = 16 | nir_type_int,
nir_type_int32 = 32 | nir_type_int,
nir_type_int64 = 64 | nir_type_int,
nir_type_uint1 = 1 | nir_type_uint,
nir_type_uint8 = 8 | nir_type_uint,
nir_type_uint16 = 16 | nir_type_uint,
nir_type_uint32 = 32 | nir_type_uint,
nir_type_uint64 = 64 | nir_type_uint,
nir_type_float16 = 16 | nir_type_float,
nir_type_float32 = 32 | nir_type_float,
nir_type_float64 = 64 | nir_type_float,
} nir_alu_type;
#define NIR_ALU_TYPE_SIZE_MASK 0x79
#define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
static inline unsigned
nir_alu_type_get_type_size(nir_alu_type type)
{
return type & NIR_ALU_TYPE_SIZE_MASK;
}
static inline nir_alu_type
nir_alu_type_get_base_type(nir_alu_type type)
{
return (nir_alu_type)(type & NIR_ALU_TYPE_BASE_TYPE_MASK);
}
static inline nir_alu_type
nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
{
switch (base_type) {
case GLSL_TYPE_BOOL:
return nir_type_bool1;
break;
case GLSL_TYPE_UINT:
return nir_type_uint32;
break;
case GLSL_TYPE_INT:
return nir_type_int32;
break;
case GLSL_TYPE_UINT16:
return nir_type_uint16;
break;
case GLSL_TYPE_INT16:
return nir_type_int16;
break;
case GLSL_TYPE_UINT8:
return nir_type_uint8;
case GLSL_TYPE_INT8:
return nir_type_int8;
case GLSL_TYPE_UINT64:
return nir_type_uint64;
break;
case GLSL_TYPE_INT64:
return nir_type_int64;
break;
case GLSL_TYPE_FLOAT:
return nir_type_float32;
break;
case GLSL_TYPE_FLOAT16:
return nir_type_float16;
break;
case GLSL_TYPE_DOUBLE:
return nir_type_float64;
break;
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_ATOMIC_UINT:
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE:
case GLSL_TYPE_ARRAY:
case GLSL_TYPE_VOID:
case GLSL_TYPE_SUBROUTINE:
case GLSL_TYPE_FUNCTION:
case GLSL_TYPE_ERROR:
return nir_type_invalid;
}
unreachable("unknown type");
}
static inline nir_alu_type
nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
{
return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
}
nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
nir_rounding_mode rnd);
static inline nir_op
nir_op_vec(unsigned components)
{
switch (components) {
case 1: return nir_op_mov;
case 2: return nir_op_vec2;
case 3: return nir_op_vec3;
case 4: return nir_op_vec4;
case 8: return nir_op_vec8;
case 16: return nir_op_vec16;
default: unreachable("bad component count");
}
}
static inline bool
nir_op_is_vec(nir_op op)
{
switch (op) {
case nir_op_mov:
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
case nir_op_vec8:
case nir_op_vec16:
return true;
default:
return false;
}
}
static inline bool
nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
{
return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
(32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
(64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
}
static inline bool
nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
{
return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
(32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
(64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
}
static inline bool
nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
{
return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
(32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
(64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
}
static inline bool
nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
{
return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
(32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
(64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
}
static inline bool
nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
{
return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
(32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
(64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
}
static inline bool
nir_has_any_rounding_mode_rtz(unsigned execution_mode)
{
return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
(execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
(execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
}
static inline bool
nir_has_any_rounding_mode_rtne(unsigned execution_mode)
{
return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
(execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
(execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
}
static inline nir_rounding_mode
nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
nir_alu_type type)
{
if (nir_alu_type_get_base_type(type) != nir_type_float)
return nir_rounding_mode_undef;
unsigned bit_size = nir_alu_type_get_type_size(type);
if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
return nir_rounding_mode_rtz;
if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
return nir_rounding_mode_rtne;
return nir_rounding_mode_undef;
}
static inline bool
nir_has_any_rounding_mode_enabled(unsigned execution_mode)
{
bool result =
nir_has_any_rounding_mode_rtne(execution_mode) ||
nir_has_any_rounding_mode_rtz(execution_mode);
return result;
}
typedef enum {
/**
* Operation where the first two sources are commutative.
*
* For 2-source operations, this just mathematical commutativity. Some
* 3-source operations, like ffma, are only commutative in the first two
* sources.
*/
NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
NIR_OP_IS_ASSOCIATIVE = (1 << 1),
} nir_op_algebraic_property;
typedef struct {
const char *name;
uint8_t num_inputs;
/**
* The number of components in the output
*
* If non-zero, this is the size of the output and input sizes are
* explicitly given; swizzle and writemask are still in effect, but if
* the output component is masked out, then the input component may
* still be in use.
*
* If zero, the opcode acts in the standard, per-component manner; the
* operation is performed on each component (except the ones that are
* masked out) with the input being taken from the input swizzle for
* that component.
*
* The size of some of the inputs may be given (i.e. non-zero) even
* though output_size is zero; in that case, the inputs with a zero
* size act per-component, while the inputs with non-zero size don't.
*/
uint8_t output_size;
/**
* The type of vector that the instruction outputs. Note that the
* staurate modifier is only allowed on outputs with the float type.
*/
nir_alu_type output_type;
/**
* The number of components in each input
*/
uint8_t input_sizes[NIR_MAX_VEC_COMPONENTS];
/**
* The type of vector that each input takes. Note that negate and
* absolute value are only allowed on inputs with int or float type and
* behave differently on the two.
*/
nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
nir_op_algebraic_property algebraic_properties;
/* Whether this represents a numeric conversion opcode */
bool is_conversion;
} nir_op_info;
extern const nir_op_info nir_op_infos[nir_num_opcodes];
typedef struct nir_alu_instr {
nir_instr instr;
nir_op op;
/** Indicates that this ALU instruction generates an exact value
*
* This is kind of a mixture of GLSL "precise" and "invariant" and not
* really equivalent to either. This indicates that the value generated by
* this operation is high-precision and any code transformations that touch
* it must ensure that the resulting value is bit-for-bit identical to the
* original.
*/
bool exact:1;
/**
* Indicates that this instruction do not cause wrapping to occur, in the
* form of overflow or underflow.
*/
bool no_signed_wrap:1;
bool no_unsigned_wrap:1;
nir_alu_dest dest;
nir_alu_src src[];
} nir_alu_instr;
void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
nir_alu_instr *instr);
void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
nir_alu_instr *instr);
/* is this source channel used? */
static inline bool
nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
unsigned channel)
{
if (nir_op_infos[instr->op].input_sizes[src] > 0)
return channel < nir_op_infos[instr->op].input_sizes[src];
return (instr->dest.write_mask >> channel) & 1;
}
static inline nir_component_mask_t
nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
{
nir_component_mask_t read_mask = 0;
for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
if (!nir_alu_instr_channel_used(instr, src, c))
continue;
read_mask |= (1 << instr->src[src].swizzle[c]);
}
return read_mask;
}
/**
* Get the number of channels used for a source
*/
static inline unsigned
nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
{
if (nir_op_infos[instr->op].input_sizes[src] > 0)
return nir_op_infos[instr->op].input_sizes[src];
return nir_dest_num_components(instr->dest.dest);
}
static inline bool
nir_alu_instr_is_comparison(const nir_alu_instr *instr)
{
switch (instr->op) {
case nir_op_flt:
case nir_op_fge:
case nir_op_feq:
case nir_op_fneu:
case nir_op_ilt:
case nir_op_ult:
case nir_op_ige:
case nir_op_uge:
case nir_op_ieq:
case nir_op_ine:
case nir_op_i2b1:
case nir_op_f2b1:
case nir_op_inot:
return true;
default:
return false;
}
}
bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
nir_alu_type full_type);
bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
unsigned src1, unsigned src2);
bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
const nir_alu_instr *alu2,
unsigned src1, unsigned src2);
typedef enum {
nir_deref_type_var,
nir_deref_type_array,
nir_deref_type_array_wildcard,
nir_deref_type_ptr_as_array,
nir_deref_type_struct,
nir_deref_type_cast,
} nir_deref_type;
typedef struct {
nir_instr instr;
/** The type of this deref instruction */
nir_deref_type deref_type;
/** The mode of the underlying variable */
nir_variable_mode mode;
/** The dereferenced type of the resulting pointer value */
const struct glsl_type *type;
union {
/** Variable being dereferenced if deref_type is a deref_var */
nir_variable *var;
/** Parent deref if deref_type is not deref_var */
nir_src parent;
};
/** Additional deref parameters */
union {
struct {
nir_src index;
} arr;
struct {
unsigned index;
} strct;
struct {
unsigned ptr_stride;
} cast;
};
/** Destination to store the resulting "pointer" */
nir_dest dest;
} nir_deref_instr;
static inline nir_deref_instr *nir_src_as_deref(nir_src src);
static inline nir_deref_instr *
nir_deref_instr_parent(const nir_deref_instr *instr)
{
if (instr->deref_type == nir_deref_type_var)
return NULL;
else
return nir_src_as_deref(instr->parent);
}
static inline nir_variable *
nir_deref_instr_get_variable(const nir_deref_instr *instr)
{
while (instr->deref_type != nir_deref_type_var) {
if (instr->deref_type == nir_deref_type_cast)
return NULL;
instr = nir_deref_instr_parent(instr);
}
return instr->var;
}
bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
typedef struct {
nir_instr instr;
struct nir_function *callee;
unsigned num_params;
nir_src params[];
} nir_call_instr;
#include "nir_intrinsics.h"
#define NIR_INTRINSIC_MAX_CONST_INDEX 4
/** Represents an intrinsic
*
* An intrinsic is an instruction type for handling things that are
* more-or-less regular operations but don't just consume and produce SSA
* values like ALU operations do. Intrinsics are not for things that have
* special semantic meaning such as phi nodes and parallel copies.
* Examples of intrinsics include variable load/store operations, system
* value loads, and the like. Even though texturing more-or-less falls
* under this category, texturing is its own instruction type because
* trying to represent texturing with intrinsics would lead to a
* combinatorial explosion of intrinsic opcodes.
*
* By having a single instruction type for handling a lot of different
* cases, optimization passes can look for intrinsics and, for the most
* part, completely ignore them. Each intrinsic type also has a few
* possible flags that govern whether or not they can be reordered or
* eliminated. That way passes like dead code elimination can still work
* on intrisics without understanding the meaning of each.
*
* Each intrinsic has some number of constant indices, some number of
* variables, and some number of sources. What these sources, variables,
* and indices mean depends on the intrinsic and is documented with the
* intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
* instructions are the only types of instruction that can operate on
* variables.
*/
typedef struct {
nir_instr instr;
nir_intrinsic_op intrinsic;
nir_dest dest;
/** number of components if this is a vectorized intrinsic
*
* Similarly to ALU operations, some intrinsics are vectorized.
* An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
* For vectorized intrinsics, the num_components field specifies the
* number of destination components and the number of source components
* for all sources with nir_intrinsic_infos.src_components[i] == 0.
*/
uint8_t num_components;
int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
nir_src src[];
} nir_intrinsic_instr;
static inline nir_variable *
nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
{
return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
}
typedef enum {
/* Memory ordering. */
NIR_MEMORY_ACQUIRE = 1 << 0,
NIR_MEMORY_RELEASE = 1 << 1,
NIR_MEMORY_ACQ_REL = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
/* Memory visibility operations. */
NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
NIR_MEMORY_MAKE_VISIBLE = 1 << 3,
} nir_memory_semantics;
typedef enum {
NIR_SCOPE_NONE,
NIR_SCOPE_INVOCATION,
NIR_SCOPE_SUBGROUP,
NIR_SCOPE_WORKGROUP,
NIR_SCOPE_QUEUE_FAMILY,
NIR_SCOPE_DEVICE,
} nir_scope;
/**
* \name NIR intrinsics semantic flags
*
* information about what the compiler can do with the intrinsics.
*
* \sa nir_intrinsic_info::flags
*/
typedef enum {
/**
* whether the intrinsic can be safely eliminated if none of its output
* value is not being used.
*/
NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
/**
* Whether the intrinsic can be reordered with respect to any other
* intrinsic, i.e. whether the only reordering dependencies of the
* intrinsic are due to the register reads/writes.
*/
NIR_INTRINSIC_CAN_REORDER = (1 << 1),
} nir_intrinsic_semantic_flag;
/**
* \name NIR intrinsics const-index flag
*
* Indicates the usage of a const_index slot.
*
* \sa nir_intrinsic_info::index_map
*/
typedef enum {
/**
* Generally instructions that take a offset src argument, can encode
* a constant 'base' value which is added to the offset.
*/
NIR_INTRINSIC_BASE = 1,
/**
* For store instructions, a writemask for the store.
*/
NIR_INTRINSIC_WRMASK,
/**
* The stream-id for GS emit_vertex/end_primitive intrinsics.
*/
NIR_INTRINSIC_STREAM_ID,
/**
* The clip-plane id for load_user_clip_plane intrinsic.
*/
NIR_INTRINSIC_UCP_ID,
/**
* The amount of data, starting from BASE, that this instruction may
* access. This is used to provide bounds if the offset is not constant.
*/
NIR_INTRINSIC_RANGE,
/**
* The Vulkan descriptor set for vulkan_resource_index intrinsic.
*/
NIR_INTRINSIC_DESC_SET,
/**
* The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
*/
NIR_INTRINSIC_BINDING,
/**
* Component offset.
*/
NIR_INTRINSIC_COMPONENT,
/**
* Interpolation mode (only meaningful for FS inputs).
*/
NIR_INTRINSIC_INTERP_MODE,
/**
* A binary nir_op to use when performing a reduction or scan operation
*/
NIR_INTRINSIC_REDUCTION_OP,
/**
* Cluster size for reduction operations
*/
NIR_INTRINSIC_CLUSTER_SIZE,
/**
* Parameter index for a load_param intrinsic
*/
NIR_INTRINSIC_PARAM_IDX,
/**
* Image dimensionality for image intrinsics
*
* One of GLSL_SAMPLER_DIM_*
*/
NIR_INTRINSIC_IMAGE_DIM,
/**
* Non-zero if we are accessing an array image
*/
NIR_INTRINSIC_IMAGE_ARRAY,
/**
* Image format for image intrinsics
*/
NIR_INTRINSIC_FORMAT,
/**
* Access qualifiers for image and memory access intrinsics
*/
NIR_INTRINSIC_ACCESS,
/**
* Alignment for offsets and addresses
*
* These two parameters, specify an alignment in terms of a multiplier and
* an offset. The offset or address parameter X of the intrinsic is
* guaranteed to satisfy the following:
*
* (X - align_offset) % align_mul == 0
*/
NIR_INTRINSIC_ALIGN_MUL,
NIR_INTRINSIC_ALIGN_OFFSET,
/**
* The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
*/
NIR_INTRINSIC_DESC_TYPE,
/**
* The nir_alu_type of a uniform/input/output
*/
NIR_INTRINSIC_TYPE,
/**
* The swizzle mask for the instructions
* SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
*/
NIR_INTRINSIC_SWIZZLE_MASK,
/* Separate source/dest access flags for copies */
NIR_INTRINSIC_SRC_ACCESS,
NIR_INTRINSIC_DST_ACCESS,
/* Driver location for nir_load_patch_location_ir3 */
NIR_INTRINSIC_DRIVER_LOCATION,
/**
* Mask of nir_memory_semantics, includes ordering and visibility.
*/
NIR_INTRINSIC_MEMORY_SEMANTICS,
/**
* Mask of nir_variable_modes affected by the memory operation.
*/
NIR_INTRINSIC_MEMORY_MODES,
/**
* Value of nir_scope.
*/
NIR_INTRINSIC_MEMORY_SCOPE,
/**
* Value of nir_scope.
*/
NIR_INTRINSIC_EXECUTION_SCOPE,
NIR_INTRINSIC_NUM_INDEX_FLAGS,
} nir_intrinsic_index_flag;
#define NIR_INTRINSIC_MAX_INPUTS 5
typedef struct {
const char *name;
uint8_t num_srcs; /** < number of register/SSA inputs */
/** number of components of each input register
*
* If this value is 0, the number of components is given by the
* num_components field of nir_intrinsic_instr. If this value is -1, the
* intrinsic consumes however many components are provided and it is not
* validated at all.
*/
int8_t src_components[NIR_INTRINSIC_MAX_INPUTS];
bool has_dest;
/** number of components of the output register
*
* If this value is 0, the number of components is given by the
* num_components field of nir_intrinsic_instr.
*/
uint8_t dest_components;
/** bitfield of legal bit sizes */
uint8_t dest_bit_sizes;
/** the number of constant indices used by the intrinsic */
uint8_t num_indices;
/** indicates the usage of intr->const_index[n] */
uint8_t index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
/** semantic flags for calls to this intrinsic */
nir_intrinsic_semantic_flag flags;
} nir_intrinsic_info;
extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
static inline unsigned
nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn)
{
const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
assert(srcn < info->num_srcs);
if (info->src_components[srcn] > 0)
return info->src_components[srcn];
else if (info->src_components[srcn] == 0)
return intr->num_components;
else
return nir_src_num_components(intr->src[srcn]);
}
static inline unsigned
nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
{
const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
if (!info->has_dest)
return 0;
else if (info->dest_components)
return info->dest_components;
else
return intr->num_components;
}
/**
* Helper to copy const_index[] from src to dst, without assuming they
* match in order.
*/
static inline void
nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src)
{
if (src->intrinsic == dst->intrinsic) {
memcpy(dst->const_index, src->const_index, sizeof(dst->const_index));
return;
}
const nir_intrinsic_info *src_info = &nir_intrinsic_infos[src->intrinsic];
const nir_intrinsic_info *dst_info = &nir_intrinsic_infos[dst->intrinsic];
for (unsigned i = 0; i < NIR_INTRINSIC_NUM_INDEX_FLAGS; i++) {
if (src_info->index_map[i] == 0)
continue;
/* require that dst instruction also uses the same const_index[]: */
assert(dst_info->index_map[i] > 0);
dst->const_index[dst_info->index_map[i] - 1] =
src->const_index[src_info->index_map[i] - 1];
}
}
#define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
static inline type \
nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
{ \
const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
} \
static inline void \
nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
{ \
const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
} \
static inline bool \
nir_intrinsic_has_##name(nir_intrinsic_instr *instr) \
{ \
const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
return info->index_map[NIR_INTRINSIC_##flag] > 0; \
}
INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
INTRINSIC_IDX_ACCESSORS(base, BASE, int)
INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
INTRINSIC_IDX_ACCESSORS(format, FORMAT, enum pipe_format)
INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
INTRINSIC_IDX_ACCESSORS(driver_location, DRIVER_LOCATION, unsigned)
INTRINSIC_IDX_ACCESSORS(memory_semantics, MEMORY_SEMANTICS, nir_memory_semantics)
INTRINSIC_IDX_ACCESSORS(memory_modes, MEMORY_MODES, nir_variable_mode)
INTRINSIC_IDX_ACCESSORS(memory_scope, MEMORY_SCOPE, nir_scope)
INTRINSIC_IDX_ACCESSORS(execution_scope, EXECUTION_SCOPE, nir_scope)
static inline void
nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
unsigned align_mul, unsigned align_offset)
{
assert(util_is_power_of_two_nonzero(align_mul));
assert(align_offset < align_mul);
nir_intrinsic_set_align_mul(intrin, align_mul);
nir_intrinsic_set_align_offset(intrin, align_offset);
}
/** Returns a simple alignment for a load/store intrinsic offset
*
* Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
* and ALIGN_OFFSET parameters, this helper takes both into account and
* provides a single simple alignment parameter. The offset X is guaranteed
* to satisfy X % align == 0.
*/
static inline unsigned
nir_intrinsic_align(const nir_intrinsic_instr *intrin)
{
const unsigned align_mul = nir_intrinsic_align_mul(intrin);
const unsigned align_offset = nir_intrinsic_align_offset(intrin);
assert(align_offset < align_mul);
return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
}
unsigned
nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
/* Converts a image_deref_* intrinsic into a image_* one */
void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
nir_ssa_def *handle, bool bindless);
/* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
static inline bool
nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
{
if (instr->intrinsic == nir_intrinsic_load_deref ||
instr->intrinsic == nir_intrinsic_load_ssbo ||
instr->intrinsic == nir_intrinsic_bindless_image_load ||
instr->intrinsic == nir_intrinsic_image_deref_load ||
instr->intrinsic == nir_intrinsic_image_load) {
return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
} else {
const nir_intrinsic_info *info =
&nir_intrinsic_infos[instr->intrinsic];
return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
(info->flags & NIR_INTRINSIC_CAN_REORDER);
}
}
/**
* \group texture information
*
* This gives semantic information about textures which is useful to the
* frontend, the backend, and lowering passes, but not the optimizer.
*/
typedef enum {
nir_tex_src_coord,
nir_tex_src_projector,
nir_tex_src_comparator, /* shadow comparator */
nir_tex_src_offset,
nir_tex_src_bias,
nir_tex_src_lod,
nir_tex_src_min_lod,
nir_tex_src_ms_index, /* MSAA sample index */
nir_tex_src_ms_mcs, /* MSAA compression value */
nir_tex_src_ddx,
nir_tex_src_ddy,
nir_tex_src_texture_deref, /* < deref pointing to the texture */
nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
nir_tex_src_texture_handle, /* < bindless texture handle */
nir_tex_src_sampler_handle, /* < bindless sampler handle */
nir_tex_src_plane, /* < selects plane for planar textures */
nir_num_tex_src_types
} nir_tex_src_type;
typedef struct {
nir_src src;
nir_tex_src_type src_type;
} nir_tex_src;
typedef enum {
nir_texop_tex, /**< Regular texture look-up */
nir_texop_txb, /**< Texture look-up with LOD bias */
nir_texop_txl, /**< Texture look-up with explicit LOD */
nir_texop_txd, /**< Texture look-up with partial derivatives */
nir_texop_txf, /**< Texel fetch with explicit LOD */
nir_texop_txf_ms, /**< Multisample texture fetch */
nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
nir_texop_txs, /**< Texture size */
nir_texop_lod, /**< Texture lod query */
nir_texop_tg4, /**< Texture gather */
nir_texop_query_levels, /**< Texture levels query */
nir_texop_texture_samples, /**< Texture samples query */
nir_texop_samples_identical, /**< Query whether all samples are definitely
* identical.
*/
nir_texop_tex_prefetch, /**< Regular texture look-up, eligible for pre-dispatch */
nir_texop_fragment_fetch, /**< Multisample fragment color texture fetch */
nir_texop_fragment_mask_fetch,/**< Multisample fragment mask texture fetch */
} nir_texop;
typedef struct {
nir_instr instr;
enum glsl_sampler_dim sampler_dim;
nir_alu_type dest_type;
nir_texop op;
nir_dest dest;
nir_tex_src *src;
unsigned num_srcs, coord_components;
bool is_array, is_shadow;
/**
* If is_shadow is true, whether this is the old-style shadow that outputs 4
* components or the new-style shadow that outputs 1 component.
*/
bool is_new_style_shadow;
/* gather component selector */
unsigned component : 2;
/* gather offsets */
int8_t tg4_offsets[4][2];
/* True if the texture index or handle is not dynamically uniform */
bool texture_non_uniform;
/* True if the sampler index or handle is not dynamically uniform */
bool sampler_non_uniform;
/** The texture index
*
* If this texture instruction has a nir_tex_src_texture_offset source,
* then the texture index is given by texture_index + texture_offset.
*/
unsigned texture_index;
/** The sampler index
*
* The following operations do not require a sampler and, as such, this
* field should be ignored:
* - nir_texop_txf
* - nir_texop_txf_ms
* - nir_texop_txs
* - nir_texop_lod
* - nir_texop_query_levels
* - nir_texop_texture_samples
* - nir_texop_samples_identical
*
* If this texture instruction has a nir_tex_src_sampler_offset source,
* then the sampler index is given by sampler_index + sampler_offset.
*/
unsigned sampler_index;
} nir_tex_instr;
/*
* Returns true if the texture operation requires a sampler as a general rule,
* see the documentation of sampler_index.
*
* Note that the specific hw/driver backend could require to a sampler
* object/configuration packet in any case, for some other reason.
*/
static inline bool
nir_tex_instr_need_sampler(const nir_tex_instr *instr)
{
switch (instr->op) {
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_txs:
case nir_texop_lod:
case nir_texop_query_levels:
case nir_texop_texture_samples:
case nir_texop_samples_identical:
return false;
default:
return true;
}
}
static inline unsigned
nir_tex_instr_dest_size(const nir_tex_instr *instr)
{
switch (instr->op) {
case nir_texop_txs: {
unsigned ret;
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_BUF:
ret = 1;
break;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_CUBE:
case GLSL_SAMPLER_DIM_MS:
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_EXTERNAL:
case GLSL_SAMPLER_DIM_SUBPASS:
ret = 2;
break;
case GLSL_SAMPLER_DIM_3D:
ret = 3;
break;
default:
unreachable("not reached");
}
if (instr->is_array)
ret++;
return ret;
}
case nir_texop_lod:
return 2;
case nir_texop_texture_samples:
case nir_texop_query_levels:
case nir_texop_samples_identical:
case nir_texop_fragment_mask_fetch:
return 1;
default:
if (instr->is_shadow && instr->is_new_style_shadow)
return 1;
return 4;
}
}
/* Returns true if this texture operation queries something about the texture
* rather than actually sampling it.
*/
static inline bool
nir_tex_instr_is_query(const nir_tex_instr *instr)
{
switch (instr->op) {
case nir_texop_txs:
case nir_texop_lod:
case nir_texop_texture_samples:
case nir_texop_query_levels:
case nir_texop_txf_ms_mcs:
return true;
case nir_texop_tex:
case nir_texop_txb:
case nir_texop_txl:
case nir_texop_txd:
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_txf_ms_fb:
case nir_texop_tg4:
return false;
default:
unreachable("Invalid texture opcode");
}
}
static inline bool
nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
{
switch (instr->op) {
case nir_texop_tex:
case nir_texop_txb:
case nir_texop_lod:
return true;
default:
return false;
}
}
static inline nir_alu_type
nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
{
switch (instr->src[src].src_type) {
case nir_tex_src_coord:
switch (instr->op) {
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_txf_ms_fb:
case nir_texop_txf_ms_mcs:
case nir_texop_samples_identical:
return nir_type_int;
default:
return nir_type_float;
}
case nir_tex_src_lod:
switch (instr->op) {
case nir_texop_txs:
case nir_texop_txf:
return nir_type_int;
default:
return nir_type_float;
}
case nir_tex_src_projector:
case nir_tex_src_comparator:
case nir_tex_src_bias:
case nir_tex_src_min_lod:
case nir_tex_src_ddx:
case nir_tex_src_ddy:
return nir_type_float;
case nir_tex_src_offset:
case nir_tex_src_ms_index:
case nir_tex_src_plane:
return nir_type_int;
case nir_tex_src_ms_mcs:
case nir_tex_src_texture_deref:
case nir_tex_src_sampler_deref:
case nir_tex_src_texture_offset:
case nir_tex_src_sampler_offset:
case nir_tex_src_texture_handle:
case nir_tex_src_sampler_handle:
return nir_type_uint;
case nir_num_tex_src_types:
unreachable("nir_num_tex_src_types is not a valid source type");
}
unreachable("Invalid texture source type");
}
static inline unsigned
nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
{
if (instr->src[src].src_type == nir_tex_src_coord)
return instr->coord_components;
/* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
if (instr->src[src].src_type == nir_tex_src_ms_mcs)
return 4;
if (instr->src[src].src_type == nir_tex_src_ddx ||
instr->src[src].src_type == nir_tex_src_ddy) {
if (instr->is_array)
return instr->coord_components - 1;
else
return instr->coord_components;
}
/* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
* the offset, since a cube maps to a single face.
*/
if (instr->src[src].src_type == nir_tex_src_offset) {
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
return 2;
else if (instr->is_array)
return instr->coord_components - 1;
else
return instr->coord_components;
}
return 1;
}
static inline int
nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
{
for (unsigned i = 0; i < instr->num_srcs; i++)
if (instr->src[i].src_type == type)
return (int) i;
return -1;
}
void nir_tex_instr_add_src(nir_tex_instr *tex,
nir_tex_src_type src_type,
nir_src src);
void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
typedef struct {
nir_instr instr;
nir_ssa_def def;
nir_const_value value[];
} nir_load_const_instr;
typedef enum {
/** Return from a function
*
* This instruction is a classic function return. It jumps to
* nir_function_impl::end_block. No return value is provided in this
* instruction. Instead, the function is expected to write any return
* data to a deref passed in from the caller.
*/
nir_jump_return,
/** Break out of the inner-most loop
*
* This has the same semantics as C's "break" statement.
*/
nir_jump_break,
/** Jump back to the top of the inner-most loop
*
* This has the same semantics as C's "continue" statement assuming that a
* NIR loop is implemented as "while (1) { body }".
*/
nir_jump_continue,
/** Jumps for unstructured CFG.
*
* As within an unstructured CFG we can't rely on block ordering we need to
* place explicit jumps at the end of every block.
*/
nir_jump_goto,
nir_jump_goto_if,
} nir_jump_type;
typedef struct {
nir_instr instr;
nir_jump_type type;
nir_src condition;
struct nir_block *target;
struct nir_block *else_target;
} nir_jump_instr;
/* creates a new SSA variable in an undefined state */
typedef struct {
nir_instr instr;
nir_ssa_def def;
} nir_ssa_undef_instr;
typedef struct {
struct exec_node node;
/* The predecessor block corresponding to this source */
struct nir_block *pred;
nir_src src;
} nir_phi_src;
#define nir_foreach_phi_src(phi_src, phi) \
foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
#define nir_foreach_phi_src_safe(phi_src, phi) \
foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
typedef struct {
nir_instr instr;
struct exec_list srcs; /** < list of nir_phi_src */
nir_dest dest;
} nir_phi_instr;
typedef struct {
struct exec_node node;
nir_src src;
nir_dest dest;
} nir_parallel_copy_entry;
#define nir_foreach_parallel_copy_entry(entry, pcopy) \
foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
typedef struct {
nir_instr instr;
/* A list of nir_parallel_copy_entrys. The sources of all of the
* entries are copied to the corresponding destinations "in parallel".
* In other words, if we have two entries: a -> b and b -> a, the values
* get swapped.
*/
struct exec_list entries;
} nir_parallel_copy_instr;
NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
type, nir_instr_type_alu)
NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
type, nir_instr_type_deref)
NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
type, nir_instr_type_call)
NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
type, nir_instr_type_jump)
NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
type, nir_instr_type_tex)
NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
type, nir_instr_type_intrinsic)
NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
type, nir_instr_type_load_const)
NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
type, nir_instr_type_ssa_undef)
NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
type, nir_instr_type_phi)
NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
nir_parallel_copy_instr, instr,
type, nir_instr_type_parallel_copy)
#define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
static inline type \
nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
{ \
assert(nir_src_is_const(src)); \
nir_load_const_instr *load = \
nir_instr_as_load_const(src.ssa->parent_instr); \
assert(comp < load->def.num_components); \
return nir_const_value_as_##suffix(load->value[comp], \
load->def.bit_size); \
} \
\
static inline type \
nir_src_as_##suffix(nir_src src) \
{ \
assert(nir_src_num_components(src) == 1); \
return nir_src_comp_as_##suffix(src, 0); \
}
NIR_DEFINE_SRC_AS_CONST(int64_t, int)
NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
NIR_DEFINE_SRC_AS_CONST(bool, bool)
NIR_DEFINE_SRC_AS_CONST(double, float)
#undef NIR_DEFINE_SRC_AS_CONST
typedef struct {
nir_ssa_def *def;
unsigned comp;
} nir_ssa_scalar;
static inline bool
nir_ssa_scalar_is_const(nir_ssa_scalar s)
{
return s.def->parent_instr->type == nir_instr_type_load_const;
}
static inline nir_const_value
nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
{
assert(s.comp < s.def->num_components);
nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
return load->value[s.comp];
}
#define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
static inline type \
nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \
{ \
return nir_const_value_as_##suffix( \
nir_ssa_scalar_as_const_value(s), s.def->bit_size); \
}
NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
NIR_DEFINE_SCALAR_AS_CONST(double, float)
#undef NIR_DEFINE_SCALAR_AS_CONST
static inline bool
nir_ssa_scalar_is_alu(nir_ssa_scalar s)
{
return s.def->parent_instr->type == nir_instr_type_alu;
}
static inline nir_op
nir_ssa_scalar_alu_op(nir_ssa_scalar s)
{
return nir_instr_as_alu(s.def->parent_instr)->op;
}
static inline nir_ssa_scalar
nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
{
nir_ssa_scalar out = { NULL, 0 };
nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
/* Our component must be written */
assert(s.comp < s.def->num_components);
assert(alu->dest.write_mask & (1u << s.comp));
assert(alu->src[alu_src_idx].src.is_ssa);
out.def = alu->src[alu_src_idx].src.ssa;
if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
/* The ALU src is unsized so the source component follows the
* destination component.
*/
out.comp = alu->src[alu_src_idx].swizzle[s.comp];
} else {
/* This is a sized source so all source components work together to
* produce all the destination components. Since we need to return a
* scalar, this only works if the source is a scalar.
*/
assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
out.comp = alu->src[alu_src_idx].swizzle[0];
}
assert(out.comp < out.def->num_components);
return out;
}
/*
* Control flow
*
* Control flow consists of a tree of control flow nodes, which include
* if-statements and loops. The leaves of the tree are basic blocks, lists of
* instructions that always run start-to-finish. Each basic block also keeps
* track of its successors (blocks which may run immediately after the current
* block) and predecessors (blocks which could have run immediately before the
* current block). Each function also has a start block and an end block which
* all return statements point to (which is always empty). Together, all the
* blocks with their predecessors and successors make up the control flow
* graph (CFG) of the function. There are helpers that modify the tree of
* control flow nodes while modifying the CFG appropriately; these should be
* used instead of modifying the tree directly.
*/
typedef enum {
nir_cf_node_block,
nir_cf_node_if,
nir_cf_node_loop,
nir_cf_node_function
} nir_cf_node_type;
typedef struct nir_cf_node {
struct exec_node node;
nir_cf_node_type type;
struct nir_cf_node *parent;
} nir_cf_node;
typedef struct nir_block {
nir_cf_node cf_node;
struct exec_list instr_list; /** < list of nir_instr */
/** generic block index; generated by nir_index_blocks */
unsigned index;
/*
* Each block can only have up to 2 successors, so we put them in a simple
* array - no need for anything more complicated.
*/
struct nir_block *successors[2];
/* Set of nir_block predecessors in the CFG */
struct set *predecessors;
/*
* this node's immediate dominator in the dominance tree - set to NULL for
* the start block.
*/
struct nir_block *imm_dom;
/* This node's children in the dominance tree */
unsigned num_dom_children;
struct nir_block **dom_children;
/* Set of nir_blocks on the dominance frontier of this block */
struct set *dom_frontier;
/*
* These two indices have the property that dom_{pre,post}_index for each
* child of this block in the dominance tree will always be between
* dom_pre_index and dom_post_index for this block, which makes testing if
* a given block is dominated by another block an O(1) operation.
*/
int16_t dom_pre_index, dom_post_index;
/* live in and out for this block; used for liveness analysis */
BITSET_WORD *live_in;
BITSET_WORD *live_out;
} nir_block;
static inline bool
nir_block_is_reachable(nir_block *b)
{
/* See also nir_block_dominates */
return b->dom_post_index != -1;
}
static inline nir_instr *
nir_block_first_instr(nir_block *block)
{
struct exec_node *head = exec_list_get_head(&block->instr_list);
return exec_node_data(nir_instr, head, node);
}
static inline nir_instr *
nir_block_last_instr(nir_block *block)
{
struct exec_node *tail = exec_list_get_tail(&block->instr_list);
return exec_node_data(nir_instr, tail, node);
}
static inline bool
nir_block_ends_in_jump(nir_block *block)
{
return !exec_list_is_empty(&block->instr_list) &&
nir_block_last_instr(block)->type == nir_instr_type_jump;
}
#define nir_foreach_instr(instr, block) \
foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
#define nir_foreach_instr_reverse(instr, block) \
foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
#define nir_foreach_instr_safe(instr, block) \
foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
#define nir_foreach_instr_reverse_safe(instr, block) \
foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
typedef enum {
nir_selection_control_none = 0x0,
nir_selection_control_flatten = 0x1,
nir_selection_control_dont_flatten = 0x2,
} nir_selection_control;
typedef struct nir_if {
nir_cf_node cf_node;
nir_src condition;
nir_selection_control control;
struct exec_list then_list; /** < list of nir_cf_node */
struct exec_list else_list; /** < list of nir_cf_node */
} nir_if;
typedef struct {
nir_if *nif;
/** Instruction that generates nif::condition. */
nir_instr *conditional_instr;
/** Block within ::nif that has the break instruction. */
nir_block *break_block;
/** Last block for the then- or else-path that does not contain the break. */
nir_block *continue_from_block;
/** True when ::break_block is in the else-path of ::nif. */
bool continue_from_then;
bool induction_rhs;
/* This is true if the terminators exact trip count is unknown. For
* example:
*
* for (int i = 0; i < imin(x, 4); i++)
* ...
*
* Here loop analysis would have set a max_trip_count of 4 however we dont
* know for sure that this is the exact trip count.
*/
bool exact_trip_count_unknown;
struct list_head loop_terminator_link;
} nir_loop_terminator;
typedef struct {
/* Estimated cost (in number of instructions) of the loop */
unsigned instr_cost;
/* Guessed trip count based on array indexing */
unsigned guessed_trip_count;
/* Maximum number of times the loop is run (if known) */
unsigned max_trip_count;
/* Do we know the exact number of times the loop will be run */
bool exact_trip_count_known;
/* Unroll the loop regardless of its size */
bool force_unroll;
/* Does the loop contain complex loop terminators, continues or other
* complex behaviours? If this is true we can't rely on
* loop_terminator_list to be complete or accurate.
*/
bool complex_loop;
nir_loop_terminator *limiting_terminator;
/* A list of loop_terminators terminating this loop. */
struct list_head loop_terminator_list;
} nir_loop_info;
typedef enum {
nir_loop_control_none = 0x0,
nir_loop_control_unroll = 0x1,
nir_loop_control_dont_unroll = 0x2,
} nir_loop_control;
typedef struct {
nir_cf_node cf_node;
struct exec_list body; /** < list of nir_cf_node */
nir_loop_info *info;
nir_loop_control control;
bool partially_unrolled;
} nir_loop;
/**
* Various bits of metadata that can may be created or required by
* optimization and analysis passes
*/
typedef enum {
nir_metadata_none = 0x0,
/** Indicates that nir_block::index values are valid.
*
* The start block has index 0 and they increase through a natural walk of
* the CFG. nir_function_impl::num_blocks is the number of blocks and
* every block index is in the range [0, nir_function_impl::num_blocks].
*
* A pass can preserve this metadata type if it doesn't touch the CFG.
*/
nir_metadata_block_index = 0x1,
/** Indicates that block dominance information is valid
*
* This includes:
*
* - nir_block::num_dom_children
* - nir_block::dom_children
* - nir_block::dom_frontier
* - nir_block::dom_pre_index
* - nir_block::dom_post_index
*
* A pass can preserve this metadata type if it doesn't touch the CFG.
*/
nir_metadata_dominance = 0x2,
/** Indicates that SSA def data-flow liveness information is valid
*
* This includes:
*
* - nir_ssa_def::live_index
* - nir_block::live_in
* - nir_block::live_out
*
* A pass can preserve this metadata type if it never adds or removes any
* SSA defs (most passes shouldn't preserve this metadata type).
*/
nir_metadata_live_ssa_defs = 0x4,
/** A dummy metadata value to track when a pass forgot to call
* nir_metadata_preserve.
*
* A pass should always clear this value even if it doesn't make any
* progress to indicate that it thought about preserving metadata.
*/
nir_metadata_not_properly_reset = 0x8,
/** Indicates that loop analysis information is valid.
*
* This includes everything pointed to by nir_loop::info.
*
* A pass can preserve this metadata type if it is guaranteed to not affect
* any loop metadata. However, since loop metadata includes things like
* loop counts which depend on arithmetic in the loop, this is very hard to
* determine. Most passes shouldn't preserve this metadata type.
*/
nir_metadata_loop_analysis = 0x10,
/** All metadata
*
* This includes all nir_metadata flags except not_properly_reset. Passes
* which do not change the shader in any way should call
*
* nir_metadata_preserve(impl, nir_metadata_all);
*/
nir_metadata_all = ~nir_metadata_not_properly_reset,
} nir_metadata;
typedef struct {
nir_cf_node cf_node;
/** pointer to the function of which this is an implementation */
struct nir_function *function;
struct exec_list body; /** < list of nir_cf_node */
nir_block *end_block;
/** list for all local variables in the function */
struct exec_list locals;
/** list of local registers in the function */
struct exec_list registers;
/** next available local register index */
unsigned reg_alloc;
/** next available SSA value index */
unsigned ssa_alloc;
/* total number of basic blocks, only valid when block_index_dirty = false */
unsigned num_blocks;
/** True if this nir_function_impl uses structured control-flow
*
* Structured nir_function_impls have different validation rules.
*/
bool structured;
nir_metadata valid_metadata;
} nir_function_impl;
#define nir_foreach_function_temp_variable(var, impl) \
foreach_list_typed(nir_variable, var, node, &(impl)->locals)
#define nir_foreach_function_temp_variable_safe(var, impl) \
foreach_list_typed_safe(nir_variable, var, node, &(impl)->locals)
ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_start_block(nir_function_impl *impl)
{
return (nir_block *) impl->body.head_sentinel.next;
}
ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_impl_last_block(nir_function_impl *impl)
{
return (nir_block *) impl->body.tail_sentinel.prev;
}
static inline nir_cf_node *
nir_cf_node_next(nir_cf_node *node)
{
struct exec_node *next = exec_node_get_next(&node->node);
if (exec_node_is_tail_sentinel(next))
return NULL;
else
return exec_node_data(nir_cf_node, next, node);
}
static inline nir_cf_node *
nir_cf_node_prev(nir_cf_node *node)
{
struct exec_node *prev = exec_node_get_prev(&node->node);
if (exec_node_is_head_sentinel(prev))
return NULL;
else
return exec_node_data(nir_cf_node, prev, node);
}
static inline bool
nir_cf_node_is_first(const nir_cf_node *node)
{
return exec_node_is_head_sentinel(node->node.prev);
}
static inline bool
nir_cf_node_is_last(const nir_cf_node *node)
{
return exec_node_is_tail_sentinel(node->node.next);
}
NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
type, nir_cf_node_block)
NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
type, nir_cf_node_if)
NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
type, nir_cf_node_loop)
NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
nir_function_impl, cf_node, type, nir_cf_node_function)
static inline nir_block *
nir_if_first_then_block(nir_if *if_stmt)
{
struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
}
static inline nir_block *
nir_if_last_then_block(nir_if *if_stmt)
{
struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
}
static inline nir_block *
nir_if_first_else_block(nir_if *if_stmt)
{
struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
}
static inline nir_block *
nir_if_last_else_block(nir_if *if_stmt)
{
struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
}
static inline nir_block *
nir_loop_first_block(nir_loop *loop)
{
struct exec_node *head = exec_list_get_head(&loop->body);
return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
}
static inline nir_block *
nir_loop_last_block(nir_loop *loop)
{
struct exec_node *tail = exec_list_get_tail(&loop->body);
return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
}
/**
* Return true if this list of cf_nodes contains a single empty block.
*/
static inline bool
nir_cf_list_is_empty_block(struct exec_list *cf_list)
{
if (exec_list_is_singular(cf_list)) {
struct exec_node *head = exec_list_get_head(cf_list);
nir_block *block =
nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
return exec_list_is_empty(&block->instr_list);
}
return false;
}
typedef struct {
uint8_t num_components;
uint8_t bit_size;
} nir_parameter;
typedef struct nir_function {
struct exec_node node;
const char *name;
struct nir_shader *shader;
unsigned num_params;
nir_parameter *params;
/** The implementation of this function.
*
* If the function is only declared and not implemented, this is NULL.
*/
nir_function_impl *impl;
bool is_entrypoint;
} nir_function;
typedef enum {
nir_lower_imul64 = (1 << 0),
nir_lower_isign64 = (1 << 1),
/** Lower all int64 modulus and division opcodes */
nir_lower_divmod64 = (1 << 2),
/** Lower all 64-bit umul_high and imul_high opcodes */
nir_lower_imul_high64 = (1 << 3),
nir_lower_mov64 = (1 << 4),
nir_lower_icmp64 = (1 << 5),
nir_lower_iadd64 = (1 << 6),
nir_lower_iabs64 = (1 << 7),
nir_lower_ineg64 = (1 << 8),
nir_lower_logic64 = (1 << 9),
nir_lower_minmax64 = (1 << 10),
nir_lower_shift64 = (1 << 11),
nir_lower_imul_2x32_64 = (1 << 12),
nir_lower_extract64 = (1 << 13),
nir_lower_ufind_msb64 = (1 << 14),
} nir_lower_int64_options;
typedef enum {
nir_lower_drcp = (1 << 0),
nir_lower_dsqrt = (1 << 1),
nir_lower_drsq = (1 << 2),
nir_lower_dtrunc = (1 << 3),
nir_lower_dfloor = (1 << 4),
nir_lower_dceil = (1 << 5),
nir_lower_dfract = (1 << 6),
nir_lower_dround_even = (1 << 7),
nir_lower_dmod = (1 << 8),
nir_lower_dsub = (1 << 9),
nir_lower_ddiv = (1 << 10),
nir_lower_fp64_full_software = (1 << 11),
} nir_lower_doubles_options;
typedef enum {
nir_divergence_single_prim_per_subgroup = (1 << 0),
nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
nir_divergence_view_index_uniform = (1 << 3),
} nir_divergence_options;
typedef struct nir_shader_compiler_options {
bool lower_fdiv;
bool lower_ffma;
bool fuse_ffma;
bool lower_flrp16;
bool lower_flrp32;
/** Lowers flrp when it does not support doubles */
bool lower_flrp64;
bool lower_fpow;
bool lower_fsat;
bool lower_fsqrt;
bool lower_sincos;
bool lower_fmod;
/** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
bool lower_bitfield_extract;
/** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
bool lower_bitfield_extract_to_shifts;
/** Lowers bitfield_insert to bfi/bfm */
bool lower_bitfield_insert;
/** Lowers bitfield_insert to compares, and shifts. */
bool lower_bitfield_insert_to_shifts;
/** Lowers bitfield_insert to bfm/bitfield_select. */
bool lower_bitfield_insert_to_bitfield_select;
/** Lowers bitfield_reverse to shifts. */
bool lower_bitfield_reverse;
/** Lowers bit_count to shifts. */
bool lower_bit_count;
/** Lowers ifind_msb to compare and ufind_msb */
bool lower_ifind_msb;
/** Lowers find_lsb to ufind_msb and logic ops */
bool lower_find_lsb;
bool lower_uadd_carry;
bool lower_usub_borrow;
/** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
bool lower_mul_high;
/** lowers fneg and ineg to fsub and isub. */
bool lower_negate;
/** lowers fsub and isub to fadd+fneg and iadd+ineg. */
bool lower_sub;
/* lower {slt,sge,seq,sne} to {flt,fge,feq,fneu} + b2f: */
bool lower_scmp;
/* lower fall_equalN/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
bool lower_vector_cmp;
/** enables rules to lower idiv by power-of-two: */
bool lower_idiv;
/** enable rules to avoid bit ops */
bool lower_bitops;
/** enables rules to lower isign to imin+imax */
bool lower_isign;
/** enables rules to lower fsign to fsub and flt */
bool lower_fsign;
/* lower fdph to fdot4 */
bool lower_fdph;
/** lower fdot to fmul and fsum/fadd. */
bool lower_fdot;
/* Does the native fdot instruction replicate its result for four
* components? If so, then opt_algebraic_late will turn all fdotN
* instructions into fdot_replicatedN instructions.
*/
bool fdot_replicates;
/** lowers ffloor to fsub+ffract: */
bool lower_ffloor;
/** lowers ffract to fsub+ffloor: */
bool lower_ffract;
/** lowers fceil to fneg+ffloor+fneg: */
bool lower_fceil;
bool lower_ftrunc;
bool lower_ldexp;
bool lower_pack_half_2x16;
bool lower_pack_unorm_2x16;
bool lower_pack_snorm_2x16;
bool lower_pack_unorm_4x8;
bool lower_pack_snorm_4x8;
bool lower_pack_64_2x32_split;
bool lower_pack_32_2x16_split;
bool lower_unpack_half_2x16;
bool lower_unpack_unorm_2x16;
bool lower_unpack_snorm_2x16;
bool lower_unpack_unorm_4x8;
bool lower_unpack_snorm_4x8;
bool lower_unpack_64_2x32_split;
bool lower_unpack_32_2x16_split;
bool lower_pack_split;
bool lower_extract_byte;
bool lower_extract_word;
bool lower_all_io_to_temps;
bool lower_all_io_to_elements;
/* Indicates that the driver only has zero-based vertex id */
bool vertex_id_zero_based;
/**
* If enabled, gl_BaseVertex will be lowered as:
* is_indexed_draw (~0/0) & firstvertex
*/
bool lower_base_vertex;
/**
* If enabled, gl_HelperInvocation will be lowered as:
*
* !((1 << sample_id) & sample_mask_in))
*
* This depends on some possibly hw implementation details, which may
* not be true for all hw. In particular that the FS is only executed
* for covered samples or for helper invocations. So, do not blindly
* enable this option.
*
* Note: See also issue #22 in ARB_shader_image_load_store
*/
bool lower_helper_invocation;
/**
* Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
*
* gl_SampleMaskIn == 0 ---> gl_HelperInvocation
* gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
*/
bool optimize_sample_mask_in;
bool lower_cs_local_index_from_id;
bool lower_cs_local_id_from_index;
bool lower_device_index_to_zero;
/* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
bool lower_wpos_pntc;
/**
* Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
* lowered to simple arithmetic.
*
* If this flag is set, the lowering will be applied to all bit-sizes of
* these instructions.
*
* \sa ::lower_hadd64
*/
bool lower_hadd;
/**
* Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
* should be lowered to simple arithmetic.
*
* If this flag is set, the lowering will be applied to only 64-bit
* versions of these instructions.
*
* \sa ::lower_hadd
*/
bool lower_hadd64;
/**
* Set if nir_op_add_sat and nir_op_usub_sat should be lowered to simple
* arithmetic.
*
* If this flag is set, the lowering will be applied to all bit-sizes of
* these instructions.
*
* \sa ::lower_usub_sat64
*/
bool lower_add_sat;
/**
* Set if only 64-bit nir_op_usub_sat should be lowered to simple
* arithmetic.
*
* \sa ::lower_add_sat
*/
bool lower_usub_sat64;
/**
* Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
* for IO purposes and would prefer loads/stores be vectorized.
*/
bool vectorize_io;
bool lower_to_scalar;
/**
* Whether nir_opt_vectorize should only create 16-bit 2D vectors.
*/
bool vectorize_vec2_16bit;
/**
* Should the linker unify inputs_read/outputs_written between adjacent
* shader stages which are linked into a single program?
*/
bool unify_interfaces;
/**
* Should nir_lower_io() create load_interpolated_input intrinsics?
*
* If not, it generates regular load_input intrinsics and interpolation
* information must be inferred from the list of input nir_variables.
*/
bool use_interpolated_input_intrinsics;
/* Lowers when 32x32->64 bit multiplication is not supported */
bool lower_mul_2x32_64;
/* Lowers when rotate instruction is not supported */
bool lower_rotate;
/**
* Backend supports imul24, and would like to use it (when possible)
* for address/offset calculation. If true, driver should call
* nir_lower_amul(). (If not set, amul will automatically be lowered
* to imul.)
*/
bool has_imul24;
/** Backend supports umul24, if not set umul24 will automatically be lowered
* to imul with masked inputs */
bool has_umul24;
/** Backend supports umad24, if not set umad24 will automatically be lowered
* to imul with masked inputs and iadd */
bool has_umad24;
/* Whether to generate only scoped_barrier intrinsics instead of the set of
* memory and control barrier intrinsics based on GLSL.
*/
bool use_scoped_barrier;
/**
* Is this the Intel vec4 backend?
*
* Used to inhibit algebraic optimizations that are known to be harmful on
* the Intel vec4 backend. This is generally applicable to any
* optimization that might cause more immediate values to be used in
* 3-source (e.g., ffma and flrp) instructions.
*/
bool intel_vec4;
/** Lower nir_op_ibfe and nir_op_ubfe that have two constant sources. */
bool lower_bfe_with_two_constants;
/** Whether 8-bit ALU is supported. */
bool support_8bit_alu;
/** Whether 16-bit ALU is supported. */
bool support_16bit_alu;
unsigned max_unroll_iterations;
nir_lower_int64_options lower_int64_options;
nir_lower_doubles_options lower_doubles_options;
} nir_shader_compiler_options;
typedef struct nir_shader {
/** list of uniforms (nir_variable) */
struct exec_list variables;
/** Set of driver-specific options for the shader.
*
* The memory for the options is expected to be kept in a single static
* copy by the driver.
*/
const struct nir_shader_compiler_options *options;
/** Various bits of compile-time information about a given shader */
struct shader_info info;
struct exec_list functions; /** < list of nir_function */
/**
* the highest index a load_input_*, load_uniform_*, etc. intrinsic can
* access plus one
*/
unsigned num_inputs, num_uniforms, num_outputs, num_shared;
/** Size in bytes of required scratch space */
unsigned scratch_size;
/** Constant data associated with this shader.
*
* Constant data is loaded through load_constant intrinsics (as compared to
* the NIR load_const instructions which have the constant value inlined
* into them). This is usually generated by nir_opt_large_constants (so
* shaders don't have to load_const into a temporary array when they want
* to indirect on a const array).
*/
void *constant_data;
/** Size of the constant data associated with the shader, in bytes */
unsigned constant_data_size;
} nir_shader;
#define nir_foreach_function(func, shader) \
foreach_list_typed(nir_function, func, node, &(shader)->functions)
static inline nir_function_impl *
nir_shader_get_entrypoint(nir_shader *shader)
{
nir_function *func = NULL;
nir_foreach_function(function, shader) {
assert(func == NULL);
if (function->is_entrypoint) {
func = function;
#ifndef NDEBUG
break;
#endif
}
}
if (!func)
return NULL;
assert(func->num_params == 0);
assert(func->impl);
return func->impl;
}
nir_shader *nir_shader_create(void *mem_ctx,
gl_shader_stage stage,
const nir_shader_compiler_options *options,
shader_info *si);
nir_register *nir_local_reg_create(nir_function_impl *impl);
void nir_reg_remove(nir_register *reg);
/** Adds a variable to the appropriate list in nir_shader */
void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
static inline void
nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
{
assert(var->data.mode == nir_var_function_temp);
exec_list_push_tail(&impl->locals, &var->node);
}
/** creates a variable, sets a few defaults, and adds it to the list */
nir_variable *nir_variable_create(nir_shader *shader,
nir_variable_mode mode,
const struct glsl_type *type,
const char *name);
/** creates a local variable and adds it to the list */
nir_variable *nir_local_variable_create(nir_function_impl *impl,
const struct glsl_type *type,
const char *name);
nir_variable *nir_find_variable_with_location(nir_shader *shader,
nir_variable_mode mode,
unsigned location);
nir_variable *nir_find_variable_with_driver_location(nir_shader *shader,
nir_variable_mode mode,
unsigned location);
/** creates a function and adds it to the shader's list of functions */
nir_function *nir_function_create(nir_shader *shader, const char *name);
nir_function_impl *nir_function_impl_create(nir_function *func);
/** creates a function_impl that isn't tied to any particular function */
nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
nir_block *nir_block_create(nir_shader *shader);
nir_if *nir_if_create(nir_shader *shader);
nir_loop *nir_loop_create(nir_shader *shader);
nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
/** requests that the given pieces of metadata be generated */
void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
/** dirties all but the preserved metadata */
void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
/** Preserves all metadata for the given shader */
void nir_shader_preserve_all_metadata(nir_shader *shader);
/** creates an instruction with default swizzle/writemask/etc. with NULL registers */
nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
nir_deref_type deref_type);
nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
unsigned num_components,
unsigned bit_size);
nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
nir_intrinsic_op op);
nir_call_instr *nir_call_instr_create(nir_shader *shader,
nir_function *callee);
nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
unsigned num_components,
unsigned bit_size);
nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
/**
* NIR Cursors and Instruction Insertion API
* @{
*
* A tiny struct representing a point to insert/extract instructions or
* control flow nodes. Helps reduce the combinatorial explosion of possible
* points to insert/extract.
*
* \sa nir_control_flow.h
*/
typedef enum {
nir_cursor_before_block,
nir_cursor_after_block,
nir_cursor_before_instr,
nir_cursor_after_instr,
} nir_cursor_option;
typedef struct {
nir_cursor_option option;
union {
nir_block *block;
nir_instr *instr;
};
} nir_cursor;
static inline nir_block *
nir_cursor_current_block(nir_cursor cursor)
{
if (cursor.option == nir_cursor_before_instr ||
cursor.option == nir_cursor_after_instr) {
return cursor.instr->block;
} else {
return cursor.block;
}
}
bool nir_cursors_equal(nir_cursor a, nir_cursor b);
static inline nir_cursor
nir_before_block(nir_block *block)
{
nir_cursor cursor;
cursor.option = nir_cursor_before_block;
cursor.block = block;
return cursor;
}
static inline nir_cursor
nir_after_block(nir_block *block)
{
nir_cursor cursor;
cursor.option = nir_cursor_after_block;
cursor.block = block;
return cursor;
}
static inline nir_cursor
nir_before_instr(nir_instr *instr)
{
nir_cursor cursor;
cursor.option = nir_cursor_before_instr;
cursor.instr = instr;
return cursor;
}
static inline nir_cursor
nir_after_instr(nir_instr *instr)
{
nir_cursor cursor;
cursor.option = nir_cursor_after_instr;
cursor.instr = instr;
return cursor;
}
static inline nir_cursor
nir_after_block_before_jump(nir_block *block)
{
nir_instr *last_instr = nir_block_last_instr(block);
if (last_instr && last_instr->type == nir_instr_type_jump) {
return nir_before_instr(last_instr);
} else {
return nir_after_block(block);
}
}
static inline nir_cursor
nir_before_src(nir_src *src, bool is_if_condition)
{
if (is_if_condition) {
nir_block *prev_block =
nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
assert(!nir_block_ends_in_jump(prev_block));
return nir_after_block(prev_block);
} else if (src->parent_instr->type == nir_instr_type_phi) {
#ifndef NDEBUG
nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
bool found = false;
nir_foreach_phi_src(phi_src, cond_phi) {
if (phi_src->src.ssa == src->ssa) {
found = true;
break;
}
}
assert(found);
#endif
/* The LIST_ENTRY macro is a generic container-of macro, it just happens
* to have a more specific name.
*/
nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
return nir_after_block_before_jump(phi_src->pred);
} else {
return nir_before_instr(src->parent_instr);
}
}
static inline nir_cursor
nir_before_cf_node(nir_cf_node *node)
{
if (node->type == nir_cf_node_block)
return nir_before_block(nir_cf_node_as_block(node));
return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
}
static inline nir_cursor
nir_after_cf_node(nir_cf_node *node)
{
if (node->type == nir_cf_node_block)
return nir_after_block(nir_cf_node_as_block(node));
return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
}
static inline nir_cursor
nir_after_phis(nir_block *block)
{
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_phi)
return nir_before_instr(instr);
}
return nir_after_block(block);
}
static inline nir_cursor
nir_after_cf_node_and_phis(nir_cf_node *node)
{
if (node->type == nir_cf_node_block)
return nir_after_block(nir_cf_node_as_block(node));
nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
return nir_after_phis(block);
}
static inline nir_cursor
nir_before_cf_list(struct exec_list *cf_list)
{
nir_cf_node *first_node = exec_node_data(nir_cf_node,
exec_list_get_head(cf_list), node);
return nir_before_cf_node(first_node);
}
static inline nir_cursor
nir_after_cf_list(struct exec_list *cf_list)
{
nir_cf_node *last_node = exec_node_data(nir_cf_node,
exec_list_get_tail(cf_list), node);
return nir_after_cf_node(last_node);
}
/**
* Insert a NIR instruction at the given cursor.
*
* Note: This does not update the cursor.
*/
void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
static inline void
nir_instr_insert_before(nir_instr *instr, nir_instr *before)
{
nir_instr_insert(nir_before_instr(instr), before);
}
static inline void
nir_instr_insert_after(nir_instr *instr, nir_instr *after)
{
nir_instr_insert(nir_after_instr(instr), after);
}
static inline void
nir_instr_insert_before_block(nir_block *block, nir_instr *before)
{
nir_instr_insert(nir_before_block(block), before);
}
static inline void
nir_instr_insert_after_block(nir_block *block, nir_instr *after)
{
nir_instr_insert(nir_after_block(block), after);
}
static inline void
nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
{
nir_instr_insert(nir_before_cf_node(node), before);
}
static inline void
nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
{
nir_instr_insert(nir_after_cf_node(node), after);
}
static inline void
nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
{
nir_instr_insert(nir_before_cf_list(list), before);
}
static inline void
nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
{
nir_instr_insert(nir_after_cf_list(list), after);
}
void nir_instr_remove_v(nir_instr *instr);
static inline nir_cursor
nir_instr_remove(nir_instr *instr)
{
nir_cursor cursor;
nir_instr *prev = nir_instr_prev(instr);
if (prev) {
cursor = nir_after_instr(prev);
} else {
cursor = nir_before_block(instr->block);
}
nir_instr_remove_v(instr);
return cursor;
}
/** @} */
nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
void *state);
bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
bool nir_foreach_phi_src_leaving_block(nir_block *instr,
nir_foreach_src_cb cb,
void *state);
nir_const_value *nir_src_as_const_value(nir_src src);
#define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
static inline c_type * \
nir_src_as_ ## name (nir_src src) \
{ \
return src.is_ssa && src.ssa->parent_instr->type == type_enum \
? cast_macro(src.ssa->parent_instr) : NULL; \
}
NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
nir_instr_type_intrinsic, nir_instr_as_intrinsic)
NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
bool nir_src_is_dynamically_uniform(nir_src src);
bool nir_srcs_equal(nir_src src1, nir_src src2);
bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
nir_dest new_dest);
void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
unsigned num_components, unsigned bit_size,
const char *name);
void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
unsigned num_components, unsigned bit_size,
const char *name);
static inline void
nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
const struct glsl_type *type,
const char *name)
{
assert(glsl_type_is_vector_or_scalar(type));
nir_ssa_dest_init(instr, dest, glsl_get_components(type),
glsl_get_bit_size(type), name);
}
void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
nir_instr *after_me);
nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
/** Returns the next block, disregarding structure
*
* The ordering is deterministic but has no guarantees beyond that. In
* particular, it is not guaranteed to be dominance-preserving.
*/
nir_block *nir_block_unstructured_next(nir_block *block);
nir_block *nir_unstructured_start_block(nir_function_impl *impl);
#define nir_foreach_block_unstructured(block, impl) \
for (nir_block *block = nir_unstructured_start_block(impl); block != NULL; \
block = nir_block_unstructured_next(block))
#define nir_foreach_block_unstructured_safe(block, impl) \
for (nir_block *block = nir_unstructured_start_block(impl), \
*next = nir_block_unstructured_next(block); \
block != NULL; \
block = next, next = nir_block_unstructured_next(block))
/*
* finds the next basic block in source-code order, returns NULL if there is
* none
*/
nir_block *nir_block_cf_tree_next(nir_block *block);
/* Performs the opposite of nir_block_cf_tree_next() */
nir_block *nir_block_cf_tree_prev(nir_block *block);
/* Gets the first block in a CF node in source-code order */
nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
/* Gets the last block in a CF node in source-code order */
nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
/* Gets the next block after a CF node in source-code order */
nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
/* Macros for loops that visit blocks in source-code order */
#define nir_foreach_block(block, impl) \
for (nir_block *block = nir_start_block(impl); block != NULL; \
block = nir_block_cf_tree_next(block))
#define nir_foreach_block_safe(block, impl) \
for (nir_block *block = nir_start_block(impl), \
*next = nir_block_cf_tree_next(block); \
block != NULL; \
block = next, next = nir_block_cf_tree_next(block))
#define nir_foreach_block_reverse(block, impl) \
for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
block = nir_block_cf_tree_prev(block))
#define nir_foreach_block_reverse_safe(block, impl) \
for (nir_block *block = nir_impl_last_block(impl), \
*prev = nir_block_cf_tree_prev(block); \
block != NULL; \
block = prev, prev = nir_block_cf_tree_prev(block))
#define nir_foreach_block_in_cf_node(block, node) \
for (nir_block *block = nir_cf_node_cf_tree_first(node); \
block != nir_cf_node_cf_tree_next(node); \
block = nir_block_cf_tree_next(block))
/* If the following CF node is an if, this function returns that if.
* Otherwise, it returns NULL.
*/
nir_if *nir_block_get_following_if(nir_block *block);
nir_loop *nir_block_get_following_loop(nir_block *block);
void nir_index_local_regs(nir_function_impl *impl);
void nir_index_ssa_defs(nir_function_impl *impl);
unsigned nir_index_instrs(nir_function_impl *impl);
void nir_index_blocks(nir_function_impl *impl);
unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes);
unsigned nir_function_impl_index_vars(nir_function_impl *impl);
void nir_print_shader(nir_shader *shader, FILE *fp);
void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
void nir_print_instr(const nir_instr *instr, FILE *fp);
void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
/** Shallow clone of a single ALU instruction. */
nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
nir_function_impl *nir_function_impl_clone(nir_shader *shader,
const nir_function_impl *fi);
nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
void nir_shader_replace(nir_shader *dest, nir_shader *src);
void nir_shader_serialize_deserialize(nir_shader *s);
#ifndef NDEBUG
void nir_validate_shader(nir_shader *shader, const char *when);
void nir_metadata_set_validation_flag(nir_shader *shader);
void nir_metadata_check_validation_flag(nir_shader *shader);
static inline bool
should_skip_nir(const char *name)
{
static const char *list = NULL;
if (!list) {
/* Comma separated list of names to skip. */
list = getenv("NIR_SKIP");
if (!list)
list = "";
}
if (!list[0])
return false;
return comma_separated_list_contains(list, name);
}
static inline bool
should_clone_nir(void)
{
static int should_clone = -1;
if (should_clone < 0)
should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
return should_clone;
}
static inline bool
should_serialize_deserialize_nir(void)
{
static int test_serialize = -1;
if (test_serialize < 0)
test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
return test_serialize;
}
static inline bool
should_print_nir(void)
{
static int should_print = -1;
if (should_print < 0)
should_print = env_var_as_boolean("NIR_PRINT", false);
return should_print;
}
#else
static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
static inline bool should_clone_nir(void) { return false; }
static inline bool should_serialize_deserialize_nir(void) { return false; }
static inline bool should_print_nir(void) { return false; }
#endif /* NDEBUG */
#define _PASS(pass, nir, do_pass) do { \
if (should_skip_nir(#pass)) { \
printf("skipping %s\n", #pass); \
break; \
} \
do_pass \
nir_validate_shader(nir, "after " #pass); \
if (should_clone_nir()) { \
nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
nir_shader_replace(nir, clone); \
} \
if (should_serialize_deserialize_nir()) { \
nir_shader_serialize_deserialize(nir); \
} \
} while (0)
#define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
nir_metadata_set_validation_flag(nir); \
if (should_print_nir()) \
printf("%s\n", #pass); \
if (pass(nir, ##__VA_ARGS__)) { \
progress = true; \
if (should_print_nir()) \
nir_print_shader(nir, stdout); \
nir_metadata_check_validation_flag(nir); \
} \
)
#define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
if (should_print_nir()) \
printf("%s\n", #pass); \
pass(nir, ##__VA_ARGS__); \
if (should_print_nir()) \
nir_print_shader(nir, stdout); \
)
#define NIR_SKIP(name) should_skip_nir(#name)
/** An instruction filtering callback
*
* Returns true if the instruction should be processed and false otherwise.
*/
typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
/** A simple instruction lowering callback
*
* Many instruction lowering passes can be written as a simple function which
* takes an instruction as its input and returns a sequence of instructions
* that implement the consumed instruction. This function type represents
* such a lowering function. When called, a function with this prototype
* should either return NULL indicating that no lowering needs to be done or
* emit a sequence of instructions using the provided builder (whose cursor
* will already be placed after the instruction to be lowered) and return the
* resulting nir_ssa_def.
*/
typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
nir_instr *, void *);
/**
* Special return value for nir_lower_instr_cb when some progress occurred
* (like changing an input to the instr) that didn't result in a replacement
* SSA def being generated.
*/
#define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
/** Iterate over all the instructions in a nir_function_impl and lower them
* using the provided callbacks
*
* This function implements the guts of a standard lowering pass for you. It
* iterates over all of the instructions in a nir_function_impl and calls the
* filter callback on each one. If the filter callback returns true, it then
* calls the lowering call back on the instruction. (Splitting it this way
* allows us to avoid some save/restore work for instructions we know won't be
* lowered.) If the instruction is dead after the lowering is complete, it
* will be removed. If new instructions are added, the lowering callback will
* also be called on them in case multiple lowerings are required.
*
* The metadata for the nir_function_impl will also be updated. If any blocks
* are added (they cannot be removed), dominance and block indices will be
* invalidated.
*/
bool nir_function_impl_lower_instructions(nir_function_impl *impl,
nir_instr_filter_cb filter,
nir_lower_instr_cb lower,
void *cb_data);
bool nir_shader_lower_instructions(nir_shader *shader,
nir_instr_filter_cb filter,
nir_lower_instr_cb lower,
void *cb_data);
void nir_calc_dominance_impl(nir_function_impl *impl);
void nir_calc_dominance(nir_shader *shader);
nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
bool nir_block_dominates(nir_block *parent, nir_block *child);
bool nir_block_is_unreachable(nir_block *block);
void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
void nir_dump_cfg(nir_shader *shader, FILE *fp);
int nir_gs_count_vertices(const nir_shader *shader);
bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
bool nir_split_var_copies(nir_shader *shader);
bool nir_split_per_member_structs(nir_shader *shader);
bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
bool nir_lower_returns_impl(nir_function_impl *impl);
bool nir_lower_returns(nir_shader *shader);
void nir_inline_function_impl(struct nir_builder *b,
const nir_function_impl *impl,
nir_ssa_def **params);
bool nir_inline_functions(nir_shader *shader);
bool nir_propagate_invariant(nir_shader *shader);
void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
void nir_lower_deref_copy_instr(struct nir_builder *b,
nir_intrinsic_instr *copy);
bool nir_lower_var_copies(nir_shader *shader);
void nir_fixup_deref_modes(nir_shader *shader);
bool nir_lower_global_vars_to_local(nir_shader *shader);
typedef enum {
nir_lower_direct_array_deref_of_vec_load = (1 << 0),
nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
nir_lower_direct_array_deref_of_vec_store = (1 << 2),
nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
} nir_lower_array_deref_of_vec_options;
bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
nir_lower_array_deref_of_vec_options options);
bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
bool nir_lower_locals_to_regs(nir_shader *shader);
void nir_lower_io_to_temporaries(nir_shader *shader,
nir_function_impl *entrypoint,
bool outputs, bool inputs);
bool nir_lower_vars_to_scratch(nir_shader *shader,
nir_variable_mode modes,
int size_threshold,
glsl_type_size_align_func size_align);
void nir_lower_clip_halfz(nir_shader *shader);
void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
void nir_gather_ssa_types(nir_function_impl *impl,
BITSET_WORD *float_types,
BITSET_WORD *int_types);
void nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
unsigned *size,
int (*type_size)(const struct glsl_type *, bool));
/* Some helpers to do very simple linking */
bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
bool nir_remove_unused_io_vars(nir_shader *shader, nir_variable_mode mode,
uint64_t *used_by_other_stage,
uint64_t *used_by_other_stage_patches);
void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
bool default_to_smooth_interp);
void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
bool nir_lower_amul(nir_shader *shader,
int (*type_size)(const struct glsl_type *, bool));
void nir_assign_io_var_locations(nir_shader *shader,
nir_variable_mode mode,
unsigned *size,
gl_shader_stage stage);
typedef struct {
uint8_t num_linked_io_vars;
uint8_t num_linked_patch_io_vars;
} nir_linked_io_var_info;
nir_linked_io_var_info
nir_assign_linked_io_var_locations(nir_shader *producer,
nir_shader *consumer);
typedef enum {
/* If set, this causes all 64-bit IO operations to be lowered on-the-fly
* to 32-bit operations. This is only valid for nir_var_shader_in/out
* modes.
*/
nir_lower_io_lower_64bit_to_32 = (1 << 0),
/* If set, this forces all non-flat fragment shader inputs to be
* interpolated as if with the "sample" qualifier. This requires
* nir_shader_compiler_options::use_interpolated_input_intrinsics.
*/
nir_lower_io_force_sample_interpolation = (1 << 1),
} nir_lower_io_options;
bool nir_lower_io(nir_shader *shader,
nir_variable_mode modes,
int (*type_size)(const struct glsl_type *, bool),
nir_lower_io_options);
bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
bool
nir_lower_vars_to_explicit_types(nir_shader *shader,
nir_variable_mode modes,
glsl_type_size_align_func type_info);
typedef enum {
/**
* An address format which is a simple 32-bit global GPU address.
*/
nir_address_format_32bit_global,
/**
* An address format which is a simple 64-bit global GPU address.
*/
nir_address_format_64bit_global,
/**
* An address format which is a bounds-checked 64-bit global GPU address.
*
* The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
* address stored with the low bits in .x and high bits in .y, .z is a
* size, and .w is an offset. When the final I/O operation is lowered, .w
* is checked against .z and the operation is predicated on the result.
*/
nir_address_format_64bit_bounded_global,
/**
* An address format which is comprised of a vec2 where the first
* component is a buffer index and the second is an offset.
*/
nir_address_format_32bit_index_offset,
/**
* An address format which is a 64-bit value, where the high 32 bits
* are a buffer index, and the low 32 bits are an offset.
*/
nir_address_format_32bit_index_offset_pack64,
/**
* An address format which is comprised of a vec3 where the first two
* components specify the buffer and the third is an offset.
*/
nir_address_format_vec2_index_32bit_offset,
/**
* An address format which is a simple 32-bit offset.
*/
nir_address_format_32bit_offset,
/**
* An address format which is a simple 32-bit offset cast to 64-bit.
*/
nir_address_format_32bit_offset_as_64bit,
/**
* An address format representing a purely logical addressing model. In
* this model, all deref chains must be complete from the dereference
* operation to the variable. Cast derefs are not allowed. These
* addresses will be 32-bit scalars but the format is immaterial because
* you can always chase the chain.
*/
nir_address_format_logical,
} nir_address_format;
static inline unsigned
nir_address_format_bit_size(nir_address_format addr_format)
{
switch (addr_format) {
case nir_address_format_32bit_global: return 32;
case nir_address_format_64bit_global: return 64;
case nir_address_format_64bit_bounded_global: return 32;
case nir_address_format_32bit_index_offset: return 32;
case nir_address_format_32bit_index_offset_pack64: return 64;
case nir_address_format_vec2_index_32bit_offset: return 32;
case nir_address_format_32bit_offset: return 32;
case nir_address_format_32bit_offset_as_64bit: return 64;
case nir_address_format_logical: return 32;
}
unreachable("Invalid address format");
}
static inline unsigned
nir_address_format_num_components(nir_address_format addr_format)
{
switch (addr_format) {
case nir_address_format_32bit_global: return 1;
case nir_address_format_64bit_global: return 1;
case nir_address_format_64bit_bounded_global: return 4;
case nir_address_format_32bit_index_offset: return 2;
case nir_address_format_32bit_index_offset_pack64: return 1;
case nir_address_format_vec2_index_32bit_offset: return 3;
case nir_address_format_32bit_offset: return 1;
case nir_address_format_32bit_offset_as_64bit: return 1;
case nir_address_format_logical: return 1;
}
unreachable("Invalid address format");
}
static inline const struct glsl_type *
nir_address_format_to_glsl_type(nir_address_format addr_format)
{
unsigned bit_size = nir_address_format_bit_size(addr_format);
assert(bit_size == 32 || bit_size == 64);
return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
nir_address_format_num_components(addr_format));
}
const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
nir_address_format addr_format);
nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
nir_address_format addr_format);
nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
nir_deref_instr *deref,
nir_ssa_def *base_addr,
nir_address_format addr_format);
void nir_lower_explicit_io_instr(struct nir_builder *b,
nir_intrinsic_instr *io_instr,
nir_ssa_def *addr,
nir_address_format addr_format);
bool nir_lower_explicit_io(nir_shader *shader,
nir_variable_mode modes,
nir_address_format);
nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
bool nir_lower_regs_to_ssa(nir_shader *shader);
bool nir_lower_vars_to_ssa(nir_shader *shader);
bool nir_remove_dead_derefs(nir_shader *shader);
bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes,
bool (*can_remove_var)(nir_variable *var));
bool nir_lower_variable_initializers(nir_shader *shader,
nir_variable_mode modes);
bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
bool nir_lower_vec_to_movs(nir_shader *shader);
void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
bool alpha_to_one,
const gl_state_index16 *alpha_ref_state_tokens);
bool nir_lower_alu(nir_shader *shader);
bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
bool always_precise, bool have_ffma);
bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
bool nir_lower_bool_to_bitsize(nir_shader *shader);
bool nir_lower_bool_to_float(nir_shader *shader);
bool nir_lower_bool_to_int32(nir_shader *shader);
bool nir_lower_int_to_float(nir_shader *shader);
bool nir_lower_load_const_to_scalar(nir_shader *shader);
bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
bool nir_lower_phis_to_scalar(nir_shader *shader);
void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
bool outputs_only);
void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
bool nir_lower_fragcolor(nir_shader *shader);
bool nir_lower_fragcoord_wtrans(nir_shader *shader);
void nir_lower_viewport_transform(nir_shader *shader);
bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
typedef struct nir_lower_subgroups_options {
uint8_t subgroup_size;
uint8_t ballot_bit_size;
bool lower_to_scalar:1;
bool lower_vote_trivial:1;
bool lower_vote_eq_to_ballot:1;
bool lower_subgroup_masks:1;
bool lower_shuffle:1;
bool lower_shuffle_to_32bit:1;
bool lower_shuffle_to_swizzle_amd:1;
bool lower_quad:1;
bool lower_quad_broadcast_dynamic:1;
bool lower_quad_broadcast_dynamic_to_const:1;
} nir_lower_subgroups_options;
bool nir_lower_subgroups(nir_shader *shader,
const nir_lower_subgroups_options *options);
bool nir_lower_system_values(nir_shader *shader);
enum PACKED nir_lower_tex_packing {
nir_lower_tex_packing_none = 0,
/* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
* or unsigned ints based on the sampler type
*/
nir_lower_tex_packing_16,
/* The sampler returns 1 32-bit word of 4x8 unorm */
nir_lower_tex_packing_8,
};
typedef struct nir_lower_tex_options {
/**
* bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
* sampler types a texture projector is lowered.
*/
unsigned lower_txp;
/**
* If true, lower away nir_tex_src_offset for all texelfetch instructions.
*/
bool lower_txf_offset;
/**
* If true, lower away nir_tex_src_offset for all rect textures.
*/
bool lower_rect_offset;
/**
* If true, lower rect textures to 2D, using txs to fetch the
* texture dimensions and dividing the texture coords by the
* texture dims to normalize.
*/
bool lower_rect;
/**
* If true, convert yuv to rgb.
*/
unsigned lower_y_uv_external;
unsigned lower_y_u_v_external;
unsigned lower_yx_xuxv_external;
unsigned lower_xy_uxvx_external;
unsigned lower_ayuv_external;
unsigned lower_xyuv_external;
unsigned bt709_external;
unsigned bt2020_external;
/**
* To emulate certain texture wrap modes, this can be used
* to saturate the specified tex coord to [0.0, 1.0]. The
* bits are according to sampler #, ie. if, for example:
*
* (conf->saturate_s & (1 << n))
*
* is true, then the s coord for sampler n is saturated.
*
* Note that clamping must happen *after* projector lowering
* so any projected texture sample instruction with a clamped
* coordinate gets automatically lowered, regardless of the
* 'lower_txp' setting.
*/
unsigned saturate_s;
unsigned saturate_t;
unsigned saturate_r;
/* Bitmask of textures that need swizzling.
*
* If (swizzle_result & (1 << texture_index)), then the swizzle in
* swizzles[texture_index] is applied to the result of the texturing
* operation.
*/
unsigned swizzle_result;
/* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
* while 4 and 5 represent 0 and 1 respectively.
*/
uint8_t swizzles[32][4];
/* Can be used to scale sampled values in range required by the format. */
float scale_factors[32];
/**
* Bitmap of textures that need srgb to linear conversion. If
* (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
* of the texture are lowered to linear.
*/
unsigned lower_srgb;
/**
* If true, lower nir_texop_tex on shaders that doesn't support implicit
* LODs to nir_texop_txl.
*/
bool lower_tex_without_implicit_lod;
/**
* If true, lower nir_texop_txd on cube maps with nir_texop_txl.
*/
bool lower_txd_cube_map;
/**
* If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
*/
bool lower_txd_3d;
/**
* If true, lower nir_texop_txd on shadow samplers (except cube maps)
* with nir_texop_txl. Notice that cube map shadow samplers are lowered
* with lower_txd_cube_map.
*/
bool lower_txd_shadow;
/**
* If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
* Implies lower_txd_cube_map and lower_txd_shadow.
*/
bool lower_txd;
/**
* If true, lower nir_texop_txb that try to use shadow compare and min_lod
* at the same time to a nir_texop_lod, some math, and nir_texop_tex.
*/
bool lower_txb_shadow_clamp;
/**
* If true, lower nir_texop_txd on shadow samplers when it uses min_lod
* with nir_texop_txl. This includes cube maps.
*/
bool lower_txd_shadow_clamp;
/**
* If true, lower nir_texop_txd on when it uses both offset and min_lod
* with nir_texop_txl. This includes cube maps.
*/
bool lower_txd_offset_clamp;
/**
* If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
* sampler is bindless.
*/
bool lower_txd_clamp_bindless_sampler;
/**
* If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
* sampler index is not statically determinable to be less than 16.
*/
bool lower_txd_clamp_if_sampler_index_not_lt_16;
/**
* If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
* 0-lod followed by a nir_ishr.
*/
bool lower_txs_lod;
/**
* If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
* mixed-up tg4 locations.
*/
bool lower_tg4_broadcom_swizzle;
/**
* If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
*/
bool lower_tg4_offsets;
enum nir_lower_tex_packing lower_tex_packing[32];
} nir_lower_tex_options;
bool nir_lower_tex(nir_shader *shader,
const nir_lower_tex_options *options);
enum nir_lower_non_uniform_access_type {
nir_lower_non_uniform_ubo_access = (1 << 0),
nir_lower_non_uniform_ssbo_access = (1 << 1),
nir_lower_non_uniform_texture_access = (1 << 2),
nir_lower_non_uniform_image_access = (1 << 3),
};
bool nir_lower_non_uniform_access(nir_shader *shader,
enum nir_lower_non_uniform_access_type);
enum nir_lower_idiv_path {
/* This path is based on NV50LegalizeSSA::handleDIV(). It is the faster of
* the two but it is not exact in some cases (for example, 1091317713u /
* 1034u gives 5209173 instead of 1055432) */
nir_lower_idiv_fast,
/* This path is based on AMDGPUTargetLowering::LowerUDIVREM() and
* AMDGPUTargetLowering::LowerSDIVREM(). It requires more instructions than
* the nv50 path and many of them are integer multiplications, so it is
* probably slower. It should always return the correct result, though. */
nir_lower_idiv_precise,
};
bool nir_lower_idiv(nir_shader *shader, enum nir_lower_idiv_path path);
typedef struct nir_input_attachment_options {
bool use_fragcoord_sysval;
bool use_layer_id_sysval;
bool use_view_id_for_layer;
} nir_input_attachment_options;
bool nir_lower_input_attachments(nir_shader *shader,
const nir_input_attachment_options *options);
bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
bool use_vars,
bool use_clipdist_array,
const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
bool use_clipdist_array,
const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
bool use_clipdist_array);
bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
bool nir_lower_clip_disable(nir_shader *shader, unsigned clip_plane_enable);
void nir_lower_point_size_mov(nir_shader *shader,
const gl_state_index16 *pointsize_state_tokens);
bool nir_lower_frexp(nir_shader *nir);
void nir_lower_two_sided_color(nir_shader *shader, bool face_sysval);
bool nir_lower_clamp_color_outputs(nir_shader *shader);
bool nir_lower_flatshade(nir_shader *shader);
void nir_lower_passthrough_edgeflags(nir_shader *shader);
bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
const gl_state_index16 *uniform_state_tokens);
typedef struct nir_lower_wpos_ytransform_options {
gl_state_index16 state_tokens[STATE_LENGTH];
bool fs_coord_origin_upper_left :1;
bool fs_coord_origin_lower_left :1;
bool fs_coord_pixel_center_integer :1;
bool fs_coord_pixel_center_half_integer :1;
} nir_lower_wpos_ytransform_options;
bool nir_lower_wpos_ytransform(nir_shader *shader,
const nir_lower_wpos_ytransform_options *options);
bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
bool nir_lower_wrmasks(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
bool nir_lower_fb_read(nir_shader *shader);
typedef struct nir_lower_drawpixels_options {
gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
gl_state_index16 scale_state_tokens[STATE_LENGTH];
gl_state_index16 bias_state_tokens[STATE_LENGTH];
unsigned drawpix_sampler;
unsigned pixelmap_sampler;
bool pixel_maps :1;
bool scale_and_bias :1;
} nir_lower_drawpixels_options;
void nir_lower_drawpixels(nir_shader *shader,
const nir_lower_drawpixels_options *options);
typedef struct nir_lower_bitmap_options {
unsigned sampler;
bool swizzle_xxxx;
} nir_lower_bitmap_options;
void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
bool nir_lower_atomics_to_ssbo(nir_shader *shader);
typedef enum {
nir_lower_int_source_mods = 1 << 0,
nir_lower_float_source_mods = 1 << 1,
nir_lower_triop_abs = 1 << 2,
nir_lower_all_source_mods = (1 << 3) - 1
} nir_lower_to_source_mods_flags;
bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
bool nir_lower_gs_intrinsics(nir_shader *shader, bool per_stream);
typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
bool nir_lower_bit_size(nir_shader *shader,
nir_lower_bit_size_callback callback,
void *callback_data);
nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
bool nir_lower_int64(nir_shader *shader);
nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
nir_lower_doubles_options options);
bool nir_lower_pack(nir_shader *shader);
void nir_lower_mediump_outputs(nir_shader *nir);
bool nir_lower_point_size(nir_shader *shader, float min, float max);
typedef enum {
nir_lower_interpolation_at_sample = (1 << 1),
nir_lower_interpolation_at_offset = (1 << 2),
nir_lower_interpolation_centroid = (1 << 3),
nir_lower_interpolation_pixel = (1 << 4),
nir_lower_interpolation_sample = (1 << 5),
} nir_lower_interpolation_options;
bool nir_lower_interpolation(nir_shader *shader,
nir_lower_interpolation_options options);
bool nir_lower_discard_to_demote(nir_shader *shader);
bool nir_lower_memory_model(nir_shader *shader);
bool nir_lower_goto_ifs(nir_shader *shader);
bool nir_normalize_cubemap_coords(nir_shader *shader);
void nir_live_ssa_defs_impl(nir_function_impl *impl);
void nir_loop_analyze_impl(nir_function_impl *impl,
nir_variable_mode indirect_mask);
bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
bool nir_repair_ssa_impl(nir_function_impl *impl);
bool nir_repair_ssa(nir_shader *shader);
void nir_convert_loop_to_lcssa(nir_loop *loop);
bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
void nir_divergence_analysis(nir_shader *shader, nir_divergence_options options);
/* If phi_webs_only is true, only convert SSA values involved in phi nodes to
* registers. If false, convert all values (even those not involved in a phi
* node) to registers.
*/
bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
bool nir_lower_phis_to_regs_block(nir_block *block);
bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
bool nir_lower_samplers(nir_shader *shader);
bool nir_lower_ssbo(nir_shader *shader);
/* This is here for unit tests. */
bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
bool nir_opt_comparison_pre(nir_shader *shader);
bool nir_opt_access(nir_shader *shader);
bool nir_opt_algebraic(nir_shader *shader);
bool nir_opt_algebraic_before_ffma(nir_shader *shader);
bool nir_opt_algebraic_late(nir_shader *shader);
bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
bool nir_opt_constant_folding(nir_shader *shader);
/* Try to combine a and b into a. Return true if combination was possible,
* which will result in b being removed by the pass. Return false if
* combination wasn't possible.
*/
typedef bool (*nir_combine_memory_barrier_cb)(
nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
bool nir_opt_combine_memory_barriers(nir_shader *shader,
nir_combine_memory_barrier_cb combine_cb,
void *data);
bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
bool nir_copy_prop(nir_shader *shader);
bool nir_opt_copy_prop_vars(nir_shader *shader);
bool nir_opt_cse(nir_shader *shader);
bool nir_opt_dce(nir_shader *shader);
bool nir_opt_dead_cf(nir_shader *shader);
bool nir_opt_dead_write_vars(nir_shader *shader);
bool nir_opt_deref_impl(nir_function_impl *impl);
bool nir_opt_deref(nir_shader *shader);
bool nir_opt_find_array_copies(nir_shader *shader);
bool nir_opt_gcm(nir_shader *shader, bool value_number);
bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
bool nir_opt_intrinsics(nir_shader *shader);
bool nir_opt_large_constants(nir_shader *shader,
glsl_type_size_align_func size_align,
unsigned threshold);
bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
typedef enum {
nir_move_const_undef = (1 << 0),
nir_move_load_ubo = (1 << 1),
nir_move_load_input = (1 << 2),
nir_move_comparisons = (1 << 3),
nir_move_copies = (1 << 4),
} nir_move_options;
bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
bool nir_opt_sink(nir_shader *shader, nir_move_options options);
bool nir_opt_move(nir_shader *shader, nir_move_options options);
bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
bool indirect_load_ok, bool expensive_alu_ok);
bool nir_opt_rematerialize_compares(nir_shader *shader);
bool nir_opt_remove_phis(nir_shader *shader);
bool nir_opt_remove_phis_block(nir_block *block);
bool nir_opt_shrink_vectors(nir_shader *shader);
bool nir_opt_trivial_continues(nir_shader *shader);
bool nir_opt_undef(nir_shader *shader);
bool nir_opt_vectorize(nir_shader *shader);
bool nir_opt_conditional_discard(nir_shader *shader);
typedef bool (*nir_should_vectorize_mem_func)(unsigned align, unsigned bit_size,
unsigned num_components, unsigned high_offset,
nir_intrinsic_instr *low, nir_intrinsic_instr *high);
bool nir_opt_load_store_vectorize(nir_shader *shader, nir_variable_mode modes,
nir_should_vectorize_mem_func callback,
nir_variable_mode robust_modes);
void nir_sweep(nir_shader *shader);
void nir_remap_dual_slot_attributes(nir_shader *shader,
uint64_t *dual_slot_inputs);
uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
static inline bool
nir_variable_is_in_ubo(const nir_variable *var)
{
return (var->data.mode == nir_var_mem_ubo &&
var->interface_type != NULL);
}
static inline bool
nir_variable_is_in_ssbo(const nir_variable *var)
{
return (var->data.mode == nir_var_mem_ssbo &&
var->interface_type != NULL);
}
static inline bool
nir_variable_is_in_block(const nir_variable *var)
{
return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
}
typedef struct nir_unsigned_upper_bound_config {
unsigned min_subgroup_size;
unsigned max_subgroup_size;
unsigned max_work_group_invocations;
unsigned max_work_group_count[3];
unsigned max_work_group_size[3];
uint32_t vertex_attrib_max[32];
} nir_unsigned_upper_bound_config;
uint32_t
nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
nir_ssa_scalar scalar,
const nir_unsigned_upper_bound_config *config);
bool
nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
nir_ssa_scalar ssa, unsigned const_val,
const nir_unsigned_upper_bound_config *config);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* NIR_H */