blob: 37a483e3ba6bf4720eeb6ca0ff60bd77721adbcd [file] [log] [blame]
/*
* Copyright © 2016 Bas Nieuwenhuizen
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <llvm/Config/llvm-config.h>
#include "ac_nir_to_llvm.h"
#include "ac_llvm_build.h"
#include "ac_llvm_util.h"
#include "ac_binary.h"
#include "sid.h"
#include "nir/nir.h"
#include "nir/nir_deref.h"
#include "util/bitscan.h"
#include "util/u_math.h"
#include "ac_shader_abi.h"
#include "ac_shader_util.h"
struct ac_nir_context {
struct ac_llvm_context ac;
struct ac_shader_abi *abi;
const struct ac_shader_args *args;
gl_shader_stage stage;
shader_info *info;
LLVMValueRef *ssa_defs;
LLVMValueRef scratch;
LLVMValueRef constant_data;
struct hash_table *defs;
struct hash_table *phis;
struct hash_table *vars;
struct hash_table *verified_interp;
LLVMValueRef main_function;
LLVMBasicBlockRef continue_block;
LLVMBasicBlockRef break_block;
int num_locals;
LLVMValueRef *locals;
};
static LLVMValueRef get_sampler_desc_index(struct ac_nir_context *ctx,
nir_deref_instr *deref_instr,
const nir_instr *instr,
bool image);
static LLVMValueRef get_sampler_desc(struct ac_nir_context *ctx,
nir_deref_instr *deref_instr,
enum ac_descriptor_type desc_type,
const nir_instr *instr,
LLVMValueRef index,
bool image, bool write);
static void
build_store_values_extended(struct ac_llvm_context *ac,
LLVMValueRef *values,
unsigned value_count,
unsigned value_stride,
LLVMValueRef vec)
{
LLVMBuilderRef builder = ac->builder;
unsigned i;
for (i = 0; i < value_count; i++) {
LLVMValueRef ptr = values[i * value_stride];
LLVMValueRef index = LLVMConstInt(ac->i32, i, false);
LLVMValueRef value = LLVMBuildExtractElement(builder, vec, index, "");
LLVMBuildStore(builder, value, ptr);
}
}
static LLVMTypeRef get_def_type(struct ac_nir_context *ctx,
const nir_ssa_def *def)
{
LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, def->bit_size);
if (def->num_components > 1) {
type = LLVMVectorType(type, def->num_components);
}
return type;
}
static LLVMValueRef get_src(struct ac_nir_context *nir, nir_src src)
{
assert(src.is_ssa);
return nir->ssa_defs[src.ssa->index];
}
static LLVMValueRef
get_memory_ptr(struct ac_nir_context *ctx, nir_src src, unsigned bit_size)
{
LLVMValueRef ptr = get_src(ctx, src);
ptr = LLVMBuildGEP(ctx->ac.builder, ctx->ac.lds, &ptr, 1, "");
int addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, bit_size);
return LLVMBuildBitCast(ctx->ac.builder, ptr,
LLVMPointerType(type, addr_space), "");
}
static LLVMBasicBlockRef get_block(struct ac_nir_context *nir,
const struct nir_block *b)
{
struct hash_entry *entry = _mesa_hash_table_search(nir->defs, b);
return (LLVMBasicBlockRef)entry->data;
}
static LLVMValueRef get_alu_src(struct ac_nir_context *ctx,
nir_alu_src src,
unsigned num_components)
{
LLVMValueRef value = get_src(ctx, src.src);
bool need_swizzle = false;
assert(value);
unsigned src_components = ac_get_llvm_num_components(value);
for (unsigned i = 0; i < num_components; ++i) {
assert(src.swizzle[i] < src_components);
if (src.swizzle[i] != i)
need_swizzle = true;
}
if (need_swizzle || num_components != src_components) {
LLVMValueRef masks[] = {
LLVMConstInt(ctx->ac.i32, src.swizzle[0], false),
LLVMConstInt(ctx->ac.i32, src.swizzle[1], false),
LLVMConstInt(ctx->ac.i32, src.swizzle[2], false),
LLVMConstInt(ctx->ac.i32, src.swizzle[3], false)};
if (src_components > 1 && num_components == 1) {
value = LLVMBuildExtractElement(ctx->ac.builder, value,
masks[0], "");
} else if (src_components == 1 && num_components > 1) {
LLVMValueRef values[] = {value, value, value, value};
value = ac_build_gather_values(&ctx->ac, values, num_components);
} else {
LLVMValueRef swizzle = LLVMConstVector(masks, num_components);
value = LLVMBuildShuffleVector(ctx->ac.builder, value, value,
swizzle, "");
}
}
assert(!src.negate);
assert(!src.abs);
return value;
}
static LLVMValueRef emit_int_cmp(struct ac_llvm_context *ctx,
LLVMIntPredicate pred, LLVMValueRef src0,
LLVMValueRef src1)
{
LLVMTypeRef src0_type = LLVMTypeOf(src0);
LLVMTypeRef src1_type = LLVMTypeOf(src1);
if (LLVMGetTypeKind(src0_type) == LLVMPointerTypeKind &&
LLVMGetTypeKind(src1_type) != LLVMPointerTypeKind) {
src1 = LLVMBuildIntToPtr(ctx->builder, src1, src0_type, "");
} else if (LLVMGetTypeKind(src1_type) == LLVMPointerTypeKind &&
LLVMGetTypeKind(src0_type) != LLVMPointerTypeKind) {
src0 = LLVMBuildIntToPtr(ctx->builder, src0, src1_type, "");
}
LLVMValueRef result = LLVMBuildICmp(ctx->builder, pred, src0, src1, "");
return LLVMBuildSelect(ctx->builder, result,
LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
ctx->i32_0, "");
}
static LLVMValueRef emit_float_cmp(struct ac_llvm_context *ctx,
LLVMRealPredicate pred, LLVMValueRef src0,
LLVMValueRef src1)
{
LLVMValueRef result;
src0 = ac_to_float(ctx, src0);
src1 = ac_to_float(ctx, src1);
result = LLVMBuildFCmp(ctx->builder, pred, src0, src1, "");
return LLVMBuildSelect(ctx->builder, result,
LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
ctx->i32_0, "");
}
static LLVMValueRef emit_intrin_1f_param(struct ac_llvm_context *ctx,
const char *intrin,
LLVMTypeRef result_type,
LLVMValueRef src0)
{
char name[64], type[64];
LLVMValueRef params[] = {
ac_to_float(ctx, src0),
};
ac_build_type_name_for_intr(LLVMTypeOf(params[0]), type, sizeof(type));
ASSERTED const int length = snprintf(name, sizeof(name), "%s.%s", intrin, type);
assert(length < sizeof(name));
return ac_build_intrinsic(ctx, name, result_type, params, 1, AC_FUNC_ATTR_READNONE);
}
static LLVMValueRef emit_intrin_2f_param(struct ac_llvm_context *ctx,
const char *intrin,
LLVMTypeRef result_type,
LLVMValueRef src0, LLVMValueRef src1)
{
char name[64], type[64];
LLVMValueRef params[] = {
ac_to_float(ctx, src0),
ac_to_float(ctx, src1),
};
ac_build_type_name_for_intr(LLVMTypeOf(params[0]), type, sizeof(type));
ASSERTED const int length = snprintf(name, sizeof(name), "%s.%s", intrin, type);
assert(length < sizeof(name));
return ac_build_intrinsic(ctx, name, result_type, params, 2, AC_FUNC_ATTR_READNONE);
}
static LLVMValueRef emit_intrin_3f_param(struct ac_llvm_context *ctx,
const char *intrin,
LLVMTypeRef result_type,
LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2)
{
char name[64], type[64];
LLVMValueRef params[] = {
ac_to_float(ctx, src0),
ac_to_float(ctx, src1),
ac_to_float(ctx, src2),
};
ac_build_type_name_for_intr(LLVMTypeOf(params[0]), type, sizeof(type));
ASSERTED const int length = snprintf(name, sizeof(name), "%s.%s", intrin, type);
assert(length < sizeof(name));
return ac_build_intrinsic(ctx, name, result_type, params, 3, AC_FUNC_ATTR_READNONE);
}
static LLVMValueRef emit_bcsel(struct ac_llvm_context *ctx,
LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2)
{
LLVMTypeRef src1_type = LLVMTypeOf(src1);
LLVMTypeRef src2_type = LLVMTypeOf(src2);
assert(LLVMGetTypeKind(LLVMTypeOf(src0)) != LLVMVectorTypeKind);
if (LLVMGetTypeKind(src1_type) == LLVMPointerTypeKind &&
LLVMGetTypeKind(src2_type) != LLVMPointerTypeKind) {
src2 = LLVMBuildIntToPtr(ctx->builder, src2, src1_type, "");
} else if (LLVMGetTypeKind(src2_type) == LLVMPointerTypeKind &&
LLVMGetTypeKind(src1_type) != LLVMPointerTypeKind) {
src1 = LLVMBuildIntToPtr(ctx->builder, src1, src2_type, "");
}
LLVMValueRef v = LLVMBuildICmp(ctx->builder, LLVMIntNE, src0,
ctx->i32_0, "");
return LLVMBuildSelect(ctx->builder, v,
ac_to_integer_or_pointer(ctx, src1),
ac_to_integer_or_pointer(ctx, src2), "");
}
static LLVMValueRef emit_iabs(struct ac_llvm_context *ctx,
LLVMValueRef src0)
{
return ac_build_imax(ctx, src0, LLVMBuildNeg(ctx->builder, src0, ""));
}
static LLVMValueRef emit_uint_carry(struct ac_llvm_context *ctx,
const char *intrin,
LLVMValueRef src0, LLVMValueRef src1)
{
LLVMTypeRef ret_type;
LLVMTypeRef types[] = { ctx->i32, ctx->i1 };
LLVMValueRef res;
LLVMValueRef params[] = { src0, src1 };
ret_type = LLVMStructTypeInContext(ctx->context, types,
2, true);
res = ac_build_intrinsic(ctx, intrin, ret_type,
params, 2, AC_FUNC_ATTR_READNONE);
res = LLVMBuildExtractValue(ctx->builder, res, 1, "");
res = LLVMBuildZExt(ctx->builder, res, ctx->i32, "");
return res;
}
static LLVMValueRef emit_b2f(struct ac_llvm_context *ctx,
LLVMValueRef src0,
unsigned bitsize)
{
LLVMValueRef result = LLVMBuildAnd(ctx->builder, src0,
LLVMBuildBitCast(ctx->builder, LLVMConstReal(ctx->f32, 1.0), ctx->i32, ""),
"");
result = LLVMBuildBitCast(ctx->builder, result, ctx->f32, "");
switch (bitsize) {
case 16:
return LLVMBuildFPTrunc(ctx->builder, result, ctx->f16, "");
case 32:
return result;
case 64:
return LLVMBuildFPExt(ctx->builder, result, ctx->f64, "");
default:
unreachable("Unsupported bit size.");
}
}
static LLVMValueRef emit_f2b(struct ac_llvm_context *ctx,
LLVMValueRef src0)
{
src0 = ac_to_float(ctx, src0);
LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(src0));
return LLVMBuildSExt(ctx->builder,
LLVMBuildFCmp(ctx->builder, LLVMRealUNE, src0, zero, ""),
ctx->i32, "");
}
static LLVMValueRef emit_b2i(struct ac_llvm_context *ctx,
LLVMValueRef src0,
unsigned bitsize)
{
LLVMValueRef result = LLVMBuildAnd(ctx->builder, src0, ctx->i32_1, "");
switch (bitsize) {
case 8:
return LLVMBuildTrunc(ctx->builder, result, ctx->i8, "");
case 16:
return LLVMBuildTrunc(ctx->builder, result, ctx->i16, "");
case 32:
return result;
case 64:
return LLVMBuildZExt(ctx->builder, result, ctx->i64, "");
default:
unreachable("Unsupported bit size.");
}
}
static LLVMValueRef emit_i2b(struct ac_llvm_context *ctx,
LLVMValueRef src0)
{
LLVMValueRef zero = LLVMConstNull(LLVMTypeOf(src0));
return LLVMBuildSExt(ctx->builder,
LLVMBuildICmp(ctx->builder, LLVMIntNE, src0, zero, ""),
ctx->i32, "");
}
static LLVMValueRef emit_f2f16(struct ac_llvm_context *ctx,
LLVMValueRef src0)
{
LLVMValueRef result;
LLVMValueRef cond = NULL;
src0 = ac_to_float(ctx, src0);
result = LLVMBuildFPTrunc(ctx->builder, src0, ctx->f16, "");
if (ctx->chip_class >= GFX8) {
LLVMValueRef args[2];
/* Check if the result is a denormal - and flush to 0 if so. */
args[0] = result;
args[1] = LLVMConstInt(ctx->i32, N_SUBNORMAL | P_SUBNORMAL, false);
cond = ac_build_intrinsic(ctx, "llvm.amdgcn.class.f16", ctx->i1, args, 2, AC_FUNC_ATTR_READNONE);
}
/* need to convert back up to f32 */
result = LLVMBuildFPExt(ctx->builder, result, ctx->f32, "");
if (ctx->chip_class >= GFX8)
result = LLVMBuildSelect(ctx->builder, cond, ctx->f32_0, result, "");
else {
/* for GFX6-GFX7 */
/* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
* so compare the result and flush to 0 if it's smaller.
*/
LLVMValueRef temp, cond2;
temp = emit_intrin_1f_param(ctx, "llvm.fabs", ctx->f32, result);
cond = LLVMBuildFCmp(ctx->builder, LLVMRealOGT,
LLVMBuildBitCast(ctx->builder, LLVMConstInt(ctx->i32, 0x38800000, false), ctx->f32, ""),
temp, "");
cond2 = LLVMBuildFCmp(ctx->builder, LLVMRealONE,
temp, ctx->f32_0, "");
cond = LLVMBuildAnd(ctx->builder, cond, cond2, "");
result = LLVMBuildSelect(ctx->builder, cond, ctx->f32_0, result, "");
}
return result;
}
static LLVMValueRef emit_umul_high(struct ac_llvm_context *ctx,
LLVMValueRef src0, LLVMValueRef src1)
{
LLVMValueRef dst64, result;
src0 = LLVMBuildZExt(ctx->builder, src0, ctx->i64, "");
src1 = LLVMBuildZExt(ctx->builder, src1, ctx->i64, "");
dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
dst64 = LLVMBuildLShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
return result;
}
static LLVMValueRef emit_imul_high(struct ac_llvm_context *ctx,
LLVMValueRef src0, LLVMValueRef src1)
{
LLVMValueRef dst64, result;
src0 = LLVMBuildSExt(ctx->builder, src0, ctx->i64, "");
src1 = LLVMBuildSExt(ctx->builder, src1, ctx->i64, "");
dst64 = LLVMBuildMul(ctx->builder, src0, src1, "");
dst64 = LLVMBuildAShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), "");
result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, "");
return result;
}
static LLVMValueRef emit_bfm(struct ac_llvm_context *ctx,
LLVMValueRef bits, LLVMValueRef offset)
{
/* mask = ((1 << bits) - 1) << offset */
return LLVMBuildShl(ctx->builder,
LLVMBuildSub(ctx->builder,
LLVMBuildShl(ctx->builder,
ctx->i32_1,
bits, ""),
ctx->i32_1, ""),
offset, "");
}
static LLVMValueRef emit_bitfield_select(struct ac_llvm_context *ctx,
LLVMValueRef mask, LLVMValueRef insert,
LLVMValueRef base)
{
/* Calculate:
* (mask & insert) | (~mask & base) = base ^ (mask & (insert ^ base))
* Use the right-hand side, which the LLVM backend can convert to V_BFI.
*/
return LLVMBuildXor(ctx->builder, base,
LLVMBuildAnd(ctx->builder, mask,
LLVMBuildXor(ctx->builder, insert, base, ""), ""), "");
}
static LLVMValueRef emit_pack_2x16(struct ac_llvm_context *ctx,
LLVMValueRef src0,
LLVMValueRef (*pack)(struct ac_llvm_context *ctx,
LLVMValueRef args[2]))
{
LLVMValueRef comp[2];
src0 = ac_to_float(ctx, src0);
comp[0] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32_0, "");
comp[1] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32_1, "");
return LLVMBuildBitCast(ctx->builder, pack(ctx, comp), ctx->i32, "");
}
static LLVMValueRef emit_unpack_half_2x16(struct ac_llvm_context *ctx,
LLVMValueRef src0)
{
LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false);
LLVMValueRef temps[2], val;
int i;
for (i = 0; i < 2; i++) {
val = i == 1 ? LLVMBuildLShr(ctx->builder, src0, const16, "") : src0;
val = LLVMBuildTrunc(ctx->builder, val, ctx->i16, "");
val = LLVMBuildBitCast(ctx->builder, val, ctx->f16, "");
temps[i] = LLVMBuildFPExt(ctx->builder, val, ctx->f32, "");
}
return ac_build_gather_values(ctx, temps, 2);
}
static LLVMValueRef emit_ddxy(struct ac_nir_context *ctx,
nir_op op,
LLVMValueRef src0)
{
unsigned mask;
int idx;
LLVMValueRef result;
if (op == nir_op_fddx_fine)
mask = AC_TID_MASK_LEFT;
else if (op == nir_op_fddy_fine)
mask = AC_TID_MASK_TOP;
else
mask = AC_TID_MASK_TOP_LEFT;
/* for DDX we want to next X pixel, DDY next Y pixel. */
if (op == nir_op_fddx_fine ||
op == nir_op_fddx_coarse ||
op == nir_op_fddx)
idx = 1;
else
idx = 2;
result = ac_build_ddxy(&ctx->ac, mask, idx, src0);
return result;
}
struct waterfall_context {
LLVMBasicBlockRef phi_bb[2];
bool use_waterfall;
};
/* To deal with divergent descriptors we can create a loop that handles all
* lanes with the same descriptor on a given iteration (henceforth a
* waterfall loop).
*
* These helper create the begin and end of the loop leaving the caller
* to implement the body.
*
* params:
* - ctx is the usal nir context
* - wctx is a temporary struct containing some loop info. Can be left uninitialized.
* - value is the possibly divergent value for which we built the loop
* - divergent is whether value is actually divergent. If false we just pass
* things through.
*/
static LLVMValueRef enter_waterfall(struct ac_nir_context *ctx,
struct waterfall_context *wctx,
LLVMValueRef value, bool divergent)
{
/* If the app claims the value is divergent but it is constant we can
* end up with a dynamic index of NULL. */
if (!value)
divergent = false;
wctx->use_waterfall = divergent;
if (!divergent)
return value;
ac_build_bgnloop(&ctx->ac, 6000);
LLVMValueRef scalar_value = ac_build_readlane(&ctx->ac, value, NULL);
LLVMValueRef active = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, value,
scalar_value, "uniform_active");
wctx->phi_bb[0] = LLVMGetInsertBlock(ctx->ac.builder);
ac_build_ifcc(&ctx->ac, active, 6001);
return scalar_value;
}
static LLVMValueRef exit_waterfall(struct ac_nir_context *ctx,
struct waterfall_context *wctx,
LLVMValueRef value)
{
LLVMValueRef ret = NULL;
LLVMValueRef phi_src[2];
LLVMValueRef cc_phi_src[2] = {
LLVMConstInt(ctx->ac.i32, 0, false),
LLVMConstInt(ctx->ac.i32, 0xffffffff, false),
};
if (!wctx->use_waterfall)
return value;
wctx->phi_bb[1] = LLVMGetInsertBlock(ctx->ac.builder);
ac_build_endif(&ctx->ac, 6001);
if (value) {
phi_src[0] = LLVMGetUndef(LLVMTypeOf(value));
phi_src[1] = value;
ret = ac_build_phi(&ctx->ac, LLVMTypeOf(value), 2, phi_src, wctx->phi_bb);
}
/*
* By using the optimization barrier on the exit decision, we decouple
* the operations from the break, and hence avoid LLVM hoisting the
* opteration into the break block.
*/
LLVMValueRef cc = ac_build_phi(&ctx->ac, ctx->ac.i32, 2, cc_phi_src, wctx->phi_bb);
ac_build_optimization_barrier(&ctx->ac, &cc);
LLVMValueRef active = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE, cc, ctx->ac.i32_0, "uniform_active2");
ac_build_ifcc(&ctx->ac, active, 6002);
ac_build_break(&ctx->ac);
ac_build_endif(&ctx->ac, 6002);
ac_build_endloop(&ctx->ac, 6000);
return ret;
}
static void visit_alu(struct ac_nir_context *ctx, const nir_alu_instr *instr)
{
LLVMValueRef src[4], result = NULL;
unsigned num_components = instr->dest.dest.ssa.num_components;
unsigned src_components;
LLVMTypeRef def_type = get_def_type(ctx, &instr->dest.dest.ssa);
bool saved_inexact = false;
if (instr->exact)
saved_inexact = ac_disable_inexact_math(ctx->ac.builder);
assert(nir_op_infos[instr->op].num_inputs <= ARRAY_SIZE(src));
switch (instr->op) {
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
src_components = 1;
break;
case nir_op_pack_half_2x16:
case nir_op_pack_snorm_2x16:
case nir_op_pack_unorm_2x16:
src_components = 2;
break;
case nir_op_unpack_half_2x16:
src_components = 1;
break;
case nir_op_cube_face_coord:
case nir_op_cube_face_index:
src_components = 3;
break;
default:
src_components = num_components;
break;
}
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
src[i] = get_alu_src(ctx, instr->src[i], src_components);
switch (instr->op) {
case nir_op_mov:
result = src[0];
break;
case nir_op_fneg:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = LLVMBuildFNeg(ctx->ac.builder, src[0], "");
if (ctx->ac.float_mode == AC_FLOAT_MODE_DENORM_FLUSH_TO_ZERO) {
/* fneg will be optimized by backend compiler with sign
* bit removed via XOR. This is probably a LLVM bug.
*/
result = ac_build_canonicalize(&ctx->ac, result,
instr->dest.dest.ssa.bit_size);
}
break;
case nir_op_ineg:
result = LLVMBuildNeg(ctx->ac.builder, src[0], "");
break;
case nir_op_inot:
result = LLVMBuildNot(ctx->ac.builder, src[0], "");
break;
case nir_op_iadd:
result = LLVMBuildAdd(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_fadd:
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = LLVMBuildFAdd(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_fsub:
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = LLVMBuildFSub(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_isub:
result = LLVMBuildSub(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_imul:
result = LLVMBuildMul(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_imod:
result = LLVMBuildSRem(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_umod:
result = LLVMBuildURem(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_fmod:
/* lower_fmod only lower 16-bit and 32-bit fmod */
assert(instr->dest.dest.ssa.bit_size == 64);
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = ac_build_fdiv(&ctx->ac, src[0], src[1]);
result = emit_intrin_1f_param(&ctx->ac, "llvm.floor",
ac_to_float_type(&ctx->ac, def_type), result);
result = LLVMBuildFMul(ctx->ac.builder, src[1] , result, "");
result = LLVMBuildFSub(ctx->ac.builder, src[0], result, "");
break;
case nir_op_irem:
result = LLVMBuildSRem(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_idiv:
result = LLVMBuildSDiv(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_udiv:
result = LLVMBuildUDiv(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_fmul:
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
result = LLVMBuildFMul(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_frcp:
/* For doubles, we need precise division to pass GLCTS. */
if (ctx->ac.float_mode == AC_FLOAT_MODE_DEFAULT_OPENGL &&
ac_get_type_size(def_type) == 8) {
result = LLVMBuildFDiv(ctx->ac.builder, ctx->ac.f64_1,
ac_to_float(&ctx->ac, src[0]), "");
} else {
result = emit_intrin_1f_param(&ctx->ac, "llvm.amdgcn.rcp",
ac_to_float_type(&ctx->ac, def_type), src[0]);
}
break;
case nir_op_iand:
result = LLVMBuildAnd(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_ior:
result = LLVMBuildOr(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_ixor:
result = LLVMBuildXor(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_ishl:
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) < ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])))
src[1] = LLVMBuildZExt(ctx->ac.builder, src[1],
LLVMTypeOf(src[0]), "");
else if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) > ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])))
src[1] = LLVMBuildTrunc(ctx->ac.builder, src[1],
LLVMTypeOf(src[0]), "");
result = LLVMBuildShl(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_ishr:
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) < ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])))
src[1] = LLVMBuildZExt(ctx->ac.builder, src[1],
LLVMTypeOf(src[0]), "");
else if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) > ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])))
src[1] = LLVMBuildTrunc(ctx->ac.builder, src[1],
LLVMTypeOf(src[0]), "");
result = LLVMBuildAShr(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_ushr:
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) < ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])))
src[1] = LLVMBuildZExt(ctx->ac.builder, src[1],
LLVMTypeOf(src[0]), "");
else if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[1])) > ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])))
src[1] = LLVMBuildTrunc(ctx->ac.builder, src[1],
LLVMTypeOf(src[0]), "");
result = LLVMBuildLShr(ctx->ac.builder, src[0], src[1], "");
break;
case nir_op_ilt32:
result = emit_int_cmp(&ctx->ac, LLVMIntSLT, src[0], src[1]);
break;
case nir_op_ine32:
result = emit_int_cmp(&ctx->ac, LLVMIntNE, src[0], src[1]);
break;
case nir_op_ieq32:
result = emit_int_cmp(&ctx->ac, LLVMIntEQ, src[0], src[1]);
break;
case nir_op_ige32:
result = emit_int_cmp(&ctx->ac, LLVMIntSGE, src[0], src[1]);
break;
case nir_op_ult32:
result = emit_int_cmp(&ctx->ac, LLVMIntULT, src[0], src[1]);
break;
case nir_op_uge32:
result = emit_int_cmp(&ctx->ac, LLVMIntUGE, src[0], src[1]);
break;
case nir_op_feq32:
result = emit_float_cmp(&ctx->ac, LLVMRealOEQ, src[0], src[1]);
break;
case nir_op_fneu32:
result = emit_float_cmp(&ctx->ac, LLVMRealUNE, src[0], src[1]);
break;
case nir_op_flt32:
result = emit_float_cmp(&ctx->ac, LLVMRealOLT, src[0], src[1]);
break;
case nir_op_fge32:
result = emit_float_cmp(&ctx->ac, LLVMRealOGE, src[0], src[1]);
break;
case nir_op_fabs:
result = emit_intrin_1f_param(&ctx->ac, "llvm.fabs",
ac_to_float_type(&ctx->ac, def_type), src[0]);
if (ctx->ac.float_mode == AC_FLOAT_MODE_DENORM_FLUSH_TO_ZERO) {
/* fabs will be optimized by backend compiler with sign
* bit removed via AND.
*/
result = ac_build_canonicalize(&ctx->ac, result,
instr->dest.dest.ssa.bit_size);
}
break;
case nir_op_iabs:
result = emit_iabs(&ctx->ac, src[0]);
break;
case nir_op_imax:
result = ac_build_imax(&ctx->ac, src[0], src[1]);
break;
case nir_op_imin:
result = ac_build_imin(&ctx->ac, src[0], src[1]);
break;
case nir_op_umax:
result = ac_build_umax(&ctx->ac, src[0], src[1]);
break;
case nir_op_umin:
result = ac_build_umin(&ctx->ac, src[0], src[1]);
break;
case nir_op_isign:
result = ac_build_isign(&ctx->ac, src[0],
instr->dest.dest.ssa.bit_size);
break;
case nir_op_fsign:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = ac_build_fsign(&ctx->ac, src[0],
instr->dest.dest.ssa.bit_size);
break;
case nir_op_ffloor:
result = emit_intrin_1f_param(&ctx->ac, "llvm.floor",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_ftrunc:
result = emit_intrin_1f_param(&ctx->ac, "llvm.trunc",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fceil:
result = emit_intrin_1f_param(&ctx->ac, "llvm.ceil",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fround_even:
result = emit_intrin_1f_param(&ctx->ac, "llvm.rint",
ac_to_float_type(&ctx->ac, def_type),src[0]);
break;
case nir_op_ffract:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = ac_build_fract(&ctx->ac, src[0],
instr->dest.dest.ssa.bit_size);
break;
case nir_op_fsin:
result = emit_intrin_1f_param(&ctx->ac, "llvm.sin",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fcos:
result = emit_intrin_1f_param(&ctx->ac, "llvm.cos",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fsqrt:
result = emit_intrin_1f_param(&ctx->ac, "llvm.sqrt",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fexp2:
result = emit_intrin_1f_param(&ctx->ac, "llvm.exp2",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_flog2:
result = emit_intrin_1f_param(&ctx->ac, "llvm.log2",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_frsq:
result = emit_intrin_1f_param(&ctx->ac, "llvm.amdgcn.rsq",
ac_to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_frexp_exp:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = ac_build_frexp_exp(&ctx->ac, src[0],
ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])));
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) == 16)
result = LLVMBuildSExt(ctx->ac.builder, result,
ctx->ac.i32, "");
break;
case nir_op_frexp_sig:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = ac_build_frexp_mant(&ctx->ac, src[0],
instr->dest.dest.ssa.bit_size);
break;
case nir_op_fpow:
result = emit_intrin_2f_param(&ctx->ac, "llvm.pow",
ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
break;
case nir_op_fmax:
result = emit_intrin_2f_param(&ctx->ac, "llvm.maxnum",
ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
if (ctx->ac.chip_class < GFX9 &&
instr->dest.dest.ssa.bit_size == 32) {
/* Only pre-GFX9 chips do not flush denorms. */
result = ac_build_canonicalize(&ctx->ac, result,
instr->dest.dest.ssa.bit_size);
}
break;
case nir_op_fmin:
result = emit_intrin_2f_param(&ctx->ac, "llvm.minnum",
ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
if (ctx->ac.chip_class < GFX9 &&
instr->dest.dest.ssa.bit_size == 32) {
/* Only pre-GFX9 chips do not flush denorms. */
result = ac_build_canonicalize(&ctx->ac, result,
instr->dest.dest.ssa.bit_size);
}
break;
case nir_op_ffma:
/* FMA is better on GFX10, because it has FMA units instead of MUL-ADD units. */
result = emit_intrin_3f_param(&ctx->ac, ctx->ac.chip_class >= GFX10 ? "llvm.fma" : "llvm.fmuladd",
ac_to_float_type(&ctx->ac, def_type), src[0], src[1], src[2]);
break;
case nir_op_ldexp:
src[0] = ac_to_float(&ctx->ac, src[0]);
if (ac_get_elem_bits(&ctx->ac, def_type) == 32)
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ldexp.f32", ctx->ac.f32, src, 2, AC_FUNC_ATTR_READNONE);
else if (ac_get_elem_bits(&ctx->ac, def_type) == 16)
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ldexp.f16", ctx->ac.f16, src, 2, AC_FUNC_ATTR_READNONE);
else
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ldexp.f64", ctx->ac.f64, src, 2, AC_FUNC_ATTR_READNONE);
break;
case nir_op_bfm:
result = emit_bfm(&ctx->ac, src[0], src[1]);
break;
case nir_op_bitfield_select:
result = emit_bitfield_select(&ctx->ac, src[0], src[1], src[2]);
break;
case nir_op_ubfe:
result = ac_build_bfe(&ctx->ac, src[0], src[1], src[2], false);
break;
case nir_op_ibfe:
result = ac_build_bfe(&ctx->ac, src[0], src[1], src[2], true);
break;
case nir_op_bitfield_reverse:
result = ac_build_bitfield_reverse(&ctx->ac, src[0]);
break;
case nir_op_bit_count:
result = ac_build_bit_count(&ctx->ac, src[0]);
break;
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
src[i] = ac_to_integer(&ctx->ac, src[i]);
result = ac_build_gather_values(&ctx->ac, src, num_components);
break;
case nir_op_f2i8:
case nir_op_f2i16:
case nir_op_f2i32:
case nir_op_f2i64:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = LLVMBuildFPToSI(ctx->ac.builder, src[0], def_type, "");
break;
case nir_op_f2u8:
case nir_op_f2u16:
case nir_op_f2u32:
case nir_op_f2u64:
src[0] = ac_to_float(&ctx->ac, src[0]);
result = LLVMBuildFPToUI(ctx->ac.builder, src[0], def_type, "");
break;
case nir_op_i2f16:
case nir_op_i2f32:
case nir_op_i2f64:
result = LLVMBuildSIToFP(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
break;
case nir_op_u2f16:
case nir_op_u2f32:
case nir_op_u2f64:
result = LLVMBuildUIToFP(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
break;
case nir_op_f2f16_rtz:
case nir_op_f2f16:
case nir_op_f2fmp:
src[0] = ac_to_float(&ctx->ac, src[0]);
/* For OpenGL, we want fast packing with v_cvt_pkrtz_f16, but if we use it,
* all f32->f16 conversions have to round towards zero, because both scalar
* and vec2 down-conversions have to round equally.
*/
if (ctx->ac.float_mode == AC_FLOAT_MODE_DEFAULT_OPENGL ||
instr->op == nir_op_f2f16_rtz) {
src[0] = ac_to_float(&ctx->ac, src[0]);
if (LLVMTypeOf(src[0]) == ctx->ac.f64)
src[0] = LLVMBuildFPTrunc(ctx->ac.builder, src[0], ctx->ac.f32, "");
/* Fast path conversion. This only works if NIR is vectorized
* to vec2 16.
*/
if (LLVMTypeOf(src[0]) == ctx->ac.v2f32) {
LLVMValueRef args[] = {
ac_llvm_extract_elem(&ctx->ac, src[0], 0),
ac_llvm_extract_elem(&ctx->ac, src[0], 1),
};
result = ac_build_cvt_pkrtz_f16(&ctx->ac, args);
break;
}
assert(ac_get_llvm_num_components(src[0]) == 1);
LLVMValueRef param[2] = { src[0], LLVMGetUndef(ctx->ac.f32) };
result = ac_build_cvt_pkrtz_f16(&ctx->ac, param);
result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, "");
} else {
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < ac_get_elem_bits(&ctx->ac, def_type))
result = LLVMBuildFPExt(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
else
result = LLVMBuildFPTrunc(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
}
break;
case nir_op_f2f16_rtne:
case nir_op_f2f32:
case nir_op_f2f64:
src[0] = ac_to_float(&ctx->ac, src[0]);
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < ac_get_elem_bits(&ctx->ac, def_type))
result = LLVMBuildFPExt(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
else
result = LLVMBuildFPTrunc(ctx->ac.builder, src[0], ac_to_float_type(&ctx->ac, def_type), "");
break;
case nir_op_u2u8:
case nir_op_u2u16:
case nir_op_u2ump:
case nir_op_u2u32:
case nir_op_u2u64:
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < ac_get_elem_bits(&ctx->ac, def_type))
result = LLVMBuildZExt(ctx->ac.builder, src[0], def_type, "");
else
result = LLVMBuildTrunc(ctx->ac.builder, src[0], def_type, "");
break;
case nir_op_i2i8:
case nir_op_i2i16:
case nir_op_i2imp:
case nir_op_i2i32:
case nir_op_i2i64:
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < ac_get_elem_bits(&ctx->ac, def_type))
result = LLVMBuildSExt(ctx->ac.builder, src[0], def_type, "");
else
result = LLVMBuildTrunc(ctx->ac.builder, src[0], def_type, "");
break;
case nir_op_b32csel:
result = emit_bcsel(&ctx->ac, src[0], src[1], src[2]);
break;
case nir_op_find_lsb:
result = ac_find_lsb(&ctx->ac, ctx->ac.i32, src[0]);
break;
case nir_op_ufind_msb:
result = ac_build_umsb(&ctx->ac, src[0], ctx->ac.i32);
break;
case nir_op_ifind_msb:
result = ac_build_imsb(&ctx->ac, src[0], ctx->ac.i32);
break;
case nir_op_uadd_carry:
result = emit_uint_carry(&ctx->ac, "llvm.uadd.with.overflow.i32", src[0], src[1]);
break;
case nir_op_usub_borrow:
result = emit_uint_carry(&ctx->ac, "llvm.usub.with.overflow.i32", src[0], src[1]);
break;
case nir_op_b2f16:
case nir_op_b2f32:
case nir_op_b2f64:
result = emit_b2f(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
break;
case nir_op_f2b32:
result = emit_f2b(&ctx->ac, src[0]);
break;
case nir_op_b2i8:
case nir_op_b2i16:
case nir_op_b2i32:
case nir_op_b2i64:
result = emit_b2i(&ctx->ac, src[0], instr->dest.dest.ssa.bit_size);
break;
case nir_op_i2b32:
result = emit_i2b(&ctx->ac, src[0]);
break;
case nir_op_fquantize2f16:
result = emit_f2f16(&ctx->ac, src[0]);
break;
case nir_op_umul_high:
result = emit_umul_high(&ctx->ac, src[0], src[1]);
break;
case nir_op_imul_high:
result = emit_imul_high(&ctx->ac, src[0], src[1]);
break;
case nir_op_pack_half_2x16:
result = emit_pack_2x16(&ctx->ac, src[0], ac_build_cvt_pkrtz_f16);
break;
case nir_op_pack_snorm_2x16:
result = emit_pack_2x16(&ctx->ac, src[0], ac_build_cvt_pknorm_i16);
break;
case nir_op_pack_unorm_2x16:
result = emit_pack_2x16(&ctx->ac, src[0], ac_build_cvt_pknorm_u16);
break;
case nir_op_unpack_half_2x16:
result = emit_unpack_half_2x16(&ctx->ac, src[0]);
break;
case nir_op_fddx:
case nir_op_fddy:
case nir_op_fddx_fine:
case nir_op_fddy_fine:
case nir_op_fddx_coarse:
case nir_op_fddy_coarse:
result = emit_ddxy(ctx, instr->op, src[0]);
break;
case nir_op_unpack_64_2x32_split_x: {
assert(ac_get_llvm_num_components(src[0]) == 1);
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0],
ctx->ac.v2i32,
"");
result = LLVMBuildExtractElement(ctx->ac.builder, tmp,
ctx->ac.i32_0, "");
break;
}
case nir_op_unpack_64_2x32_split_y: {
assert(ac_get_llvm_num_components(src[0]) == 1);
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0],
ctx->ac.v2i32,
"");
result = LLVMBuildExtractElement(ctx->ac.builder, tmp,
ctx->ac.i32_1, "");
break;
}
case nir_op_pack_64_2x32_split: {
LLVMValueRef tmp = ac_build_gather_values(&ctx->ac, src, 2);
result = LLVMBuildBitCast(ctx->ac.builder, tmp, ctx->ac.i64, "");
break;
}
case nir_op_pack_32_2x16_split: {
LLVMValueRef tmp = ac_build_gather_values(&ctx->ac, src, 2);
result = LLVMBuildBitCast(ctx->ac.builder, tmp, ctx->ac.i32, "");
break;
}
case nir_op_unpack_32_2x16_split_x: {
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0],
ctx->ac.v2i16,
"");
result = LLVMBuildExtractElement(ctx->ac.builder, tmp,
ctx->ac.i32_0, "");
break;
}
case nir_op_unpack_32_2x16_split_y: {
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, src[0],
ctx->ac.v2i16,
"");
result = LLVMBuildExtractElement(ctx->ac.builder, tmp,
ctx->ac.i32_1, "");
break;
}
case nir_op_cube_face_coord: {
src[0] = ac_to_float(&ctx->ac, src[0]);
LLVMValueRef results[2];
LLVMValueRef in[3];
for (unsigned chan = 0; chan < 3; chan++)
in[chan] = ac_llvm_extract_elem(&ctx->ac, src[0], chan);
results[0] = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubesc",
ctx->ac.f32, in, 3, AC_FUNC_ATTR_READNONE);
results[1] = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubetc",
ctx->ac.f32, in, 3, AC_FUNC_ATTR_READNONE);
LLVMValueRef ma = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubema",
ctx->ac.f32, in, 3, AC_FUNC_ATTR_READNONE);
results[0] = ac_build_fdiv(&ctx->ac, results[0], ma);
results[1] = ac_build_fdiv(&ctx->ac, results[1], ma);
LLVMValueRef offset = LLVMConstReal(ctx->ac.f32, 0.5);
results[0] = LLVMBuildFAdd(ctx->ac.builder, results[0], offset, "");
results[1] = LLVMBuildFAdd(ctx->ac.builder, results[1], offset, "");
result = ac_build_gather_values(&ctx->ac, results, 2);
break;
}
case nir_op_cube_face_index: {
src[0] = ac_to_float(&ctx->ac, src[0]);
LLVMValueRef in[3];
for (unsigned chan = 0; chan < 3; chan++)
in[chan] = ac_llvm_extract_elem(&ctx->ac, src[0], chan);
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.cubeid",
ctx->ac.f32, in, 3, AC_FUNC_ATTR_READNONE);
break;
}
case nir_op_fmin3:
result = emit_intrin_2f_param(&ctx->ac, "llvm.minnum",
ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
result = emit_intrin_2f_param(&ctx->ac, "llvm.minnum",
ac_to_float_type(&ctx->ac, def_type), result, src[2]);
break;
case nir_op_umin3:
result = ac_build_umin(&ctx->ac, src[0], src[1]);
result = ac_build_umin(&ctx->ac, result, src[2]);
break;
case nir_op_imin3:
result = ac_build_imin(&ctx->ac, src[0], src[1]);
result = ac_build_imin(&ctx->ac, result, src[2]);
break;
case nir_op_fmax3:
result = emit_intrin_2f_param(&ctx->ac, "llvm.maxnum",
ac_to_float_type(&ctx->ac, def_type), src[0], src[1]);
result = emit_intrin_2f_param(&ctx->ac, "llvm.maxnum",
ac_to_float_type(&ctx->ac, def_type), result, src[2]);
break;
case nir_op_umax3:
result = ac_build_umax(&ctx->ac, src[0], src[1]);
result = ac_build_umax(&ctx->ac, result, src[2]);
break;
case nir_op_imax3:
result = ac_build_imax(&ctx->ac, src[0], src[1]);
result = ac_build_imax(&ctx->ac, result, src[2]);
break;
case nir_op_fmed3: {
src[0] = ac_to_float(&ctx->ac, src[0]);
src[1] = ac_to_float(&ctx->ac, src[1]);
src[2] = ac_to_float(&ctx->ac, src[2]);
result = ac_build_fmed3(&ctx->ac, src[0], src[1], src[2],
instr->dest.dest.ssa.bit_size);
break;
}
case nir_op_imed3: {
LLVMValueRef tmp1 = ac_build_imin(&ctx->ac, src[0], src[1]);
LLVMValueRef tmp2 = ac_build_imax(&ctx->ac, src[0], src[1]);
tmp2 = ac_build_imin(&ctx->ac, tmp2, src[2]);
result = ac_build_imax(&ctx->ac, tmp1, tmp2);
break;
}
case nir_op_umed3: {
LLVMValueRef tmp1 = ac_build_umin(&ctx->ac, src[0], src[1]);
LLVMValueRef tmp2 = ac_build_umax(&ctx->ac, src[0], src[1]);
tmp2 = ac_build_umin(&ctx->ac, tmp2, src[2]);
result = ac_build_umax(&ctx->ac, tmp1, tmp2);
break;
}
default:
fprintf(stderr, "Unknown NIR alu instr: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
if (result) {
assert(instr->dest.dest.is_ssa);
result = ac_to_integer_or_pointer(&ctx->ac, result);
ctx->ssa_defs[instr->dest.dest.ssa.index] = result;
}
if (instr->exact)
ac_restore_inexact_math(ctx->ac.builder, saved_inexact);
}
static void visit_load_const(struct ac_nir_context *ctx,
const nir_load_const_instr *instr)
{
LLVMValueRef values[4], value = NULL;
LLVMTypeRef element_type =
LLVMIntTypeInContext(ctx->ac.context, instr->def.bit_size);
for (unsigned i = 0; i < instr->def.num_components; ++i) {
switch (instr->def.bit_size) {
case 8:
values[i] = LLVMConstInt(element_type,
instr->value[i].u8, false);
break;
case 16:
values[i] = LLVMConstInt(element_type,
instr->value[i].u16, false);
break;
case 32:
values[i] = LLVMConstInt(element_type,
instr->value[i].u32, false);
break;
case 64:
values[i] = LLVMConstInt(element_type,
instr->value[i].u64, false);
break;
default:
fprintf(stderr,
"unsupported nir load_const bit_size: %d\n",
instr->def.bit_size);
abort();
}
}
if (instr->def.num_components > 1) {
value = LLVMConstVector(values, instr->def.num_components);
} else
value = values[0];
ctx->ssa_defs[instr->def.index] = value;
}
static LLVMValueRef
get_buffer_size(struct ac_nir_context *ctx, LLVMValueRef descriptor, bool in_elements)
{
LLVMValueRef size =
LLVMBuildExtractElement(ctx->ac.builder, descriptor,
LLVMConstInt(ctx->ac.i32, 2, false), "");
/* GFX8 only */
if (ctx->ac.chip_class == GFX8 && in_elements) {
/* On GFX8, the descriptor contains the size in bytes,
* but TXQ must return the size in elements.
* The stride is always non-zero for resources using TXQ.
*/
LLVMValueRef stride =
LLVMBuildExtractElement(ctx->ac.builder, descriptor,
ctx->ac.i32_1, "");
stride = LLVMBuildLShr(ctx->ac.builder, stride,
LLVMConstInt(ctx->ac.i32, 16, false), "");
stride = LLVMBuildAnd(ctx->ac.builder, stride,
LLVMConstInt(ctx->ac.i32, 0x3fff, false), "");
size = LLVMBuildUDiv(ctx->ac.builder, size, stride, "");
}
return size;
}
/* Gather4 should follow the same rules as bilinear filtering, but the hardware
* incorrectly forces nearest filtering if the texture format is integer.
* The only effect it has on Gather4, which always returns 4 texels for
* bilinear filtering, is that the final coordinates are off by 0.5 of
* the texel size.
*
* The workaround is to subtract 0.5 from the unnormalized coordinates,
* or (0.5 / size) from the normalized coordinates.
*
* However, cube textures with 8_8_8_8 data formats require a different
* workaround of overriding the num format to USCALED/SSCALED. This would lose
* precision in 32-bit data formats, so it needs to be applied dynamically at
* runtime. In this case, return an i1 value that indicates whether the
* descriptor was overridden (and hence a fixup of the sampler result is needed).
*/
static LLVMValueRef lower_gather4_integer(struct ac_llvm_context *ctx,
nir_variable *var,
struct ac_image_args *args,
const nir_tex_instr *instr)
{
const struct glsl_type *type = glsl_without_array(var->type);
enum glsl_base_type stype = glsl_get_sampler_result_type(type);
LLVMValueRef wa_8888 = NULL;
LLVMValueRef half_texel[2];
LLVMValueRef result;
assert(stype == GLSL_TYPE_INT || stype == GLSL_TYPE_UINT);
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
LLVMValueRef formats;
LLVMValueRef data_format;
LLVMValueRef wa_formats;
formats = LLVMBuildExtractElement(ctx->builder, args->resource, ctx->i32_1, "");
data_format = LLVMBuildLShr(ctx->builder, formats,
LLVMConstInt(ctx->i32, 20, false), "");
data_format = LLVMBuildAnd(ctx->builder, data_format,
LLVMConstInt(ctx->i32, (1u << 6) - 1, false), "");
wa_8888 = LLVMBuildICmp(
ctx->builder, LLVMIntEQ, data_format,
LLVMConstInt(ctx->i32, V_008F14_IMG_DATA_FORMAT_8_8_8_8, false),
"");
uint32_t wa_num_format =
stype == GLSL_TYPE_UINT ?
S_008F14_NUM_FORMAT(V_008F14_IMG_NUM_FORMAT_USCALED) :
S_008F14_NUM_FORMAT(V_008F14_IMG_NUM_FORMAT_SSCALED);
wa_formats = LLVMBuildAnd(ctx->builder, formats,
LLVMConstInt(ctx->i32, C_008F14_NUM_FORMAT, false),
"");
wa_formats = LLVMBuildOr(ctx->builder, wa_formats,
LLVMConstInt(ctx->i32, wa_num_format, false), "");
formats = LLVMBuildSelect(ctx->builder, wa_8888, wa_formats, formats, "");
args->resource = LLVMBuildInsertElement(
ctx->builder, args->resource, formats, ctx->i32_1, "");
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
assert(!wa_8888);
half_texel[0] = half_texel[1] = LLVMConstReal(ctx->f32, -0.5);
} else {
struct ac_image_args resinfo = {};
LLVMBasicBlockRef bbs[2];
LLVMValueRef unnorm = NULL;
LLVMValueRef default_offset = ctx->f32_0;
if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D &&
!instr->is_array) {
/* In vulkan, whether the sampler uses unnormalized
* coordinates or not is a dynamic property of the
* sampler. Hence, to figure out whether or not we
* need to divide by the texture size, we need to test
* the sampler at runtime. This tests the bit set by
* radv_init_sampler().
*/
LLVMValueRef sampler0 =
LLVMBuildExtractElement(ctx->builder, args->sampler, ctx->i32_0, "");
sampler0 = LLVMBuildLShr(ctx->builder, sampler0,
LLVMConstInt(ctx->i32, 15, false), "");
sampler0 = LLVMBuildAnd(ctx->builder, sampler0, ctx->i32_1, "");
unnorm = LLVMBuildICmp(ctx->builder, LLVMIntEQ, sampler0, ctx->i32_1, "");
default_offset = LLVMConstReal(ctx->f32, -0.5);
}
bbs[0] = LLVMGetInsertBlock(ctx->builder);
if (wa_8888 || unnorm) {
assert(!(wa_8888 && unnorm));
LLVMValueRef not_needed = wa_8888 ? wa_8888 : unnorm;
/* Skip the texture size query entirely if we don't need it. */
ac_build_ifcc(ctx, LLVMBuildNot(ctx->builder, not_needed, ""), 2000);
bbs[1] = LLVMGetInsertBlock(ctx->builder);
}
/* Query the texture size. */
resinfo.dim = ac_get_sampler_dim(ctx->chip_class, instr->sampler_dim, instr->is_array);
resinfo.opcode = ac_image_get_resinfo;
resinfo.dmask = 0xf;
resinfo.lod = ctx->i32_0;
resinfo.resource = args->resource;
resinfo.attributes = AC_FUNC_ATTR_READNONE;
LLVMValueRef size = ac_build_image_opcode(ctx, &resinfo);
/* Compute -0.5 / size. */
for (unsigned c = 0; c < 2; c++) {
half_texel[c] =
LLVMBuildExtractElement(ctx->builder, size,
LLVMConstInt(ctx->i32, c, 0), "");
half_texel[c] = LLVMBuildUIToFP(ctx->builder, half_texel[c], ctx->f32, "");
half_texel[c] = ac_build_fdiv(ctx, ctx->f32_1, half_texel[c]);
half_texel[c] = LLVMBuildFMul(ctx->builder, half_texel[c],
LLVMConstReal(ctx->f32, -0.5), "");
}
if (wa_8888 || unnorm) {
ac_build_endif(ctx, 2000);
for (unsigned c = 0; c < 2; c++) {
LLVMValueRef values[2] = { default_offset, half_texel[c] };
half_texel[c] = ac_build_phi(ctx, ctx->f32, 2,
values, bbs);
}
}
}
for (unsigned c = 0; c < 2; c++) {
LLVMValueRef tmp;
tmp = LLVMBuildBitCast(ctx->builder, args->coords[c], ctx->f32, "");
args->coords[c] = LLVMBuildFAdd(ctx->builder, tmp, half_texel[c], "");
}
args->attributes = AC_FUNC_ATTR_READNONE;
result = ac_build_image_opcode(ctx, args);
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
LLVMValueRef tmp, tmp2;
/* if the cube workaround is in place, f2i the result. */
for (unsigned c = 0; c < 4; c++) {
tmp = LLVMBuildExtractElement(ctx->builder, result, LLVMConstInt(ctx->i32, c, false), "");
if (stype == GLSL_TYPE_UINT)
tmp2 = LLVMBuildFPToUI(ctx->builder, tmp, ctx->i32, "");
else
tmp2 = LLVMBuildFPToSI(ctx->builder, tmp, ctx->i32, "");
tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->i32, "");
tmp2 = LLVMBuildBitCast(ctx->builder, tmp2, ctx->i32, "");
tmp = LLVMBuildSelect(ctx->builder, wa_8888, tmp2, tmp, "");
tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->f32, "");
result = LLVMBuildInsertElement(ctx->builder, result, tmp, LLVMConstInt(ctx->i32, c, false), "");
}
}
return result;
}
static nir_deref_instr *get_tex_texture_deref(const nir_tex_instr *instr)
{
nir_deref_instr *texture_deref_instr = NULL;
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_texture_deref:
texture_deref_instr = nir_src_as_deref(instr->src[i].src);
break;
default:
break;
}
}
return texture_deref_instr;
}
static LLVMValueRef build_tex_intrinsic(struct ac_nir_context *ctx,
const nir_tex_instr *instr,
struct ac_image_args *args)
{
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
assert(instr->dest.is_ssa);
return ac_build_buffer_load_format(&ctx->ac,
args->resource,
args->coords[0],
ctx->ac.i32_0,
util_last_bit(mask),
0, true,
instr->dest.ssa.bit_size == 16);
}
args->opcode = ac_image_sample;
switch (instr->op) {
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_samples_identical:
args->opcode = args->level_zero ||
instr->sampler_dim == GLSL_SAMPLER_DIM_MS ?
ac_image_load : ac_image_load_mip;
args->level_zero = false;
break;
case nir_texop_txs:
case nir_texop_query_levels:
args->opcode = ac_image_get_resinfo;
if (!args->lod)
args->lod = ctx->ac.i32_0;
args->level_zero = false;
break;
case nir_texop_tex:
if (ctx->stage != MESA_SHADER_FRAGMENT) {
assert(!args->lod);
args->level_zero = true;
}
break;
case nir_texop_tg4:
args->opcode = ac_image_gather4;
if (!args->lod && !args->bias)
args->level_zero = true;
break;
case nir_texop_lod:
args->opcode = ac_image_get_lod;
break;
case nir_texop_fragment_fetch:
case nir_texop_fragment_mask_fetch:
args->opcode = ac_image_load;
args->level_zero = false;
break;
default:
break;
}
if (instr->op == nir_texop_tg4 && ctx->ac.chip_class <= GFX8) {
nir_deref_instr *texture_deref_instr = get_tex_texture_deref(instr);
nir_variable *var = nir_deref_instr_get_variable(texture_deref_instr);
const struct glsl_type *type = glsl_without_array(var->type);
enum glsl_base_type stype = glsl_get_sampler_result_type(type);
if (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT) {
return lower_gather4_integer(&ctx->ac, var, args, instr);
}
}
/* Fixup for GFX9 which allocates 1D textures as 2D. */
if (instr->op == nir_texop_lod && ctx->ac.chip_class == GFX9) {
if ((args->dim == ac_image_2darray ||
args->dim == ac_image_2d) && !args->coords[1]) {
args->coords[1] = ctx->ac.i32_0;
}
}
args->attributes = AC_FUNC_ATTR_READNONE;
bool cs_derivs = ctx->stage == MESA_SHADER_COMPUTE &&
ctx->info->cs.derivative_group != DERIVATIVE_GROUP_NONE;
if (ctx->stage == MESA_SHADER_FRAGMENT || cs_derivs) {
/* Prevent texture instructions with implicit derivatives from being
* sinked into branches. */
switch (instr->op) {
case nir_texop_tex:
case nir_texop_txb:
case nir_texop_lod:
args->attributes |= AC_FUNC_ATTR_CONVERGENT;
break;
default:
break;
}
}
return ac_build_image_opcode(&ctx->ac, args);
}
static LLVMValueRef visit_vulkan_resource_reindex(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef ptr = get_src(ctx, instr->src[0]);
LLVMValueRef index = get_src(ctx, instr->src[1]);
LLVMValueRef result = LLVMBuildGEP(ctx->ac.builder, ptr, &index, 1, "");
LLVMSetMetadata(result, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
return result;
}
static LLVMValueRef visit_load_push_constant(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef ptr, addr;
LLVMValueRef src0 = get_src(ctx, instr->src[0]);
unsigned index = nir_intrinsic_base(instr);
addr = LLVMConstInt(ctx->ac.i32, index, 0);
addr = LLVMBuildAdd(ctx->ac.builder, addr, src0, "");
/* Load constant values from user SGPRS when possible, otherwise
* fallback to the default path that loads directly from memory.
*/
if (LLVMIsConstant(src0) &&
instr->dest.ssa.bit_size == 32) {
unsigned count = instr->dest.ssa.num_components;
unsigned offset = index;
offset += LLVMConstIntGetZExtValue(src0);
offset /= 4;
offset -= ctx->args->base_inline_push_consts;
unsigned num_inline_push_consts = ctx->args->num_inline_push_consts;
if (offset + count <= num_inline_push_consts) {
LLVMValueRef push_constants[num_inline_push_consts];
for (unsigned i = 0; i < num_inline_push_consts; i++)
push_constants[i] = ac_get_arg(&ctx->ac,
ctx->args->inline_push_consts[i]);
return ac_build_gather_values(&ctx->ac,
push_constants + offset,
count);
}
}
ptr = LLVMBuildGEP(ctx->ac.builder,
ac_get_arg(&ctx->ac, ctx->args->push_constants), &addr, 1, "");
if (instr->dest.ssa.bit_size == 8) {
unsigned load_dwords = instr->dest.ssa.num_components > 1 ? 2 : 1;
LLVMTypeRef vec_type = LLVMVectorType(ctx->ac.i8, 4 * load_dwords);
ptr = ac_cast_ptr(&ctx->ac, ptr, vec_type);
LLVMValueRef res = LLVMBuildLoad(ctx->ac.builder, ptr, "");
LLVMValueRef params[3];
if (load_dwords > 1) {
LLVMValueRef res_vec = LLVMBuildBitCast(ctx->ac.builder, res, ctx->ac.v2i32, "");
params[0] = LLVMBuildExtractElement(ctx->ac.builder, res_vec, LLVMConstInt(ctx->ac.i32, 1, false), "");
params[1] = LLVMBuildExtractElement(ctx->ac.builder, res_vec, LLVMConstInt(ctx->ac.i32, 0, false), "");
} else {
res = LLVMBuildBitCast(ctx->ac.builder, res, ctx->ac.i32, "");
params[0] = ctx->ac.i32_0;
params[1] = res;
}
params[2] = addr;
res = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.alignbyte", ctx->ac.i32, params, 3, 0);
res = LLVMBuildTrunc(ctx->ac.builder, res, LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.num_components * 8), "");
if (instr->dest.ssa.num_components > 1)
res = LLVMBuildBitCast(ctx->ac.builder, res, LLVMVectorType(ctx->ac.i8, instr->dest.ssa.num_components), "");
return res;
} else if (instr->dest.ssa.bit_size == 16) {
unsigned load_dwords = instr->dest.ssa.num_components / 2 + 1;
LLVMTypeRef vec_type = LLVMVectorType(ctx->ac.i16, 2 * load_dwords);
ptr = ac_cast_ptr(&ctx->ac, ptr, vec_type);
LLVMValueRef res = LLVMBuildLoad(ctx->ac.builder, ptr, "");
res = LLVMBuildBitCast(ctx->ac.builder, res, vec_type, "");
LLVMValueRef cond = LLVMBuildLShr(ctx->ac.builder, addr, ctx->ac.i32_1, "");
cond = LLVMBuildTrunc(ctx->ac.builder, cond, ctx->ac.i1, "");
LLVMValueRef mask[] = { LLVMConstInt(ctx->ac.i32, 0, false), LLVMConstInt(ctx->ac.i32, 1, false),
LLVMConstInt(ctx->ac.i32, 2, false), LLVMConstInt(ctx->ac.i32, 3, false),
LLVMConstInt(ctx->ac.i32, 4, false)};
LLVMValueRef swizzle_aligned = LLVMConstVector(&mask[0], instr->dest.ssa.num_components);
LLVMValueRef swizzle_unaligned = LLVMConstVector(&mask[1], instr->dest.ssa.num_components);
LLVMValueRef shuffle_aligned = LLVMBuildShuffleVector(ctx->ac.builder, res, res, swizzle_aligned, "");
LLVMValueRef shuffle_unaligned = LLVMBuildShuffleVector(ctx->ac.builder, res, res, swizzle_unaligned, "");
res = LLVMBuildSelect(ctx->ac.builder, cond, shuffle_unaligned, shuffle_aligned, "");
return LLVMBuildBitCast(ctx->ac.builder, res, get_def_type(ctx, &instr->dest.ssa), "");
}
ptr = ac_cast_ptr(&ctx->ac, ptr, get_def_type(ctx, &instr->dest.ssa));
return LLVMBuildLoad(ctx->ac.builder, ptr, "");
}
static LLVMValueRef visit_get_buffer_size(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMValueRef index = get_src(ctx, instr->src[0]);
return get_buffer_size(ctx, ctx->abi->load_ssbo(ctx->abi, index, false), false);
}
static uint32_t widen_mask(uint32_t mask, unsigned multiplier)
{
uint32_t new_mask = 0;
for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
if (mask & (1u << i))
new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
return new_mask;
}
static LLVMValueRef extract_vector_range(struct ac_llvm_context *ctx, LLVMValueRef src,
unsigned start, unsigned count)
{
LLVMValueRef mask[] = {
ctx->i32_0, ctx->i32_1,
LLVMConstInt(ctx->i32, 2, false), LLVMConstInt(ctx->i32, 3, false) };
unsigned src_elements = ac_get_llvm_num_components(src);
if (count == src_elements) {
assert(start == 0);
return src;
} else if (count == 1) {
assert(start < src_elements);
return LLVMBuildExtractElement(ctx->builder, src, mask[start], "");
} else {
assert(start + count <= src_elements);
assert(count <= 4);
LLVMValueRef swizzle = LLVMConstVector(&mask[start], count);
return LLVMBuildShuffleVector(ctx->builder, src, src, swizzle, "");
}
}
static unsigned get_cache_policy(struct ac_nir_context *ctx,
enum gl_access_qualifier access,
bool may_store_unaligned,
bool writeonly_memory)
{
unsigned cache_policy = 0;
/* GFX6 has a TC L1 bug causing corruption of 8bit/16bit stores. All
* store opcodes not aligned to a dword are affected. The only way to
* get unaligned stores is through shader images.
*/
if (((may_store_unaligned && ctx->ac.chip_class == GFX6) ||
/* If this is write-only, don't keep data in L1 to prevent
* evicting L1 cache lines that may be needed by other
* instructions.
*/
writeonly_memory ||
access & (ACCESS_COHERENT | ACCESS_VOLATILE))) {
cache_policy |= ac_glc;
}
if (access & ACCESS_STREAM_CACHE_POLICY)
cache_policy |= ac_slc | ac_glc;
return cache_policy;
}
static LLVMValueRef enter_waterfall_ssbo(struct ac_nir_context *ctx,
struct waterfall_context *wctx,
const nir_intrinsic_instr *instr,
nir_src src)
{
return enter_waterfall(ctx, wctx, get_src(ctx, src),
nir_intrinsic_access(instr) & ACCESS_NON_UNIFORM);
}
static void visit_store_ssbo(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
if (ctx->ac.postponed_kill) {
LLVMValueRef cond = LLVMBuildLoad(ctx->ac.builder,
ctx->ac.postponed_kill, "");
ac_build_ifcc(&ctx->ac, cond, 7000);
}
LLVMValueRef src_data = get_src(ctx, instr->src[0]);
int elem_size_bytes = ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src_data)) / 8;
unsigned writemask = nir_intrinsic_write_mask(instr);
enum gl_access_qualifier access = nir_intrinsic_access(instr);
bool writeonly_memory = access & ACCESS_NON_READABLE;
unsigned cache_policy = get_cache_policy(ctx, access, false, writeonly_memory);
struct waterfall_context wctx;
LLVMValueRef rsrc_base = enter_waterfall_ssbo(ctx, &wctx, instr, instr->src[1]);
LLVMValueRef rsrc = ctx->abi->load_ssbo(ctx->abi, rsrc_base, true);
LLVMValueRef base_data = src_data;
base_data = ac_trim_vector(&ctx->ac, base_data, instr->num_components);
LLVMValueRef base_offset = get_src(ctx, instr->src[2]);
while (writemask) {
int start, count;
LLVMValueRef data, offset;
LLVMTypeRef data_type;
u_bit_scan_consecutive_range(&writemask, &start, &count);
/* Due to an LLVM limitation with LLVM < 9, split 3-element
* writes into a 2-element and a 1-element write. */
if (count == 3 &&
(elem_size_bytes != 4 || !ac_has_vec3_support(ctx->ac.chip_class, false))) {
writemask |= 1 << (start + 2);
count = 2;
}
int num_bytes = count * elem_size_bytes; /* count in bytes */
/* we can only store 4 DWords at the same time.
* can only happen for 64 Bit vectors. */
if (num_bytes > 16) {
writemask |= ((1u << (count - 2)) - 1u) << (start + 2);
count = 2;
num_bytes = 16;
}
/* check alignment of 16 Bit stores */
if (elem_size_bytes == 2 && num_bytes > 2 && (start % 2) == 1) {
writemask |= ((1u << (count - 1)) - 1u) << (start + 1);
count = 1;
num_bytes = 2;
}
/* Due to alignment issues, split stores of 8-bit/16-bit
* vectors.
*/
if (ctx->ac.chip_class == GFX6 && count > 1 && elem_size_bytes < 4) {
writemask |= ((1u << (count - 1)) - 1u) << (start + 1);
count = 1;
num_bytes = elem_size_bytes;
}
data = extract_vector_range(&ctx->ac, base_data, start, count);
offset = LLVMBuildAdd(ctx->ac.builder, base_offset,
LLVMConstInt(ctx->ac.i32, start * elem_size_bytes, false), "");
if (num_bytes == 1) {
ac_build_tbuffer_store_byte(&ctx->ac, rsrc, data,
offset, ctx->ac.i32_0,
cache_policy);
} else if (num_bytes == 2) {
ac_build_tbuffer_store_short(&ctx->ac, rsrc, data,
offset, ctx->ac.i32_0,
cache_policy);
} else {
int num_channels = num_bytes / 4;
switch (num_bytes) {
case 16: /* v4f32 */
data_type = ctx->ac.v4f32;
break;
case 12: /* v3f32 */
data_type = ctx->ac.v3f32;
break;
case 8: /* v2f32 */
data_type = ctx->ac.v2f32;
break;
case 4: /* f32 */
data_type = ctx->ac.f32;
break;
default:
unreachable("Malformed vector store.");
}
data = LLVMBuildBitCast(ctx->ac.builder, data, data_type, "");
ac_build_buffer_store_dword(&ctx->ac, rsrc, data,
num_channels, offset,
ctx->ac.i32_0, 0,
cache_policy);
}
}
exit_waterfall(ctx, &wctx, NULL);
if (ctx->ac.postponed_kill)
ac_build_endif(&ctx->ac, 7000);
}
static LLVMValueRef emit_ssbo_comp_swap_64(struct ac_nir_context *ctx,
LLVMValueRef descriptor,
LLVMValueRef offset,
LLVMValueRef compare,
LLVMValueRef exchange)
{
LLVMBasicBlockRef start_block = NULL, then_block = NULL;
if (ctx->abi->robust_buffer_access) {
LLVMValueRef size = ac_llvm_extract_elem(&ctx->ac, descriptor, 2);
LLVMValueRef cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, offset, size, "");
start_block = LLVMGetInsertBlock(ctx->ac.builder);
ac_build_ifcc(&ctx->ac, cond, -1);
then_block = LLVMGetInsertBlock(ctx->ac.builder);
}
LLVMValueRef ptr_parts[2] = {
ac_llvm_extract_elem(&ctx->ac, descriptor, 0),
LLVMBuildAnd(ctx->ac.builder,
ac_llvm_extract_elem(&ctx->ac, descriptor, 1),
LLVMConstInt(ctx->ac.i32, 65535, 0), "")
};
ptr_parts[1] = LLVMBuildTrunc(ctx->ac.builder, ptr_parts[1], ctx->ac.i16, "");
ptr_parts[1] = LLVMBuildSExt(ctx->ac.builder, ptr_parts[1], ctx->ac.i32, "");
offset = LLVMBuildZExt(ctx->ac.builder, offset, ctx->ac.i64, "");
LLVMValueRef ptr = ac_build_gather_values(&ctx->ac, ptr_parts, 2);
ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, ctx->ac.i64, "");
ptr = LLVMBuildAdd(ctx->ac.builder, ptr, offset, "");
ptr = LLVMBuildIntToPtr(ctx->ac.builder, ptr, LLVMPointerType(ctx->ac.i64, AC_ADDR_SPACE_GLOBAL), "");
LLVMValueRef result = ac_build_atomic_cmp_xchg(&ctx->ac, ptr, compare, exchange, "singlethread-one-as");
result = LLVMBuildExtractValue(ctx->ac.builder, result, 0, "");
if (ctx->abi->robust_buffer_access) {
ac_build_endif(&ctx->ac, -1);
LLVMBasicBlockRef incoming_blocks[2] = {
start_block,
then_block,
};
LLVMValueRef incoming_values[2] = {
LLVMConstInt(ctx->ac.i64, 0, 0),
result,
};
LLVMValueRef ret = LLVMBuildPhi(ctx->ac.builder, ctx->ac.i64, "");
LLVMAddIncoming(ret, incoming_values, incoming_blocks, 2);
return ret;
} else {
return result;
}
}
static LLVMValueRef visit_atomic_ssbo(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
if (ctx->ac.postponed_kill) {
LLVMValueRef cond = LLVMBuildLoad(ctx->ac.builder,
ctx->ac.postponed_kill, "");
ac_build_ifcc(&ctx->ac, cond, 7001);
}
LLVMTypeRef return_type = LLVMTypeOf(get_src(ctx, instr->src[2]));
const char *op;
char name[64], type[8];
LLVMValueRef params[6], descriptor;
LLVMValueRef result;
int arg_count = 0;
struct waterfall_context wctx;
LLVMValueRef rsrc_base = enter_waterfall_ssbo(ctx, &wctx, instr, instr->src[0]);
switch (instr->intrinsic) {
case nir_intrinsic_ssbo_atomic_add:
op = "add";
break;
case nir_intrinsic_ssbo_atomic_imin:
op = "smin";
break;
case nir_intrinsic_ssbo_atomic_umin:
op = "umin";
break;
case nir_intrinsic_ssbo_atomic_imax:
op = "smax";
break;
case nir_intrinsic_ssbo_atomic_umax:
op = "umax";
break;
case nir_intrinsic_ssbo_atomic_and:
op = "and";
break;
case nir_intrinsic_ssbo_atomic_or:
op = "or";
break;
case nir_intrinsic_ssbo_atomic_xor:
op = "xor";
break;
case nir_intrinsic_ssbo_atomic_exchange:
op = "swap";
break;
case nir_intrinsic_ssbo_atomic_comp_swap:
op = "cmpswap";
break;
default:
abort();
}
descriptor = ctx->abi->load_ssbo(ctx->abi,
rsrc_base,
true);
if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap &&
return_type == ctx->ac.i64) {
result = emit_ssbo_comp_swap_64(ctx, descriptor,
get_src(ctx, instr->src[1]),
get_src(ctx, instr->src[2]),
get_src(ctx, instr->src[3]));
} else {
if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap) {
params[arg_count++] = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[3]), 0);
}
params[arg_count++] = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[2]), 0);
params[arg_count++] = descriptor;
if (LLVM_VERSION_MAJOR >= 9) {
/* XXX: The new raw/struct atomic intrinsics are buggy with
* LLVM 8, see r358579.
*/
params[arg_count++] = get_src(ctx, instr->src[1]); /* voffset */
params[arg_count++] = ctx->ac.i32_0; /* soffset */
params[arg_count++] = ctx->ac.i32_0; /* slc */
ac_build_type_name_for_intr(return_type, type, sizeof(type));
snprintf(name, sizeof(name),
"llvm.amdgcn.raw.buffer.atomic.%s.%s", op, type);
} else {
params[arg_count++] = ctx->ac.i32_0; /* vindex */
params[arg_count++] = get_src(ctx, instr->src[1]); /* voffset */
params[arg_count++] = ctx->ac.i1false; /* slc */
assert(return_type == ctx->ac.i32);
snprintf(name, sizeof(name),
"llvm.amdgcn.buffer.atomic.%s", op);
}
result = ac_build_intrinsic(&ctx->ac, name, return_type, params,
arg_count, 0);
}
result = exit_waterfall(ctx, &wctx, result);
if (ctx->ac.postponed_kill)
ac_build_endif(&ctx->ac, 7001);
return result;
}
static LLVMValueRef visit_load_buffer(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
struct waterfall_context wctx;
LLVMValueRef rsrc_base = enter_waterfall_ssbo(ctx, &wctx, instr, instr->src[0]);
int elem_size_bytes = instr->dest.ssa.bit_size / 8;
int num_components = instr->num_components;
enum gl_access_qualifier access = nir_intrinsic_access(instr);
unsigned cache_policy = get_cache_policy(ctx, access, false, false);
LLVMValueRef offset = get_src(ctx, instr->src[1]);
LLVMValueRef rsrc = ctx->abi->load_ssbo(ctx->abi, rsrc_base, false);
LLVMValueRef vindex = ctx->ac.i32_0;
LLVMTypeRef def_type = get_def_type(ctx, &instr->dest.ssa);
LLVMTypeRef def_elem_type = num_components > 1 ? LLVMGetElementType(def_type) : def_type;
LLVMValueRef results[4];
for (int i = 0; i < num_components;) {
int num_elems = num_components - i;
if (elem_size_bytes < 4 && nir_intrinsic_align(instr) % 4 != 0)
num_elems = 1;
if (num_elems * elem_size_bytes > 16)
num_elems = 16 / elem_size_bytes;
int load_bytes = num_elems * elem_size_bytes;
LLVMValueRef immoffset = LLVMConstInt(ctx->ac.i32, i * elem_size_bytes, false);
LLVMValueRef ret;
if (load_bytes == 1) {
ret = ac_build_tbuffer_load_byte(&ctx->ac,
rsrc,
offset,
ctx->ac.i32_0,
immoffset,
cache_policy);
} else if (load_bytes == 2) {
ret = ac_build_tbuffer_load_short(&ctx->ac,
rsrc,
offset,
ctx->ac.i32_0,
immoffset,
cache_policy);
} else {
int num_channels = util_next_power_of_two(load_bytes) / 4;
bool can_speculate = access & ACCESS_CAN_REORDER;
ret = ac_build_buffer_load(&ctx->ac, rsrc, num_channels,
vindex, offset, immoffset, 0,
cache_policy, can_speculate, false);
}
LLVMTypeRef byte_vec = LLVMVectorType(ctx->ac.i8, ac_get_type_size(LLVMTypeOf(ret)));
ret = LLVMBuildBitCast(ctx->ac.builder, ret, byte_vec, "");
ret = ac_trim_vector(&ctx->ac, ret, load_bytes);
LLVMTypeRef ret_type = LLVMVectorType(def_elem_type, num_elems);
ret = LLVMBuildBitCast(ctx->ac.builder, ret, ret_type, "");
for (unsigned j = 0; j < num_elems; j++) {
results[i + j] = LLVMBuildExtractElement(ctx->ac.builder, ret, LLVMConstInt(ctx->ac.i32, j, false), "");
}
i += num_elems;
}
LLVMValueRef ret = ac_build_gather_values(&ctx->ac, results, num_components);
return exit_waterfall(ctx, &wctx, ret);
}
static LLVMValueRef enter_waterfall_ubo(struct ac_nir_context *ctx,
struct waterfall_context *wctx,
const nir_intrinsic_instr *instr)
{
return enter_waterfall(ctx, wctx, get_src(ctx, instr->src[0]),
nir_intrinsic_access(instr) & ACCESS_NON_UNIFORM);
}
static LLVMValueRef visit_load_ubo_buffer(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
struct waterfall_context wctx;
LLVMValueRef rsrc_base = enter_waterfall_ubo(ctx, &wctx, instr);
LLVMValueRef ret;
LLVMValueRef rsrc = rsrc_base;
LLVMValueRef offset = get_src(ctx, instr->src[1]);
int num_components = instr->num_components;
if (ctx->abi->load_ubo)
rsrc = ctx->abi->load_ubo(ctx->abi, rsrc);
if (instr->dest.ssa.bit_size == 64)
num_components *= 2;
if (instr->dest.ssa.bit_size == 16 || instr->dest.ssa.bit_size == 8) {
unsigned load_bytes = instr->dest.ssa.bit_size / 8;
LLVMValueRef results[num_components];
for (unsigned i = 0; i < num_components; ++i) {
LLVMValueRef immoffset = LLVMConstInt(ctx->ac.i32,
load_bytes * i, 0);
if (load_bytes == 1) {
results[i] = ac_build_tbuffer_load_byte(&ctx->ac,
rsrc,
offset,
ctx->ac.i32_0,
immoffset,
0);
} else {
assert(load_bytes == 2);
results[i] = ac_build_tbuffer_load_short(&ctx->ac,
rsrc,
offset,
ctx->ac.i32_0,
immoffset,
0);
}
}
ret = ac_build_gather_values(&ctx->ac, results, num_components);
} else {
ret = ac_build_buffer_load(&ctx->ac, rsrc, num_components, NULL, offset,
NULL, 0, 0, true, true);
ret = ac_trim_vector(&ctx->ac, ret, num_components);
}
ret = LLVMBuildBitCast(ctx->ac.builder, ret,
get_def_type(ctx, &instr->dest.ssa), "");
return exit_waterfall(ctx, &wctx, ret);
}
static void
get_deref_offset(struct ac_nir_context *ctx, nir_deref_instr *instr,
bool vs_in, unsigned *vertex_index_out,
LLVMValueRef *vertex_index_ref,
unsigned *const_out, LLVMValueRef *indir_out)
{
nir_variable *var = nir_deref_instr_get_variable(instr);
nir_deref_path path;
unsigned idx_lvl = 1;
nir_deref_path_init(&path, instr, NULL);
if (vertex_index_out != NULL || vertex_index_ref != NULL) {
if (vertex_index_ref) {
*vertex_index_ref = get_src(ctx, path.path[idx_lvl]->arr.index);
if (vertex_index_out)
*vertex_index_out = 0;
} else {
*vertex_index_out = nir_src_as_uint(path.path[idx_lvl]->arr.index);
}
++idx_lvl;
}
uint32_t const_offset = 0;
LLVMValueRef offset = NULL;
if (var->data.compact) {
assert(instr->deref_type == nir_deref_type_array);
const_offset = nir_src_as_uint(instr->arr.index);
goto out;
}
for (; path.path[idx_lvl]; ++idx_lvl) {
const struct glsl_type *parent_type = path.path[idx_lvl - 1]->type;
if (path.path[idx_lvl]->deref_type == nir_deref_type_struct) {
unsigned index = path.path[idx_lvl]->strct.index;
for (unsigned i = 0; i < index; i++) {
const struct glsl_type *ft = glsl_get_struct_field(parent_type, i);
const_offset += glsl_count_attribute_slots(ft, vs_in);
}
} else if(path.path[idx_lvl]->deref_type == nir_deref_type_array) {
unsigned size = glsl_count_attribute_slots(path.path[idx_lvl]->type, vs_in);
if (nir_src_is_const(path.path[idx_lvl]->arr.index)) {
const_offset += size *
nir_src_as_uint(path.path[idx_lvl]->arr.index);
} else {
LLVMValueRef array_off = LLVMBuildMul(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, size, 0),
get_src(ctx, path.path[idx_lvl]->arr.index), "");
if (offset)
offset = LLVMBuildAdd(ctx->ac.builder, offset, array_off, "");
else
offset = array_off;
}
} else
unreachable("Uhandled deref type in get_deref_instr_offset");
}
out:
nir_deref_path_finish(&path);
if (const_offset && offset)
offset = LLVMBuildAdd(ctx->ac.builder, offset,
LLVMConstInt(ctx->ac.i32, const_offset, 0),
"");
*const_out = const_offset;
*indir_out = offset;
}
static LLVMValueRef load_tess_varyings(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr,
bool load_inputs)
{
LLVMValueRef result;
LLVMValueRef vertex_index = NULL;
LLVMValueRef indir_index = NULL;
unsigned const_index = 0;
nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
unsigned location = var->data.location;
unsigned driver_location = var->data.driver_location;
const bool is_patch = var->data.patch ||
var->data.location == VARYING_SLOT_TESS_LEVEL_INNER ||
var->data.location == VARYING_SLOT_TESS_LEVEL_OUTER;
const bool is_compact = var->data.compact;
get_deref_offset(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr),
false, NULL, is_patch ? NULL : &vertex_index,
&const_index, &indir_index);
LLVMTypeRef dest_type = get_def_type(ctx, &instr->dest.ssa);
LLVMTypeRef src_component_type;
if (LLVMGetTypeKind(dest_type) == LLVMVectorTypeKind)
src_component_type = LLVMGetElementType(dest_type);
else
src_component_type = dest_type;
result = ctx->abi->load_tess_varyings(ctx->abi, src_component_type,
vertex_index, indir_index,
const_index, location, driver_location,
var->data.location_frac,
instr->num_components,
is_patch, is_compact, load_inputs);
if (instr->dest.ssa.bit_size == 16) {
result = ac_to_integer(&ctx->ac, result);
result = LLVMBuildTrunc(ctx->ac.builder, result, dest_type, "");
}
return LLVMBuildBitCast(ctx->ac.builder, result, dest_type, "");
}
static unsigned
type_scalar_size_bytes(const struct glsl_type *type)
{
assert(glsl_type_is_vector_or_scalar(type) ||
glsl_type_is_matrix(type));
return glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8;
}
static LLVMValueRef visit_load_var(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
nir_deref_instr *deref = nir_instr_as_deref(instr->src[0].ssa->parent_instr);
nir_variable *var = nir_deref_instr_get_variable(deref);
LLVMValueRef values[8];
int idx = 0;
int ve = instr->dest.ssa.num_components;
unsigned comp = 0;
LLVMValueRef indir_index;
LLVMValueRef ret;
unsigned const_index;
unsigned stride = 4;
int mode = deref->mode;
if (var) {
bool vs_in = ctx->stage == MESA_SHADER_VERTEX &&
var->data.mode == nir_var_shader_in;
idx = var->data.driver_location;
comp = var->data.location_frac;
mode = var->data.mode;
get_deref_offset(ctx, deref, vs_in, NULL, NULL,
&const_index, &indir_index);
if (var->data.compact) {
stride = 1;
const_index += comp;
comp = 0;
}
}
if (instr->dest.ssa.bit_size == 64 &&
(deref->mode == nir_var_shader_in ||
deref->mode == nir_var_shader_out ||
deref->mode == nir_var_function_temp))
ve *= 2;
switch (mode) {
case nir_var_shader_in:
if (ctx->stage == MESA_SHADER_TESS_CTRL ||
ctx->stage == MESA_SHADER_TESS_EVAL) {
return load_tess_varyings(ctx, instr, true);
}
if (ctx->stage == MESA_SHADER_GEOMETRY) {
LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size);
LLVMValueRef indir_index;
unsigned const_index, vertex_index;
get_deref_offset(ctx, deref, false, &vertex_index, NULL,
&const_index, &indir_index);
assert(indir_index == NULL);
return ctx->abi->load_inputs(ctx->abi, var->data.location,
var->data.driver_location,
var->data.location_frac,
instr->num_components, vertex_index, const_index, type);
}
for (unsigned chan = comp; chan < ve + comp; chan++) {
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
var->type,
ctx->stage == MESA_SHADER_VERTEX);
count -= chan / 4;
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->abi->inputs + idx + chan, count,
stride, false, true);
values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
tmp_vec,
indir_index, "");
} else
values[chan] = ctx->abi->inputs[idx + chan + const_index * stride];
}
break;
case nir_var_function_temp:
for (unsigned chan = 0; chan < ve; chan++) {
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
var->type, false);
count -= chan / 4;
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->locals + idx + chan, count,
stride, true, true);
values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
tmp_vec,
indir_index, "");
} else {
values[chan] = LLVMBuildLoad(ctx->ac.builder, ctx->locals[idx + chan + const_index * stride], "");
}
}
break;
case nir_var_shader_out:
if (ctx->stage == MESA_SHADER_TESS_CTRL) {
return load_tess_varyings(ctx, instr, false);
}
if (ctx->stage == MESA_SHADER_FRAGMENT &&
var->data.fb_fetch_output &&
ctx->abi->emit_fbfetch)
return ctx->abi->emit_fbfetch(ctx->abi);
for (unsigned chan = comp; chan < ve + comp; chan++) {
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
var->type, false);
count -= chan / 4;
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->abi->outputs + idx + chan, count,
stride, true, true);
values[chan] = LLVMBuildExtractElement(ctx->ac.builder,
tmp_vec,
indir_index, "");
} else {
values[chan] = LLVMBuildLoad(ctx->ac.builder,
ctx->abi->outputs[idx + chan + const_index * stride],
"");
}
}
break;
case nir_var_mem_global: {
LLVMValueRef address = get_src(ctx, instr->src[0]);
LLVMTypeRef result_type = get_def_type(ctx, &instr->dest.ssa);
unsigned explicit_stride = glsl_get_explicit_stride(deref->type);
unsigned natural_stride = type_scalar_size_bytes(deref->type);
unsigned stride = explicit_stride ? explicit_stride : natural_stride;
int elem_size_bytes = ac_get_elem_bits(&ctx->ac, result_type) / 8;
bool split_loads = ctx->ac.chip_class == GFX6 && elem_size_bytes < 4;
if (stride != natural_stride || split_loads) {
if (LLVMGetTypeKind(result_type) == LLVMVectorTypeKind)
result_type = LLVMGetElementType(result_type);
LLVMTypeRef ptr_type = LLVMPointerType(result_type,
LLVMGetPointerAddressSpace(LLVMTypeOf(address)));
address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , "");
for (unsigned i = 0; i < instr->dest.ssa.num_components; ++i) {
LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, i * stride / natural_stride, 0);
values[i] = LLVMBuildLoad(ctx->ac.builder,
ac_build_gep_ptr(&ctx->ac, address, offset), "");
if (nir_intrinsic_access(instr) & (ACCESS_COHERENT | ACCESS_VOLATILE))
LLVMSetOrdering(values[i], LLVMAtomicOrderingMonotonic);
}
return ac_build_gather_values(&ctx->ac, values, instr->dest.ssa.num_components);
} else {
LLVMTypeRef ptr_type = LLVMPointerType(result_type,
LLVMGetPointerAddressSpace(LLVMTypeOf(address)));
address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , "");
LLVMValueRef val = LLVMBuildLoad(ctx->ac.builder, address, "");
if (nir_intrinsic_access(instr) & (ACCESS_COHERENT | ACCESS_VOLATILE))
LLVMSetOrdering(val, LLVMAtomicOrderingMonotonic);
return val;
}
}
default:
unreachable("unhandle variable mode");
}
ret = ac_build_varying_gather_values(&ctx->ac, values, ve, comp);
return LLVMBuildBitCast(ctx->ac.builder, ret, get_def_type(ctx, &instr->dest.ssa), "");
}
static void
visit_store_var(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
if (ctx->ac.postponed_kill) {
LLVMValueRef cond = LLVMBuildLoad(ctx->ac.builder,
ctx->ac.postponed_kill, "");
ac_build_ifcc(&ctx->ac, cond, 7002);
}
nir_deref_instr *deref = nir_instr_as_deref(instr->src[0].ssa->parent_instr);
nir_variable *var = nir_deref_instr_get_variable(deref);
LLVMValueRef temp_ptr, value;
int idx = 0;
unsigned comp = 0;
LLVMValueRef src = ac_to_float(&ctx->ac, get_src(ctx, instr->src[1]));
int writemask = instr->const_index[0];
LLVMValueRef indir_index;
unsigned const_index;
if (var) {
get_deref_offset(ctx, deref, false,
NULL, NULL, &const_index, &indir_index);
idx = var->data.driver_location;
comp = var->data.location_frac;
if (var->data.compact) {
const_index += comp;
comp = 0;
}
}
if (ac_get_elem_bits(&ctx->ac, LLVMTypeOf(src)) == 64 &&
(deref->mode == nir_var_shader_out ||
deref->mode == nir_var_function_temp)) {
src = LLVMBuildBitCast(ctx->ac.builder, src,
LLVMVectorType(ctx->ac.f32, ac_get_llvm_num_components(src) * 2),
"");
writemask = widen_mask(writemask, 2);
}
writemask = writemask << comp;
switch (deref->mode) {
case nir_var_shader_out:
if (ctx->stage == MESA_SHADER_TESS_CTRL) {
LLVMValueRef vertex_index = NULL;
LLVMValueRef indir_index = NULL;
unsigned const_index = 0;
const bool is_patch = var->data.patch ||
var->data.location == VARYING_SLOT_TESS_LEVEL_INNER ||
var->data.location == VARYING_SLOT_TESS_LEVEL_OUTER;
get_deref_offset(ctx, deref, false, NULL,
is_patch ? NULL : &vertex_index,
&const_index, &indir_index);
ctx->abi->store_tcs_outputs(ctx->abi, var,
vertex_index, indir_index,
const_index, src, writemask);
break;
}
for (unsigned chan = 0; chan < 8; chan++) {
int stride = 4;
if (!(writemask & (1 << chan)))
continue;
value = ac_llvm_extract_elem(&ctx->ac, src, chan - comp);
if (var->data.compact)
stride = 1;
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
var->type, false);
count -= chan / 4;
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->abi->outputs + idx + chan, count,
stride, true, true);
tmp_vec = LLVMBuildInsertElement(ctx->ac.builder, tmp_vec,
value, indir_index, "");
build_store_values_extended(&ctx->ac, ctx->abi->outputs + idx + chan,
count, stride, tmp_vec);
} else {
temp_ptr = ctx->abi->outputs[idx + chan + const_index * stride];
LLVMBuildStore(ctx->ac.builder, value, temp_ptr);
}
}
break;
case nir_var_function_temp:
for (unsigned chan = 0; chan < 8; chan++) {
if (!(writemask & (1 << chan)))
continue;
value = ac_llvm_extract_elem(&ctx->ac, src, chan);
if (indir_index) {
unsigned count = glsl_count_attribute_slots(
var->type, false);
count -= chan / 4;
LLVMValueRef tmp_vec = ac_build_gather_values_extended(
&ctx->ac, ctx->locals + idx + chan, count,
4, true, true);
tmp_vec = LLVMBuildInsertElement(ctx->ac.builder, tmp_vec,
value, indir_index, "");
build_store_values_extended(&ctx->ac, ctx->locals + idx + chan,
count, 4, tmp_vec);
} else {
temp_ptr = ctx->locals[idx + chan + const_index * 4];
LLVMBuildStore(ctx->ac.builder, value, temp_ptr);
}
}
break;
case nir_var_mem_global: {
int writemask = instr->const_index[0];
LLVMValueRef address = get_src(ctx, instr->src[0]);
LLVMValueRef val = get_src(ctx, instr->src[1]);
unsigned explicit_stride = glsl_get_explicit_stride(deref->type);
unsigned natural_stride = type_scalar_size_bytes(deref->type);
unsigned stride = explicit_stride ? explicit_stride : natural_stride;
int elem_size_bytes = ac_get_elem_bits(&ctx->ac, LLVMTypeOf(val)) / 8;
bool split_stores = ctx->ac.chip_class == GFX6 && elem_size_bytes < 4;
LLVMTypeRef ptr_type = LLVMPointerType(LLVMTypeOf(val),
LLVMGetPointerAddressSpace(LLVMTypeOf(address)));
address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , "");
if (writemask == (1u << ac_get_llvm_num_components(val)) - 1 &&
stride == natural_stride && !split_stores) {
LLVMTypeRef ptr_type = LLVMPointerType(LLVMTypeOf(val),
LLVMGetPointerAddressSpace(LLVMTypeOf(address)));
address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , "");
val = LLVMBuildBitCast(ctx->ac.builder, val,
LLVMGetElementType(LLVMTypeOf(address)), "");
LLVMValueRef store = LLVMBuildStore(ctx->ac.builder, val, address);
if (nir_intrinsic_access(instr) & (ACCESS_COHERENT | ACCESS_VOLATILE))
LLVMSetOrdering(store, LLVMAtomicOrderingMonotonic);
} else {
LLVMTypeRef val_type = LLVMTypeOf(val);
if (LLVMGetTypeKind(LLVMTypeOf(val)) == LLVMVectorTypeKind)
val_type = LLVMGetElementType(val_type);
LLVMTypeRef ptr_type = LLVMPointerType(val_type,
LLVMGetPointerAddressSpace(LLVMTypeOf(address)));
address = LLVMBuildBitCast(ctx->ac.builder, address, ptr_type , "");
for (unsigned chan = 0; chan < 4; chan++) {
if (!(writemask & (1 << chan)))
continue;
LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, chan * stride / natural_stride, 0);
LLVMValueRef ptr = ac_build_gep_ptr(&ctx->ac, address, offset);
LLVMValueRef src = ac_llvm_extract_elem(&ctx->ac, val,
chan);
src = LLVMBuildBitCast(ctx->ac.builder, src,
LLVMGetElementType(LLVMTypeOf(ptr)), "");
LLVMValueRef store = LLVMBuildStore(ctx->ac.builder, src, ptr);
if (nir_intrinsic_access(instr) & (ACCESS_COHERENT | ACCESS_VOLATILE))
LLVMSetOrdering(store, LLVMAtomicOrderingMonotonic);
}
}
break;
}
default:
abort();
break;
}
if (ctx->ac.postponed_kill)
ac_build_endif(&ctx->ac, 7002);
}
static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
{
switch (dim) {
case GLSL_SAMPLER_DIM_BUF:
return 1;
case GLSL_SAMPLER_DIM_1D:
return array ? 2 : 1;
case GLSL_SAMPLER_DIM_2D:
return array ? 3 : 2;
case GLSL_SAMPLER_DIM_MS:
return array ? 4 : 3;
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
return 3;
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_SUBPASS:
return 2;
case GLSL_SAMPLER_DIM_SUBPASS_MS:
return 3;
default:
break;
}
return 0;
}
static LLVMValueRef adjust_sample_index_using_fmask(struct ac_llvm_context *ctx,
LLVMValueRef coord_x, LLVMValueRef coord_y,
LLVMValueRef coord_z,
LLVMValueRef sample_index,
LLVMValueRef fmask_desc_ptr)
{
unsigned sample_chan = coord_z ? 3 : 2;
LLVMValueRef addr[4] = {coord_x, coord_y, coord_z};
addr[sample_chan] = sample_index;
ac_apply_fmask_to_sample(ctx, fmask_desc_ptr, addr, coord_z != NULL);
return addr[sample_chan];
}
static nir_deref_instr *get_image_deref(const nir_intrinsic_instr *instr)
{
assert(instr->src[0].is_ssa);
return nir_instr_as_deref(instr->src[0].ssa->parent_instr);
}
static LLVMValueRef get_image_descriptor(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr,
LLVMValueRef dynamic_index,
enum ac_descriptor_type desc_type,
bool write)
{
nir_deref_instr *deref_instr =
instr->src[0].ssa->parent_instr->type == nir_instr_type_deref ?
nir_instr_as_deref(instr->src[0].ssa->parent_instr) : NULL;
return get_sampler_desc(ctx, deref_instr, desc_type, &instr->instr, dynamic_index, true, write);
}
static void get_image_coords(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr,
LLVMValueRef dynamic_desc_index,
struct ac_image_args *args,
enum glsl_sampler_dim dim,
bool is_array)
{
LLVMValueRef src0 = get_src(ctx, instr->src[1]);
LLVMValueRef masks[] = {
LLVMConstInt(ctx->ac.i32, 0, false), LLVMConstInt(ctx->ac.i32, 1, false),
LLVMConstInt(ctx->ac.i32, 2, false), LLVMConstInt(ctx->ac.i32, 3, false),
};
LLVMValueRef sample_index = ac_llvm_extract_elem(&ctx->ac, get_src(ctx, instr->src[2]), 0);
int count;
ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS ||
dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
bool is_ms = (dim == GLSL_SAMPLER_DIM_MS ||
dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
bool gfx9_1d = ctx->ac.chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
assert(!add_frag_pos && "Input attachments should be lowered by this point.");
count = image_type_to_components_count(dim, is_array);
if (is_ms && (instr->intrinsic == nir_intrinsic_image_deref_load ||
instr->intrinsic == nir_intrinsic_bindless_image_load)) {
LLVMValueRef fmask_load_address[3];
fmask_load_address[0] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[0], "");
fmask_load_address[1] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[1], "");
if (is_array)
fmask_load_address[2] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[2], "");
else
fmask_load_address[2] = NULL;
sample_index = adjust_sample_index_using_fmask(&ctx->ac,
fmask_load_address[0],
fmask_load_address[1],
fmask_load_address[2],
sample_index,
get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr),
AC_DESC_FMASK, &instr->instr, dynamic_desc_index, true, false));
}
if (count == 1 && !gfx9_1d) {
if (instr->src[1].ssa->num_components)
args->coords[0] = LLVMBuildExtractElement(ctx->ac.builder, src0, masks[0], "");
else
args->coords[0] = src0;
} else {
int chan;
if (is_ms)
count--;
for (chan = 0; chan < count; ++chan) {
args->coords[chan] = ac_llvm_extract_elem(&ctx->ac, src0, chan);
}
if (gfx9_1d) {
if (is_array) {
args->coords[2] = args->coords[1];
args->coords[1] = ctx->ac.i32_0;
} else
args->coords[1] = ctx->ac.i32_0;
count++;
}
if (ctx->ac.chip_class == GFX9 &&
dim == GLSL_SAMPLER_DIM_2D &&
!is_array) {
/* The hw can't bind a slice of a 3D image as a 2D
* image, because it ignores BASE_ARRAY if the target
* is 3D. The workaround is to read BASE_ARRAY and set
* it as the 3rd address operand for all 2D images.
*/
LLVMValueRef first_layer, const5, mask;
const5 = LLVMConstInt(ctx->ac.i32, 5, 0);
mask = LLVMConstInt(ctx->ac.i32, S_008F24_BASE_ARRAY(~0), 0);
first_layer = LLVMBuildExtractElement(ctx->ac.builder, args->resource, const5, "");
first_layer = LLVMBuildAnd(ctx->ac.builder, first_layer, mask, "");
args->coords[count] = first_layer;
count++;
}
if (is_ms) {
args->coords[count] = sample_index;
count++;
}
}
}
static LLVMValueRef get_image_buffer_descriptor(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr,
LLVMValueRef dynamic_index,
bool write, bool atomic)
{
LLVMValueRef rsrc = get_image_descriptor(ctx, instr, dynamic_index, AC_DESC_BUFFER, write);
if (ctx->ac.chip_class == GFX9 && LLVM_VERSION_MAJOR < 9 && atomic) {
LLVMValueRef elem_count = LLVMBuildExtractElement(ctx->ac.builder, rsrc, LLVMConstInt(ctx->ac.i32, 2, 0), "");
LLVMValueRef stride = LLVMBuildExtractElement(ctx->ac.builder, rsrc, LLVMConstInt(ctx->ac.i32, 1, 0), "");
stride = LLVMBuildLShr(ctx->ac.builder, stride, LLVMConstInt(ctx->ac.i32, 16, 0), "");
LLVMValueRef new_elem_count = LLVMBuildSelect(ctx->ac.builder,
LLVMBuildICmp(ctx->ac.builder, LLVMIntUGT, elem_count, stride, ""),
elem_count, stride, "");
rsrc = LLVMBuildInsertElement(ctx->ac.builder, rsrc, new_elem_count,
LLVMConstInt(ctx->ac.i32, 2, 0), "");
}
return rsrc;
}
static LLVMValueRef enter_waterfall_image(struct ac_nir_context *ctx,
struct waterfall_context *wctx,
const nir_intrinsic_instr *instr)
{
nir_deref_instr *deref_instr = NULL;
if (instr->src[0].ssa->parent_instr->type == nir_instr_type_deref)
deref_instr = nir_instr_as_deref(instr->src[0].ssa->parent_instr);
LLVMValueRef value = get_sampler_desc_index(ctx, deref_instr, &instr->instr, true);
return enter_waterfall(ctx, wctx, value, nir_intrinsic_access(instr) & ACCESS_NON_UNIFORM);
}
static LLVMValueRef visit_image_load(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr,
bool bindless)
{
LLVMValueRef res;
enum glsl_sampler_dim dim;
enum gl_access_qualifier access = nir_intrinsic_access(instr);
bool is_array;
if (bindless) {
dim = nir_intrinsic_image_dim(instr);
is_array = nir_intrinsic_image_array(instr);
} else {
const nir_deref_instr *image_deref = get_image_deref(instr);
const struct glsl_type *type = image_deref->type;
const nir_variable *var = nir_deref_instr_get_variable(image_deref);
dim = glsl_get_sampler_dim(type);
access |= var->data.access;
is_array = glsl_sampler_type_is_array(type);
}
struct waterfall_context wctx;
LLVMValueRef dynamic_index = enter_waterfall_image(ctx, &wctx, instr);
struct ac_image_args args = {};
args.cache_policy = get_cache_policy(ctx, access, false, false);
if (dim == GLSL_SAMPLER_DIM_BUF) {
unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
unsigned num_channels = util_last_bit(mask);
LLVMValueRef rsrc, vindex;
rsrc = get_image_buffer_descriptor(ctx, instr, dynamic_index, false, false);
vindex = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[1]),
ctx->ac.i32_0, "");
assert(instr->dest.is_ssa);
bool can_speculate = access & ACCESS_CAN_REORDER;
res = ac_build_buffer_load_format(&ctx->ac, rsrc, vindex,
ctx->ac.i32_0, num_channels,
args.cache_policy,
can_speculate,
instr->dest.ssa.bit_size == 16);
res = ac_build_expand_to_vec4(&ctx->ac, res, num_channels);
res = ac_trim_vector(&ctx->ac, res, instr->dest.ssa.num_components);
res = ac_to_integer(&ctx->ac, res);
} else {
bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
args.opcode = level_zero ? ac_image_load : ac_image_load_mip;
args.resource = get_image_descriptor(ctx, instr, dynamic_index, AC_DESC_IMAGE, false);
get_image_coords(ctx, instr, dynamic_index, &args, dim, is_array);
args.dim = ac_get_image_dim(ctx->ac.chip_class, dim, is_array);
if (!level_zero)
args.lod = get_src(ctx, instr->src[3]);
args.dmask = 15;
args.attributes = AC_FUNC_ATTR_READONLY;
assert(instr->dest.is_ssa);
args.d16 = instr->dest.ssa.bit_size == 16;
res = ac_build_image_opcode(&ctx->ac, &args);
}
return exit_waterfall(ctx, &wctx, res);
}
static void visit_image_store(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr,
bool bindless)
{
if (ctx->ac.postponed_kill) {
LLVMValueRef cond = LLVMBuildLoad(ctx->ac.builder,
ctx->ac.postponed_kill, "");
ac_build_ifcc(&ctx->ac, cond, 7003);
}
enum glsl_sampler_dim dim;
enum gl_access_qualifier access = nir_intrinsic_access(instr);
bool is_array;
if (bindless) {
dim = nir_intrinsic_image_dim(instr);
is_array = nir_intrinsic_image_array(instr);
} else {
const nir_deref_instr *image_deref = get_image_deref(instr);
const struct glsl_type *type = image_deref->type;
const nir_variable *var = nir_deref_instr_get_variable(image_deref);
dim = glsl_get_sampler_dim(type);
access |= var->data.access;
is_array = glsl_sampler_type_is_array(type);
}
struct waterfall_context wctx;
LLVMValueRef dynamic_index = enter_waterfall_image(ctx, &wctx, instr);
bool writeonly_memory = access & ACCESS_NON_READABLE;
struct ac_image_args args = {};
args.cache_policy = get_cache_policy(ctx, access, true, writeonly_memory);
if (dim == GLSL_SAMPLER_DIM_BUF) {
LLVMValueRef rsrc = get_image_buffer_descriptor(ctx, instr, dynamic_index, true, false);
LLVMValueRef src = ac_to_float(&ctx->ac, get_src(ctx, instr->src[3]));
unsigned src_channels = ac_get_llvm_num_components(src);
LLVMValueRef vindex;
if (src_channels == 3)
src = ac_build_expand_to_vec4(&ctx->ac, src, 3);
vindex = LLVMBuildExtractElement(ctx->ac.builder,
get_src(ctx, instr->src[1]),
ctx->ac.i32_0, "");
ac_build_buffer_store_format(&ctx->ac, rsrc, src, vindex,
ctx->ac.i32_0, args.cache_policy);
} else {
bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
args.opcode = level_zero ? ac_image_store : ac_image_store_mip;
args.data[0] = ac_to_float(&ctx->ac, get_src(ctx, instr->src[3]));
args.resource = get_image_descriptor(ctx, instr, dynamic_index, AC_DESC_IMAGE, true);
get_image_coords(ctx, instr, dynamic_index, &args, dim, is_array);
args.dim = ac_get_image_dim(ctx->ac.chip_class, dim, is_array);
if (!level_zero)
args.lod = get_src(ctx, instr->src[4]);
args.dmask = 15;
args.d16 = ac_get_elem_bits(&ctx->ac, LLVMTypeOf(args.data[0])) == 16;
ac_build_image_opcode(&ctx->ac, &args);
}
exit_waterfall(ctx, &wctx, NULL);
if (ctx->ac.postponed_kill)
ac_build_endif(&ctx->ac, 7003);
}
static LLVMValueRef visit_image_atomic(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr,
bool bindless)
{
if (ctx->ac.postponed_kill) {
LLVMValueRef cond = LLVMBuildLoad(ctx->ac.builder,
ctx->ac.postponed_kill, "");
ac_build_ifcc(&ctx->ac, cond, 7004);
}
LLVMValueRef params[7];
int param_count = 0;
bool cmpswap = instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap ||
instr->intrinsic == nir_intrinsic_bindless_image_atomic_comp_swap;
const char *atomic_name;
char intrinsic_name[64];
enum ac_atomic_op atomic_subop;
ASSERTED int length;
enum glsl_sampler_dim dim;
bool is_array;
if (bindless) {
if (instr->intrinsic == nir_intrinsic_bindless_image_atomic_imin ||
instr->intrinsic == nir_intrinsic_bindless_image_atomic_umin ||
instr->intrinsic == nir_intrinsic_bindless_image_atomic_imax ||
instr->intrinsic == nir_intrinsic_bindless_image_atomic_umax) {
ASSERTED const GLenum format = nir_intrinsic_format(instr);
assert(format == GL_R32UI || format == GL_R32I);
}
dim = nir_intrinsic_image_dim(instr);
is_array = nir_intrinsic_image_array(instr);
} else {
const struct glsl_type *type = get_image_deref(instr)->type;
dim = glsl_get_sampler_dim(type);
is_array = glsl_sampler_type_is_array(type);
}
struct waterfall_context wctx;
LLVMValueRef dynamic_index = enter_waterfall_image(ctx, &wctx, instr);
switch (instr->intrinsic) {
case nir_intrinsic_bindless_image_atomic_add:
case nir_intrinsic_image_deref_atomic_add:
atomic_name = "add";
atomic_subop = ac_atomic_add;
break;
case nir_intrinsic_bindless_image_atomic_imin:
case nir_intrinsic_image_deref_atomic_imin:
atomic_name = "smin";
atomic_subop = ac_atomic_smin;
break;
case nir_intrinsic_bindless_image_atomic_umin:
case nir_intrinsic_image_deref_atomic_umin:
atomic_name = "umin";
atomic_subop = ac_atomic_umin;
break;
case nir_intrinsic_bindless_image_atomic_imax:
case nir_intrinsic_image_deref_atomic_imax:
atomic_name = "smax";
atomic_subop = ac_atomic_smax;
break;
case nir_intrinsic_bindless_image_atomic_umax:
case nir_intrinsic_image_deref_atomic_umax:
atomic_name = "umax";
atomic_subop = ac_atomic_umax;
break;
case nir_intrinsic_bindless_image_atomic_and:
case nir_intrinsic_image_deref_atomic_and:
atomic_name = "and";
atomic_subop = ac_atomic_and;
break;
case nir_intrinsic_bindless_image_atomic_or:
case nir_intrinsic_image_deref_atomic_or:
atomic_name = "or";
atomic_subop = ac_atomic_or;
break;
case nir_intrinsic_bindless_image_atomic_xor:
case nir_intrinsic_image_deref_atomic_xor:
atomic_name = "xor";
atomic_subop = ac_atomic_xor;
break;
case nir_intrinsic_bindless_image_atomic_exchange:
case nir_intrinsic_image_deref_atomic_exchange:
atomic_name = "swap";
atomic_subop = ac_atomic_swap;
break;
case nir_intrinsic_bindless_image_atomic_comp_swap:
case nir_intrinsic_image_deref_atomic_comp_swap:
atomic_name = "cmpswap";
atomic_subop = 0; /* not used */
break;
case nir_intrinsic_bindless_image_atomic_inc_wrap:
case nir_intrinsic_image_deref_atomic_inc_wrap: {
atomic_name = "inc";
atomic_subop = ac_atomic_inc_wrap;
break;
}
case nir_intrinsic_bindless_image_atomic_dec_wrap:
case nir_intrinsic_image_deref_atomic_dec_wrap:
atomic_name = "dec";
atomic_subop = ac_atomic_dec_wrap;
break;
default:
abort();
}
if (cmpswap)
params[param_count++] = get_src(ctx, instr->src[4]);
params[param_count++] = get_src(ctx, instr->src[3]);
LLVMValueRef result;
if (dim == GLSL_SAMPLER_DIM_BUF) {
params[param_count++] = get_image_buffer_descriptor(ctx, instr, dynamic_index, true, true);
params[param_count++] = LLVMBuildExtractElement(ctx->ac.builder, get_src(ctx, instr->src[1]),
ctx->ac.i32_0, ""); /* vindex */
params[param_count++] = ctx->ac.i32_0; /* voffset */
if (LLVM_VERSION_MAJOR >= 9) {
/* XXX: The new raw/struct atomic intrinsics are buggy
* with LLVM 8, see r358579.
*/
params[param_count++] = ctx->ac.i32_0; /* soffset */
params[param_count++] = ctx->ac.i32_0; /* slc */
length = snprintf(intrinsic_name, sizeof(intrinsic_name),
"llvm.amdgcn.struct.buffer.atomic.%s.i32", atomic_name);
} else {
params[param_count++] = ctx->ac.i1false; /* slc */
length = snprintf(intrinsic_name, sizeof(intrinsic_name),
"llvm.amdgcn.buffer.atomic.%s", atomic_name);
}
assert(length < sizeof(intrinsic_name));
result = ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->ac.i32,
params, param_count, 0);
} else {
struct ac_image_args args = {};
args.opcode = cmpswap ? ac_image_atomic_cmpswap : ac_image_atomic;
args.atomic = atomic_subop;
args.data[0] = params[0];
if (cmpswap)
args.data[1] = params[1];
args.resource = get_image_descriptor(ctx, instr, dynamic_index, AC_DESC_IMAGE, true);
get_image_coords(ctx, instr, dynamic_index, &args, dim, is_array);
args.dim = ac_get_image_dim(ctx->ac.chip_class, dim, is_array);
result = ac_build_image_opcode(&ctx->ac, &args);
}
result = exit_waterfall(ctx, &wctx, result);
if (ctx->ac.postponed_kill)
ac_build_endif(&ctx->ac, 7004);
return result;
}
static LLVMValueRef visit_image_samples(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
struct waterfall_context wctx;
LLVMValueRef dynamic_index = enter_waterfall_image(ctx, &wctx, instr);
LLVMValueRef rsrc = get_image_descriptor(ctx, instr, dynamic_index, AC_DESC_IMAGE, false);
LLVMValueRef ret = ac_build_image_get_sample_count(&ctx->ac, rsrc);
return exit_waterfall(ctx, &wctx, ret);
}
static LLVMValueRef visit_image_size(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr,
bool bindless)
{
LLVMValueRef res;
enum glsl_sampler_dim dim;
bool is_array;
if (bindless) {
dim = nir_intrinsic_image_dim(instr);
is_array = nir_intrinsic_image_array(instr);
} else {
const struct glsl_type *type = get_image_deref(instr)->type;
dim = glsl_get_sampler_dim(type);
is_array = glsl_sampler_type_is_array(type);
}
struct waterfall_context wctx;
LLVMValueRef dynamic_index = enter_waterfall_image(ctx, &wctx, instr);
if (dim == GLSL_SAMPLER_DIM_BUF) {
res = get_buffer_size(ctx, get_image_descriptor(ctx, instr, dynamic_index, AC_DESC_BUFFER, false), true);
} else {
struct ac_image_args args = { 0 };
args.dim = ac_get_image_dim(ctx->ac.chip_class, dim, is_array);
args.dmask = 0xf;
args.resource = get_image_descriptor(ctx, instr, dynamic_index, AC_DESC_IMAGE, false);
args.opcode = ac_image_get_resinfo;
assert(nir_src_as_uint(instr->src[1]) == 0);
args.lod = ctx->ac.i32_0;
args.attributes = AC_FUNC_ATTR_READNONE;
res = ac_build_image_opcode(&ctx->ac, &args);
LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
if (dim == GLSL_SAMPLER_DIM_CUBE && is_array) {
LLVMValueRef six = LLVMConstInt(ctx->ac.i32, 6, false);
LLVMValueRef z = LLVMBuildExtractElement(ctx->ac.builder, res, two, "");
z = LLVMBuildSDiv(ctx->ac.builder, z, six, "");
res = LLVMBuildInsertElement(ctx->ac.builder, res, z, two, "");
}
if (ctx->ac.chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D && is_array) {
LLVMValueRef layers = LLVMBuildExtractElement(ctx->ac.builder, res, two, "");
res = LLVMBuildInsertElement(ctx->ac.builder, res, layers,
ctx->ac.i32_1, "");
}
}
return exit_waterfall(ctx, &wctx, res);
}
static void emit_membar(struct ac_llvm_context *ac,
const nir_intrinsic_instr *instr)
{
unsigned wait_flags = 0;
switch (instr->intrinsic) {
case nir_intrinsic_memory_barrier:
case nir_intrinsic_group_memory_barrier:
wait_flags = AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE;
break;
case nir_intrinsic_memory_barrier_buffer:
case nir_intrinsic_memory_barrier_image:
wait_flags = AC_WAIT_VLOAD | AC_WAIT_VSTORE;
break;
case nir_intrinsic_memory_barrier_shared:
wait_flags = AC_WAIT_LGKM;
break;
default:
break;
}
ac_build_waitcnt(ac, wait_flags);
}
void ac_emit_barrier(struct ac_llvm_context *ac, gl_shader_stage stage)
{
/* GFX6 only (thanks to a hw bug workaround):
* The real barrier instruction isn’t needed, because an entire patch
* always fits into a single wave.
*/
if (ac->chip_class == GFX6 && stage == MESA_SHADER_TESS_CTRL) {
ac_build_waitcnt(ac, AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE);
return;
}
ac_build_s_barrier(ac);
}
static void emit_discard(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMValueRef cond;
if (instr->intrinsic == nir_intrinsic_discard_if) {
cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
get_src(ctx, instr->src[0]),
ctx->ac.i32_0, "");
} else {
assert(instr->intrinsic == nir_intrinsic_discard);
cond = ctx->ac.i1false;
}
ac_build_kill_if_false(&ctx->ac, cond);
}
static void emit_demote(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMValueRef cond;
if (instr->intrinsic == nir_intrinsic_demote_if) {
cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
get_src(ctx, instr->src[0]),
ctx->ac.i32_0, "");
} else {
assert(instr->intrinsic == nir_intrinsic_demote);
cond = ctx->ac.i1false;
}
/* Kill immediately while maintaining WQM. */
ac_build_kill_if_false(&ctx->ac, ac_build_wqm_vote(&ctx->ac, cond));
LLVMValueRef mask = LLVMBuildLoad(ctx->ac.builder, ctx->ac.postponed_kill, "");
mask = LLVMBuildAnd(ctx->ac.builder, mask, cond, "");
LLVMBuildStore(ctx->ac.builder, mask, ctx->ac.postponed_kill);
return;
}
static LLVMValueRef
visit_load_local_invocation_index(struct ac_nir_context *ctx)
{
LLVMValueRef result;
LLVMValueRef thread_id = ac_get_thread_id(&ctx->ac);
result = LLVMBuildAnd(ctx->ac.builder,
ac_get_arg(&ctx->ac, ctx->args->tg_size),
LLVMConstInt(ctx->ac.i32, 0xfc0, false), "");
if (ctx->ac.wave_size == 32)
result = LLVMBuildLShr(ctx->ac.builder, result,
LLVMConstInt(ctx->ac.i32, 1, false), "");
return LLVMBuildAdd(ctx->ac.builder, result, thread_id, "");
}
static LLVMValueRef
visit_load_subgroup_id(struct ac_nir_context *ctx)
{
if (ctx->stage == MESA_SHADER_COMPUTE) {
LLVMValueRef result;
result = LLVMBuildAnd(ctx->ac.builder,
ac_get_arg(&ctx->ac, ctx->args->tg_size),
LLVMConstInt(ctx->ac.i32, 0xfc0, false), "");
return LLVMBuildLShr(ctx->ac.builder, result, LLVMConstInt(ctx->ac.i32, 6, false), "");
} else {
return LLVMConstInt(ctx->ac.i32, 0, false);
}
}
static LLVMValueRef
visit_load_num_subgroups(struct ac_nir_context *ctx)
{
if (ctx->stage == MESA_SHADER_COMPUTE) {
return LLVMBuildAnd(ctx->ac.builder,
ac_get_arg(&ctx->ac, ctx->args->tg_size),
LLVMConstInt(ctx->ac.i32, 0x3f, false), "");
} else {
return LLVMConstInt(ctx->ac.i32, 1, false);
}
}
static LLVMValueRef
visit_first_invocation(struct ac_nir_context *ctx)
{
LLVMValueRef active_set = ac_build_ballot(&ctx->ac, ctx->ac.i32_1);
const char *intr = ctx->ac.wave_size == 32 ? "llvm.cttz.i32" : "llvm.cttz.i64";
/* The second argument is whether cttz(0) should be defined, but we do not care. */
LLVMValueRef args[] = {active_set, ctx->ac.i1false};
LLVMValueRef result = ac_build_intrinsic(&ctx->ac, intr,
ctx->ac.iN_wavemask, args, 2,
AC_FUNC_ATTR_NOUNWIND |
AC_FUNC_ATTR_READNONE);
return LLVMBuildTrunc(ctx->ac.builder, result, ctx->ac.i32, "");
}
static LLVMValueRef
visit_load_shared(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMValueRef values[4], derived_ptr, index, ret;
LLVMValueRef ptr = get_memory_ptr(ctx, instr->src[0],
instr->dest.ssa.bit_size);
for (int chan = 0; chan < instr->num_components; chan++) {
index = LLVMConstInt(ctx->ac.i32, chan, 0);
derived_ptr = LLVMBuildGEP(ctx->ac.builder, ptr, &index, 1, "");
values[chan] = LLVMBuildLoad(ctx->ac.builder, derived_ptr, "");
}
ret = ac_build_gather_values(&ctx->ac, values, instr->num_components);
return LLVMBuildBitCast(ctx->ac.builder, ret, get_def_type(ctx, &instr->dest.ssa), "");
}
static void
visit_store_shared(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr)
{
LLVMValueRef derived_ptr, data,index;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef ptr = get_memory_ptr(ctx, instr->src[1],
instr->src[0].ssa->bit_size);
LLVMValueRef src = get_src(ctx, instr->src[0]);
int writemask = nir_intrinsic_write_mask(instr);
for (int chan = 0; chan < 4; chan++) {
if (!(writemask & (1 << chan))) {
continue;
}
data = ac_llvm_extract_elem(&ctx->ac, src, chan);
index = LLVMConstInt(ctx->ac.i32, chan, 0);
derived_ptr = LLVMBuildGEP(builder, ptr, &index, 1, "");
LLVMBuildStore(builder, data, derived_ptr);
}
}
static LLVMValueRef visit_var_atomic(struct ac_nir_context *ctx,
const nir_intrinsic_instr *instr,
LLVMValueRef ptr, int src_idx)
{
if (ctx->ac.postponed_kill) {
LLVMValueRef cond = LLVMBuildLoad(ctx->ac.builder,
ctx->ac.postponed_kill, "");
ac_build_ifcc(&ctx->ac, cond, 7005);
}
LLVMValueRef result;
LLVMValueRef src = get_src(ctx, instr->src[src_idx]);
const char *sync_scope = LLVM_VERSION_MAJOR >= 9 ? "workgroup-one-as" : "workgroup";
if (instr->src[0].ssa->parent_instr->type == nir_instr_type_deref) {
nir_deref_instr *deref = nir_instr_as_deref(instr->src[0].ssa->parent_instr);
if (deref->mode == nir_var_mem_global) {
/* use "singlethread" sync scope to implement relaxed ordering */
sync_scope = LLVM_VERSION_MAJOR >= 9 ? "singlethread-one-as" : "singlethread";
LLVMTypeRef ptr_type = LLVMPointerType(LLVMTypeOf(src), LLVMGetPointerAddressSpace(LLVMTypeOf(ptr)));
ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, ptr_type , "");
}
}
if (instr->intrinsic == nir_intrinsic_shared_atomic_comp_swap ||
instr->intrinsic == nir_intrinsic_deref_atomic_comp_swap) {
LLVMValueRef src1 = get_src(ctx, instr->src[src_idx + 1]);
result = ac_build_atomic_cmp_xchg(&ctx->ac, ptr, src, src1, sync_scope);
result = LLVMBuildExtractValue(ctx->ac.builder, result, 0, "");
} else {
LLVMAtomicRMWBinOp op;
switch (instr->intrinsic) {
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_deref_atomic_add:
op = LLVMAtomicRMWBinOpAdd;
break;
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_deref_atomic_umin:
op = LLVMAtomicRMWBinOpUMin;
break;
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_deref_atomic_umax:
op = LLVMAtomicRMWBinOpUMax;
break;
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_deref_atomic_imin:
op = LLVMAtomicRMWBinOpMin;
break;
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_deref_atomic_imax:
op = LLVMAtomicRMWBinOpMax;
break;
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_deref_atomic_and:
op = LLVMAtomicRMWBinOpAnd;
break;
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_deref_atomic_or:
op = LLVMAtomicRMWBinOpOr;
break;
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_deref_atomic_xor:
op = LLVMAtomicRMWBinOpXor;
break;
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_deref_atomic_exchange:
op = LLVMAtomicRMWBinOpXchg;
break;
#if LLVM_VERSION_MAJOR >= 10
case nir_intrinsic_shared_atomic_fadd:
case nir_intrinsic_deref_atomic_fadd:
op = LLVMAtomicRMWBinOpFAdd;
break;
#endif
default:
return NULL;
}
LLVMValueRef val;
if (instr->intrinsic == nir_intrinsic_shared_atomic_fadd ||
instr->intrinsic == nir_intrinsic_deref_atomic_fadd) {
val = ac_to_float(&ctx->ac, src);
} else {
val = ac_to_integer(&ctx->ac, src);
}
result = ac_build_atomic_rmw(&ctx->ac, op, ptr, val, sync_scope);
}
if (ctx->ac.postponed_kill)
ac_build_endif(&ctx->ac, 7005);
return result;
}
static LLVMValueRef load_sample_pos(struct ac_nir_context *ctx)
{
LLVMValueRef values[2];
LLVMValueRef pos[2];
pos[0] = ac_to_float(&ctx->ac,
ac_get_arg(&ctx->ac, ctx->args->frag_pos[0]));
pos[1] = ac_to_float(&ctx->ac,
ac_get_arg(&ctx->ac, ctx->args->frag_pos[1]));
values[0] = ac_build_fract(&ctx->ac, pos[0], 32);
values[1] = ac_build_fract(&ctx->ac, pos[1], 32);
return ac_build_gather_values(&ctx->ac, values, 2);
}
static LLVMValueRef lookup_interp_param(struct ac_nir_context *ctx,
enum glsl_interp_mode interp, unsigned location)
{
switch (interp) {
case INTERP_MODE_FLAT:
default:
return NULL;
case INTERP_MODE_SMOOTH:
case INTERP_MODE_NONE:
if (location == INTERP_CENTER)
return ac_get_arg(&ctx->ac, ctx->args->persp_center);
else if (location == INTERP_CENTROID)
return ctx->abi->persp_centroid;
else if (location == INTERP_SAMPLE)
return ac_get_arg(&ctx->ac, ctx->args->persp_sample);
break;
case INTERP_MODE_NOPERSPECTIVE:
if (location == INTERP_CENTER)
return ac_get_arg(&ctx->ac, ctx->args->linear_center);
else if (location == INTERP_CENTROID)
return ctx->abi->linear_centroid;
else if (location == INTERP_SAMPLE)
return ac_get_arg(&ctx->ac, ctx->args->linear_sample);
break;
}
return NULL;
}
static LLVMValueRef barycentric_center(struct ac_nir_context *ctx,
unsigned mode)
{
LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_CENTER);
return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, "");
}
static LLVMValueRef barycentric_offset(struct ac_nir_context *ctx,
unsigned mode,
LLVMValueRef offset)
{
LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_CENTER);
LLVMValueRef src_c0 = ac_to_float(&ctx->ac, LLVMBuildExtractElement(ctx->ac.builder, offset, ctx->ac.i32_0, ""));
LLVMValueRef src_c1 = ac_to_float(&ctx->ac, LLVMBuildExtractElement(ctx->ac.builder, offset, ctx->ac.i32_1, ""));
LLVMValueRef ij_out[2];
LLVMValueRef ddxy_out = ac_build_ddxy_interp(&ctx->ac, interp_param);
/*
* take the I then J parameters, and the DDX/Y for it, and
* calculate the IJ inputs for the interpolator.
* temp1 = ddx * offset/sample.x + I;
* interp_param.I = ddy * offset/sample.y + temp1;
* temp1 = ddx * offset/sample.x + J;
* interp_param.J = ddy * offset/sample.y + temp1;
*/
for (unsigned i = 0; i < 2; i++) {
LLVMValueRef ix_ll = LLVMConstInt(ctx->ac.i32, i, false);
LLVMValueRef iy_ll = LLVMConstInt(ctx->ac.i32, i + 2, false);
LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
ddxy_out, ix_ll, "");
LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
ddxy_out, iy_ll, "");
LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
interp_param, ix_ll, "");
LLVMValueRef temp1, temp2;
interp_el = LLVMBuildBitCast(ctx->ac.builder, interp_el,
ctx->ac.f32, "");
temp1 = ac_build_fmad(&ctx->ac, ddx_el, src_c0, interp_el);
temp2 = ac_build_fmad(&ctx->ac, ddy_el, src_c1, temp1);
ij_out[i] = LLVMBuildBitCast(ctx->ac.builder,
temp2, ctx->ac.i32, "");
}
interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, "");
}
static LLVMValueRef barycentric_centroid(struct ac_nir_context *ctx,
unsigned mode)
{
LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_CENTROID);
return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, "");
}
static LLVMValueRef barycentric_at_sample(struct ac_nir_context *ctx,
unsigned mode,
LLVMValueRef sample_id)
{
if (ctx->abi->interp_at_sample_force_center)
return barycentric_center(ctx, mode);
LLVMValueRef halfval = LLVMConstReal(ctx->ac.f32, 0.5f);
/* fetch sample ID */
LLVMValueRef sample_pos = ctx->abi->load_sample_position(ctx->abi, sample_id);
LLVMValueRef src_c0 = LLVMBuildExtractElement(ctx->ac.builder, sample_pos, ctx->ac.i32_0, "");
src_c0 = LLVMBuildFSub(ctx->ac.builder, src_c0, halfval, "");
LLVMValueRef src_c1 = LLVMBuildExtractElement(ctx->ac.builder, sample_pos, ctx->ac.i32_1, "");
src_c1 = LLVMBuildFSub(ctx->ac.builder, src_c1, halfval, "");
LLVMValueRef coords[] = { src_c0, src_c1 };
LLVMValueRef offset = ac_build_gather_values(&ctx->ac, coords, 2);
return barycentric_offset(ctx, mode, offset);
}
static LLVMValueRef barycentric_sample(struct ac_nir_context *ctx,
unsigned mode)
{
LLVMValueRef interp_param = lookup_interp_param(ctx, mode, INTERP_SAMPLE);
return LLVMBuildBitCast(ctx->ac.builder, interp_param, ctx->ac.v2i32, "");
}
static LLVMValueRef barycentric_model(struct ac_nir_context *ctx)
{
return LLVMBuildBitCast(ctx->ac.builder,
ac_get_arg(&ctx->ac, ctx->args->pull_model),
ctx->ac.v3i32, "");
}
static LLVMValueRef load_interpolated_input(struct ac_nir_context *ctx,
LLVMValueRef interp_param,
unsigned index, unsigned comp_start,
unsigned num_components,
unsigned bitsize)
{
LLVMValueRef attr_number = LLVMConstInt(ctx->ac.i32, index, false);
LLVMValueRef interp_param_f;
interp_param_f = LLVMBuildBitCast(ctx->ac.builder,
interp_param, ctx->ac.v2f32, "");
LLVMValueRef i = LLVMBuildExtractElement(
ctx->ac.builder, interp_param_f, ctx->ac.i32_0, "");
LLVMValueRef j = LLVMBuildExtractElement(
ctx->ac.builder, interp_param_f, ctx->ac.i32_1, "");
/* Workaround for issue 2647: kill threads with infinite interpolation coeffs */
if (ctx->verified_interp &&
!_mesa_hash_table_search(ctx->verified_interp, interp_param)) {
LLVMValueRef args[2];
args[0] = i;
args[1] = LLVMConstInt(ctx->ac.i32, S_NAN | Q_NAN | N_INFINITY | P_INFINITY, false);
LLVMValueRef cond = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.class.f32", ctx->ac.i1,
args, 2, AC_FUNC_ATTR_READNONE);
ac_build_kill_if_false(&ctx->ac, LLVMBuildNot(ctx->ac.builder, cond, ""));
_mesa_hash_table_insert(ctx->verified_interp, interp_param, interp_param);
}
LLVMValueRef values[4];
assert(bitsize == 16 || bitsize == 32);
for (unsigned comp = 0; comp < num_components; comp++) {
LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, comp_start + comp, false);
if (bitsize == 16) {
values[comp] = ac_build_fs_interp_f16(&ctx->ac, llvm_chan, attr_number,
ac_get_arg(&ctx->ac, ctx->args->prim_mask), i, j);
} else {
values[comp] = ac_build_fs_interp(&ctx->ac, llvm_chan, attr_number,
ac_get_arg(&ctx->ac, ctx->args->prim_mask), i, j);
}
}
return ac_to_integer(&ctx->ac, ac_build_gather_values(&ctx->ac, values, num_components));
}
static LLVMValueRef load_input(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
/* We only lower inputs for fragment shaders ATM */
ASSERTED nir_const_value *offset = nir_src_as_const_value(instr->src[offset_idx]);
assert(offset);
assert(offset[0].i32 == 0);
unsigned component = nir_intrinsic_component(instr);
unsigned index = nir_intrinsic_base(instr);
unsigned vertex_id = 2; /* P0 */
if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
nir_const_value *src0 = nir_src_as_const_value(instr->src[0]);
switch (src0[0].i32) {
case 0:
vertex_id = 2;
break;
case 1:
vertex_id = 0;
break;
case 2:
vertex_id = 1;
break;
default:
unreachable("Invalid vertex index");
}
}
LLVMValueRef attr_number = LLVMConstInt(ctx->ac.i32, index, false);
LLVMValueRef values[8];
/* Each component of a 64-bit value takes up two GL-level channels. */
unsigned num_components = instr->dest.ssa.num_components;
unsigned bit_size = instr->dest.ssa.bit_size;
unsigned channels =
bit_size == 64 ? num_components * 2 : num_components;
for (unsigned chan = 0; chan < channels; chan++) {
if (component + chan > 4)
attr_number = LLVMConstInt(ctx->ac.i32, index + 1, false);
LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, (component + chan) % 4, false);
values[chan] = ac_build_fs_interp_mov(&ctx->ac,
LLVMConstInt(ctx->ac.i32, vertex_id, false),
llvm_chan,
attr_number,
ac_get_arg(&ctx->ac, ctx->args->prim_mask));
values[chan] = LLVMBuildBitCast(ctx->ac.builder, values[chan], ctx->ac.i32, "");
values[chan] = LLVMBuildTruncOrBitCast(ctx->ac.builder, values[chan],
bit_size == 16 ? ctx->ac.i16 : ctx->ac.i32, "");
}
LLVMValueRef result = ac_build_gather_values(&ctx->ac, values, channels);
if (bit_size == 64) {
LLVMTypeRef type = num_components == 1 ? ctx->ac.i64 :
LLVMVectorType(ctx->ac.i64, num_components);
result = LLVMBuildBitCast(ctx->ac.builder, result, type, "");
}
return result;
}
static void visit_intrinsic(struct ac_nir_context *ctx,
nir_intrinsic_instr *instr)
{
LLVMValueRef result = NULL;
switch (instr->intrinsic) {
case nir_intrinsic_ballot:
result = ac_build_ballot(&ctx->ac, get_src(ctx, instr->src[0]));
if (ctx->ac.ballot_mask_bits > ctx->ac.wave_size)
result = LLVMBuildZExt(ctx->ac.builder, result, ctx->ac.iN_ballotmask, "");
break;
case nir_intrinsic_read_invocation:
result = ac_build_readlane(&ctx->ac, get_src(ctx, instr->src[0]),
get_src(ctx, instr->src[1]));
break;
case nir_intrinsic_read_first_invocation:
result = ac_build_readlane(&ctx->ac, get_src(ctx, instr->src[0]), NULL);
break;
case nir_intrinsic_load_subgroup_invocation:
result = ac_get_thread_id(&ctx->ac);
break;
case nir_intrinsic_load_work_group_id: {
LLVMValueRef values[3];
for (int i = 0; i < 3; i++) {
values[i] = ctx->args->workgroup_ids[i].used ?
ac_get_arg(&ctx->ac, ctx->args->workgroup_ids[i]) : ctx->ac.i32_0;
}
result = ac_build_gather_values(&ctx->ac, values, 3);
break;
}
case nir_intrinsic_load_base_vertex:
case nir_intrinsic_load_first_vertex:
result = ctx->abi->load_base_vertex(ctx->abi);
break;
case nir_intrinsic_load_local_group_size:
result = ctx->abi->load_local_group_size(ctx->abi);
break;
case nir_intrinsic_load_vertex_id:
result = LLVMBuildAdd(ctx->ac.builder,
ac_get_arg(&ctx->ac, ctx->args->vertex_id),
ac_get_arg(&ctx->ac, ctx->args->base_vertex), "");
break;
case nir_intrinsic_load_vertex_id_zero_base: {
result = ctx->abi->vertex_id;
break;
}
case nir_intrinsic_load_local_invocation_id: {
result = ac_get_arg(&ctx->ac, ctx->args->local_invocation_ids);
break;
}
case nir_intrinsic_load_base_instance:
result = ac_get_arg(&ctx->ac, ctx->args->start_instance);
break;
case nir_intrinsic_load_draw_id:
result = ac_get_arg(&ctx->ac, ctx->args->draw_id);
break;
case nir_intrinsic_load_view_index:
result = ac_get_arg(&ctx->ac, ctx->args->view_index);
break;
case nir_intrinsic_load_invocation_id:
if (ctx->stage == MESA_SHADER_TESS_CTRL) {
result = ac_unpack_param(&ctx->ac,
ac_get_arg(&ctx->ac, ctx->args->tcs_rel_ids),
8, 5);
} else {
if (ctx->ac.chip_class >= GFX10) {
result = LLVMBuildAnd(ctx->ac.builder,
ac_get_arg(&ctx->ac, ctx->args->gs_invocation_id),
LLVMConstInt(ctx->ac.i32, 127, 0), "");
} else {
result = ac_get_arg(&ctx->ac, ctx->args->gs_invocation_id);
}
}
break;
case nir_intrinsic_load_primitive_id:
if (ctx->stage == MESA_SHADER_GEOMETRY) {
result = ac_get_arg(&ctx->ac, ctx->args->gs_prim_id);
} else if (ctx->stage == MESA_SHADER_TESS_CTRL) {
result = ac_get_arg(&ctx->ac, ctx->args->tcs_patch_id);
} else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
result = ac_get_arg(&ctx->ac, ctx->args->tes_patch_id);
} else
fprintf(stderr, "Unknown primitive id intrinsic: %d", ctx->stage);
break;
case nir_intrinsic_load_sample_id:
result = ac_unpack_param(&ctx->ac,
ac_get_arg(&ctx->ac, ctx->args->ancillary),
8, 4);
break;
case nir_intrinsic_load_sample_pos:
result = load_sample_pos(ctx);
break;
case nir_intrinsic_load_sample_mask_in:
result = ctx->abi->load_sample_mask_in(ctx->abi);
break;
case nir_intrinsic_load_frag_coord: {
LLVMValueRef values[4] = {
ac_get_arg(&ctx->ac, ctx->args->frag_pos[0]),
ac_get_arg(&ctx->ac, ctx->args->frag_pos[1]),
ac_get_arg(&ctx->ac, ctx->args->frag_pos[2]),
ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
ac_get_arg(&ctx->ac, ctx->args->frag_pos[3]))
};
result = ac_to_integer(&ctx->ac,
ac_build_gather_values(&ctx->ac, values, 4));
break;
}
case nir_intrinsic_load_layer_id:
result = ctx->abi->inputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
break;
case nir_intrinsic_load_front_face:
result = ac_get_arg(&ctx->ac, ctx->args->front_face);
break;
case nir_intrinsic_load_helper_invocation:
result = ac_build_load_helper_invocation(&ctx->ac);
break;
case nir_intrinsic_is_helper_invocation:
result = ac_build_is_helper_invocation(&ctx->ac);
break;
case nir_intrinsic_load_color0:
result = ctx->abi->color0;
break;
case nir_intrinsic_load_color1:
result = ctx->abi->color1;
break;
case nir_intrinsic_load_user_data_amd:
assert(LLVMTypeOf(ctx->abi->user_data) == ctx->ac.v4i32);
result = ctx->abi->user_data;
break;
case nir_intrinsic_load_instance_id:
result = ctx->abi->instance_id;
break;
case nir_intrinsic_load_num_work_groups:
result = ac_get_arg(&ctx->ac, ctx->args->num_work_groups);
break;
case nir_intrinsic_load_local_invocation_index:
result = visit_load_local_invocation_index(ctx);
break;
case nir_intrinsic_load_subgroup_id:
result = visit_load_subgroup_id(ctx);
break;
case nir_intrinsic_load_num_subgroups:
result = visit_load_num_subgroups(ctx);
break;
case nir_intrinsic_first_invocation:
result = visit_first_invocation(ctx);
break;
case nir_intrinsic_load_push_constant:
result = visit_load_push_constant(ctx, instr);
break;
case nir_intrinsic_vulkan_resource_index: {
LLVMValueRef index = get_src(ctx, instr->src[0]);
unsigned desc_set = nir_intrinsic_desc_set(instr);
unsigned binding = nir_intrinsic_binding(instr);
result = ctx->abi->load_resource(ctx->abi, index, desc_set,
binding);
break;
}
case nir_intrinsic_vulkan_resource_reindex:
result = visit_vulkan_resource_reindex(ctx, instr);
break;
case nir_intrinsic_store_ssbo:
visit_store_ssbo(ctx, instr);
break;
case nir_intrinsic_load_ssbo:
result = visit_load_buffer(ctx, instr);
break;
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
result = visit_atomic_ssbo(ctx, instr);
break;
case nir_intrinsic_load_ubo:
result = visit_load_ubo_buffer(ctx, instr);
break;
case nir_intrinsic_get_buffer_size:
result = visit_get_buffer_size(ctx, instr);
break;
case nir_intrinsic_load_deref:
result = visit_load_var(ctx, instr);
break;
case nir_intrinsic_store_deref:
visit_store_var(ctx, instr);
break;
case nir_intrinsic_load_shared:
result = visit_load_shared(ctx, instr);
break;
case nir_intrinsic_store_shared:
visit_store_shared(ctx, instr);
break;
case nir_intrinsic_bindless_image_samples:
case nir_intrinsic_image_deref_samples:
result = visit_image_samples(ctx, instr);
break;
case nir_intrinsic_bindless_image_load:
result = visit_image_load(ctx, instr, true);
break;
case nir_intrinsic_image_deref_load:
result = visit_image_load(ctx, instr, false);
break;
case nir_intrinsic_bindless_image_store:
visit_image_store(ctx, instr, true);
break;
case nir_intrinsic_image_deref_store:
visit_image_store(ctx, instr, false);
break;
case nir_intrinsic_bindless_image_atomic_add:
case nir_intrinsic_bindless_image_atomic_imin:
case nir_intrinsic_bindless_image_atomic_umin:
case nir_intrinsic_bindless_image_atomic_imax:
case nir_intrinsic_bindless_image_atomic_umax:
case nir_intrinsic_bindless_image_atomic_and:
case nir_intrinsic_bindless_image_atomic_or:
case nir_intrinsic_bindless_image_atomic_xor:
case nir_intrinsic_bindless_image_atomic_exchange:
case nir_intrinsic_bindless_image_atomic_comp_swap:
case nir_intrinsic_bindless_image_atomic_inc_wrap:
case nir_intrinsic_bindless_image_atomic_dec_wrap:
result = visit_image_atomic(ctx, instr, true);
break;
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_imin:
case nir_intrinsic_image_deref_atomic_umin:
case nir_intrinsic_image_deref_atomic_imax:
case nir_intrinsic_image_deref_atomic_umax:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
case nir_intrinsic_image_deref_atomic_inc_wrap:
case nir_intrinsic_image_deref_atomic_dec_wrap:
result = visit_image_atomic(ctx, instr, false);
break;
case nir_intrinsic_bindless_image_size:
result = visit_image_size(ctx, instr, true);
break;
case nir_intrinsic_image_deref_size:
result = visit_image_size(ctx, instr, false);
break;
case nir_intrinsic_shader_clock:
result = ac_build_shader_clock(&ctx->ac,
nir_intrinsic_memory_scope(instr));
break;
case nir_intrinsic_discard:
case nir_intrinsic_discard_if:
emit_discard(ctx, instr);
break;
case nir_intrinsic_demote:
case nir_intrinsic_demote_if:
emit_demote(ctx, instr);
break;
case nir_intrinsic_memory_barrier:
case nir_intrinsic_group_memory_barrier:
case nir_intrinsic_memory_barrier_buffer:
case nir_intrinsic_memory_barrier_image:
case nir_intrinsic_memory_barrier_shared:
emit_membar(&ctx->ac, instr);
break;
case nir_intrinsic_scoped_barrier: {
assert(!(nir_intrinsic_memory_semantics(instr) &
(NIR_MEMORY_MAKE_AVAILABLE | NIR_MEMORY_MAKE_VISIBLE)));
nir_variable_mode modes = nir_intrinsic_memory_modes(instr);
unsigned wait_flags = 0;
if (modes & (nir_var_mem_global | nir_var_mem_ssbo))
wait_flags |= AC_WAIT_VLOAD | AC_WAIT_VSTORE;
if (modes & nir_var_mem_shared)
wait_flags |= AC_WAIT_LGKM;
if (wait_flags)
ac_build_waitcnt(&ctx->ac, wait_flags);
if (nir_intrinsic_execution_scope(instr) == NIR_SCOPE_WORKGROUP)
ac_emit_barrier(&ctx->ac, ctx->stage);
break;
}
case nir_intrinsic_memory_barrier_tcs_patch:
break;
case nir_intrinsic_control_barrier:
ac_emit_barrier(&ctx->ac, ctx->stage);
break;
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_shared_atomic_comp_swap:
case nir_intrinsic_shared_atomic_fadd: {
LLVMValueRef ptr = get_memory_ptr(ctx, instr->src[0],
instr->src[1].ssa->bit_size);
result = visit_var_atomic(ctx, instr, ptr, 1);
break;
}
case nir_intrinsic_deref_atomic_add:
case nir_intrinsic_deref_atomic_imin:
case nir_intrinsic_deref_atomic_umin:
case nir_intrinsic_deref_atomic_imax:
case nir_intrinsic_deref_atomic_umax:
case nir_intrinsic_deref_atomic_and:
case nir_intrinsic_deref_atomic_or:
case nir_intrinsic_deref_atomic_xor:
case nir_intrinsic_deref_atomic_exchange:
case nir_intrinsic_deref_atomic_comp_swap:
case nir_intrinsic_deref_atomic_fadd: {
LLVMValueRef ptr = get_src(ctx, instr->src[0]);
result = visit_var_atomic(ctx, instr, ptr, 1);
break;
}
case nir_intrinsic_load_barycentric_pixel:
result = barycentric_center(ctx, nir_intrinsic_interp_mode(instr));
break;
case nir_intrinsic_load_barycentric_centroid:
result = barycentric_centroid(ctx, nir_intrinsic_interp_mode(instr));
break;
case nir_intrinsic_load_barycentric_sample:
result = barycentric_sample(ctx, nir_intrinsic_interp_mode(instr));
break;
case nir_intrinsic_load_barycentric_model:
result = barycentric_model(ctx);
break;
case nir_intrinsic_load_barycentric_at_offset: {
LLVMValueRef offset = ac_to_float(&ctx->ac, get_src(ctx, instr->src[0]));
result = barycentric_offset(ctx, nir_intrinsic_interp_mode(instr), offset);
break;
}
case nir_intrinsic_load_barycentric_at_sample: {
LLVMValueRef sample_id = get_src(ctx, instr->src[0]);
result = barycentric_at_sample(ctx, nir_intrinsic_interp_mode(instr), sample_id);
break;
}
case nir_intrinsic_load_interpolated_input: {
/* We assume any indirect loads have been lowered away */
ASSERTED nir_const_value *offset = nir_src_as_const_value(instr->src[1]);
assert(offset);
assert(offset[0].i32 == 0);
LLVMValueRef interp_param = get_src(ctx, instr->src[0]);
unsigned index = nir_intrinsic_base(instr);
unsigned component = nir_intrinsic_component(instr);
result = load_interpolated_input(ctx, interp_param, index,
component,
instr->dest.ssa.num_components,
instr->dest.ssa.bit_size);
break;
}
case nir_intrinsic_load_input:
case nir_intrinsic_load_input_vertex:
result = load_input(ctx, instr);
break;
case nir_intrinsic_emit_vertex:
ctx->abi->emit_vertex(ctx->abi, nir_intrinsic_stream_id(instr), ctx->abi->outputs);
break;
case nir_intrinsic_emit_vertex_with_counter: {
unsigned stream = nir_intrinsic_stream_id(instr);
LLVMValueRef next_vertex = get_src(ctx, instr->src[0]);
ctx->abi->emit_vertex_with_counter(ctx->abi, stream,
next_vertex,
ctx->abi->outputs);
break;
}
case nir_intrinsic_end_primitive:
case nir_intrinsic_end_primitive_with_counter:
ctx->abi->emit_primitive(ctx->abi, nir_intrinsic_stream_id(instr));
break;
case nir_intrinsic_load_tess_coord:
result = ctx->abi->load_tess_coord(ctx->abi);
break;
case nir_intrinsic_load_tess_level_outer:
result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_OUTER, false);
break;
case nir_intrinsic_load_tess_level_inner:
result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_INNER, false);
break;
case nir_intrinsic_load_tess_level_outer_default:
result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_OUTER, true);
break;
case nir_intrinsic_load_tess_level_inner_default:
result = ctx->abi->load_tess_level(ctx->abi, VARYING_SLOT_TESS_LEVEL_INNER, true);
break;
case nir_intrinsic_load_patch_vertices_in:
result = ctx->abi->load_patch_vertices_in(ctx->abi);
break;
case nir_intrinsic_vote_all: {
LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, get_src(ctx, instr->src[0]));
result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, "");
break;
}
case nir_intrinsic_vote_any: {
LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, get_src(ctx, instr->src[0]));
result = LLVMBuildSExt(ctx->ac.builder, tmp, ctx->ac.i32, "");
break;
}
case nir_intrinsic_shuffle:
if (ctx->ac.chip_class == GFX8 ||
ctx->ac.chip_class == GFX9 ||
(ctx->ac.chip_class >= GFX10 && ctx->ac.wave_size == 32)) {
result = ac_build_shuffle(&ctx->ac, get_src(ctx, instr->src[0]),
get_src(ctx, instr->src[1]));
} else {
LLVMValueRef src = get_src(ctx, instr->src[0]);
LLVMValueRef index = get_src(ctx, instr->src[1]);
LLVMTypeRef type = LLVMTypeOf(src);
struct waterfall_context wctx;
LLVMValueRef index_val;
index_val = enter_waterfall(ctx, &wctx, index, true);
src = LLVMBuildZExt(ctx->ac.builder, src,
ctx->ac.i32, "");
result = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.readlane",
ctx->ac.i32,
(LLVMValueRef []) { src, index_val }, 2,
AC_FUNC_ATTR_READNONE |
AC_FUNC_ATTR_CONVERGENT);
result = LLVMBuildTrunc(ctx->ac.builder, result, type, "");
result = exit_waterfall(ctx, &wctx, result);
}
break;
case nir_intrinsic_reduce:
result = ac_build_reduce(&ctx->ac,
get_src(ctx, instr->src[0]),
instr->const_index[0],
instr->const_index[1]);
break;
case nir_intrinsic_inclusive_scan:
result = ac_build_inclusive_scan(&ctx->ac,
get_src(ctx, instr->src[0]),
instr->const_index[0]);
break;
case nir_intrinsic_exclusive_scan:
result = ac_build_exclusive_scan(&ctx->ac,
get_src(ctx, instr->src[0]),
instr->const_index[0]);
break;
case nir_intrinsic_quad_broadcast: {
unsigned lane = nir_src_as_uint(instr->src[1]);
result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]),
lane, lane, lane, lane);
break;
}
case nir_intrinsic_quad_swap_horizontal:
result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), 1, 0, 3 ,2);
break;
case nir_intrinsic_quad_swap_vertical:
result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), 2, 3, 0 ,1);
break;
case nir_intrinsic_quad_swap_diagonal:
result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), 3, 2, 1 ,0);
break;
case nir_intrinsic_quad_swizzle_amd: {
uint32_t mask = nir_intrinsic_swizzle_mask(instr);
result = ac_build_quad_swizzle(&ctx->ac, get_src(ctx, instr->src[0]),
mask & 0x3, (mask >> 2) & 0x3,
(mask >> 4) & 0x3, (mask >> 6) & 0x3);
break;
}
case nir_intrinsic_masked_swizzle_amd: {
uint32_t mask = nir_intrinsic_swizzle_mask(instr);
result = ac_build_ds_swizzle(&ctx->ac, get_src(ctx, instr->src[0]), mask);
break;
}
case nir_intrinsic_write_invocation_amd:
result = ac_build_writelane(&ctx->ac, get_src(ctx, instr->src[0]),
get_src(ctx, instr->src[1]),
get_src(ctx, instr->src[2]));
break;
case nir_intrinsic_mbcnt_amd:
result = ac_build_mbcnt(&ctx->ac, get_src(ctx, instr->src[0]));
break;
case nir_intrinsic_load_scratch: {
LLVMValueRef offset = get_src(ctx, instr->src[0]);
LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->scratch,
offset);
LLVMTypeRef comp_type =
LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size);
LLVMTypeRef vec_type =
instr->dest.ssa.num_components == 1 ? comp_type :
LLVMVectorType(comp_type, instr->dest.ssa.num_components);
unsigned addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
LLVMPointerType(vec_type, addr_space), "");
result = LLVMBuildLoad(ctx->ac.builder, ptr, "");
break;
}
case nir_intrinsic_store_scratch: {
LLVMValueRef offset = get_src(ctx, instr->src[1]);
LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->scratch,
offset);
LLVMTypeRef comp_type =
LLVMIntTypeInContext(ctx->ac.context, instr->src[0].ssa->bit_size);
unsigned addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
LLVMPointerType(comp_type, addr_space), "");
LLVMValueRef src = get_src(ctx, instr->src[0]);
unsigned wrmask = nir_intrinsic_write_mask(instr);
while (wrmask) {
int start, count;
u_bit_scan_consecutive_range(&wrmask, &start, &count);
LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, start, false);
LLVMValueRef offset_ptr = LLVMBuildGEP(ctx->ac.builder, ptr, &offset, 1, "");
LLVMTypeRef vec_type =
count == 1 ? comp_type : LLVMVectorType(comp_type, count);
offset_ptr = LLVMBuildBitCast(ctx->ac.builder,
offset_ptr,
LLVMPointerType(vec_type, addr_space),
"");
LLVMValueRef offset_src =
ac_extract_components(&ctx->ac, src, start, count);
LLVMBuildStore(ctx->ac.builder, offset_src, offset_ptr);
}
break;
}
case nir_intrinsic_load_constant: {
unsigned base = nir_intrinsic_base(instr);
unsigned range = nir_intrinsic_range(instr);
LLVMValueRef offset = get_src(ctx, instr->src[0]);
offset = LLVMBuildAdd(ctx->ac.builder, offset,
LLVMConstInt(ctx->ac.i32, base, false), "");
/* Clamp the offset to avoid out-of-bound access because global
* instructions can't handle them.
*/
LLVMValueRef size = LLVMConstInt(ctx->ac.i32, base + range, false);
LLVMValueRef cond = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
offset, size, "");
offset = LLVMBuildSelect(ctx->ac.builder, cond, offset, size, "");
LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->constant_data,
offset);
LLVMTypeRef comp_type =
LLVMIntTypeInContext(ctx->ac.context, instr->dest.ssa.bit_size);
LLVMTypeRef vec_type =
instr->dest.ssa.num_components == 1 ? comp_type :
LLVMVectorType(comp_type, instr->dest.ssa.num_components);
unsigned addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
LLVMPointerType(vec_type, addr_space), "");
result = LLVMBuildLoad(ctx->ac.builder, ptr, "");
break;
}
default:
fprintf(stderr, "Unknown intrinsic: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
break;
}
if (result) {
ctx->ssa_defs[instr->dest.ssa.index] = result;
}
}
static LLVMValueRef get_bindless_index_from_uniform(struct ac_nir_context *ctx,
unsigned base_index,
unsigned constant_index,
LLVMValueRef dynamic_index)
{
LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, base_index * 4, 0);
LLVMValueRef index = LLVMBuildAdd(ctx->ac.builder, dynamic_index,
LLVMConstInt(ctx->ac.i32, constant_index, 0), "");
/* Bindless uniforms are 64bit so multiple index by 8 */
index = LLVMBuildMul(ctx->ac.builder, index, LLVMConstInt(ctx->ac.i32, 8, 0), "");
offset = LLVMBuildAdd(ctx->ac.builder, offset, index, "");
LLVMValueRef ubo_index = ctx->abi->load_ubo(ctx->abi, ctx->ac.i32_0);
LLVMValueRef ret = ac_build_buffer_load(&ctx->ac, ubo_index, 1, NULL, offset,
NULL, 0, 0, true, true);
return LLVMBuildBitCast(ctx->ac.builder, ret, ctx->ac.i32, "");
}
struct sampler_desc_address {
unsigned descriptor_set;
unsigned base_index; /* binding in vulkan */
unsigned constant_index;
LLVMValueRef dynamic_index;
bool image;
bool bindless;
};
static struct sampler_desc_address
get_sampler_desc_internal(struct ac_nir_context *ctx,
nir_deref_instr *deref_instr,
const nir_instr *instr,
bool image)
{
LLVMValueRef index = NULL;
unsigned constant_index = 0;
unsigned descriptor_set;
unsigned base_index;
bool bindless = false;
if (!deref_instr) {
descriptor_set = 0;
if (image) {
nir_intrinsic_instr *img_instr = nir_instr_as_intrinsic(instr);
base_index = 0;
bindless = true;
index = get_src(ctx, img_instr->src[0]);
} else {
nir_tex_instr *tex_instr = nir_instr_as_tex(instr);
int sampSrcIdx = nir_tex_instr_src_index(tex_instr,
nir_tex_src_sampler_handle);
if (sampSrcIdx != -1) {
base_index = 0;
bindless = true;
index = get_src(ctx, tex_instr->src[sampSrcIdx].src);
} else {
assert(tex_instr && !image);
base_index = tex_instr->sampler_index;
}
}
} else {
while(deref_instr->deref_type != nir_deref_type_var) {
if (deref_instr->deref_type == nir_deref_type_array) {
unsigned array_size = glsl_get_aoa_size(deref_instr->type);
if (!array_size)
array_size = 1;
if (nir_src_is_const(deref_instr->arr.index)) {
constant_index += array_size * nir_src_as_uint(deref_instr->arr.index);
} else {
LLVMValueRef indirect = get_src(ctx, deref_instr->arr.index);
indirect = LLVMBuildMul(ctx->ac.builder, indirect,
LLVMConstInt(ctx->ac.i32, array_size, false), "");
if (!index)
index = indirect;
else
index = LLVMBuildAdd(ctx->ac.builder, index, indirect, "");
}
deref_instr = nir_src_as_deref(deref_instr->parent);
} else if (deref_instr->deref_type == nir_deref_type_struct) {
unsigned sidx = deref_instr->strct.index;
deref_instr = nir_src_as_deref(deref_instr->parent);
constant_index += glsl_get_struct_location_offset(deref_instr->type, sidx);
} else {
unreachable("Unsupported deref type");
}
}
descriptor_set = deref_instr->var->data.descriptor_set;
if (deref_instr->var->data.bindless) {
/* For now just assert on unhandled variable types */
assert(deref_instr->var->data.mode == nir_var_uniform);
base_index = deref_instr->var->data.driver_location;
bindless = true;
index = index ? index : ctx->ac.i32_0;
index = get_bindless_index_from_uniform(ctx, base_index,
constant_index, index);
} else
base_index = deref_instr->var->data.binding;
}
return (struct sampler_desc_address) {
.descriptor_set = descriptor_set,
.base_index = base_index,
.constant_index = constant_index,
.dynamic_index = index,
.image = image,
.bindless = bindless,
};
}
/* Extract any possibly divergent index into a separate value that can be fed
* into get_sampler_desc with the same arguments. */
static LLVMValueRef get_sampler_desc_index(struct ac_nir_context *ctx,
nir_deref_instr *deref_instr,
const nir_instr *instr,
bool image)
{
struct sampler_desc_address addr = get_sampler_desc_internal(ctx, deref_instr, instr, image);
return addr.dynamic_index;
}
static LLVMValueRef get_sampler_desc(struct ac_nir_context *ctx,
nir_deref_instr *deref_instr,
enum ac_descriptor_type desc_type,
const nir_instr *instr,
LLVMValueRef index,
bool image, bool write)
{
struct sampler_desc_address addr = get_sampler_desc_internal(ctx, deref_instr, instr, image);
return ctx->abi->load_sampler_desc(ctx->abi,
addr.descriptor_set,
addr.base_index,
addr.constant_index, index,
desc_type, addr.image, write, addr.bindless);
}
/* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
*
* GFX6-GFX7:
* If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
* filtering manually. The driver sets img7 to a mask clearing
* MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
* s_and_b32 samp0, samp0, img7
*
* GFX8:
* The ANISO_OVERRIDE sampler field enables this fix in TA.
*/
static LLVMValueRef sici_fix_sampler_aniso(struct ac_nir_context *ctx,
LLVMValueRef res, LLVMValueRef samp)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef img7, samp0;
if (ctx->ac.chip_class >= GFX8)
return samp;
img7 = LLVMBuildExtractElement(builder, res,
LLVMConstInt(ctx->ac.i32, 7, 0), "");
samp0 = LLVMBuildExtractElement(builder, samp,
LLVMConstInt(ctx->ac.i32, 0, 0), "");
samp0 = LLVMBuildAnd(builder, samp0, img7, "");
return LLVMBuildInsertElement(builder, samp, samp0,
LLVMConstInt(ctx->ac.i32, 0, 0), "");
}
static void tex_fetch_ptrs(struct ac_nir_context *ctx,
nir_tex_instr *instr,
struct waterfall_context *wctx,
LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr,
LLVMValueRef *fmask_ptr)
{
nir_deref_instr *texture_deref_instr = NULL;
nir_deref_instr *sampler_deref_instr = NULL;
int plane = -1;
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_texture_deref:
texture_deref_instr = nir_src_as_deref(instr->src[i].src);
break;
case nir_tex_src_sampler_deref:
sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
break;
case nir_tex_src_plane:
plane = nir_src_as_int(instr->src[i].src);
break;
default:
break;
}
}
LLVMValueRef texture_dynamic_index = get_sampler_desc_index(ctx, texture_deref_instr,
&instr->instr, false);
if (!sampler_deref_instr)
sampler_deref_instr = texture_deref_instr;
LLVMValueRef sampler_dynamic_index = get_sampler_desc_index(ctx, sampler_deref_instr,
&instr->instr, false);
if (instr->texture_non_uniform)
texture_dynamic_index = enter_waterfall(ctx, wctx + 0, texture_dynamic_index, true);
if (instr->sampler_non_uniform)
sampler_dynamic_index = enter_waterfall(ctx, wctx + 1, sampler_dynamic_index, true);
enum ac_descriptor_type main_descriptor = instr->sampler_dim == GLSL_SAMPLER_DIM_BUF ? AC_DESC_BUFFER : AC_DESC_IMAGE;
if (plane >= 0) {
assert(instr->op != nir_texop_txf_ms &&
instr->op != nir_texop_samples_identical);
assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
main_descriptor = AC_DESC_PLANE_0 + plane;
}
if (instr->op == nir_texop_fragment_mask_fetch) {
/* The fragment mask is fetched from the compressed
* multisampled surface.
*/
main_descriptor = AC_DESC_FMASK;
}
*res_ptr = get_sampler_desc(ctx, texture_deref_instr, main_descriptor, &instr->instr,
texture_dynamic_index, false, false);
if (samp_ptr) {
*samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, AC_DESC_SAMPLER, &instr->instr,
sampler_dynamic_index, false, false);
if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT)
*samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
}
if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
instr->op == nir_texop_samples_identical))
*fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, AC_DESC_FMASK,
&instr->instr, texture_dynamic_index, false, false);
}
static LLVMValueRef apply_round_slice(struct ac_llvm_context *ctx,
LLVMValueRef coord)
{
coord = ac_to_float(ctx, coord);
coord = ac_build_round(ctx, coord);
coord = ac_to_integer(ctx, coord);
return coord;
}
static void visit_tex(struct ac_nir_context *ctx, nir_tex_instr *instr)
{
LLVMValueRef result = NULL;
struct ac_image_args args = { 0 };
LLVMValueRef fmask_ptr = NULL, sample_index = NULL;
LLVMValueRef ddx = NULL, ddy = NULL;
unsigned offset_src = 0;
struct waterfall_context wctx[2] = {{{0}}};
tex_fetch_ptrs(ctx, instr, wctx, &args.resource, &args.sampler, &fmask_ptr);
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_coord: {
LLVMValueRef coord = get_src(ctx, instr->src[i].src);
for (unsigned chan = 0; chan < instr->coord_components; ++chan)
args.coords[chan] = ac_llvm_extract_elem(&ctx->ac, coord, chan);
break;
}
case nir_tex_src_projector:
break;
case nir_tex_src_comparator:
if (instr->is_shadow) {
args.compare = get_src(ctx, instr->src[i].src);
args.compare = ac_to_float(&ctx->ac, args.compare);
}
break;
case nir_tex_src_offset:
args.offset = get_src(ctx, instr->src[i].src);
offset_src = i;
break;
case nir_tex_src_bias:
args.bias = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_lod: {
if (nir_src_is_const(instr->src[i].src) && nir_src_as_uint(instr->src[i].src) == 0)
args.level_zero = true;
else
args.lod = get_src(ctx, instr->src[i].src);
break;
}
case nir_tex_src_ms_index:
sample_index = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_ms_mcs:
break;
case nir_tex_src_ddx:
ddx = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_ddy:
ddy = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_min_lod:
args.min_lod = get_src(ctx, instr->src[i].src);
break;
case nir_tex_src_texture_offset:
case nir_tex_src_sampler_offset:
case nir_tex_src_plane:
default:
break;
}
}
if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
result = get_buffer_size(ctx, args.resource, true);
goto write_result;
}
if (instr->op == nir_texop_texture_samples) {
LLVMValueRef res, samples, is_msaa;
LLVMValueRef default_sample;
res = LLVMBuildBitCast(ctx->ac.builder, args.resource, ctx->ac.v8i32, "");
samples = LLVMBuildExtractElement(ctx->ac.builder, res,
LLVMConstInt(ctx->ac.i32, 3, false), "");
is_msaa = LLVMBuildLShr(ctx->ac.builder, samples,
LLVMConstInt(ctx->ac.i32, 28, false), "");
is_msaa = LLVMBuildAnd(ctx->ac.builder, is_msaa,
LLVMConstInt(ctx->ac.i32, 0xe, false), "");
is_msaa = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, is_msaa,
LLVMConstInt(ctx->ac.i32, 0xe, false), "");
samples = LLVMBuildLShr(ctx->ac.builder, samples,
LLVMConstInt(ctx->ac.i32, 16, false), "");
samples = LLVMBuildAnd(ctx->ac.builder, samples,
LLVMConstInt(ctx->ac.i32, 0xf, false), "");
samples = LLVMBuildShl(ctx->ac.builder, ctx->ac.i32_1,
samples, "");
if (ctx->abi->robust_buffer_access) {
LLVMValueRef dword1, is_null_descriptor;
/* Extract the second dword of the descriptor, if it's
* all zero, then it's a null descriptor.
*/
dword1 = LLVMBuildExtractElement(ctx->ac.builder, res,
LLVMConstInt(ctx->ac.i32, 1, false), "");
is_null_descriptor =
LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, dword1,
LLVMConstInt(ctx->ac.i32, 0, false), "");
default_sample =
LLVMBuildSelect(ctx->ac.builder, is_null_descriptor,
ctx->ac.i32_0, ctx->ac.i32_1, "");
} else {
default_sample = ctx->ac.i32_1;
}
samples = LLVMBuildSelect(ctx->ac.builder, is_msaa, samples,
default_sample, "");
result = samples;
goto write_result;
}
if (args.offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
LLVMValueRef offset[3], pack;
for (unsigned chan = 0; chan < 3; ++chan)
offset[chan] = ctx->ac.i32_0;
unsigned num_components = ac_get_llvm_num_components(args.offset);
for (unsigned chan = 0; chan < num_components; chan++) {
offset[chan] = ac_llvm_extract_elem(&ctx->ac, args.offset, chan);
offset[chan] = LLVMBuildAnd(ctx->ac.builder, offset[chan],
LLVMConstInt(ctx->ac.i32, 0x3f, false), "");
if (chan)
offset[chan] = LLVMBuildShl(ctx->ac.builder, offset[chan],
LLVMConstInt(ctx->ac.i32, chan * 8, false), "");
}
pack = LLVMBuildOr(ctx->ac.builder, offset[0], offset[1], "");
pack = LLVMBuildOr(ctx->ac.builder, pack, offset[2], "");
args.offset = pack;
}
/* Section 8.23.1 (Depth Texture Comparison Mode) of the
* OpenGL 4.5 spec says:
*
* "If the texture’s internal format indicates a fixed-point
* depth texture, then D_t and D_ref are clamped to the
* range [0, 1]; otherwise no clamping is performed."
*
* TC-compatible HTILE promotes Z16 and Z24 to Z32_FLOAT,
* so the depth comparison value isn't clamped for Z16 and
* Z24 anymore. Do it manually here for GFX8-9; GFX10 has
* an explicitly clamped 32-bit float format.
*/
if (args.compare &&
ctx->ac.chip_class >= GFX8 &&
ctx->ac.chip_class <= GFX9 &&
ctx->abi->clamp_shadow_reference) {
LLVMValueRef upgraded, clamped;
upgraded = LLVMBuildExtractElement(ctx->ac.builder, args.sampler,
LLVMConstInt(ctx->ac.i32, 3, false), "");
upgraded = LLVMBuildLShr(ctx->ac.builder, upgraded,
LLVMConstInt(ctx->ac.i32, 29, false), "");
upgraded = LLVMBuildTrunc(ctx->ac.builder, upgraded, ctx->ac.i1, "");
clamped = ac_build_clamp(&ctx->ac, args.compare);
args.compare = LLVMBuildSelect(ctx->ac.builder, upgraded, clamped,
args.compare, "");
}
/* pack derivatives */
if (ddx || ddy) {
int num_src_deriv_channels, num_dest_deriv_channels;
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
num_src_deriv_channels = 3;
num_dest_deriv_channels = 3;
break;
case GLSL_SAMPLER_DIM_2D:
default:
num_src_deriv_channels = 2;
num_dest_deriv_channels = 2;
break;
case GLSL_SAMPLER_DIM_1D:
num_src_deriv_channels = 1;
if (ctx->ac.chip_class == GFX9) {
num_dest_deriv_channels = 2;
} else {
num_dest_deriv_channels = 1;
}
break;
}
for (unsigned i = 0; i < num_src_deriv_channels; i++) {
args.derivs[i] = ac_to_float(&ctx->ac,
ac_llvm_extract_elem(&ctx->ac, ddx, i));
args.derivs[num_dest_deriv_channels + i] = ac_to_float(&ctx->ac,
ac_llvm_extract_elem(&ctx->ac, ddy, i));
}
for (unsigned i = num_src_deriv_channels; i < num_dest_deriv_channels; i++) {
args.derivs[i] = ctx->ac.f32_0;
args.derivs[num_dest_deriv_channels + i] = ctx->ac.f32_0;
}
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && args.coords[0]) {
for (unsigned chan = 0; chan < instr->coord_components; chan++)
args.coords[chan] = ac_to_float(&ctx->ac, args.coords[chan]);
if (instr->coord_components == 3)
args.coords[3] = LLVMGetUndef(ctx->ac.f32);
ac_prepare_cube_coords(&ctx->ac,
instr->op == nir_texop_txd, instr->is_array,
instr->op == nir_texop_lod, args.coords, args.derivs);
}
/* Texture coordinates fixups */
if (instr->coord_components > 1 &&
instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
instr->is_array &&
instr->op != nir_texop_txf) {
args.coords[1] = apply_round_slice(&ctx->ac, args.coords[1]);
}
if (instr->coord_components > 2 &&
(instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
instr->is_array &&
instr->op != nir_texop_txf &&
instr->op != nir_texop_txf_ms &&
instr->op != nir_texop_fragment_fetch &&
instr->op != nir_texop_fragment_mask_fetch) {
args.coords[2] = apply_round_slice(&ctx->ac, args.coords[2]);
}
if (ctx->ac.chip_class == GFX9 &&
instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
instr->op != nir_texop_lod) {
LLVMValueRef filler;
if (instr->op == nir_texop_txf)
filler = ctx->ac.i32_0;
else
filler = LLVMConstReal(ctx->ac.f32, 0.5);
if (instr->is_array)
args.coords[2] = args.coords[1];
args.coords[1] = filler;
}
/* Pack sample index */
if (sample_index && (instr->op == nir_texop_txf_ms ||
instr->op == nir_texop_fragment_fetch))
args.coords[instr->coord_components] = sample_index;
if (instr->op == nir_texop_samples_identical) {
struct ac_image_args txf_args = { 0 };
memcpy(txf_args.coords, args.coords, sizeof(txf_args.coords));
txf_args.dmask = 0xf;
txf_args.resource = fmask_ptr;
txf_args.dim = instr->is_array ? ac_image_2darray : ac_image_2d;
result = build_tex_intrinsic(ctx, instr, &txf_args);
result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, "");
result = emit_int_cmp(&ctx->ac, LLVMIntEQ, result, ctx->ac.i32_0);
goto write_result;
}
if ((instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ||
instr->sampler_dim == GLSL_SAMPLER_DIM_MS) &&
instr->op != nir_texop_txs &&
instr->op != nir_texop_fragment_fetch &&
instr->op != nir_texop_fragment_mask_fetch) {
unsigned sample_chan = instr->is_array ? 3 : 2;
args.coords[sample_chan] = adjust_sample_index_using_fmask(
&ctx->ac, args.coords[0], args.coords[1],
instr->is_array ? args.coords[2] : NULL,
args.coords[sample_chan], fmask_ptr);
}
if (args.offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
int num_offsets = instr->src[offset_src].src.ssa->num_components;
num_offsets = MIN2(num_offsets, instr->coord_components);
for (unsigned i = 0; i < num_offsets; ++i) {
args.coords[i] = LLVMBuildAdd(
ctx->ac.builder, args.coords[i],
LLVMConstInt(ctx->ac.i32, nir_src_comp_as_uint(instr->src[offset_src].src, i), false), "");
}
args.offset = NULL;
}
/* DMASK was repurposed for GATHER4. 4 components are always
* returned and DMASK works like a swizzle - it selects
* the component to fetch. The only valid DMASK values are
* 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns
* (red,red,red,red) etc.) The ISA document doesn't mention
* this.
*/
args.dmask = 0xf;
if (instr->op == nir_texop_tg4) {
if (instr->is_shadow)
args.dmask = 1;
else
args.dmask = 1 << instr->component;
}
if (instr->sampler_dim != GLSL_SAMPLER_DIM_BUF) {
args.dim = ac_get_sampler_dim(ctx->ac.chip_class, instr->sampler_dim, instr->is_array);
args.unorm = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
}
/* Adjust the number of coordinates because we only need (x,y) for 2D
* multisampled images and (x,y,layer) for 2D multisampled layered
* images or for multisampled input attachments.
*/
if (instr->op == nir_texop_fragment_mask_fetch) {
if (args.dim == ac_image_2dmsaa) {
args.dim = ac_image_2d;
} else {
assert(args.dim == ac_image_2darraymsaa);
args.dim = ac_image_2darray;
}
}
assert(instr->dest.is_ssa);
args.d16 = instr->dest.ssa.bit_size == 16;
result = build_tex_intrinsic(ctx, instr, &args);
if (instr->op == nir_texop_query_levels)
result = LLVMBuildExtractElement(ctx->ac.builder, result, LLVMConstInt(ctx->ac.i32, 3, false), "");
else if (instr->is_shadow && instr->is_new_style_shadow &&
instr->op != nir_texop_txs && instr->op != nir_texop_lod &&
instr->op != nir_texop_tg4)
result = LLVMBuildExtractElement(ctx->ac.builder, result, ctx->ac.i32_0, "");
else if (instr->op == nir_texop_txs &&
instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
instr->is_array) {
LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
LLVMValueRef six = LLVMConstInt(ctx->ac.i32, 6, false);
LLVMValueRef z = LLVMBuildExtractElement(ctx->ac.builder, result, two, "");
z = LLVMBuildSDiv(ctx->ac.builder, z, six, "");
result = LLVMBuildInsertElement(ctx->ac.builder, result, z, two, "");
} else if (ctx->ac.chip_class == GFX9 &&
instr->op == nir_texop_txs &&
instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
instr->is_array) {
LLVMValueRef two = LLVMConstInt(ctx->ac.i32, 2, false);
LLVMValueRef layers = LLVMBuildExtractElement(ctx->ac.builder, result, two, "");
result = LLVMBuildInsertElement(ctx->ac.builder, result, layers,
ctx->ac.i32_1, "");
} else if (instr->dest.ssa.num_components != 4)
result = ac_trim_vector(&ctx->ac, result, instr->dest.ssa.num_components);
write_result:
if (result) {
assert(instr->dest.is_ssa);
result = ac_to_integer(&ctx->ac, result);
for (int i = ARRAY_SIZE(wctx); --i >= 0;) {
result = exit_waterfall(ctx, wctx + i, result);
}
ctx->ssa_defs[instr->dest.ssa.index] = result;
}
}
static void visit_phi(struct ac_nir_context *ctx, nir_phi_instr *instr)
{
LLVMTypeRef type = get_def_type(ctx, &instr->dest.ssa);
LLVMValueRef result = LLVMBuildPhi(ctx->ac.builder, type, "");
ctx->ssa_defs[instr->dest.ssa.index] = result;
_mesa_hash_table_insert(ctx->phis, instr, result);
}
static void visit_post_phi(struct ac_nir_context *ctx,
nir_phi_instr *instr,
LLVMValueRef llvm_phi)
{
nir_foreach_phi_src(src, instr) {
LLVMBasicBlockRef block = get_block(ctx, src->pred);
LLVMValueRef llvm_src = get_src(ctx, src->src);
LLVMAddIncoming(llvm_phi, &llvm_src, &block, 1);
}
}
static void phi_post_pass(struct ac_nir_context *ctx)
{
hash_table_foreach(ctx->phis, entry) {
visit_post_phi(ctx, (nir_phi_instr*)entry->key,
(LLVMValueRef)entry->data);
}
}
static bool is_def_used_in_an_export(const nir_ssa_def* def) {
nir_foreach_use(use_src, def) {
if (use_src->parent_instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *instr = nir_instr_as_intrinsic(use_src->parent_instr);
if (instr->intrinsic == nir_intrinsic_store_deref)
return true;
} else if (use_src->parent_instr->type == nir_instr_type_alu) {
nir_alu_instr *instr = nir_instr_as_alu(use_src->parent_instr);
if (instr->op == nir_op_vec4 &&
is_def_used_in_an_export(&instr->dest.dest.ssa)) {
return true;
}
}
}
return false;
}
static void visit_ssa_undef(struct ac_nir_context *ctx,
const nir_ssa_undef_instr *instr)
{
unsigned num_components = instr->def.num_components;
LLVMTypeRef type = LLVMIntTypeInContext(ctx->ac.context, instr->def.bit_size);
if (!ctx->abi->convert_undef_to_zero || is_def_used_in_an_export(&instr->def)) {
LLVMValueRef undef;
if (num_components == 1)
undef = LLVMGetUndef(type);
else {
undef = LLVMGetUndef(LLVMVectorType(type, num_components));
}
ctx->ssa_defs[instr->def.index] = undef;
} else {
LLVMValueRef zero = LLVMConstInt(type, 0, false);
if (num_components > 1) {
zero = ac_build_gather_values_extended(
&ctx->ac, &zero, 4, 0, false, false);
}
ctx->ssa_defs[instr->def.index] = zero;
}
}
static void visit_jump(struct ac_llvm_context *ctx,
const nir_jump_instr *instr)
{
switch (instr->type) {
case nir_jump_break:
ac_build_break(ctx);
break;
case nir_jump_continue:
ac_build_continue(ctx);
break;
default:
fprintf(stderr, "Unknown NIR jump instr: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
}
static LLVMTypeRef
glsl_base_to_llvm_type(struct ac_llvm_context *ac,
enum glsl_base_type type)
{
switch (type) {
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_SUBROUTINE:
return ac->i32;
case GLSL_TYPE_INT8:
case GLSL_TYPE_UINT8:
return ac->i8;
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT16:
return ac->i16;
case GLSL_TYPE_FLOAT:
return ac->f32;
case GLSL_TYPE_FLOAT16:
return ac->f16;
case GLSL_TYPE_INT64:
case GLSL_TYPE_UINT64:
return ac->i64;
case GLSL_TYPE_DOUBLE:
return ac->f64;
default:
unreachable("unknown GLSL type");
}
}
static LLVMTypeRef
glsl_to_llvm_type(struct ac_llvm_context *ac,
const struct glsl_type *type)
{
if (glsl_type_is_scalar(type)) {
return glsl_base_to_llvm_type(ac, glsl_get_base_type(type));
}
if (glsl_type_is_vector(type)) {
return LLVMVectorType(
glsl_base_to_llvm_type(ac, glsl_get_base_type(type)),
glsl_get_vector_elements(type));
}
if (glsl_type_is_matrix(type)) {
return LLVMArrayType(
glsl_to_llvm_type(ac, glsl_get_column_type(type)),
glsl_get_matrix_columns(type));
}
if (glsl_type_is_array(type)) {
return LLVMArrayType(
glsl_to_llvm_type(ac, glsl_get_array_element(type)),
glsl_get_length(type));
}
assert(glsl_type_is_struct_or_ifc(type));
LLVMTypeRef member_types[glsl_get_length(type)];
for (unsigned i = 0; i < glsl_get_length(type); i++) {
member_types[i] =
glsl_to_llvm_type(ac,
glsl_get_struct_field(type, i));
}
return LLVMStructTypeInContext(ac->context, member_types,
glsl_get_length(type), false);
}
static void visit_deref(struct ac_nir_context *ctx,
nir_deref_instr *instr)
{
if (instr->mode != nir_var_mem_shared &&
instr->mode != nir_var_mem_global)
return;
LLVMValueRef result = NULL;
switch(instr->deref_type) {
case nir_deref_type_var: {
struct hash_entry *entry = _mesa_hash_table_search(ctx->vars, instr->var);
result = entry->data;
break;
}
case nir_deref_type_struct:
if (instr->mode == nir_var_mem_global) {
nir_deref_instr *parent = nir_deref_instr_parent(instr);
uint64_t offset = glsl_get_struct_field_offset(parent->type,
instr->strct.index);
result = ac_build_gep_ptr(&ctx->ac, get_src(ctx, instr->parent),
LLVMConstInt(ctx->ac.i32, offset, 0));
} else {
result = ac_build_gep0(&ctx->ac, get_src(ctx, instr->parent),
LLVMConstInt(ctx->ac.i32, instr->strct.index, 0));
}
break;
case nir_deref_type_array:
if (instr->mode == nir_var_mem_global) {
nir_deref_instr *parent = nir_deref_instr_parent(instr);
unsigned stride = glsl_get_explicit_stride(parent->type);
if ((glsl_type_is_matrix(parent->type) &&
glsl_matrix_type_is_row_major(parent->type)) ||
(glsl_type_is_vector(parent->type) && stride == 0))
stride = type_scalar_size_bytes(parent->type);
assert(stride > 0);
LLVMValueRef index = get_src(ctx, instr->arr.index);
if (LLVMTypeOf(index) != ctx->ac.i64)
index = LLVMBuildZExt(ctx->ac.builder, index, ctx->ac.i64, "");
LLVMValueRef offset = LLVMBuildMul(ctx->ac.builder, index, LLVMConstInt(ctx->ac.i64, stride, 0), "");
result = ac_build_gep_ptr(&ctx->ac, get_src(ctx, instr->parent), offset);
} else {
result = ac_build_gep0(&ctx->ac, get_src(ctx, instr->parent),
get_src(ctx, instr->arr.index));
}
break;
case nir_deref_type_ptr_as_array:
if (instr->mode == nir_var_mem_global) {
unsigned stride = nir_deref_instr_ptr_as_array_stride(instr);
LLVMValueRef index = get_src(ctx, instr->arr.index);
if (LLVMTypeOf(index) != ctx->ac.i64)
index = LLVMBuildZExt(ctx->ac.builder, index, ctx->ac.i64, "");
LLVMValueRef offset = LLVMBuildMul(ctx->ac.builder, index, LLVMConstInt(ctx->ac.i64, stride, 0), "");
result = ac_build_gep_ptr(&ctx->ac, get_src(ctx, instr->parent), offset);
} else {
result = ac_build_gep_ptr(&ctx->ac, get_src(ctx, instr->parent),
get_src(ctx, instr->arr.index));
}
break;
case nir_deref_type_cast: {
result = get_src(ctx, instr->parent);
/* We can't use the structs from LLVM because the shader
* specifies its own offsets. */
LLVMTypeRef pointee_type = ctx->ac.i8;
if (instr->mode == nir_var_mem_shared)
pointee_type = glsl_to_llvm_type(&ctx->ac, instr->type);
unsigned address_space;
switch(instr->mode) {
case nir_var_mem_shared:
address_space = AC_ADDR_SPACE_LDS;
break;
case nir_var_mem_global:
address_space = AC_ADDR_SPACE_GLOBAL;
break;
default:
unreachable("Unhandled address space");
}
LLVMTypeRef type = LLVMPointerType(pointee_type, address_space);
if (LLVMTypeOf(result) != type) {
if (LLVMGetTypeKind(LLVMTypeOf(result)) == LLVMVectorTypeKind) {
result = LLVMBuildBitCast(ctx->ac.builder, result,
type, "");
} else {
result = LLVMBuildIntToPtr(ctx->ac.builder, result,
type, "");
}
}
break;
}
default:
unreachable("Unhandled deref_instr deref type");
}
ctx->ssa_defs[instr->dest.ssa.index] = result;
}
static void visit_cf_list(struct ac_nir_context *ctx,
struct exec_list *list);
static void visit_block(struct ac_nir_context *ctx, nir_block *block)
{
nir_foreach_instr(instr, block)
{
switch (instr->type) {
case nir_instr_type_alu:
visit_alu(ctx, nir_instr_as_alu(instr));
break;
case nir_instr_type_load_const:
visit_load_const(ctx, nir_instr_as_load_const(instr));
break;
case nir_instr_type_intrinsic:
visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_tex:
visit_tex(ctx, nir_instr_as_tex(instr));
break;
case nir_instr_type_phi:
visit_phi(ctx, nir_instr_as_phi(instr));
break;
case nir_instr_type_ssa_undef:
visit_ssa_undef(ctx, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_jump:
visit_jump(&ctx->ac, nir_instr_as_jump(instr));
break;
case nir_instr_type_deref:
visit_deref(ctx, nir_instr_as_deref(instr));
break;
default:
fprintf(stderr, "Unknown NIR instr type: ");
nir_print_instr(instr, stderr);
fprintf(stderr, "\n");
abort();
}
}
_mesa_hash_table_insert(ctx->defs, block,
LLVMGetInsertBlock(ctx->ac.builder));
}
static void visit_if(struct ac_nir_context *ctx, nir_if *if_stmt)
{
LLVMValueRef value = get_src(ctx, if_stmt->condition);
nir_block *then_block =
(nir_block *) exec_list_get_head(&if_stmt->then_list);
ac_build_uif(&ctx->ac, value, then_block->index);
visit_cf_list(ctx, &if_stmt->then_list);
if (!exec_list_is_empty(&if_stmt->else_list)) {
nir_block *else_block =
(nir_block *) exec_list_get_head(&if_stmt->else_list);
ac_build_else(&ctx->ac, else_block->index);
visit_cf_list(ctx, &if_stmt->else_list);
}
ac_build_endif(&ctx->ac, then_block->index);
}
static void visit_loop(struct ac_nir_context *ctx, nir_loop *loop)
{
nir_block *first_loop_block =
(nir_block *) exec_list_get_head(&loop->body);
ac_build_bgnloop(&ctx->ac, first_loop_block->index);
visit_cf_list(ctx, &loop->body);
ac_build_endloop(&ctx->ac, first_loop_block->index);
}
static void visit_cf_list(struct ac_nir_context *ctx,
struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list)
{
switch (node->type) {
case nir_cf_node_block:
visit_block(ctx, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
visit_if(ctx, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
visit_loop(ctx, nir_cf_node_as_loop(node));
break;
default:
assert(0);
}
}
}
void
ac_handle_shader_output_decl(struct ac_llvm_context *ctx,
struct ac_shader_abi *abi,
struct nir_shader *nir,
struct nir_variable *variable,
gl_shader_stage stage)
{
unsigned output_loc = variable->data.driver_location / 4;
unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
/* tess ctrl has it's own load/store paths for outputs */
if (stage == MESA_SHADER_TESS_CTRL)
return;
if (stage == MESA_SHADER_VERTEX ||
stage == MESA_SHADER_TESS_EVAL ||
stage == MESA_SHADER_GEOMETRY) {
int idx = variable->data.location + variable->data.index;
if (idx == VARYING_SLOT_CLIP_DIST0) {
int length = nir->info.clip_distance_array_size +
nir->info.cull_distance_array_size;
if (length > 4)
attrib_count = 2;
else
attrib_count = 1;
}
}
bool is_16bit = glsl_type_is_16bit(glsl_without_array(variable->type));
LLVMTypeRef type = is_16bit ? ctx->f16 : ctx->f32;
for (unsigned i = 0; i < attrib_count; ++i) {
for (unsigned chan = 0; chan < 4; chan++) {
abi->outputs[ac_llvm_reg_index_soa(output_loc + i, chan)] =
ac_build_alloca_undef(ctx, type, "");
}
}
}
static void
setup_locals(struct ac_nir_context *ctx,
struct nir_function *func)
{
int i, j;
ctx->num_locals = 0;
nir_foreach_function_temp_variable(variable, func->impl) {
unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
variable->data.driver_location = ctx->num_locals * 4;
variable->data.location_frac = 0;
ctx->num_locals += attrib_count;
}
ctx->locals = malloc(4 * ctx->num_locals * sizeof(LLVMValueRef));
if (!ctx->locals)
return;
for (i = 0; i < ctx->num_locals; i++) {
for (j = 0; j < 4; j++) {
ctx->locals[i * 4 + j] =
ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "temp");
}
}
}
static void
setup_scratch(struct ac_nir_context *ctx,
struct nir_shader *shader)
{
if (shader->scratch_size == 0)
return;
ctx->scratch = ac_build_alloca_undef(&ctx->ac,
LLVMArrayType(ctx->ac.i8, shader->scratch_size),
"scratch");
}
static void
setup_constant_data(struct ac_nir_context *ctx,
struct nir_shader *shader)
{
if (!shader->constant_data)
return;
LLVMValueRef data =
LLVMConstStringInContext(ctx->ac.context,
shader->constant_data,
shader->constant_data_size,
true);
LLVMTypeRef type = LLVMArrayType(ctx->ac.i8, shader->constant_data_size);
/* We want to put the constant data in the CONST address space so that
* we can use scalar loads. However, LLVM versions before 10 put these
* variables in the same section as the code, which is unacceptable
* for RadeonSI as it needs to relocate all the data sections after
* the code sections. See https://reviews.llvm.org/D65813.
*/
unsigned address_space =
LLVM_VERSION_MAJOR < 10 ? AC_ADDR_SPACE_GLOBAL : AC_ADDR_SPACE_CONST;
LLVMValueRef global =
LLVMAddGlobalInAddressSpace(ctx->ac.module, type,
"const_data",
address_space);
LLVMSetInitializer(global, data);
LLVMSetGlobalConstant(global, true);
LLVMSetVisibility(global, LLVMHiddenVisibility);
ctx->constant_data = global;
}
static void
setup_shared(struct ac_nir_context *ctx,
struct nir_shader *nir)
{
if (ctx->ac.lds)
return;
LLVMTypeRef type = LLVMArrayType(ctx->ac.i8,
nir->info.cs.shared_size);
LLVMValueRef lds =
LLVMAddGlobalInAddressSpace(ctx->ac.module, type,
"compute_lds",
AC_ADDR_SPACE_LDS);
LLVMSetAlignment(lds, 64 * 1024);
ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, lds,
LLVMPointerType(ctx->ac.i8,
AC_ADDR_SPACE_LDS), "");
}
void ac_nir_translate(struct ac_llvm_context *ac, struct ac_shader_abi *abi,
const struct ac_shader_args *args, struct nir_shader *nir)
{
struct ac_nir_context ctx = {};
struct nir_function *func;
ctx.ac = *ac;
ctx.abi = abi;
ctx.args = args;
ctx.stage = nir->info.stage;
ctx.info = &nir->info;
ctx.main_function = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
nir_foreach_shader_out_variable(variable, nir)
ac_handle_shader_output_decl(&ctx.ac, ctx.abi, nir, variable,
ctx.stage);
ctx.defs = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
ctx.phis = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
ctx.vars = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
if (ctx.abi->kill_ps_if_inf_interp)
ctx.verified_interp = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
_mesa_key_pointer_equal);
func = (struct nir_function *)exec_list_get_head(&nir->functions);
nir_index_ssa_defs(func->impl);
ctx.ssa_defs = calloc(func->impl->ssa_alloc, sizeof(LLVMValueRef));
setup_locals(&ctx, func);
setup_scratch(&ctx, nir);
setup_constant_data(&ctx, nir);
if (gl_shader_stage_is_compute(nir->info.stage))
setup_shared(&ctx, nir);
if (nir->info.stage == MESA_SHADER_FRAGMENT && nir->info.fs.uses_demote) {
ctx.ac.postponed_kill = ac_build_alloca_undef(&ctx.ac, ac->i1, "");
/* true = don't kill. */
LLVMBuildStore(ctx.ac.builder, ctx.ac.i1true, ctx.ac.postponed_kill);
}
visit_cf_list(&ctx, &func->impl->body);
phi_post_pass(&ctx);
if (ctx.ac.postponed_kill)
ac_build_kill_if_false(&ctx.ac, LLVMBuildLoad(ctx.ac.builder,
ctx.ac.postponed_kill, ""));
if (!gl_shader_stage_is_compute(nir->info.stage))
ctx.abi->emit_outputs(ctx.abi, AC_LLVM_MAX_OUTPUTS,
ctx.abi->outputs);
free(ctx.locals);
free(ctx.ssa_defs);
ralloc_free(ctx.defs);
ralloc_free(ctx.phis);
ralloc_free(ctx.vars);
if (ctx.abi->kill_ps_if_inf_interp)
ralloc_free(ctx.verified_interp);
}
bool
ac_lower_indirect_derefs(struct nir_shader *nir, enum chip_class chip_class)
{
bool progress = false;
/* Lower large variables to scratch first so that we won't bloat the
* shader by generating large if ladders for them. We later lower
* scratch to alloca's, assuming LLVM won't generate VGPR indexing.
*/
NIR_PASS(progress, nir, nir_lower_vars_to_scratch,
nir_var_function_temp,
256,
glsl_get_natural_size_align_bytes);
/* While it would be nice not to have this flag, we are constrained
* by the reality that LLVM 9.0 has buggy VGPR indexing on GFX9.
*/
bool llvm_has_working_vgpr_indexing = chip_class != GFX9;
/* TODO: Indirect indexing of GS inputs is unimplemented.
*
* TCS and TES load inputs directly from LDS or offchip memory, so
* indirect indexing is trivial.
*/
nir_variable_mode indirect_mask = 0;
if (nir->info.stage == MESA_SHADER_GEOMETRY ||
(nir->info.stage != MESA_SHADER_TESS_CTRL &&
nir->info.stage != MESA_SHADER_TESS_EVAL &&
!llvm_has_working_vgpr_indexing)) {
indirect_mask |= nir_var_shader_in;
}
if (!llvm_has_working_vgpr_indexing &&
nir->info.stage != MESA_SHADER_TESS_CTRL)
indirect_mask |= nir_var_shader_out;
/* TODO: We shouldn't need to do this, however LLVM isn't currently
* smart enough to handle indirects without causing excess spilling
* causing the gpu to hang.
*
* See the following thread for more details of the problem:
* https://lists.freedesktop.org/archives/mesa-dev/2017-July/162106.html
*/
indirect_mask |= nir_var_function_temp;
progress |= nir_lower_indirect_derefs(nir, indirect_mask);
return progress;
}
static unsigned
get_inst_tessfactor_writemask(nir_intrinsic_instr *intrin)
{
if (intrin->intrinsic != nir_intrinsic_store_deref)
return 0;
nir_variable *var =
nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[0]));
if (var->data.mode != nir_var_shader_out)
return 0;
unsigned writemask = 0;
const int location = var->data.location;
unsigned first_component = var->data.location_frac;
unsigned num_comps = intrin->dest.ssa.num_components;
if (location == VARYING_SLOT_TESS_LEVEL_INNER)
writemask = ((1 << (num_comps + 1)) - 1) << first_component;
else if (location == VARYING_SLOT_TESS_LEVEL_OUTER)
writemask = (((1 << (num_comps + 1)) - 1) << first_component) << 4;
return writemask;
}
static void
scan_tess_ctrl(nir_cf_node *cf_node, unsigned *upper_block_tf_writemask,
unsigned *cond_block_tf_writemask,
bool *tessfactors_are_def_in_all_invocs, bool is_nested_cf)
{
switch (cf_node->type) {
case nir_cf_node_block: {
nir_block *block = nir_cf_node_as_block(cf_node);
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic == nir_intrinsic_control_barrier) {
/* If we find a barrier in nested control flow put this in the
* too hard basket. In GLSL this is not possible but it is in
* SPIR-V.
*/
if (is_nested_cf) {
*tessfactors_are_def_in_all_invocs = false;
return;
}
/* The following case must be prevented:
* gl_TessLevelInner = ...;
* barrier();
* if (gl_InvocationID == 1)
* gl_TessLevelInner = ...;
*
* If you consider disjoint code segments separated by barriers, each
* such segment that writes tess factor channels should write the same
* channels in all codepaths within that segment.
*/
if (upper_block_tf_writemask || cond_block_tf_writemask) {
/* Accumulate the result: */
*tessfactors_are_def_in_all_invocs &=
!(*cond_block_tf_writemask & ~(*upper_block_tf_writemask));
/* Analyze the next code segment from scratch. */
*upper_block_tf_writemask = 0;
*cond_block_tf_writemask = 0;
}
} else
*upper_block_tf_writemask |= get_inst_tessfactor_writemask(intrin);
}
break;
}
case nir_cf_node_if: {
unsigned then_tessfactor_writemask = 0;
unsigned else_tessfactor_writemask = 0;
nir_if *if_stmt = nir_cf_node_as_if(cf_node);
foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->then_list) {
scan_tess_ctrl(nested_node, &then_tessfactor_writemask,
cond_block_tf_writemask,
tessfactors_are_def_in_all_invocs, true);
}
foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->else_list) {
scan_tess_ctrl(nested_node, &else_tessfactor_writemask,
cond_block_tf_writemask,
tessfactors_are_def_in_all_invocs, true);
}
if (then_tessfactor_writemask || else_tessfactor_writemask) {
/* If both statements write the same tess factor channels,
* we can say that the upper block writes them too.
*/
*upper_block_tf_writemask |= then_tessfactor_writemask &
else_tessfactor_writemask;
*cond_block_tf_writemask |= then_tessfactor_writemask |
else_tessfactor_writemask;
}
break;
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(cf_node);
foreach_list_typed(nir_cf_node, nested_node, node, &loop->body) {
scan_tess_ctrl(nested_node, cond_block_tf_writemask,
cond_block_tf_writemask,
tessfactors_are_def_in_all_invocs, true);
}
break;
}
default:
unreachable("unknown cf node type");
}
}
bool
ac_are_tessfactors_def_in_all_invocs(const struct nir_shader *nir)
{
assert(nir->info.stage == MESA_SHADER_TESS_CTRL);
/* The pass works as follows:
* If all codepaths write tess factors, we can say that all
* invocations define tess factors.
*
* Each tess factor channel is tracked separately.
*/
unsigned main_block_tf_writemask = 0; /* if main block writes tess factors */
unsigned cond_block_tf_writemask = 0; /* if cond block writes tess factors */
/* Initial value = true. Here the pass will accumulate results from
* multiple segments surrounded by barriers. If tess factors aren't
* written at all, it's a shader bug and we don't care if this will be
* true.
*/
bool tessfactors_are_def_in_all_invocs = true;
nir_foreach_function(function, nir) {
if (function->impl) {
foreach_list_typed(nir_cf_node, node, node, &function->impl->body) {
scan_tess_ctrl(node, &main_block_tf_writemask,
&cond_block_tf_writemask,
&tessfactors_are_def_in_all_invocs,
false);
}
}
}
/* Accumulate the result for the last code segment separated by a
* barrier.
*/
if (main_block_tf_writemask || cond_block_tf_writemask) {
tessfactors_are_def_in_all_invocs &=
!(cond_block_tf_writemask & ~main_block_tf_writemask);
}
return tessfactors_are_def_in_all_invocs;
}