blob: 9250a7ec1bbfde5eba09376d62bb34402d0e4dab [file] [log] [blame]
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Connor Abbott (cwabbott0@gmail.com)
* Jason Ekstrand (jason@jlekstrand.net)
*
*/
/*
* This lowering pass converts references to input/output variables with
* loads/stores to actual input/output intrinsics.
*/
#include "nir.h"
#include "nir_builder.h"
#include "nir_deref.h"
#include "util/u_math.h"
struct lower_io_state {
void *dead_ctx;
nir_builder builder;
int (*type_size)(const struct glsl_type *type, bool);
nir_variable_mode modes;
nir_lower_io_options options;
};
static nir_intrinsic_op
ssbo_atomic_for_deref(nir_intrinsic_op deref_op)
{
switch (deref_op) {
#define OP(O) case nir_intrinsic_deref_##O: return nir_intrinsic_ssbo_##O;
OP(atomic_exchange)
OP(atomic_comp_swap)
OP(atomic_add)
OP(atomic_imin)
OP(atomic_umin)
OP(atomic_imax)
OP(atomic_umax)
OP(atomic_and)
OP(atomic_or)
OP(atomic_xor)
OP(atomic_fadd)
OP(atomic_fmin)
OP(atomic_fmax)
OP(atomic_fcomp_swap)
#undef OP
default:
unreachable("Invalid SSBO atomic");
}
}
static nir_intrinsic_op
global_atomic_for_deref(nir_intrinsic_op deref_op)
{
switch (deref_op) {
#define OP(O) case nir_intrinsic_deref_##O: return nir_intrinsic_global_##O;
OP(atomic_exchange)
OP(atomic_comp_swap)
OP(atomic_add)
OP(atomic_imin)
OP(atomic_umin)
OP(atomic_imax)
OP(atomic_umax)
OP(atomic_and)
OP(atomic_or)
OP(atomic_xor)
OP(atomic_fadd)
OP(atomic_fmin)
OP(atomic_fmax)
OP(atomic_fcomp_swap)
#undef OP
default:
unreachable("Invalid SSBO atomic");
}
}
static nir_intrinsic_op
shared_atomic_for_deref(nir_intrinsic_op deref_op)
{
switch (deref_op) {
#define OP(O) case nir_intrinsic_deref_##O: return nir_intrinsic_shared_##O;
OP(atomic_exchange)
OP(atomic_comp_swap)
OP(atomic_add)
OP(atomic_imin)
OP(atomic_umin)
OP(atomic_imax)
OP(atomic_umax)
OP(atomic_and)
OP(atomic_or)
OP(atomic_xor)
OP(atomic_fadd)
OP(atomic_fmin)
OP(atomic_fmax)
OP(atomic_fcomp_swap)
#undef OP
default:
unreachable("Invalid shared atomic");
}
}
void
nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
unsigned *size,
int (*type_size)(const struct glsl_type *, bool))
{
unsigned location = 0;
nir_foreach_variable_with_modes(var, shader, mode) {
var->data.driver_location = location;
bool bindless_type_size = var->data.mode == nir_var_shader_in ||
var->data.mode == nir_var_shader_out ||
var->data.bindless;
location += type_size(var->type, bindless_type_size);
}
*size = location;
}
/**
* Return true if the given variable is a per-vertex input/output array.
* (such as geometry shader inputs).
*/
bool
nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage)
{
if (var->data.patch || !glsl_type_is_array(var->type))
return false;
if (var->data.mode == nir_var_shader_in)
return stage == MESA_SHADER_GEOMETRY ||
stage == MESA_SHADER_TESS_CTRL ||
stage == MESA_SHADER_TESS_EVAL;
if (var->data.mode == nir_var_shader_out)
return stage == MESA_SHADER_TESS_CTRL;
return false;
}
static unsigned get_number_of_slots(struct lower_io_state *state,
const nir_variable *var)
{
const struct glsl_type *type = var->type;
if (nir_is_per_vertex_io(var, state->builder.shader->info.stage)) {
assert(glsl_type_is_array(type));
type = glsl_get_array_element(type);
}
return state->type_size(type, var->data.bindless);
}
static nir_ssa_def *
get_io_offset(nir_builder *b, nir_deref_instr *deref,
nir_ssa_def **vertex_index,
int (*type_size)(const struct glsl_type *, bool),
unsigned *component, bool bts)
{
nir_deref_path path;
nir_deref_path_init(&path, deref, NULL);
assert(path.path[0]->deref_type == nir_deref_type_var);
nir_deref_instr **p = &path.path[1];
/* For per-vertex input arrays (i.e. geometry shader inputs), keep the
* outermost array index separate. Process the rest normally.
*/
if (vertex_index != NULL) {
assert((*p)->deref_type == nir_deref_type_array);
*vertex_index = nir_ssa_for_src(b, (*p)->arr.index, 1);
p++;
}
if (path.path[0]->var->data.compact) {
assert((*p)->deref_type == nir_deref_type_array);
assert(glsl_type_is_scalar((*p)->type));
/* We always lower indirect dereferences for "compact" array vars. */
const unsigned index = nir_src_as_uint((*p)->arr.index);
const unsigned total_offset = *component + index;
const unsigned slot_offset = total_offset / 4;
*component = total_offset % 4;
return nir_imm_int(b, type_size(glsl_vec4_type(), bts) * slot_offset);
}
/* Just emit code and let constant-folding go to town */
nir_ssa_def *offset = nir_imm_int(b, 0);
for (; *p; p++) {
if ((*p)->deref_type == nir_deref_type_array) {
unsigned size = type_size((*p)->type, bts);
nir_ssa_def *mul =
nir_amul_imm(b, nir_ssa_for_src(b, (*p)->arr.index, 1), size);
offset = nir_iadd(b, offset, mul);
} else if ((*p)->deref_type == nir_deref_type_struct) {
/* p starts at path[1], so this is safe */
nir_deref_instr *parent = *(p - 1);
unsigned field_offset = 0;
for (unsigned i = 0; i < (*p)->strct.index; i++) {
field_offset += type_size(glsl_get_struct_field(parent->type, i), bts);
}
offset = nir_iadd_imm(b, offset, field_offset);
} else {
unreachable("Unsupported deref type");
}
}
nir_deref_path_finish(&path);
return offset;
}
static nir_ssa_def *
emit_load(struct lower_io_state *state,
nir_ssa_def *vertex_index, nir_variable *var, nir_ssa_def *offset,
unsigned component, unsigned num_components, unsigned bit_size,
nir_alu_type type)
{
nir_builder *b = &state->builder;
const nir_shader *nir = b->shader;
nir_variable_mode mode = var->data.mode;
nir_ssa_def *barycentric = NULL;
nir_intrinsic_op op;
switch (mode) {
case nir_var_shader_in:
if (nir->info.stage == MESA_SHADER_FRAGMENT &&
nir->options->use_interpolated_input_intrinsics &&
var->data.interpolation != INTERP_MODE_FLAT) {
if (var->data.interpolation == INTERP_MODE_EXPLICIT) {
assert(vertex_index != NULL);
op = nir_intrinsic_load_input_vertex;
} else {
assert(vertex_index == NULL);
nir_intrinsic_op bary_op;
if (var->data.sample ||
(state->options & nir_lower_io_force_sample_interpolation))
bary_op = nir_intrinsic_load_barycentric_sample;
else if (var->data.centroid)
bary_op = nir_intrinsic_load_barycentric_centroid;
else
bary_op = nir_intrinsic_load_barycentric_pixel;
barycentric = nir_load_barycentric(&state->builder, bary_op,
var->data.interpolation);
op = nir_intrinsic_load_interpolated_input;
}
} else {
op = vertex_index ? nir_intrinsic_load_per_vertex_input :
nir_intrinsic_load_input;
}
break;
case nir_var_shader_out:
op = vertex_index ? nir_intrinsic_load_per_vertex_output :
nir_intrinsic_load_output;
break;
case nir_var_uniform:
op = nir_intrinsic_load_uniform;
break;
default:
unreachable("Unknown variable mode");
}
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(state->builder.shader, op);
load->num_components = num_components;
nir_intrinsic_set_base(load, var->data.driver_location);
if (mode == nir_var_shader_in || mode == nir_var_shader_out)
nir_intrinsic_set_component(load, component);
if (load->intrinsic == nir_intrinsic_load_uniform)
nir_intrinsic_set_range(load,
state->type_size(var->type, var->data.bindless));
if (load->intrinsic == nir_intrinsic_load_input ||
load->intrinsic == nir_intrinsic_load_input_vertex ||
load->intrinsic == nir_intrinsic_load_uniform)
nir_intrinsic_set_type(load, type);
if (load->intrinsic != nir_intrinsic_load_uniform) {
nir_io_semantics semantics = {0};
semantics.location = var->data.location;
semantics.num_slots = get_number_of_slots(state, var);
semantics.fb_fetch_output = var->data.fb_fetch_output;
nir_intrinsic_set_io_semantics(load, semantics);
}
if (vertex_index) {
load->src[0] = nir_src_for_ssa(vertex_index);
load->src[1] = nir_src_for_ssa(offset);
} else if (barycentric) {
load->src[0] = nir_src_for_ssa(barycentric);
load->src[1] = nir_src_for_ssa(offset);
} else {
load->src[0] = nir_src_for_ssa(offset);
}
nir_ssa_dest_init(&load->instr, &load->dest,
num_components, bit_size, NULL);
nir_builder_instr_insert(b, &load->instr);
return &load->dest.ssa;
}
static nir_ssa_def *
lower_load(nir_intrinsic_instr *intrin, struct lower_io_state *state,
nir_ssa_def *vertex_index, nir_variable *var, nir_ssa_def *offset,
unsigned component, const struct glsl_type *type)
{
assert(intrin->dest.is_ssa);
if (intrin->dest.ssa.bit_size == 64 &&
(state->options & nir_lower_io_lower_64bit_to_32)) {
nir_builder *b = &state->builder;
const unsigned slot_size = state->type_size(glsl_dvec_type(2), false);
nir_ssa_def *comp64[4];
assert(component == 0 || component == 2);
unsigned dest_comp = 0;
while (dest_comp < intrin->dest.ssa.num_components) {
const unsigned num_comps =
MIN2(intrin->dest.ssa.num_components - dest_comp,
(4 - component) / 2);
nir_ssa_def *data32 =
emit_load(state, vertex_index, var, offset, component,
num_comps * 2, 32, nir_type_uint32);
for (unsigned i = 0; i < num_comps; i++) {
comp64[dest_comp + i] =
nir_pack_64_2x32(b, nir_channels(b, data32, 3 << (i * 2)));
}
/* Only the first store has a component offset */
component = 0;
dest_comp += num_comps;
offset = nir_iadd_imm(b, offset, slot_size);
}
return nir_vec(b, comp64, intrin->dest.ssa.num_components);
} else if (intrin->dest.ssa.bit_size == 1) {
/* Booleans are 32-bit */
assert(glsl_type_is_boolean(type));
return nir_b2b1(&state->builder,
emit_load(state, vertex_index, var, offset, component,
intrin->dest.ssa.num_components, 32,
nir_type_bool32));
} else {
return emit_load(state, vertex_index, var, offset, component,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size,
nir_get_nir_type_for_glsl_type(type));
}
}
static void
emit_store(struct lower_io_state *state, nir_ssa_def *data,
nir_ssa_def *vertex_index, nir_variable *var, nir_ssa_def *offset,
unsigned component, unsigned num_components,
nir_component_mask_t write_mask, nir_alu_type type)
{
nir_builder *b = &state->builder;
nir_variable_mode mode = var->data.mode;
assert(mode == nir_var_shader_out);
nir_intrinsic_op op;
op = vertex_index ? nir_intrinsic_store_per_vertex_output :
nir_intrinsic_store_output;
nir_intrinsic_instr *store =
nir_intrinsic_instr_create(state->builder.shader, op);
store->num_components = num_components;
store->src[0] = nir_src_for_ssa(data);
nir_intrinsic_set_base(store, var->data.driver_location);
if (mode == nir_var_shader_out)
nir_intrinsic_set_component(store, component);
if (store->intrinsic == nir_intrinsic_store_output)
nir_intrinsic_set_type(store, type);
nir_intrinsic_set_write_mask(store, write_mask);
if (vertex_index)
store->src[1] = nir_src_for_ssa(vertex_index);
store->src[vertex_index ? 2 : 1] = nir_src_for_ssa(offset);
unsigned gs_streams = 0;
if (state->builder.shader->info.stage == MESA_SHADER_GEOMETRY) {
if (var->data.stream & NIR_STREAM_PACKED) {
gs_streams = var->data.stream & ~NIR_STREAM_PACKED;
} else {
assert(var->data.stream < 4);
gs_streams = 0;
for (unsigned i = 0; i < num_components; ++i)
gs_streams |= var->data.stream << (2 * i);
}
}
nir_io_semantics semantics = {0};
semantics.location = var->data.location;
semantics.num_slots = get_number_of_slots(state, var);
semantics.dual_source_blend_index = var->data.index;
semantics.gs_streams = gs_streams;
nir_intrinsic_set_io_semantics(store, semantics);
nir_builder_instr_insert(b, &store->instr);
}
static void
lower_store(nir_intrinsic_instr *intrin, struct lower_io_state *state,
nir_ssa_def *vertex_index, nir_variable *var, nir_ssa_def *offset,
unsigned component, const struct glsl_type *type)
{
assert(intrin->src[1].is_ssa);
if (intrin->src[1].ssa->bit_size == 64 &&
(state->options & nir_lower_io_lower_64bit_to_32)) {
nir_builder *b = &state->builder;
const unsigned slot_size = state->type_size(glsl_dvec_type(2), false);
assert(component == 0 || component == 2);
unsigned src_comp = 0;
nir_component_mask_t write_mask = nir_intrinsic_write_mask(intrin);
while (src_comp < intrin->num_components) {
const unsigned num_comps =
MIN2(intrin->num_components - src_comp,
(4 - component) / 2);
if (write_mask & BITFIELD_MASK(num_comps)) {
nir_ssa_def *data =
nir_channels(b, intrin->src[1].ssa,
BITFIELD_RANGE(src_comp, num_comps));
nir_ssa_def *data32 = nir_bitcast_vector(b, data, 32);
nir_component_mask_t write_mask32 = 0;
for (unsigned i = 0; i < num_comps; i++) {
if (write_mask & BITFIELD_MASK(num_comps) & (1 << i))
write_mask32 |= 3 << (i * 2);
}
emit_store(state, data32, vertex_index, var, offset,
component, data32->num_components, write_mask32,
nir_type_uint32);
}
/* Only the first store has a component offset */
component = 0;
src_comp += num_comps;
write_mask >>= num_comps;
offset = nir_iadd_imm(b, offset, slot_size);
}
} else if (intrin->dest.ssa.bit_size == 1) {
/* Booleans are 32-bit */
assert(glsl_type_is_boolean(type));
nir_ssa_def *b32_val = nir_b2b32(&state->builder, intrin->src[1].ssa);
emit_store(state, b32_val, vertex_index, var, offset,
component, intrin->num_components,
nir_intrinsic_write_mask(intrin),
nir_type_bool32);
} else {
emit_store(state, intrin->src[1].ssa, vertex_index, var, offset,
component, intrin->num_components,
nir_intrinsic_write_mask(intrin),
nir_get_nir_type_for_glsl_type(type));
}
}
static nir_ssa_def *
lower_interpolate_at(nir_intrinsic_instr *intrin, struct lower_io_state *state,
nir_variable *var, nir_ssa_def *offset, unsigned component,
const struct glsl_type *type)
{
nir_builder *b = &state->builder;
assert(var->data.mode == nir_var_shader_in);
/* Ignore interpolateAt() for flat variables - flat is flat. Lower
* interpolateAtVertex() for explicit variables.
*/
if (var->data.interpolation == INTERP_MODE_FLAT ||
var->data.interpolation == INTERP_MODE_EXPLICIT) {
nir_ssa_def *vertex_index = NULL;
if (var->data.interpolation == INTERP_MODE_EXPLICIT) {
assert(intrin->intrinsic == nir_intrinsic_interp_deref_at_vertex);
vertex_index = intrin->src[1].ssa;
}
return lower_load(intrin, state, vertex_index, var, offset, component, type);
}
/* None of the supported APIs allow interpolation on 64-bit things */
assert(intrin->dest.is_ssa && intrin->dest.ssa.bit_size <= 32);
nir_intrinsic_op bary_op;
switch (intrin->intrinsic) {
case nir_intrinsic_interp_deref_at_centroid:
bary_op = (state->options & nir_lower_io_force_sample_interpolation) ?
nir_intrinsic_load_barycentric_sample :
nir_intrinsic_load_barycentric_centroid;
break;
case nir_intrinsic_interp_deref_at_sample:
bary_op = nir_intrinsic_load_barycentric_at_sample;
break;
case nir_intrinsic_interp_deref_at_offset:
bary_op = nir_intrinsic_load_barycentric_at_offset;
break;
default:
unreachable("Bogus interpolateAt() intrinsic.");
}
nir_intrinsic_instr *bary_setup =
nir_intrinsic_instr_create(state->builder.shader, bary_op);
nir_ssa_dest_init(&bary_setup->instr, &bary_setup->dest, 2, 32, NULL);
nir_intrinsic_set_interp_mode(bary_setup, var->data.interpolation);
if (intrin->intrinsic == nir_intrinsic_interp_deref_at_sample ||
intrin->intrinsic == nir_intrinsic_interp_deref_at_offset ||
intrin->intrinsic == nir_intrinsic_interp_deref_at_vertex)
nir_src_copy(&bary_setup->src[0], &intrin->src[1], bary_setup);
nir_builder_instr_insert(b, &bary_setup->instr);
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(state->builder.shader,
nir_intrinsic_load_interpolated_input);
load->num_components = intrin->num_components;
nir_intrinsic_set_base(load, var->data.driver_location);
nir_intrinsic_set_component(load, component);
nir_io_semantics semantics = {0};
semantics.location = var->data.location;
semantics.num_slots = get_number_of_slots(state, var);
nir_intrinsic_set_io_semantics(load, semantics);
load->src[0] = nir_src_for_ssa(&bary_setup->dest.ssa);
load->src[1] = nir_src_for_ssa(offset);
assert(intrin->dest.is_ssa);
nir_ssa_dest_init(&load->instr, &load->dest,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size, NULL);
nir_builder_instr_insert(b, &load->instr);
return &load->dest.ssa;
}
static bool
nir_lower_io_block(nir_block *block,
struct lower_io_state *state)
{
nir_builder *b = &state->builder;
const nir_shader_compiler_options *options = b->shader->options;
bool progress = false;
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_deref:
case nir_intrinsic_store_deref:
/* We can lower the io for this nir instrinsic */
break;
case nir_intrinsic_interp_deref_at_centroid:
case nir_intrinsic_interp_deref_at_sample:
case nir_intrinsic_interp_deref_at_offset:
case nir_intrinsic_interp_deref_at_vertex:
/* We can optionally lower these to load_interpolated_input */
if (options->use_interpolated_input_intrinsics)
break;
default:
/* We can't lower the io for this nir instrinsic, so skip it */
continue;
}
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
nir_variable_mode mode = deref->mode;
assert(util_is_power_of_two_nonzero(mode));
if ((state->modes & mode) == 0)
continue;
nir_variable *var = nir_deref_instr_get_variable(deref);
b->cursor = nir_before_instr(instr);
const bool per_vertex = nir_is_per_vertex_io(var, b->shader->info.stage);
nir_ssa_def *offset;
nir_ssa_def *vertex_index = NULL;
unsigned component_offset = var->data.location_frac;
bool bindless_type_size = mode == nir_var_shader_in ||
mode == nir_var_shader_out ||
var->data.bindless;
offset = get_io_offset(b, deref, per_vertex ? &vertex_index : NULL,
state->type_size, &component_offset,
bindless_type_size);
nir_ssa_def *replacement = NULL;
switch (intrin->intrinsic) {
case nir_intrinsic_load_deref:
replacement = lower_load(intrin, state, vertex_index, var, offset,
component_offset, deref->type);
break;
case nir_intrinsic_store_deref:
lower_store(intrin, state, vertex_index, var, offset,
component_offset, deref->type);
break;
case nir_intrinsic_interp_deref_at_centroid:
case nir_intrinsic_interp_deref_at_sample:
case nir_intrinsic_interp_deref_at_offset:
case nir_intrinsic_interp_deref_at_vertex:
assert(vertex_index == NULL);
replacement = lower_interpolate_at(intrin, state, var, offset,
component_offset, deref->type);
break;
default:
continue;
}
if (replacement) {
nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
nir_src_for_ssa(replacement));
}
nir_instr_remove(&intrin->instr);
progress = true;
}
return progress;
}
static bool
nir_lower_io_impl(nir_function_impl *impl,
nir_variable_mode modes,
int (*type_size)(const struct glsl_type *, bool),
nir_lower_io_options options)
{
struct lower_io_state state;
bool progress = false;
nir_builder_init(&state.builder, impl);
state.dead_ctx = ralloc_context(NULL);
state.modes = modes;
state.type_size = type_size;
state.options = options;
ASSERTED nir_variable_mode supported_modes =
nir_var_shader_in | nir_var_shader_out | nir_var_uniform;
assert(!(modes & ~supported_modes));
nir_foreach_block(block, impl) {
progress |= nir_lower_io_block(block, &state);
}
ralloc_free(state.dead_ctx);
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
return progress;
}
/** Lower load/store_deref intrinsics on I/O variables to offset-based intrinsics
*
* This pass is intended to be used for cross-stage shader I/O and driver-
* managed uniforms to turn deref-based access into a simpler model using
* locations or offsets. For fragment shader inputs, it can optionally turn
* load_deref into an explicit interpolation using barycentrics coming from
* one of the load_barycentric_* intrinsics. This pass requires that all
* deref chains are complete and contain no casts.
*/
bool
nir_lower_io(nir_shader *shader, nir_variable_mode modes,
int (*type_size)(const struct glsl_type *, bool),
nir_lower_io_options options)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl) {
progress |= nir_lower_io_impl(function->impl, modes,
type_size, options);
}
}
return progress;
}
static unsigned
type_scalar_size_bytes(const struct glsl_type *type)
{
assert(glsl_type_is_vector_or_scalar(type) ||
glsl_type_is_matrix(type));
return glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8;
}
static nir_ssa_def *
build_addr_iadd(nir_builder *b, nir_ssa_def *addr,
nir_address_format addr_format, nir_ssa_def *offset)
{
assert(offset->num_components == 1);
switch (addr_format) {
case nir_address_format_32bit_global:
case nir_address_format_64bit_global:
case nir_address_format_32bit_offset:
assert(addr->bit_size == offset->bit_size);
assert(addr->num_components == 1);
return nir_iadd(b, addr, offset);
case nir_address_format_32bit_offset_as_64bit:
assert(addr->num_components == 1);
assert(offset->bit_size == 32);
return nir_u2u64(b, nir_iadd(b, nir_u2u32(b, addr), offset));
case nir_address_format_64bit_bounded_global:
assert(addr->num_components == 4);
assert(addr->bit_size == offset->bit_size);
return nir_vec4(b, nir_channel(b, addr, 0),
nir_channel(b, addr, 1),
nir_channel(b, addr, 2),
nir_iadd(b, nir_channel(b, addr, 3), offset));
case nir_address_format_32bit_index_offset:
assert(addr->num_components == 2);
assert(addr->bit_size == offset->bit_size);
return nir_vec2(b, nir_channel(b, addr, 0),
nir_iadd(b, nir_channel(b, addr, 1), offset));
case nir_address_format_32bit_index_offset_pack64:
assert(addr->num_components == 1);
assert(offset->bit_size == 32);
return nir_pack_64_2x32_split(b,
nir_iadd(b, nir_unpack_64_2x32_split_x(b, addr), offset),
nir_unpack_64_2x32_split_y(b, addr));
case nir_address_format_vec2_index_32bit_offset:
assert(addr->num_components == 3);
assert(offset->bit_size == 32);
return nir_vec3(b, nir_channel(b, addr, 0), nir_channel(b, addr, 1),
nir_iadd(b, nir_channel(b, addr, 2), offset));
case nir_address_format_logical:
unreachable("Unsupported address format");
}
unreachable("Invalid address format");
}
static unsigned
addr_get_offset_bit_size(nir_ssa_def *addr, nir_address_format addr_format)
{
if (addr_format == nir_address_format_32bit_offset_as_64bit ||
addr_format == nir_address_format_32bit_index_offset_pack64)
return 32;
return addr->bit_size;
}
static nir_ssa_def *
build_addr_iadd_imm(nir_builder *b, nir_ssa_def *addr,
nir_address_format addr_format, int64_t offset)
{
return build_addr_iadd(b, addr, addr_format,
nir_imm_intN_t(b, offset,
addr_get_offset_bit_size(addr, addr_format)));
}
static nir_ssa_def *
addr_to_index(nir_builder *b, nir_ssa_def *addr,
nir_address_format addr_format)
{
switch (addr_format) {
case nir_address_format_32bit_index_offset:
assert(addr->num_components == 2);
return nir_channel(b, addr, 0);
case nir_address_format_32bit_index_offset_pack64:
return nir_unpack_64_2x32_split_y(b, addr);
case nir_address_format_vec2_index_32bit_offset:
assert(addr->num_components == 3);
return nir_channels(b, addr, 0x3);
default: unreachable("Invalid address format");
}
}
static nir_ssa_def *
addr_to_offset(nir_builder *b, nir_ssa_def *addr,
nir_address_format addr_format)
{
switch (addr_format) {
case nir_address_format_32bit_index_offset:
assert(addr->num_components == 2);
return nir_channel(b, addr, 1);
case nir_address_format_32bit_index_offset_pack64:
return nir_unpack_64_2x32_split_x(b, addr);
case nir_address_format_vec2_index_32bit_offset:
assert(addr->num_components == 3);
return nir_channel(b, addr, 2);
case nir_address_format_32bit_offset:
return addr;
case nir_address_format_32bit_offset_as_64bit:
return nir_u2u32(b, addr);
default:
unreachable("Invalid address format");
}
}
/** Returns true if the given address format resolves to a global address */
static bool
addr_format_is_global(nir_address_format addr_format)
{
return addr_format == nir_address_format_32bit_global ||
addr_format == nir_address_format_64bit_global ||
addr_format == nir_address_format_64bit_bounded_global;
}
static bool
addr_format_is_offset(nir_address_format addr_format)
{
return addr_format == nir_address_format_32bit_offset ||
addr_format == nir_address_format_32bit_offset_as_64bit;
}
static nir_ssa_def *
addr_to_global(nir_builder *b, nir_ssa_def *addr,
nir_address_format addr_format)
{
switch (addr_format) {
case nir_address_format_32bit_global:
case nir_address_format_64bit_global:
assert(addr->num_components == 1);
return addr;
case nir_address_format_64bit_bounded_global:
assert(addr->num_components == 4);
return nir_iadd(b, nir_pack_64_2x32(b, nir_channels(b, addr, 0x3)),
nir_u2u64(b, nir_channel(b, addr, 3)));
case nir_address_format_32bit_index_offset:
case nir_address_format_32bit_index_offset_pack64:
case nir_address_format_vec2_index_32bit_offset:
case nir_address_format_32bit_offset:
case nir_address_format_32bit_offset_as_64bit:
case nir_address_format_logical:
unreachable("Cannot get a 64-bit address with this address format");
}
unreachable("Invalid address format");
}
static bool
addr_format_needs_bounds_check(nir_address_format addr_format)
{
return addr_format == nir_address_format_64bit_bounded_global;
}
static nir_ssa_def *
addr_is_in_bounds(nir_builder *b, nir_ssa_def *addr,
nir_address_format addr_format, unsigned size)
{
assert(addr_format == nir_address_format_64bit_bounded_global);
assert(addr->num_components == 4);
return nir_ige(b, nir_channel(b, addr, 2),
nir_iadd_imm(b, nir_channel(b, addr, 3), size));
}
static nir_ssa_def *
build_explicit_io_load(nir_builder *b, nir_intrinsic_instr *intrin,
nir_ssa_def *addr, nir_address_format addr_format,
unsigned num_components)
{
nir_variable_mode mode = nir_src_as_deref(intrin->src[0])->mode;
nir_intrinsic_op op;
switch (mode) {
case nir_var_mem_ubo:
op = nir_intrinsic_load_ubo;
break;
case nir_var_mem_ssbo:
if (addr_format_is_global(addr_format))
op = nir_intrinsic_load_global;
else
op = nir_intrinsic_load_ssbo;
break;
case nir_var_mem_global:
assert(addr_format_is_global(addr_format));
op = nir_intrinsic_load_global;
break;
case nir_var_uniform:
assert(addr_format_is_offset(addr_format));
assert(b->shader->info.stage == MESA_SHADER_KERNEL);
op = nir_intrinsic_load_kernel_input;
break;
case nir_var_mem_shared:
assert(addr_format_is_offset(addr_format));
op = nir_intrinsic_load_shared;
break;
case nir_var_shader_temp:
case nir_var_function_temp:
if (addr_format_is_offset(addr_format)) {
op = nir_intrinsic_load_scratch;
} else {
assert(addr_format_is_global(addr_format));
op = nir_intrinsic_load_global;
}
break;
default:
unreachable("Unsupported explicit IO variable mode");
}
nir_intrinsic_instr *load = nir_intrinsic_instr_create(b->shader, op);
if (addr_format_is_global(addr_format)) {
load->src[0] = nir_src_for_ssa(addr_to_global(b, addr, addr_format));
} else if (addr_format_is_offset(addr_format)) {
assert(addr->num_components == 1);
load->src[0] = nir_src_for_ssa(addr_to_offset(b, addr, addr_format));
} else {
load->src[0] = nir_src_for_ssa(addr_to_index(b, addr, addr_format));
load->src[1] = nir_src_for_ssa(addr_to_offset(b, addr, addr_format));
}
if (nir_intrinsic_has_access(load))
nir_intrinsic_set_access(load, nir_intrinsic_access(intrin));
unsigned bit_size = intrin->dest.ssa.bit_size;
if (bit_size == 1) {
/* TODO: Make the native bool bit_size an option. */
bit_size = 32;
}
/* TODO: We should try and provide a better alignment. For OpenCL, we need
* to plumb the alignment through from SPIR-V when we have one.
*/
nir_intrinsic_set_align(load, bit_size / 8, 0);
assert(intrin->dest.is_ssa);
load->num_components = num_components;
nir_ssa_dest_init(&load->instr, &load->dest, num_components,
bit_size, intrin->dest.ssa.name);
assert(bit_size % 8 == 0);
nir_ssa_def *result;
if (addr_format_needs_bounds_check(addr_format)) {
/* The Vulkan spec for robustBufferAccess gives us quite a few options
* as to what we can do with an OOB read. Unfortunately, returning
* undefined values isn't one of them so we return an actual zero.
*/
nir_ssa_def *zero = nir_imm_zero(b, load->num_components, bit_size);
const unsigned load_size = (bit_size / 8) * load->num_components;
nir_push_if(b, addr_is_in_bounds(b, addr, addr_format, load_size));
nir_builder_instr_insert(b, &load->instr);
nir_pop_if(b, NULL);
result = nir_if_phi(b, &load->dest.ssa, zero);
} else {
nir_builder_instr_insert(b, &load->instr);
result = &load->dest.ssa;
}
if (intrin->dest.ssa.bit_size == 1) {
/* For shared, we can go ahead and use NIR's and/or the back-end's
* standard encoding for booleans rather than forcing a 0/1 boolean.
* This should save an instruction or two.
*/
if (mode == nir_var_mem_shared ||
mode == nir_var_shader_temp ||
mode == nir_var_function_temp)
result = nir_b2b1(b, result);
else
result = nir_i2b(b, result);
}
return result;
}
static void
build_explicit_io_store(nir_builder *b, nir_intrinsic_instr *intrin,
nir_ssa_def *addr, nir_address_format addr_format,
nir_ssa_def *value, nir_component_mask_t write_mask)
{
nir_variable_mode mode = nir_src_as_deref(intrin->src[0])->mode;
nir_intrinsic_op op;
switch (mode) {
case nir_var_mem_ssbo:
if (addr_format_is_global(addr_format))
op = nir_intrinsic_store_global;
else
op = nir_intrinsic_store_ssbo;
break;
case nir_var_mem_global:
assert(addr_format_is_global(addr_format));
op = nir_intrinsic_store_global;
break;
case nir_var_mem_shared:
assert(addr_format_is_offset(addr_format));
op = nir_intrinsic_store_shared;
break;
case nir_var_shader_temp:
case nir_var_function_temp:
if (addr_format_is_offset(addr_format)) {
op = nir_intrinsic_store_scratch;
} else {
assert(addr_format_is_global(addr_format));
op = nir_intrinsic_store_global;
}
break;
default:
unreachable("Unsupported explicit IO variable mode");
}
nir_intrinsic_instr *store = nir_intrinsic_instr_create(b->shader, op);
if (value->bit_size == 1) {
/* For shared, we can go ahead and use NIR's and/or the back-end's
* standard encoding for booleans rather than forcing a 0/1 boolean.
* This should save an instruction or two.
*
* TODO: Make the native bool bit_size an option.
*/
if (mode == nir_var_mem_shared ||
mode == nir_var_shader_temp ||
mode == nir_var_function_temp)
value = nir_b2b32(b, value);
else
value = nir_b2i(b, value, 32);
}
store->src[0] = nir_src_for_ssa(value);
if (addr_format_is_global(addr_format)) {
store->src[1] = nir_src_for_ssa(addr_to_global(b, addr, addr_format));
} else if (addr_format_is_offset(addr_format)) {
assert(addr->num_components == 1);
store->src[1] = nir_src_for_ssa(addr_to_offset(b, addr, addr_format));
} else {
store->src[1] = nir_src_for_ssa(addr_to_index(b, addr, addr_format));
store->src[2] = nir_src_for_ssa(addr_to_offset(b, addr, addr_format));
}
nir_intrinsic_set_write_mask(store, write_mask);
if (nir_intrinsic_has_access(store))
nir_intrinsic_set_access(store, nir_intrinsic_access(intrin));
/* TODO: We should try and provide a better alignment. For OpenCL, we need
* to plumb the alignment through from SPIR-V when we have one.
*/
nir_intrinsic_set_align(store, value->bit_size / 8, 0);
assert(value->num_components == 1 ||
value->num_components == intrin->num_components);
store->num_components = value->num_components;
assert(value->bit_size % 8 == 0);
if (addr_format_needs_bounds_check(addr_format)) {
const unsigned store_size = (value->bit_size / 8) * store->num_components;
nir_push_if(b, addr_is_in_bounds(b, addr, addr_format, store_size));
nir_builder_instr_insert(b, &store->instr);
nir_pop_if(b, NULL);
} else {
nir_builder_instr_insert(b, &store->instr);
}
}
static nir_ssa_def *
build_explicit_io_atomic(nir_builder *b, nir_intrinsic_instr *intrin,
nir_ssa_def *addr, nir_address_format addr_format)
{
nir_variable_mode mode = nir_src_as_deref(intrin->src[0])->mode;
const unsigned num_data_srcs =
nir_intrinsic_infos[intrin->intrinsic].num_srcs - 1;
nir_intrinsic_op op;
switch (mode) {
case nir_var_mem_ssbo:
if (addr_format_is_global(addr_format))
op = global_atomic_for_deref(intrin->intrinsic);
else
op = ssbo_atomic_for_deref(intrin->intrinsic);
break;
case nir_var_mem_global:
assert(addr_format_is_global(addr_format));
op = global_atomic_for_deref(intrin->intrinsic);
break;
case nir_var_mem_shared:
assert(addr_format_is_offset(addr_format));
op = shared_atomic_for_deref(intrin->intrinsic);
break;
default:
unreachable("Unsupported explicit IO variable mode");
}
nir_intrinsic_instr *atomic = nir_intrinsic_instr_create(b->shader, op);
unsigned src = 0;
if (addr_format_is_global(addr_format)) {
atomic->src[src++] = nir_src_for_ssa(addr_to_global(b, addr, addr_format));
} else if (addr_format_is_offset(addr_format)) {
assert(addr->num_components == 1);
atomic->src[src++] = nir_src_for_ssa(addr_to_offset(b, addr, addr_format));
} else {
atomic->src[src++] = nir_src_for_ssa(addr_to_index(b, addr, addr_format));
atomic->src[src++] = nir_src_for_ssa(addr_to_offset(b, addr, addr_format));
}
for (unsigned i = 0; i < num_data_srcs; i++) {
atomic->src[src++] = nir_src_for_ssa(intrin->src[1 + i].ssa);
}
/* Global atomics don't have access flags because they assume that the
* address may be non-uniform.
*/
if (nir_intrinsic_has_access(atomic))
nir_intrinsic_set_access(atomic, nir_intrinsic_access(intrin));
assert(intrin->dest.ssa.num_components == 1);
nir_ssa_dest_init(&atomic->instr, &atomic->dest,
1, intrin->dest.ssa.bit_size, intrin->dest.ssa.name);
assert(atomic->dest.ssa.bit_size % 8 == 0);
if (addr_format_needs_bounds_check(addr_format)) {
const unsigned atomic_size = atomic->dest.ssa.bit_size / 8;
nir_push_if(b, addr_is_in_bounds(b, addr, addr_format, atomic_size));
nir_builder_instr_insert(b, &atomic->instr);
nir_pop_if(b, NULL);
return nir_if_phi(b, &atomic->dest.ssa,
nir_ssa_undef(b, 1, atomic->dest.ssa.bit_size));
} else {
nir_builder_instr_insert(b, &atomic->instr);
return &atomic->dest.ssa;
}
}
nir_ssa_def *
nir_explicit_io_address_from_deref(nir_builder *b, nir_deref_instr *deref,
nir_ssa_def *base_addr,
nir_address_format addr_format)
{
assert(deref->dest.is_ssa);
switch (deref->deref_type) {
case nir_deref_type_var:
assert(deref->mode & (nir_var_uniform | nir_var_mem_shared |
nir_var_shader_temp | nir_var_function_temp));
if (addr_format_is_global(addr_format)) {
assert(nir_var_shader_temp | nir_var_function_temp);
base_addr =
nir_load_scratch_base_ptr(b, !(deref->mode & nir_var_shader_temp),
nir_address_format_num_components(addr_format),
nir_address_format_bit_size(addr_format));
return build_addr_iadd_imm(b, base_addr, addr_format,
deref->var->data.driver_location);
} else {
assert(deref->var->data.driver_location <= UINT32_MAX);
return nir_imm_intN_t(b, deref->var->data.driver_location,
deref->dest.ssa.bit_size);
}
case nir_deref_type_array: {
nir_deref_instr *parent = nir_deref_instr_parent(deref);
unsigned stride = glsl_get_explicit_stride(parent->type);
if ((glsl_type_is_matrix(parent->type) &&
glsl_matrix_type_is_row_major(parent->type)) ||
(glsl_type_is_vector(parent->type) && stride == 0))
stride = type_scalar_size_bytes(parent->type);
assert(stride > 0);
nir_ssa_def *index = nir_ssa_for_src(b, deref->arr.index, 1);
index = nir_i2i(b, index, addr_get_offset_bit_size(base_addr, addr_format));
return build_addr_iadd(b, base_addr, addr_format,
nir_amul_imm(b, index, stride));
}
case nir_deref_type_ptr_as_array: {
nir_ssa_def *index = nir_ssa_for_src(b, deref->arr.index, 1);
index = nir_i2i(b, index, addr_get_offset_bit_size(base_addr, addr_format));
unsigned stride = nir_deref_instr_ptr_as_array_stride(deref);
return build_addr_iadd(b, base_addr, addr_format,
nir_amul_imm(b, index, stride));
}
case nir_deref_type_array_wildcard:
unreachable("Wildcards should be lowered by now");
break;
case nir_deref_type_struct: {
nir_deref_instr *parent = nir_deref_instr_parent(deref);
int offset = glsl_get_struct_field_offset(parent->type,
deref->strct.index);
assert(offset >= 0);
return build_addr_iadd_imm(b, base_addr, addr_format, offset);
}
case nir_deref_type_cast:
/* Nothing to do here */
return base_addr;
}
unreachable("Invalid NIR deref type");
}
void
nir_lower_explicit_io_instr(nir_builder *b,
nir_intrinsic_instr *intrin,
nir_ssa_def *addr,
nir_address_format addr_format)
{
b->cursor = nir_after_instr(&intrin->instr);
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
unsigned vec_stride = glsl_get_explicit_stride(deref->type);
unsigned scalar_size = type_scalar_size_bytes(deref->type);
assert(vec_stride == 0 || glsl_type_is_vector(deref->type));
assert(vec_stride == 0 || vec_stride >= scalar_size);
if (intrin->intrinsic == nir_intrinsic_load_deref) {
nir_ssa_def *value;
if (vec_stride > scalar_size) {
nir_ssa_def *comps[4] = { NULL, };
for (unsigned i = 0; i < intrin->num_components; i++) {
nir_ssa_def *comp_addr = build_addr_iadd_imm(b, addr, addr_format,
vec_stride * i);
comps[i] = build_explicit_io_load(b, intrin, comp_addr,
addr_format, 1);
}
value = nir_vec(b, comps, intrin->num_components);
} else {
value = build_explicit_io_load(b, intrin, addr, addr_format,
intrin->num_components);
}
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(value));
} else if (intrin->intrinsic == nir_intrinsic_store_deref) {
assert(intrin->src[1].is_ssa);
nir_ssa_def *value = intrin->src[1].ssa;
nir_component_mask_t write_mask = nir_intrinsic_write_mask(intrin);
if (vec_stride > scalar_size) {
for (unsigned i = 0; i < intrin->num_components; i++) {
if (!(write_mask & (1 << i)))
continue;
nir_ssa_def *comp_addr = build_addr_iadd_imm(b, addr, addr_format,
vec_stride * i);
build_explicit_io_store(b, intrin, comp_addr, addr_format,
nir_channel(b, value, i), 1);
}
} else {
build_explicit_io_store(b, intrin, addr, addr_format,
value, write_mask);
}
} else {
nir_ssa_def *value =
build_explicit_io_atomic(b, intrin, addr, addr_format);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(value));
}
nir_instr_remove(&intrin->instr);
}
static void
lower_explicit_io_deref(nir_builder *b, nir_deref_instr *deref,
nir_address_format addr_format)
{
/* Just delete the deref if it's not used. We can't use
* nir_deref_instr_remove_if_unused here because it may remove more than
* one deref which could break our list walking since we walk the list
* backwards.
*/
assert(list_is_empty(&deref->dest.ssa.if_uses));
if (list_is_empty(&deref->dest.ssa.uses)) {
nir_instr_remove(&deref->instr);
return;
}
b->cursor = nir_after_instr(&deref->instr);
nir_ssa_def *base_addr = NULL;
if (deref->deref_type != nir_deref_type_var) {
assert(deref->parent.is_ssa);
base_addr = deref->parent.ssa;
}
nir_ssa_def *addr = nir_explicit_io_address_from_deref(b, deref, base_addr,
addr_format);
nir_instr_remove(&deref->instr);
nir_ssa_def_rewrite_uses(&deref->dest.ssa, nir_src_for_ssa(addr));
}
static void
lower_explicit_io_access(nir_builder *b, nir_intrinsic_instr *intrin,
nir_address_format addr_format)
{
assert(intrin->src[0].is_ssa);
nir_lower_explicit_io_instr(b, intrin, intrin->src[0].ssa, addr_format);
}
static void
lower_explicit_io_array_length(nir_builder *b, nir_intrinsic_instr *intrin,
nir_address_format addr_format)
{
b->cursor = nir_after_instr(&intrin->instr);
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
assert(glsl_type_is_array(deref->type));
assert(glsl_get_length(deref->type) == 0);
unsigned stride = glsl_get_explicit_stride(deref->type);
assert(stride > 0);
nir_ssa_def *addr = &deref->dest.ssa;
nir_ssa_def *index = addr_to_index(b, addr, addr_format);
nir_ssa_def *offset = addr_to_offset(b, addr, addr_format);
nir_intrinsic_instr *bsize =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_get_buffer_size);
bsize->src[0] = nir_src_for_ssa(index);
nir_ssa_dest_init(&bsize->instr, &bsize->dest, 1, 32, NULL);
nir_builder_instr_insert(b, &bsize->instr);
nir_ssa_def *arr_size =
nir_idiv(b, nir_isub(b, &bsize->dest.ssa, offset),
nir_imm_int(b, stride));
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(arr_size));
nir_instr_remove(&intrin->instr);
}
static bool
nir_lower_explicit_io_impl(nir_function_impl *impl, nir_variable_mode modes,
nir_address_format addr_format)
{
bool progress = false;
nir_builder b;
nir_builder_init(&b, impl);
/* Walk in reverse order so that we can see the full deref chain when we
* lower the access operations. We lower them assuming that the derefs
* will be turned into address calculations later.
*/
nir_foreach_block_reverse(block, impl) {
nir_foreach_instr_reverse_safe(instr, block) {
switch (instr->type) {
case nir_instr_type_deref: {
nir_deref_instr *deref = nir_instr_as_deref(instr);
if (deref->mode & modes) {
lower_explicit_io_deref(&b, deref, addr_format);
progress = true;
}
break;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_deref:
case nir_intrinsic_store_deref:
case nir_intrinsic_deref_atomic_add:
case nir_intrinsic_deref_atomic_imin:
case nir_intrinsic_deref_atomic_umin:
case nir_intrinsic_deref_atomic_imax:
case nir_intrinsic_deref_atomic_umax:
case nir_intrinsic_deref_atomic_and:
case nir_intrinsic_deref_atomic_or:
case nir_intrinsic_deref_atomic_xor:
case nir_intrinsic_deref_atomic_exchange:
case nir_intrinsic_deref_atomic_comp_swap:
case nir_intrinsic_deref_atomic_fadd:
case nir_intrinsic_deref_atomic_fmin:
case nir_intrinsic_deref_atomic_fmax:
case nir_intrinsic_deref_atomic_fcomp_swap: {
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
if (deref->mode & modes) {
lower_explicit_io_access(&b, intrin, addr_format);
progress = true;
}
break;
}
case nir_intrinsic_deref_buffer_array_length: {
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
if (deref->mode & modes) {
lower_explicit_io_array_length(&b, intrin, addr_format);
progress = true;
}
break;
}
default:
break;
}
break;
}
default:
/* Nothing to do */
break;
}
}
}
if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
}
return progress;
}
/** Lower explicitly laid out I/O access to byte offset/address intrinsics
*
* This pass is intended to be used for any I/O which touches memory external
* to the shader or which is directly visible to the client. It requires that
* all data types in the given modes have a explicit stride/offset decorations
* to tell it exactly how to calculate the offset/address for the given load,
* store, or atomic operation. If the offset/stride information does not come
* from the client explicitly (as with shared variables in GL or Vulkan),
* nir_lower_vars_to_explicit_types() can be used to add them.
*
* Unlike nir_lower_io, this pass is fully capable of handling incomplete
* pointer chains which may contain cast derefs. It does so by walking the
* deref chain backwards and simply replacing each deref, one at a time, with
* the appropriate address calculation. The pass takes a nir_address_format
* parameter which describes how the offset or address is to be represented
* during calculations. By ensuring that the address is always in a
* consistent format, pointers can safely be conjured from thin air by the
* driver, stored to variables, passed through phis, etc.
*
* The one exception to the simple algorithm described above is for handling
* row-major matrices in which case we may look down one additional level of
* the deref chain.
*/
bool
nir_lower_explicit_io(nir_shader *shader, nir_variable_mode modes,
nir_address_format addr_format)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (function->impl &&
nir_lower_explicit_io_impl(function->impl, modes, addr_format))
progress = true;
}
return progress;
}
static bool
nir_lower_vars_to_explicit_types_impl(nir_function_impl *impl,
nir_variable_mode modes,
glsl_type_size_align_func type_info)
{
bool progress = false;
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_deref)
continue;
nir_deref_instr *deref = nir_instr_as_deref(instr);
if (!(deref->mode & modes))
continue;
unsigned size, alignment;
const struct glsl_type *new_type =
glsl_get_explicit_type_for_size_align(deref->type, type_info, &size, &alignment);
if (new_type != deref->type) {
progress = true;
deref->type = new_type;
}
if (deref->deref_type == nir_deref_type_cast) {
/* See also glsl_type::get_explicit_type_for_size_align() */
unsigned new_stride = align(size, alignment);
if (new_stride != deref->cast.ptr_stride) {
deref->cast.ptr_stride = new_stride;
progress = true;
}
}
}
}
if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance |
nir_metadata_live_ssa_defs |
nir_metadata_loop_analysis);
}
return progress;
}
static bool
lower_vars_to_explicit(nir_shader *shader,
struct exec_list *vars, nir_variable_mode mode,
glsl_type_size_align_func type_info)
{
bool progress = false;
unsigned offset;
switch (mode) {
case nir_var_function_temp:
case nir_var_shader_temp:
offset = shader->scratch_size;
break;
case nir_var_mem_shared:
offset = 0;
break;
default:
unreachable("Unsupported mode");
}
nir_foreach_variable_in_list(var, vars) {
if (var->data.mode != mode)
continue;
unsigned size, align;
const struct glsl_type *explicit_type =
glsl_get_explicit_type_for_size_align(var->type, type_info, &size, &align);
if (explicit_type != var->type) {
progress = true;
var->type = explicit_type;
}
var->data.driver_location = ALIGN_POT(offset, align);
offset = var->data.driver_location + size;
}
switch (mode) {
case nir_var_shader_temp:
case nir_var_function_temp:
shader->scratch_size = offset;
break;
case nir_var_mem_shared:
shader->info.cs.shared_size = offset;
shader->shared_size = offset;
break;
default:
unreachable("Unsupported mode");
}
return progress;
}
bool
nir_lower_vars_to_explicit_types(nir_shader *shader,
nir_variable_mode modes,
glsl_type_size_align_func type_info)
{
/* TODO: Situations which need to be handled to support more modes:
* - row-major matrices
* - compact shader inputs/outputs
* - interface types
*/
ASSERTED nir_variable_mode supported = nir_var_mem_shared |
nir_var_shader_temp | nir_var_function_temp;
assert(!(modes & ~supported) && "unsupported");
bool progress = false;
if (modes & nir_var_mem_shared)
progress |= lower_vars_to_explicit(shader, &shader->variables, nir_var_mem_shared, type_info);
if (modes & nir_var_shader_temp)
progress |= lower_vars_to_explicit(shader, &shader->variables, nir_var_shader_temp, type_info);
nir_foreach_function(function, shader) {
if (function->impl) {
if (modes & nir_var_function_temp)
progress |= lower_vars_to_explicit(shader, &function->impl->locals, nir_var_function_temp, type_info);
progress |= nir_lower_vars_to_explicit_types_impl(function->impl, modes, type_info);
}
}
return progress;
}
/**
* Return the offset source for a load/store intrinsic.
*/
nir_src *
nir_get_io_offset_src(nir_intrinsic_instr *instr)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_input:
case nir_intrinsic_load_output:
case nir_intrinsic_load_shared:
case nir_intrinsic_load_uniform:
case nir_intrinsic_load_global:
case nir_intrinsic_load_scratch:
case nir_intrinsic_load_fs_input_interp_deltas:
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_shared_atomic_comp_swap:
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_shared_atomic_fadd:
case nir_intrinsic_shared_atomic_fcomp_swap:
case nir_intrinsic_shared_atomic_fmax:
case nir_intrinsic_shared_atomic_fmin:
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_global_atomic_add:
case nir_intrinsic_global_atomic_and:
case nir_intrinsic_global_atomic_comp_swap:
case nir_intrinsic_global_atomic_exchange:
case nir_intrinsic_global_atomic_fadd:
case nir_intrinsic_global_atomic_fcomp_swap:
case nir_intrinsic_global_atomic_fmax:
case nir_intrinsic_global_atomic_fmin:
case nir_intrinsic_global_atomic_imax:
case nir_intrinsic_global_atomic_imin:
case nir_intrinsic_global_atomic_or:
case nir_intrinsic_global_atomic_umax:
case nir_intrinsic_global_atomic_umin:
case nir_intrinsic_global_atomic_xor:
return &instr->src[0];
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_input_vertex:
case nir_intrinsic_load_per_vertex_input:
case nir_intrinsic_load_per_vertex_output:
case nir_intrinsic_load_interpolated_input:
case nir_intrinsic_store_output:
case nir_intrinsic_store_shared:
case nir_intrinsic_store_global:
case nir_intrinsic_store_scratch:
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
case nir_intrinsic_ssbo_atomic_fadd:
case nir_intrinsic_ssbo_atomic_fmin:
case nir_intrinsic_ssbo_atomic_fmax:
case nir_intrinsic_ssbo_atomic_fcomp_swap:
return &instr->src[1];
case nir_intrinsic_store_ssbo:
case nir_intrinsic_store_per_vertex_output:
return &instr->src[2];
default:
return NULL;
}
}
/**
* Return the vertex index source for a load/store per_vertex intrinsic.
*/
nir_src *
nir_get_io_vertex_index_src(nir_intrinsic_instr *instr)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_per_vertex_input:
case nir_intrinsic_load_per_vertex_output:
return &instr->src[0];
case nir_intrinsic_store_per_vertex_output:
return &instr->src[1];
default:
return NULL;
}
}
/**
* Return the numeric constant that identify a NULL pointer for each address
* format.
*/
const nir_const_value *
nir_address_format_null_value(nir_address_format addr_format)
{
const static nir_const_value null_values[][NIR_MAX_VEC_COMPONENTS] = {
[nir_address_format_32bit_global] = {{0}},
[nir_address_format_64bit_global] = {{0}},
[nir_address_format_64bit_bounded_global] = {{0}},
[nir_address_format_32bit_index_offset] = {{.u32 = ~0}, {.u32 = ~0}},
[nir_address_format_32bit_index_offset_pack64] = {{.u64 = ~0ull}},
[nir_address_format_vec2_index_32bit_offset] = {{.u32 = ~0}, {.u32 = ~0}, {.u32 = ~0}},
[nir_address_format_32bit_offset] = {{.u32 = ~0}},
[nir_address_format_32bit_offset_as_64bit] = {{.u64 = ~0ull}},
[nir_address_format_logical] = {{.u32 = ~0}},
};
assert(addr_format < ARRAY_SIZE(null_values));
return null_values[addr_format];
}
nir_ssa_def *
nir_build_addr_ieq(nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
nir_address_format addr_format)
{
switch (addr_format) {
case nir_address_format_32bit_global:
case nir_address_format_64bit_global:
case nir_address_format_64bit_bounded_global:
case nir_address_format_32bit_index_offset:
case nir_address_format_vec2_index_32bit_offset:
case nir_address_format_32bit_offset:
return nir_ball_iequal(b, addr0, addr1);
case nir_address_format_32bit_offset_as_64bit:
assert(addr0->num_components == 1 && addr1->num_components == 1);
return nir_ieq(b, nir_u2u32(b, addr0), nir_u2u32(b, addr1));
case nir_address_format_32bit_index_offset_pack64:
assert(addr0->num_components == 1 && addr1->num_components == 1);
return nir_ball_iequal(b, nir_unpack_64_2x32(b, addr0), nir_unpack_64_2x32(b, addr1));
case nir_address_format_logical:
unreachable("Unsupported address format");
}
unreachable("Invalid address format");
}
nir_ssa_def *
nir_build_addr_isub(nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
nir_address_format addr_format)
{
switch (addr_format) {
case nir_address_format_32bit_global:
case nir_address_format_64bit_global:
case nir_address_format_32bit_offset:
case nir_address_format_32bit_index_offset_pack64:
assert(addr0->num_components == 1);
assert(addr1->num_components == 1);
return nir_isub(b, addr0, addr1);
case nir_address_format_32bit_offset_as_64bit:
assert(addr0->num_components == 1);
assert(addr1->num_components == 1);
return nir_u2u64(b, nir_isub(b, nir_u2u32(b, addr0), nir_u2u32(b, addr1)));
case nir_address_format_64bit_bounded_global:
return nir_isub(b, addr_to_global(b, addr0, addr_format),
addr_to_global(b, addr1, addr_format));
case nir_address_format_32bit_index_offset:
assert(addr0->num_components == 2);
assert(addr1->num_components == 2);
/* Assume the same buffer index. */
return nir_isub(b, nir_channel(b, addr0, 1), nir_channel(b, addr1, 1));
case nir_address_format_vec2_index_32bit_offset:
assert(addr0->num_components == 3);
assert(addr1->num_components == 3);
/* Assume the same buffer index. */
return nir_isub(b, nir_channel(b, addr0, 2), nir_channel(b, addr1, 2));
case nir_address_format_logical:
unreachable("Unsupported address format");
}
unreachable("Invalid address format");
}
static bool
is_input(nir_intrinsic_instr *intrin)
{
return intrin->intrinsic == nir_intrinsic_load_input ||
intrin->intrinsic == nir_intrinsic_load_per_vertex_input ||
intrin->intrinsic == nir_intrinsic_load_interpolated_input ||
intrin->intrinsic == nir_intrinsic_load_fs_input_interp_deltas;
}
static bool
is_output(nir_intrinsic_instr *intrin)
{
return intrin->intrinsic == nir_intrinsic_load_output ||
intrin->intrinsic == nir_intrinsic_load_per_vertex_output ||
intrin->intrinsic == nir_intrinsic_store_output ||
intrin->intrinsic == nir_intrinsic_store_per_vertex_output;
}
static bool is_dual_slot(nir_intrinsic_instr *intrin)
{
if (intrin->intrinsic == nir_intrinsic_store_output ||
intrin->intrinsic == nir_intrinsic_store_per_vertex_output) {
return nir_src_bit_size(intrin->src[0]) == 64 &&
nir_src_num_components(intrin->src[0]) >= 3;
}
return nir_dest_bit_size(intrin->dest) &&
nir_dest_num_components(intrin->dest) >= 3;
}
/**
* This pass adds constant offsets to instr->const_index[0] for input/output
* intrinsics, and resets the offset source to 0. Non-constant offsets remain
* unchanged - since we don't know what part of a compound variable is
* accessed, we allocate storage for the entire thing. For drivers that use
* nir_lower_io_to_temporaries() before nir_lower_io(), this guarantees that
* the offset source will be 0, so that they don't have to add it in manually.
*/
static bool
add_const_offset_to_base_block(nir_block *block, nir_builder *b,
nir_variable_mode mode)
{
bool progress = false;
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if ((mode == nir_var_shader_in && is_input(intrin)) ||
(mode == nir_var_shader_out && is_output(intrin))) {
nir_src *offset = nir_get_io_offset_src(intrin);
if (nir_src_is_const(*offset)) {
unsigned off = nir_src_as_uint(*offset);
nir_intrinsic_set_base(intrin, nir_intrinsic_base(intrin) + off);
nir_io_semantics sem = nir_intrinsic_io_semantics(intrin);
sem.location += off;
/* non-indirect indexing should reduce num_slots */
sem.num_slots = is_dual_slot(intrin) ? 2 : 1;
nir_intrinsic_set_io_semantics(intrin, sem);
b->cursor = nir_before_instr(&intrin->instr);
nir_instr_rewrite_src(&intrin->instr, offset,
nir_src_for_ssa(nir_imm_int(b, 0)));
progress = true;
}
}
}
return progress;
}
bool
nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode)
{
bool progress = false;
nir_foreach_function(f, nir) {
if (f->impl) {
nir_builder b;
nir_builder_init(&b, f->impl);
nir_foreach_block(block, f->impl) {
progress |= add_const_offset_to_base_block(block, &b, mode);
}
}
}
return progress;
}