blob: 85f8e467f693e54a654d2f7b948d3b00354c5af8 [file] [log] [blame]
/*
* Copyright (c) 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "common/gen_l3_config.h"
#include "brw_context.h"
#include "brw_defines.h"
#include "brw_state.h"
#include "intel_batchbuffer.h"
/**
* Calculate the desired L3 partitioning based on the current state of the
* pipeline. For now this simply returns the conservative defaults calculated
* by get_default_l3_weights(), but we could probably do better by gathering
* more statistics from the pipeline state (e.g. guess of expected URB usage
* and bound surfaces), or by using feed-back from performance counters.
*/
static struct gen_l3_weights
get_pipeline_state_l3_weights(const struct brw_context *brw)
{
const struct brw_stage_state *stage_states[] = {
[MESA_SHADER_VERTEX] = &brw->vs.base,
[MESA_SHADER_TESS_CTRL] = &brw->tcs.base,
[MESA_SHADER_TESS_EVAL] = &brw->tes.base,
[MESA_SHADER_GEOMETRY] = &brw->gs.base,
[MESA_SHADER_FRAGMENT] = &brw->wm.base,
[MESA_SHADER_COMPUTE] = &brw->cs.base
};
bool needs_dc = false, needs_slm = false;
for (unsigned i = 0; i < ARRAY_SIZE(stage_states); i++) {
const struct gl_shader_program *prog =
brw->ctx._Shader->CurrentProgram[stage_states[i]->stage];
const struct brw_stage_prog_data *prog_data = stage_states[i]->prog_data;
needs_dc |= (prog && (prog->data->NumAtomicBuffers ||
prog->data->NumShaderStorageBlocks)) ||
(prog_data && (prog_data->total_scratch || prog_data->nr_image_params));
needs_slm |= prog_data && prog_data->total_shared;
}
return gen_get_default_l3_weights(&brw->screen->devinfo,
needs_dc, needs_slm);
}
/**
* Program the hardware to use the specified L3 configuration.
*/
static void
setup_l3_config(struct brw_context *brw, const struct gen_l3_config *cfg)
{
const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
cfg->n[GEN_L3P_ALL];
const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
cfg->n[GEN_L3P_ALL];
const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
cfg->n[GEN_L3P_ALL];
const bool has_slm = cfg->n[GEN_L3P_SLM];
/* According to the hardware docs, the L3 partitioning can only be changed
* while the pipeline is completely drained and the caches are flushed,
* which involves a first PIPE_CONTROL flush which stalls the pipeline...
*/
brw_emit_pipe_control_flush(brw,
PIPE_CONTROL_DATA_CACHE_FLUSH |
PIPE_CONTROL_NO_WRITE |
PIPE_CONTROL_CS_STALL);
/* ...followed by a second pipelined PIPE_CONTROL that initiates
* invalidation of the relevant caches. Note that because RO invalidation
* happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
* command is processed by the CS) we cannot combine it with the previous
* stalling flush as the hardware documentation suggests, because that
* would cause the CS to stall on previous rendering *after* RO
* invalidation and wouldn't prevent the RO caches from being polluted by
* concurrent rendering before the stall completes. This intentionally
* doesn't implement the SKL+ hardware workaround suggesting to enable CS
* stall on PIPE_CONTROLs with the texture cache invalidation bit set for
* GPGPU workloads because the previous and subsequent PIPE_CONTROLs
* already guarantee that there is no concurrent GPGPU kernel execution
* (see SKL HSD 2132585).
*/
brw_emit_pipe_control_flush(brw,
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
PIPE_CONTROL_CONST_CACHE_INVALIDATE |
PIPE_CONTROL_INSTRUCTION_INVALIDATE |
PIPE_CONTROL_STATE_CACHE_INVALIDATE |
PIPE_CONTROL_NO_WRITE);
/* Now send a third stalling flush to make sure that invalidation is
* complete when the L3 configuration registers are modified.
*/
brw_emit_pipe_control_flush(brw,
PIPE_CONTROL_DATA_CACHE_FLUSH |
PIPE_CONTROL_NO_WRITE |
PIPE_CONTROL_CS_STALL);
if (brw->gen >= 8) {
assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
BEGIN_BATCH(3);
OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
/* Set up the L3 partitioning. */
OUT_BATCH(GEN8_L3CNTLREG);
OUT_BATCH((has_slm ? GEN8_L3CNTLREG_SLM_ENABLE : 0) |
SET_FIELD(cfg->n[GEN_L3P_URB], GEN8_L3CNTLREG_URB_ALLOC) |
SET_FIELD(cfg->n[GEN_L3P_RO], GEN8_L3CNTLREG_RO_ALLOC) |
SET_FIELD(cfg->n[GEN_L3P_DC], GEN8_L3CNTLREG_DC_ALLOC) |
SET_FIELD(cfg->n[GEN_L3P_ALL], GEN8_L3CNTLREG_ALL_ALLOC));
ADVANCE_BATCH();
} else {
assert(!cfg->n[GEN_L3P_ALL]);
/* When enabled SLM only uses a portion of the L3 on half of the banks,
* the matching space on the remaining banks has to be allocated to a
* client (URB for all validated configurations) set to the
* lower-bandwidth 2-bank address hashing mode.
*/
const bool urb_low_bw = has_slm && !brw->is_baytrail;
assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
/* Minimum number of ways that can be allocated to the URB. */
const unsigned n0_urb = (brw->is_baytrail ? 32 : 0);
assert(cfg->n[GEN_L3P_URB] >= n0_urb);
BEGIN_BATCH(7);
OUT_BATCH(MI_LOAD_REGISTER_IMM | (7 - 2));
/* Demote any clients with no ways assigned to LLC. */
OUT_BATCH(GEN7_L3SQCREG1);
OUT_BATCH((brw->is_haswell ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
brw->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
IVB_L3SQCREG1_SQGHPCI_DEFAULT) |
(has_dc ? 0 : GEN7_L3SQCREG1_CONV_DC_UC) |
(has_is ? 0 : GEN7_L3SQCREG1_CONV_IS_UC) |
(has_c ? 0 : GEN7_L3SQCREG1_CONV_C_UC) |
(has_t ? 0 : GEN7_L3SQCREG1_CONV_T_UC));
/* Set up the L3 partitioning. */
OUT_BATCH(GEN7_L3CNTLREG2);
OUT_BATCH((has_slm ? GEN7_L3CNTLREG2_SLM_ENABLE : 0) |
SET_FIELD(cfg->n[GEN_L3P_URB] - n0_urb, GEN7_L3CNTLREG2_URB_ALLOC) |
(urb_low_bw ? GEN7_L3CNTLREG2_URB_LOW_BW : 0) |
SET_FIELD(cfg->n[GEN_L3P_ALL], GEN7_L3CNTLREG2_ALL_ALLOC) |
SET_FIELD(cfg->n[GEN_L3P_RO], GEN7_L3CNTLREG2_RO_ALLOC) |
SET_FIELD(cfg->n[GEN_L3P_DC], GEN7_L3CNTLREG2_DC_ALLOC));
OUT_BATCH(GEN7_L3CNTLREG3);
OUT_BATCH(SET_FIELD(cfg->n[GEN_L3P_IS], GEN7_L3CNTLREG3_IS_ALLOC) |
SET_FIELD(cfg->n[GEN_L3P_C], GEN7_L3CNTLREG3_C_ALLOC) |
SET_FIELD(cfg->n[GEN_L3P_T], GEN7_L3CNTLREG3_T_ALLOC));
ADVANCE_BATCH();
if (brw->is_haswell && brw->screen->cmd_parser_version >= 4) {
/* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
* them disabled to avoid crashing the system hard.
*/
BEGIN_BATCH(5);
OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
OUT_BATCH(HSW_SCRATCH1);
OUT_BATCH(has_dc ? 0 : HSW_SCRATCH1_L3_ATOMIC_DISABLE);
OUT_BATCH(HSW_ROW_CHICKEN3);
OUT_BATCH(REG_MASK(HSW_ROW_CHICKEN3_L3_ATOMIC_DISABLE) |
(has_dc ? 0 : HSW_ROW_CHICKEN3_L3_ATOMIC_DISABLE));
ADVANCE_BATCH();
}
}
}
/**
* Update the URB size in the context state for the specified L3
* configuration.
*/
static void
update_urb_size(struct brw_context *brw, const struct gen_l3_config *cfg)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
const unsigned sz = gen_get_l3_config_urb_size(devinfo, cfg);
if (brw->urb.size != sz) {
brw->urb.size = sz;
brw->ctx.NewDriverState |= BRW_NEW_URB_SIZE;
}
}
static void
emit_l3_state(struct brw_context *brw)
{
const struct gen_l3_weights w = get_pipeline_state_l3_weights(brw);
const float dw = gen_diff_l3_weights(w, gen_get_l3_config_weights(brw->l3.config));
/* The distance between any two compatible weight vectors cannot exceed two
* due to the triangle inequality.
*/
const float large_dw_threshold = 2.0;
/* Somewhat arbitrary, simply makes sure that there will be no repeated
* transitions to the same L3 configuration, could probably do better here.
*/
const float small_dw_threshold = 0.5;
/* If we're emitting a new batch the caches should already be clean and the
* transition should be relatively cheap, so it shouldn't hurt much to use
* the smaller threshold. Otherwise use the larger threshold so that we
* only reprogram the L3 mid-batch if the most recently programmed
* configuration is incompatible with the current pipeline state.
*/
const float dw_threshold = (brw->ctx.NewDriverState & BRW_NEW_BATCH ?
small_dw_threshold : large_dw_threshold);
if (dw > dw_threshold && can_do_pipelined_register_writes(brw->screen)) {
const struct gen_l3_config *const cfg =
gen_get_l3_config(&brw->screen->devinfo, w);
setup_l3_config(brw, cfg);
update_urb_size(brw, cfg);
brw->l3.config = cfg;
if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
fprintf(stderr, "L3 config transition (%f > %f): ", dw, dw_threshold);
gen_dump_l3_config(cfg, stderr);
}
}
}
const struct brw_tracked_state gen7_l3_state = {
.dirty = {
.mesa = 0,
.brw = BRW_NEW_BATCH |
BRW_NEW_BLORP |
BRW_NEW_CS_PROG_DATA |
BRW_NEW_FS_PROG_DATA |
BRW_NEW_GS_PROG_DATA |
BRW_NEW_VS_PROG_DATA,
},
.emit = emit_l3_state
};
/**
* Hack to restore the default L3 configuration.
*
* This will be called at the end of every batch in order to reset the L3
* configuration to the default values for the time being until the kernel is
* fixed. Until kernel commit 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
* (included in v4.1) we would set the MI_RESTORE_INHIBIT bit when submitting
* batch buffers for the default context used by the DDX, which meant that any
* context state changed by the GL would leak into the DDX, the assumption
* being that the DDX would initialize any state it cares about manually. The
* DDX is however not careful enough to program an L3 configuration
* explicitly, and it makes assumptions about it (URB size) which won't hold
* and cause it to misrender if we let our L3 set-up to leak into the DDX.
*
* Since v4.1 of the Linux kernel the default context is saved and restored
* normally, so it's far less likely for our L3 programming to interfere with
* other contexts -- In fact restoring the default L3 configuration at the end
* of the batch will be redundant most of the time. A kind of state leak is
* still possible though if the context making assumptions about L3 state is
* created immediately after our context was active (e.g. without the DDX
* default context being scheduled in between) because at present the DRM
* doesn't fully initialize the contents of newly created contexts and instead
* sets the MI_RESTORE_INHIBIT flag causing it to inherit the state from the
* last active context.
*
* It's possible to realize such a scenario if, say, an X server (or a GL
* application using an outdated non-L3-aware Mesa version) is started while
* another GL application is running and happens to have modified the L3
* configuration, or if no X server is running at all and a GL application
* using a non-L3-aware Mesa version is started after another GL application
* ran and modified the L3 configuration -- The latter situation can actually
* be reproduced easily on IVB in our CI system.
*/
void
gen7_restore_default_l3_config(struct brw_context *brw)
{
const struct gen_device_info *devinfo = &brw->screen->devinfo;
const struct gen_l3_config *const cfg = gen_get_default_l3_config(devinfo);
if (cfg != brw->l3.config &&
can_do_pipelined_register_writes(brw->screen)) {
setup_l3_config(brw, cfg);
update_urb_size(brw, cfg);
brw->l3.config = cfg;
}
}