blob: 6dfe28e00366f30743224b346e4ddbe3d1079376 [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_instruction_selection.h"
#include "vulkan/radv_descriptor_set.h"
#include "vulkan/radv_shader.h"
#include "nir_control_flow.h"
#include "sid.h"
#include "ac_exp_param.h"
namespace aco {
namespace {
unsigned get_interp_input(nir_intrinsic_op intrin, enum glsl_interp_mode interp)
{
switch (interp) {
case INTERP_MODE_SMOOTH:
case INTERP_MODE_NONE:
if (intrin == nir_intrinsic_load_barycentric_pixel ||
intrin == nir_intrinsic_load_barycentric_at_sample ||
intrin == nir_intrinsic_load_barycentric_at_offset)
return S_0286CC_PERSP_CENTER_ENA(1);
else if (intrin == nir_intrinsic_load_barycentric_centroid)
return S_0286CC_PERSP_CENTROID_ENA(1);
else if (intrin == nir_intrinsic_load_barycentric_sample)
return S_0286CC_PERSP_SAMPLE_ENA(1);
break;
case INTERP_MODE_NOPERSPECTIVE:
if (intrin == nir_intrinsic_load_barycentric_pixel)
return S_0286CC_LINEAR_CENTER_ENA(1);
else if (intrin == nir_intrinsic_load_barycentric_centroid)
return S_0286CC_LINEAR_CENTROID_ENA(1);
else if (intrin == nir_intrinsic_load_barycentric_sample)
return S_0286CC_LINEAR_SAMPLE_ENA(1);
break;
default:
break;
}
return 0;
}
/* If one side of a divergent IF ends in a branch and the other doesn't, we
* might have to emit the contents of the side without the branch at the merge
* block instead. This is so that we can use any SGPR live-out of the side
* without the branch without creating a linear phi in the invert or merge block. */
bool
sanitize_if(nir_function_impl *impl, nir_if *nif)
{
//TODO: skip this if the condition is uniform and there are no divergent breaks/continues?
nir_block *then_block = nir_if_last_then_block(nif);
nir_block *else_block = nir_if_last_else_block(nif);
bool then_jump = nir_block_ends_in_jump(then_block) || nir_block_is_unreachable(then_block);
bool else_jump = nir_block_ends_in_jump(else_block) || nir_block_is_unreachable(else_block);
if (then_jump == else_jump)
return false;
/* If the continue from block is empty then return as there is nothing to
* move.
*/
if (nir_cf_list_is_empty_block(else_jump ? &nif->then_list : &nif->else_list))
return false;
/* Even though this if statement has a jump on one side, we may still have
* phis afterwards. Single-source phis can be produced by loop unrolling
* or dead control-flow passes and are perfectly legal. Run a quick phi
* removal on the block after the if to clean up any such phis.
*/
nir_opt_remove_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node)));
/* Finally, move the continue from branch after the if-statement. */
nir_block *last_continue_from_blk = else_jump ? then_block : else_block;
nir_block *first_continue_from_blk = else_jump ?
nir_if_first_then_block(nif) : nir_if_first_else_block(nif);
nir_cf_list tmp;
nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk),
nir_after_block(last_continue_from_blk));
nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node));
/* nir_cf_extract() invalidates dominance metadata, but it should still be
* correct because of the specific type of transformation we did. Block
* indices are not valid except for block_0's, which is all we care about for
* nir_block_is_unreachable(). */
impl->valid_metadata = impl->valid_metadata | nir_metadata_dominance | nir_metadata_block_index;
return true;
}
bool
sanitize_cf_list(nir_function_impl *impl, struct exec_list *cf_list)
{
bool progress = false;
foreach_list_typed(nir_cf_node, cf_node, node, cf_list) {
switch (cf_node->type) {
case nir_cf_node_block:
break;
case nir_cf_node_if: {
nir_if *nif = nir_cf_node_as_if(cf_node);
progress |= sanitize_cf_list(impl, &nif->then_list);
progress |= sanitize_cf_list(impl, &nif->else_list);
progress |= sanitize_if(impl, nif);
break;
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(cf_node);
progress |= sanitize_cf_list(impl, &loop->body);
break;
}
case nir_cf_node_function:
unreachable("Invalid cf type");
}
}
return progress;
}
void fill_desc_set_info(isel_context *ctx, nir_function_impl *impl)
{
radv_pipeline_layout *pipeline_layout = ctx->options->layout;
unsigned resource_flag_count = 1; /* +1 to reserve flags[0] for aliased resources */
for (unsigned i = 0; i < pipeline_layout->num_sets; i++) {
radv_descriptor_set_layout *layout = pipeline_layout->set[i].layout;
ctx->resource_flag_offsets[i] = resource_flag_count;
resource_flag_count += layout->binding_count;
}
ctx->buffer_resource_flags = std::vector<uint8_t>(resource_flag_count);
nir_foreach_variable_with_modes(var, impl->function->shader, nir_var_mem_ssbo) {
if (var->data.access & ACCESS_RESTRICT) {
uint32_t offset = ctx->resource_flag_offsets[var->data.descriptor_set];
ctx->buffer_resource_flags[offset + var->data.binding] |= buffer_is_restrict;
}
}
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (!nir_intrinsic_has_access(intrin))
continue;
nir_ssa_def *res = NULL;
unsigned access = nir_intrinsic_access(intrin);
unsigned flags = 0;
bool glc = access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
switch (intrin->intrinsic) {
case nir_intrinsic_load_ssbo: {
if (nir_dest_is_divergent(intrin->dest) && (!glc || ctx->program->chip_class >= GFX8))
flags |= glc ? has_glc_vmem_load : has_nonglc_vmem_load;
res = intrin->src[0].ssa;
break;
}
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
flags |= has_glc_vmem_load | has_glc_vmem_store;
res = intrin->src[0].ssa;
break;
case nir_intrinsic_store_ssbo:
if (nir_src_is_divergent(intrin->src[2]) ||
ctx->program->chip_class < GFX8 || ctx->program->chip_class >= GFX10_3 ||
(intrin->src[0].ssa->bit_size < 32 && !can_subdword_ssbo_store_use_smem(intrin)))
flags |= glc ? has_glc_vmem_store : has_nonglc_vmem_store;
res = intrin->src[1].ssa;
break;
case nir_intrinsic_load_global:
if (!(access & ACCESS_NON_WRITEABLE))
flags |= glc ? has_glc_vmem_load : has_nonglc_vmem_load;
break;
case nir_intrinsic_store_global:
flags |= glc ? has_glc_vmem_store : has_nonglc_vmem_store;
break;
case nir_intrinsic_global_atomic_add:
case nir_intrinsic_global_atomic_imin:
case nir_intrinsic_global_atomic_umin:
case nir_intrinsic_global_atomic_imax:
case nir_intrinsic_global_atomic_umax:
case nir_intrinsic_global_atomic_and:
case nir_intrinsic_global_atomic_or:
case nir_intrinsic_global_atomic_xor:
case nir_intrinsic_global_atomic_exchange:
case nir_intrinsic_global_atomic_comp_swap:
flags |= has_glc_vmem_load | has_glc_vmem_store;
break;
case nir_intrinsic_image_deref_load:
res = intrin->src[0].ssa;
flags |= glc ? has_glc_vmem_load : has_nonglc_vmem_load;
break;
case nir_intrinsic_image_deref_store:
res = intrin->src[0].ssa;
flags |= (glc || ctx->program->chip_class == GFX6) ? has_glc_vmem_store : has_nonglc_vmem_store;
break;
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_umin:
case nir_intrinsic_image_deref_atomic_imin:
case nir_intrinsic_image_deref_atomic_umax:
case nir_intrinsic_image_deref_atomic_imax:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
res = intrin->src[0].ssa;
flags |= has_glc_vmem_load | has_glc_vmem_store;
break;
default:
continue;
}
uint8_t *flags_ptr;
uint32_t count;
get_buffer_resource_flags(ctx, res, access, &flags_ptr, &count);
for (unsigned i = 0; i < count; i++)
flags_ptr[i] |= flags;
}
}
}
void apply_nuw_to_ssa(nir_shader *shader, struct hash_table *range_ht, nir_ssa_def *ssa,
const nir_unsigned_upper_bound_config *config)
{
nir_ssa_scalar scalar;
scalar.def = ssa;
scalar.comp = 0;
if (!nir_ssa_scalar_is_alu(scalar) || nir_ssa_scalar_alu_op(scalar) != nir_op_iadd)
return;
nir_alu_instr *add = nir_instr_as_alu(ssa->parent_instr);
if (add->no_unsigned_wrap)
return;
nir_ssa_scalar src0 = nir_ssa_scalar_chase_alu_src(scalar, 0);
nir_ssa_scalar src1 = nir_ssa_scalar_chase_alu_src(scalar, 1);
if (nir_ssa_scalar_is_const(src0)) {
nir_ssa_scalar tmp = src0;
src0 = src1;
src1 = tmp;
}
uint32_t src1_ub = nir_unsigned_upper_bound(shader, range_ht, src1, config);
add->no_unsigned_wrap = !nir_addition_might_overflow(shader, range_ht, src0, src1_ub, config);
}
void apply_nuw_to_offsets(isel_context *ctx, nir_function_impl *impl)
{
nir_unsigned_upper_bound_config config;
config.min_subgroup_size = 64;
config.max_subgroup_size = 64;
if (ctx->shader->info.stage == MESA_SHADER_COMPUTE && ctx->options->key.cs.subgroup_size) {
config.min_subgroup_size = ctx->options->key.cs.subgroup_size;
config.max_subgroup_size = ctx->options->key.cs.subgroup_size;
}
config.max_work_group_invocations = 2048;
config.max_work_group_count[0] = 65535;
config.max_work_group_count[1] = 65535;
config.max_work_group_count[2] = 65535;
config.max_work_group_size[0] = 2048;
config.max_work_group_size[1] = 2048;
config.max_work_group_size[2] = 2048;
for (unsigned i = 0; i < MAX_VERTEX_ATTRIBS; i++) {
unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[i];
unsigned dfmt = attrib_format & 0xf;
unsigned nfmt = (attrib_format >> 4) & 0x7;
uint32_t max = UINT32_MAX;
if (nfmt == V_008F0C_BUF_NUM_FORMAT_UNORM) {
max = 0x3f800000u;
} else if (nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
nfmt == V_008F0C_BUF_NUM_FORMAT_USCALED) {
bool uscaled = nfmt == V_008F0C_BUF_NUM_FORMAT_USCALED;
switch (dfmt) {
case V_008F0C_BUF_DATA_FORMAT_8:
case V_008F0C_BUF_DATA_FORMAT_8_8:
case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
max = uscaled ? 0x437f0000u : UINT8_MAX;
break;
case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
max = uscaled ? 0x447fc000u : 1023;
break;
case V_008F0C_BUF_DATA_FORMAT_10_11_11:
case V_008F0C_BUF_DATA_FORMAT_11_11_10:
max = uscaled ? 0x44ffe000u : 2047;
break;
case V_008F0C_BUF_DATA_FORMAT_16:
case V_008F0C_BUF_DATA_FORMAT_16_16:
case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
max = uscaled ? 0x477fff00u : UINT16_MAX;
break;
case V_008F0C_BUF_DATA_FORMAT_32:
case V_008F0C_BUF_DATA_FORMAT_32_32:
case V_008F0C_BUF_DATA_FORMAT_32_32_32:
case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
max = uscaled ? 0x4f800000u : UINT32_MAX;
break;
}
}
config.vertex_attrib_max[i] = max;
}
struct hash_table *range_ht = _mesa_pointer_hash_table_create(NULL);
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_constant:
case nir_intrinsic_load_uniform:
case nir_intrinsic_load_push_constant:
if (!nir_src_is_divergent(intrin->src[0]))
apply_nuw_to_ssa(ctx->shader, range_ht, intrin->src[0].ssa, &config);
break;
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_ssbo:
if (!nir_src_is_divergent(intrin->src[1]))
apply_nuw_to_ssa(ctx->shader, range_ht, intrin->src[1].ssa, &config);
break;
case nir_intrinsic_store_ssbo:
if (!nir_src_is_divergent(intrin->src[2]))
apply_nuw_to_ssa(ctx->shader, range_ht, intrin->src[2].ssa, &config);
break;
default:
break;
}
}
}
_mesa_hash_table_destroy(range_ht, NULL);
}
RegClass get_reg_class(isel_context *ctx, RegType type, unsigned components, unsigned bitsize)
{
if (bitsize == 1)
return RegClass(RegType::sgpr, ctx->program->lane_mask.size() * components);
else
return RegClass::get(type, components * bitsize / 8u);
}
int
type_size(const struct glsl_type *type, bool bindless)
{
// TODO: don't we need type->std430_base_alignment() here?
return glsl_count_attribute_slots(type, false);
}
bool
mem_vectorize_callback(unsigned align, unsigned bit_size,
unsigned num_components, unsigned high_offset,
nir_intrinsic_instr *low, nir_intrinsic_instr *high)
{
if (num_components > 4)
return false;
/* >128 bit loads are split except with SMEM */
if (bit_size * num_components > 128)
return false;
switch (low->intrinsic) {
case nir_intrinsic_load_global:
case nir_intrinsic_store_global:
case nir_intrinsic_store_ssbo:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_push_constant:
return align % (bit_size == 8 ? 2 : 4) == 0;
case nir_intrinsic_load_deref:
case nir_intrinsic_store_deref:
assert(nir_src_as_deref(low->src[0])->mode == nir_var_mem_shared);
/* fallthrough */
case nir_intrinsic_load_shared:
case nir_intrinsic_store_shared:
if (bit_size * num_components > 64) /* 96 and 128 bit loads require 128 bit alignment and are split otherwise */
return align % 16 == 0;
else
return align % (bit_size == 8 ? 2 : 4) == 0;
default:
return false;
}
return false;
}
void
setup_vs_output_info(isel_context *ctx, nir_shader *nir,
bool export_prim_id, bool export_clip_dists,
radv_vs_output_info *outinfo)
{
memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
sizeof(outinfo->vs_output_param_offset));
outinfo->param_exports = 0;
int pos_written = 0x1;
if (outinfo->writes_pointsize || outinfo->writes_viewport_index || outinfo->writes_layer)
pos_written |= 1 << 1;
uint64_t mask = nir->info.outputs_written;
while (mask) {
int idx = u_bit_scan64(&mask);
if (idx >= VARYING_SLOT_VAR0 || idx == VARYING_SLOT_LAYER ||
idx == VARYING_SLOT_PRIMITIVE_ID || idx == VARYING_SLOT_VIEWPORT ||
((idx == VARYING_SLOT_CLIP_DIST0 || idx == VARYING_SLOT_CLIP_DIST1) && export_clip_dists)) {
if (outinfo->vs_output_param_offset[idx] == AC_EXP_PARAM_UNDEFINED)
outinfo->vs_output_param_offset[idx] = outinfo->param_exports++;
}
}
if (outinfo->writes_layer &&
outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] == AC_EXP_PARAM_UNDEFINED) {
/* when ctx->options->key.has_multiview_view_index = true, the layer
* variable isn't declared in NIR and it's isel's job to get the layer */
outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = outinfo->param_exports++;
}
if (export_prim_id) {
assert(outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED);
outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = outinfo->param_exports++;
}
ctx->export_clip_dists = export_clip_dists;
ctx->num_clip_distances = util_bitcount(outinfo->clip_dist_mask);
ctx->num_cull_distances = util_bitcount(outinfo->cull_dist_mask);
assert(ctx->num_clip_distances + ctx->num_cull_distances <= 8);
if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
pos_written |= 1 << 2;
if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
pos_written |= 1 << 3;
outinfo->pos_exports = util_bitcount(pos_written);
}
void
setup_vs_variables(isel_context *ctx, nir_shader *nir)
{
nir_foreach_shader_in_variable(variable, nir)
{
variable->data.driver_location = variable->data.location * 4;
}
nir_foreach_shader_out_variable(variable, nir)
{
if (ctx->stage == vertex_vs || ctx->stage == ngg_vertex_gs)
variable->data.driver_location = variable->data.location * 4;
assert(variable->data.location >= 0 && variable->data.location <= UINT8_MAX);
ctx->output_drv_loc_to_var_slot[MESA_SHADER_VERTEX][variable->data.driver_location / 4] = variable->data.location;
}
if (ctx->stage == vertex_vs || ctx->stage == ngg_vertex_gs) {
radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
ctx->options->key.vs_common_out.export_clip_dists, outinfo);
} else if (ctx->stage == vertex_ls) {
ctx->tcs_num_inputs = ctx->program->info->vs.num_linked_outputs;
}
if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
/* We need to store the primitive IDs in LDS */
unsigned lds_size = ctx->program->info->ngg_info.esgs_ring_size;
ctx->program->config->lds_size = (lds_size + ctx->program->lds_alloc_granule - 1) /
ctx->program->lds_alloc_granule;
}
}
void setup_gs_variables(isel_context *ctx, nir_shader *nir)
{
if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
ctx->program->config->lds_size = ctx->program->info->gs_ring_info.lds_size; /* Already in units of the alloc granularity */
nir_foreach_shader_out_variable(variable, nir) {
variable->data.driver_location = variable->data.location * 4;
}
if (ctx->stage == vertex_geometry_gs)
ctx->program->info->gs.es_type = MESA_SHADER_VERTEX;
else if (ctx->stage == tess_eval_geometry_gs)
ctx->program->info->gs.es_type = MESA_SHADER_TESS_EVAL;
}
void
setup_tcs_info(isel_context *ctx, nir_shader *nir, nir_shader *vs)
{
/* When the number of TCS input and output vertices are the same (typically 3):
* - There is an equal amount of LS and HS invocations
* - In case of merged LSHS shaders, the LS and HS halves of the shader
* always process the exact same vertex. We can use this knowledge to optimize them.
*
* We don't set tcs_in_out_eq if the float controls differ because that might
* involve different float modes for the same block and our optimizer
* doesn't handle a instruction dominating another with a different mode.
*/
ctx->tcs_in_out_eq =
ctx->stage == vertex_tess_control_hs &&
ctx->args->options->key.tcs.input_vertices == nir->info.tess.tcs_vertices_out &&
vs->info.float_controls_execution_mode == nir->info.float_controls_execution_mode;
if (ctx->tcs_in_out_eq) {
ctx->tcs_temp_only_inputs = ~nir->info.tess.tcs_cross_invocation_inputs_read &
~nir->info.inputs_read_indirectly &
nir->info.inputs_read;
}
ctx->tcs_num_inputs = ctx->program->info->tcs.num_linked_inputs;
ctx->tcs_num_outputs = ctx->program->info->tcs.num_linked_outputs;
ctx->tcs_num_patch_outputs = ctx->program->info->tcs.num_linked_patch_outputs;
ctx->tcs_num_patches = get_tcs_num_patches(
ctx->args->options->key.tcs.input_vertices,
nir->info.tess.tcs_vertices_out,
ctx->tcs_num_inputs,
ctx->tcs_num_outputs,
ctx->tcs_num_patch_outputs,
ctx->args->options->tess_offchip_block_dw_size,
ctx->args->options->chip_class,
ctx->args->options->family);
unsigned lds_size = calculate_tess_lds_size(
ctx->args->options->chip_class,
ctx->args->options->key.tcs.input_vertices,
nir->info.tess.tcs_vertices_out,
ctx->tcs_num_inputs,
ctx->tcs_num_patches,
ctx->tcs_num_outputs,
ctx->tcs_num_patch_outputs);
ctx->args->shader_info->tcs.num_patches = ctx->tcs_num_patches;
ctx->args->shader_info->tcs.num_lds_blocks = lds_size;
ctx->program->config->lds_size = (lds_size + ctx->program->lds_alloc_granule - 1) /
ctx->program->lds_alloc_granule;
}
void
setup_tcs_variables(isel_context *ctx, nir_shader *nir)
{
nir_foreach_shader_out_variable(variable, nir) {
assert(variable->data.location >= 0 && variable->data.location <= UINT8_MAX);
if (variable->data.patch)
ctx->output_tcs_patch_drv_loc_to_var_slot[variable->data.driver_location / 4] = variable->data.location;
else
ctx->output_drv_loc_to_var_slot[MESA_SHADER_TESS_CTRL][variable->data.driver_location / 4] = variable->data.location;
}
}
void
setup_tes_variables(isel_context *ctx, nir_shader *nir)
{
ctx->tcs_num_patches = ctx->args->options->key.tes.num_patches;
ctx->tcs_num_outputs = ctx->program->info->tes.num_linked_inputs;
nir_foreach_shader_out_variable(variable, nir) {
if (ctx->stage == tess_eval_vs || ctx->stage == ngg_tess_eval_gs)
variable->data.driver_location = variable->data.location * 4;
}
if (ctx->stage == tess_eval_vs || ctx->stage == ngg_tess_eval_gs) {
radv_vs_output_info *outinfo = &ctx->program->info->tes.outinfo;
setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
ctx->options->key.vs_common_out.export_clip_dists, outinfo);
}
}
void
setup_variables(isel_context *ctx, nir_shader *nir)
{
switch (nir->info.stage) {
case MESA_SHADER_FRAGMENT: {
nir_foreach_shader_out_variable(variable, nir)
{
int idx = variable->data.location + variable->data.index;
variable->data.driver_location = idx * 4;
}
break;
}
case MESA_SHADER_COMPUTE: {
ctx->program->config->lds_size = (nir->info.cs.shared_size + ctx->program->lds_alloc_granule - 1) /
ctx->program->lds_alloc_granule;
break;
}
case MESA_SHADER_VERTEX: {
setup_vs_variables(ctx, nir);
break;
}
case MESA_SHADER_GEOMETRY: {
setup_gs_variables(ctx, nir);
break;
}
case MESA_SHADER_TESS_CTRL: {
setup_tcs_variables(ctx, nir);
break;
}
case MESA_SHADER_TESS_EVAL: {
setup_tes_variables(ctx, nir);
break;
}
default:
unreachable("Unhandled shader stage.");
}
}
unsigned
lower_bit_size_callback(const nir_alu_instr *alu, void *_)
{
if (nir_op_is_vec(alu->op))
return 0;
unsigned bit_size = alu->dest.dest.ssa.bit_size;
if (nir_alu_instr_is_comparison(alu))
bit_size = nir_src_bit_size(alu->src[0].src);
if (bit_size >= 32 || bit_size == 1)
return 0;
if (alu->op == nir_op_bcsel)
return 0;
const nir_op_info *info = &nir_op_infos[alu->op];
if (info->is_conversion)
return 0;
bool is_integer = info->output_type & (nir_type_uint | nir_type_int);
for (unsigned i = 0; is_integer && (i < info->num_inputs); i++)
is_integer = info->input_types[i] & (nir_type_uint | nir_type_int);
return is_integer ? 32 : 0;
}
void
setup_nir(isel_context *ctx, nir_shader *nir)
{
/* the variable setup has to be done before lower_io / CSE */
setup_variables(ctx, nir);
/* optimize and lower memory operations */
if (nir_lower_explicit_io(nir, nir_var_mem_global, nir_address_format_64bit_global)) {
nir_opt_constant_folding(nir);
nir_opt_cse(nir);
}
bool lower_to_scalar = false;
bool lower_pack = false;
nir_variable_mode robust_modes = (nir_variable_mode)0;
if (ctx->options->robust_buffer_access) {
robust_modes = nir_var_mem_ubo |
nir_var_mem_ssbo |
nir_var_mem_global |
nir_var_mem_push_const;
}
if (nir_opt_load_store_vectorize(nir,
nir_var_mem_ssbo | nir_var_mem_ubo |
nir_var_mem_push_const | nir_var_mem_shared |
nir_var_mem_global,
mem_vectorize_callback, robust_modes)) {
lower_to_scalar = true;
lower_pack = true;
}
if (nir->info.stage != MESA_SHADER_COMPUTE)
nir_lower_io(nir, nir_var_shader_in | nir_var_shader_out, type_size, (nir_lower_io_options)0);
lower_to_scalar |= nir_opt_shrink_vectors(nir);
if (lower_to_scalar)
nir_lower_alu_to_scalar(nir, NULL, NULL);
if (lower_pack)
nir_lower_pack(nir);
/* lower ALU operations */
nir_lower_int64(nir);
if (nir_lower_bit_size(nir, lower_bit_size_callback, NULL))
nir_copy_prop(nir); /* allow nir_opt_idiv_const() to optimize lowered divisions */
nir_opt_idiv_const(nir, 32);
nir_lower_idiv(nir, nir_lower_idiv_precise);
/* optimize the lowered ALU operations */
bool more_algebraic = true;
while (more_algebraic) {
more_algebraic = false;
NIR_PASS_V(nir, nir_copy_prop);
NIR_PASS_V(nir, nir_opt_dce);
NIR_PASS_V(nir, nir_opt_constant_folding);
NIR_PASS(more_algebraic, nir, nir_opt_algebraic);
}
/* Do late algebraic optimization to turn add(a, neg(b)) back into
* subs, then the mandatory cleanup after algebraic. Note that it may
* produce fnegs, and if so then we need to keep running to squash
* fneg(fneg(a)).
*/
bool more_late_algebraic = true;
while (more_late_algebraic) {
more_late_algebraic = false;
NIR_PASS(more_late_algebraic, nir, nir_opt_algebraic_late);
NIR_PASS_V(nir, nir_opt_constant_folding);
NIR_PASS_V(nir, nir_copy_prop);
NIR_PASS_V(nir, nir_opt_dce);
NIR_PASS_V(nir, nir_opt_cse);
}
/* cleanup passes */
nir_lower_load_const_to_scalar(nir);
nir_move_options move_opts = (nir_move_options)(
nir_move_const_undef | nir_move_load_ubo | nir_move_load_input |
nir_move_comparisons | nir_move_copies);
nir_opt_sink(nir, move_opts);
nir_opt_move(nir, move_opts);
nir_convert_to_lcssa(nir, true, false);
nir_lower_phis_to_scalar(nir);
nir_function_impl *func = nir_shader_get_entrypoint(nir);
nir_index_ssa_defs(func);
}
void
setup_xnack(Program *program)
{
switch (program->family) {
/* GFX8 APUs */
case CHIP_CARRIZO:
case CHIP_STONEY:
/* GFX9 APUS */
case CHIP_RAVEN:
case CHIP_RAVEN2:
case CHIP_RENOIR:
program->xnack_enabled = true;
break;
default:
break;
}
}
} /* end namespace */
void init_context(isel_context *ctx, nir_shader *shader)
{
nir_function_impl *impl = nir_shader_get_entrypoint(shader);
unsigned lane_mask_size = ctx->program->lane_mask.size();
ctx->shader = shader;
nir_divergence_analysis(shader, nir_divergence_view_index_uniform);
fill_desc_set_info(ctx, impl);
apply_nuw_to_offsets(ctx, impl);
/* sanitize control flow */
nir_metadata_require(impl, nir_metadata_dominance);
sanitize_cf_list(impl, &impl->body);
nir_metadata_preserve(impl, ~nir_metadata_block_index);
/* we'll need this for isel */
nir_metadata_require(impl, nir_metadata_block_index);
if (!(ctx->stage & sw_gs_copy) && ctx->options->dump_preoptir) {
fprintf(stderr, "NIR shader before instruction selection:\n");
nir_print_shader(shader, stderr);
}
std::unique_ptr<Temp[]> allocated{new Temp[impl->ssa_alloc]()};
unsigned spi_ps_inputs = 0;
std::unique_ptr<unsigned[]> nir_to_aco{new unsigned[impl->num_blocks]()};
/* TODO: make this recursive to improve compile times and merge with fill_desc_set_info() */
bool done = false;
while (!done) {
done = true;
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
switch(instr->type) {
case nir_instr_type_alu: {
nir_alu_instr *alu_instr = nir_instr_as_alu(instr);
RegType type = RegType::sgpr;
switch(alu_instr->op) {
case nir_op_fmul:
case nir_op_fadd:
case nir_op_fsub:
case nir_op_fmax:
case nir_op_fmin:
case nir_op_fneg:
case nir_op_fabs:
case nir_op_fsat:
case nir_op_fsign:
case nir_op_frcp:
case nir_op_frsq:
case nir_op_fsqrt:
case nir_op_fexp2:
case nir_op_flog2:
case nir_op_ffract:
case nir_op_ffloor:
case nir_op_fceil:
case nir_op_ftrunc:
case nir_op_fround_even:
case nir_op_fsin:
case nir_op_fcos:
case nir_op_f2f16:
case nir_op_f2f16_rtz:
case nir_op_f2f16_rtne:
case nir_op_f2f32:
case nir_op_f2f64:
case nir_op_u2f16:
case nir_op_u2f32:
case nir_op_u2f64:
case nir_op_i2f16:
case nir_op_i2f32:
case nir_op_i2f64:
case nir_op_pack_half_2x16:
case nir_op_unpack_half_2x16_split_x:
case nir_op_unpack_half_2x16_split_y:
case nir_op_fddx:
case nir_op_fddy:
case nir_op_fddx_fine:
case nir_op_fddy_fine:
case nir_op_fddx_coarse:
case nir_op_fddy_coarse:
case nir_op_fquantize2f16:
case nir_op_ldexp:
case nir_op_frexp_sig:
case nir_op_frexp_exp:
case nir_op_cube_face_index:
case nir_op_cube_face_coord:
type = RegType::vgpr;
break;
case nir_op_f2i16:
case nir_op_f2u16:
case nir_op_f2i32:
case nir_op_f2u32:
case nir_op_f2i64:
case nir_op_f2u64:
case nir_op_b2i8:
case nir_op_b2i16:
case nir_op_b2i32:
case nir_op_b2i64:
case nir_op_b2b32:
case nir_op_b2f16:
case nir_op_b2f32:
case nir_op_mov:
type = nir_dest_is_divergent(alu_instr->dest.dest) ? RegType::vgpr : RegType::sgpr;
break;
case nir_op_bcsel:
type = nir_dest_is_divergent(alu_instr->dest.dest) ? RegType::vgpr : RegType::sgpr;
/* fallthrough */
default:
for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) {
if (allocated[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr)
type = RegType::vgpr;
}
break;
}
RegClass rc = get_reg_class(ctx, type, alu_instr->dest.dest.ssa.num_components, alu_instr->dest.dest.ssa.bit_size);
allocated[alu_instr->dest.dest.ssa.index] = Temp(0, rc);
break;
}
case nir_instr_type_load_const: {
unsigned num_components = nir_instr_as_load_const(instr)->def.num_components;
unsigned bit_size = nir_instr_as_load_const(instr)->def.bit_size;
RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size);
allocated[nir_instr_as_load_const(instr)->def.index] = Temp(0, rc);
break;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrinsic = nir_instr_as_intrinsic(instr);
if (!nir_intrinsic_infos[intrinsic->intrinsic].has_dest)
break;
RegType type = RegType::sgpr;
switch(intrinsic->intrinsic) {
case nir_intrinsic_load_push_constant:
case nir_intrinsic_load_work_group_id:
case nir_intrinsic_load_num_work_groups:
case nir_intrinsic_load_subgroup_id:
case nir_intrinsic_load_num_subgroups:
case nir_intrinsic_load_first_vertex:
case nir_intrinsic_load_base_instance:
case nir_intrinsic_get_buffer_size:
case nir_intrinsic_vote_all:
case nir_intrinsic_vote_any:
case nir_intrinsic_read_first_invocation:
case nir_intrinsic_read_invocation:
case nir_intrinsic_first_invocation:
case nir_intrinsic_ballot:
type = RegType::sgpr;
break;
case nir_intrinsic_load_sample_id:
case nir_intrinsic_load_sample_mask_in:
case nir_intrinsic_load_input:
case nir_intrinsic_load_output:
case nir_intrinsic_load_input_vertex:
case nir_intrinsic_load_per_vertex_input:
case nir_intrinsic_load_per_vertex_output:
case nir_intrinsic_load_vertex_id:
case nir_intrinsic_load_vertex_id_zero_base:
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_model:
case nir_intrinsic_load_barycentric_centroid:
case nir_intrinsic_load_barycentric_at_sample:
case nir_intrinsic_load_barycentric_at_offset:
case nir_intrinsic_load_interpolated_input:
case nir_intrinsic_load_frag_coord:
case nir_intrinsic_load_sample_pos:
case nir_intrinsic_load_layer_id:
case nir_intrinsic_load_local_invocation_id:
case nir_intrinsic_load_local_invocation_index:
case nir_intrinsic_load_subgroup_invocation:
case nir_intrinsic_load_tess_coord:
case nir_intrinsic_write_invocation_amd:
case nir_intrinsic_mbcnt_amd:
case nir_intrinsic_load_instance_id:
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
case nir_intrinsic_global_atomic_add:
case nir_intrinsic_global_atomic_imin:
case nir_intrinsic_global_atomic_umin:
case nir_intrinsic_global_atomic_imax:
case nir_intrinsic_global_atomic_umax:
case nir_intrinsic_global_atomic_and:
case nir_intrinsic_global_atomic_or:
case nir_intrinsic_global_atomic_xor:
case nir_intrinsic_global_atomic_exchange:
case nir_intrinsic_global_atomic_comp_swap:
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_umin:
case nir_intrinsic_image_deref_atomic_imin:
case nir_intrinsic_image_deref_atomic_umax:
case nir_intrinsic_image_deref_atomic_imax:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
case nir_intrinsic_image_deref_size:
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_shared_atomic_comp_swap:
case nir_intrinsic_shared_atomic_fadd:
case nir_intrinsic_load_scratch:
case nir_intrinsic_load_invocation_id:
case nir_intrinsic_load_primitive_id:
type = RegType::vgpr;
break;
case nir_intrinsic_shuffle:
case nir_intrinsic_quad_broadcast:
case nir_intrinsic_quad_swap_horizontal:
case nir_intrinsic_quad_swap_vertical:
case nir_intrinsic_quad_swap_diagonal:
case nir_intrinsic_quad_swizzle_amd:
case nir_intrinsic_masked_swizzle_amd:
case nir_intrinsic_inclusive_scan:
case nir_intrinsic_exclusive_scan:
case nir_intrinsic_reduce:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_global:
case nir_intrinsic_vulkan_resource_index:
case nir_intrinsic_load_shared:
type = nir_dest_is_divergent(intrinsic->dest) ? RegType::vgpr : RegType::sgpr;
break;
case nir_intrinsic_load_view_index:
type = ctx->stage == fragment_fs ? RegType::vgpr : RegType::sgpr;
break;
default:
for (unsigned i = 0; i < nir_intrinsic_infos[intrinsic->intrinsic].num_srcs; i++) {
if (allocated[intrinsic->src[i].ssa->index].type() == RegType::vgpr)
type = RegType::vgpr;
}
break;
}
RegClass rc = get_reg_class(ctx, type, intrinsic->dest.ssa.num_components, intrinsic->dest.ssa.bit_size);
allocated[intrinsic->dest.ssa.index] = Temp(0, rc);
switch(intrinsic->intrinsic) {
case nir_intrinsic_load_barycentric_sample:
case nir_intrinsic_load_barycentric_pixel:
case nir_intrinsic_load_barycentric_centroid:
case nir_intrinsic_load_barycentric_at_sample:
case nir_intrinsic_load_barycentric_at_offset: {
glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(intrinsic);
spi_ps_inputs |= get_interp_input(intrinsic->intrinsic, mode);
break;
}
case nir_intrinsic_load_barycentric_model:
spi_ps_inputs |= S_0286CC_PERSP_PULL_MODEL_ENA(1);
break;
case nir_intrinsic_load_front_face:
spi_ps_inputs |= S_0286CC_FRONT_FACE_ENA(1);
break;
case nir_intrinsic_load_frag_coord:
case nir_intrinsic_load_sample_pos: {
uint8_t mask = nir_ssa_def_components_read(&intrinsic->dest.ssa);
for (unsigned i = 0; i < 4; i++) {
if (mask & (1 << i))
spi_ps_inputs |= S_0286CC_POS_X_FLOAT_ENA(1) << i;
}
break;
}
case nir_intrinsic_load_sample_id:
spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
break;
case nir_intrinsic_load_sample_mask_in:
spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
spi_ps_inputs |= S_0286CC_SAMPLE_COVERAGE_ENA(1);
break;
default:
break;
}
break;
}
case nir_instr_type_tex: {
nir_tex_instr* tex = nir_instr_as_tex(instr);
unsigned size = tex->dest.ssa.num_components;
if (tex->dest.ssa.bit_size == 64)
size *= 2;
if (tex->op == nir_texop_texture_samples) {
assert(!tex->dest.ssa.divergent);
}
if (nir_dest_is_divergent(tex->dest))
allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::vgpr, size));
else
allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::sgpr, size));
break;
}
case nir_instr_type_parallel_copy: {
nir_foreach_parallel_copy_entry(entry, nir_instr_as_parallel_copy(instr)) {
allocated[entry->dest.ssa.index] = allocated[entry->src.ssa->index];
}
break;
}
case nir_instr_type_ssa_undef: {
unsigned num_components = nir_instr_as_ssa_undef(instr)->def.num_components;
unsigned bit_size = nir_instr_as_ssa_undef(instr)->def.bit_size;
RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size);
allocated[nir_instr_as_ssa_undef(instr)->def.index] = Temp(0, rc);
break;
}
case nir_instr_type_phi: {
nir_phi_instr* phi = nir_instr_as_phi(instr);
RegType type;
unsigned size = phi->dest.ssa.num_components;
if (phi->dest.ssa.bit_size == 1) {
assert(size == 1 && "multiple components not yet supported on boolean phis.");
type = RegType::sgpr;
size *= lane_mask_size;
allocated[phi->dest.ssa.index] = Temp(0, RegClass(type, size));
break;
}
if (nir_dest_is_divergent(phi->dest)) {
type = RegType::vgpr;
} else {
type = RegType::sgpr;
nir_foreach_phi_src (src, phi) {
if (allocated[src->src.ssa->index].type() == RegType::vgpr)
type = RegType::vgpr;
if (allocated[src->src.ssa->index].type() == RegType::none)
done = false;
}
}
RegClass rc = get_reg_class(ctx, type, phi->dest.ssa.num_components, phi->dest.ssa.bit_size);
if (rc != allocated[phi->dest.ssa.index].regClass()) {
done = false;
} else {
nir_foreach_phi_src(src, phi)
assert(allocated[src->src.ssa->index].size() == rc.size());
}
allocated[phi->dest.ssa.index] = Temp(0, rc);
break;
}
default:
break;
}
}
}
}
if (G_0286CC_POS_W_FLOAT_ENA(spi_ps_inputs)) {
/* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */
spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
}
if (!(spi_ps_inputs & 0x7F)) {
/* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */
spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
}
ctx->program->config->spi_ps_input_ena = spi_ps_inputs;
ctx->program->config->spi_ps_input_addr = spi_ps_inputs;
for (unsigned i = 0; i < impl->ssa_alloc; i++)
allocated[i] = ctx->program->allocateTmp(allocated[i].regClass());
ctx->allocated.reset(allocated.release());
ctx->cf_info.nir_to_aco.reset(nir_to_aco.release());
/* align and copy constant data */
while (ctx->program->constant_data.size() % 4u)
ctx->program->constant_data.push_back(0);
ctx->constant_data_offset = ctx->program->constant_data.size();
ctx->program->constant_data.insert(ctx->program->constant_data.end(),
(uint8_t*)shader->constant_data,
(uint8_t*)shader->constant_data + shader->constant_data_size);
}
isel_context
setup_isel_context(Program* program,
unsigned shader_count,
struct nir_shader *const *shaders,
ac_shader_config* config,
struct radv_shader_args *args,
bool is_gs_copy_shader)
{
Stage stage = 0;
for (unsigned i = 0; i < shader_count; i++) {
switch (shaders[i]->info.stage) {
case MESA_SHADER_VERTEX:
stage |= sw_vs;
break;
case MESA_SHADER_TESS_CTRL:
stage |= sw_tcs;
break;
case MESA_SHADER_TESS_EVAL:
stage |= sw_tes;
break;
case MESA_SHADER_GEOMETRY:
stage |= is_gs_copy_shader ? sw_gs_copy : sw_gs;
break;
case MESA_SHADER_FRAGMENT:
stage |= sw_fs;
break;
case MESA_SHADER_COMPUTE:
stage |= sw_cs;
break;
default:
unreachable("Shader stage not implemented");
}
}
bool gfx9_plus = args->options->chip_class >= GFX9;
bool ngg = args->shader_info->is_ngg && args->options->chip_class >= GFX10;
if (stage == sw_vs && args->shader_info->vs.as_es && !ngg)
stage |= hw_es;
else if (stage == sw_vs && !args->shader_info->vs.as_ls && !ngg)
stage |= hw_vs;
else if (stage == sw_vs && ngg)
stage |= hw_ngg_gs; /* GFX10/NGG: VS without GS uses the HW GS stage */
else if (stage == sw_gs)
stage |= hw_gs;
else if (stage == sw_fs)
stage |= hw_fs;
else if (stage == sw_cs)
stage |= hw_cs;
else if (stage == sw_gs_copy)
stage |= hw_vs;
else if (stage == (sw_vs | sw_gs) && gfx9_plus && !ngg)
stage |= hw_gs;
else if (stage == sw_vs && args->shader_info->vs.as_ls)
stage |= hw_ls; /* GFX6-8: VS is a Local Shader, when tessellation is used */
else if (stage == sw_tcs)
stage |= hw_hs; /* GFX6-8: TCS is a Hull Shader */
else if (stage == (sw_vs | sw_tcs))
stage |= hw_hs; /* GFX9-10: VS+TCS merged into a Hull Shader */
else if (stage == sw_tes && !args->shader_info->tes.as_es && !ngg)
stage |= hw_vs; /* GFX6-9: TES without GS uses the HW VS stage (and GFX10/legacy) */
else if (stage == sw_tes && !args->shader_info->tes.as_es && ngg)
stage |= hw_ngg_gs; /* GFX10/NGG: TES without GS uses the HW GS stage */
else if (stage == sw_tes && args->shader_info->tes.as_es && !ngg)
stage |= hw_es; /* GFX6-8: TES is an Export Shader */
else if (stage == (sw_tes | sw_gs) && gfx9_plus && !ngg)
stage |= hw_gs; /* GFX9: TES+GS merged into a GS (and GFX10/legacy) */
else
unreachable("Shader stage not implemented");
init_program(program, stage, args->shader_info,
args->options->chip_class, args->options->family, config);
isel_context ctx = {};
ctx.program = program;
ctx.args = args;
ctx.options = args->options;
ctx.stage = program->stage;
/* TODO: Check if we need to adjust min_waves for unknown workgroup sizes. */
if (program->stage & (hw_vs | hw_fs)) {
/* PS and legacy VS have separate waves, no workgroups */
program->workgroup_size = program->wave_size;
} else if (program->stage == compute_cs) {
/* CS sets the workgroup size explicitly */
unsigned* bsize = program->info->cs.block_size;
program->workgroup_size = bsize[0] * bsize[1] * bsize[2];
} else if ((program->stage & hw_es) || program->stage == geometry_gs) {
/* Unmerged ESGS operate in workgroups if on-chip GS (LDS rings) are enabled on GFX7-8 (not implemented in Mesa) */
program->workgroup_size = program->wave_size;
} else if (program->stage & hw_gs) {
/* If on-chip GS (LDS rings) are enabled on GFX9 or later, merged GS operates in workgroups */
assert(program->chip_class >= GFX9);
uint32_t es_verts_per_subgrp = G_028A44_ES_VERTS_PER_SUBGRP(program->info->gs_ring_info.vgt_gs_onchip_cntl);
uint32_t gs_instr_prims_in_subgrp = G_028A44_GS_INST_PRIMS_IN_SUBGRP(program->info->gs_ring_info.vgt_gs_onchip_cntl);
uint32_t workgroup_size = MAX2(es_verts_per_subgrp, gs_instr_prims_in_subgrp);
program->workgroup_size = MAX2(MIN2(workgroup_size, 256), 1);
} else if (program->stage == vertex_ls) {
/* Unmerged LS operates in workgroups */
program->workgroup_size = UINT_MAX; /* TODO: probably tcs_num_patches * tcs_vertices_in, but those are not plumbed to ACO for LS */
} else if (program->stage == tess_control_hs) {
/* Unmerged HS operates in workgroups, size is determined by the output vertices */
setup_tcs_info(&ctx, shaders[0], NULL);
program->workgroup_size = ctx.tcs_num_patches * shaders[0]->info.tess.tcs_vertices_out;
} else if (program->stage == vertex_tess_control_hs) {
/* Merged LSHS operates in workgroups, but can still have a different number of LS and HS invocations */
setup_tcs_info(&ctx, shaders[1], shaders[0]);
program->workgroup_size = ctx.tcs_num_patches * MAX2(shaders[1]->info.tess.tcs_vertices_out, ctx.args->options->key.tcs.input_vertices);
} else if (program->stage & hw_ngg_gs) {
/* TODO: Calculate workgroup size of NGG shaders. */
program->workgroup_size = UINT_MAX;
} else {
unreachable("Unsupported shader stage.");
}
calc_min_waves(program);
program->vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves);
program->sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves);
unsigned scratch_size = 0;
if (program->stage == gs_copy_vs) {
assert(shader_count == 1);
setup_vs_output_info(&ctx, shaders[0], false, true, &args->shader_info->vs.outinfo);
} else {
for (unsigned i = 0; i < shader_count; i++) {
nir_shader *nir = shaders[i];
setup_nir(&ctx, nir);
}
for (unsigned i = 0; i < shader_count; i++)
scratch_size = std::max(scratch_size, shaders[i]->scratch_size);
}
ctx.program->config->scratch_bytes_per_wave = align(scratch_size * ctx.program->wave_size, 1024);
ctx.block = ctx.program->create_and_insert_block();
ctx.block->loop_nest_depth = 0;
ctx.block->kind = block_kind_top_level;
setup_xnack(program);
program->sram_ecc_enabled = args->options->family == CHIP_ARCTURUS;
/* apparently gfx702 also has fast v_fma_f32 but I can't find a family for that */
program->has_fast_fma32 = program->chip_class >= GFX9;
if (args->options->family == CHIP_TAHITI || args->options->family == CHIP_CARRIZO || args->options->family == CHIP_HAWAII)
program->has_fast_fma32 = true;
return ctx;
}
}