blob: 583e582a4b6378c07d1562bbd8e9b9081a38863a [file] [log] [blame]
/*
* Copyright 2015 Philip Taylor <philip@zaynar.co.uk>
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file texcompress_astc.c
*
* Decompression code for GL_KHR_texture_compression_astc_ldr, which is just
* ASTC 2D LDR.
*
* The ASTC 2D LDR decoder (without the sRGB part) was copied from the OASTC
* library written by Philip Taylor. I added sRGB support and adjusted it for
* Mesa. - Marek
*/
#include "texcompress_astc.h"
#include "macros.h"
#include "util/half_float.h"
#include <stdio.h>
#include <cstdlib> // for abort() on windows
static bool VERBOSE_DECODE = false;
static bool VERBOSE_WRITE = false;
static inline uint8_t
uint16_div_64k_to_half_to_unorm8(uint16_t v)
{
return _mesa_half_to_unorm8(_mesa_uint16_div_64k_to_half(v));
}
class decode_error
{
public:
enum type {
ok,
unsupported_hdr_void_extent,
reserved_block_mode_1,
reserved_block_mode_2,
dual_plane_and_too_many_partitions,
invalid_range_in_void_extent,
weight_grid_exceeds_block_size,
invalid_colour_endpoints_size,
invalid_colour_endpoints_count,
invalid_weight_bits,
invalid_num_weights,
};
};
struct cem_range {
uint8_t max;
uint8_t t, q, b;
};
/* Based on the Color Unquantization Parameters table,
* plus the bit-only representations, sorted by increasing size
*/
static cem_range cem_ranges[] = {
{ 5, 1, 0, 1 },
{ 7, 0, 0, 3 },
{ 9, 0, 1, 1 },
{ 11, 1, 0, 2 },
{ 15, 0, 0, 4 },
{ 19, 0, 1, 2 },
{ 23, 1, 0, 3 },
{ 31, 0, 0, 5 },
{ 39, 0, 1, 3 },
{ 47, 1, 0, 4 },
{ 63, 0, 0, 6 },
{ 79, 0, 1, 4 },
{ 95, 1, 0, 5 },
{ 127, 0, 0, 7 },
{ 159, 0, 1, 5 },
{ 191, 1, 0, 6 },
{ 255, 0, 0, 8 },
};
#define CAT_BITS_2(a, b) ( ((a) << 1) | (b) )
#define CAT_BITS_3(a, b, c) ( ((a) << 2) | ((b) << 1) | (c) )
#define CAT_BITS_4(a, b, c, d) ( ((a) << 3) | ((b) << 2) | ((c) << 1) | (d) )
#define CAT_BITS_5(a, b, c, d, e) ( ((a) << 4) | ((b) << 3) | ((c) << 2) | ((d) << 1) | (e) )
/**
* Unpack 5n+8 bits from 'in' into 5 output values.
* If n <= 4 then T should be uint32_t, else it must be uint64_t.
*/
template <typename T>
static void unpack_trit_block(int n, T in, uint8_t *out)
{
assert(n <= 6); /* else output will overflow uint8_t */
uint8_t T0 = (in >> (n)) & 0x1;
uint8_t T1 = (in >> (n+1)) & 0x1;
uint8_t T2 = (in >> (2*n+2)) & 0x1;
uint8_t T3 = (in >> (2*n+3)) & 0x1;
uint8_t T4 = (in >> (3*n+4)) & 0x1;
uint8_t T5 = (in >> (4*n+5)) & 0x1;
uint8_t T6 = (in >> (4*n+6)) & 0x1;
uint8_t T7 = (in >> (5*n+7)) & 0x1;
uint8_t mmask = (1 << n) - 1;
uint8_t m0 = (in >> (0)) & mmask;
uint8_t m1 = (in >> (n+2)) & mmask;
uint8_t m2 = (in >> (2*n+4)) & mmask;
uint8_t m3 = (in >> (3*n+5)) & mmask;
uint8_t m4 = (in >> (4*n+7)) & mmask;
uint8_t C;
uint8_t t4, t3, t2, t1, t0;
if (CAT_BITS_3(T4, T3, T2) == 0x7) {
C = CAT_BITS_5(T7, T6, T5, T1, T0);
t4 = t3 = 2;
} else {
C = CAT_BITS_5(T4, T3, T2, T1, T0);
if (CAT_BITS_2(T6, T5) == 0x3) {
t4 = 2;
t3 = T7;
} else {
t4 = T7;
t3 = CAT_BITS_2(T6, T5);
}
}
if ((C & 0x3) == 0x3) {
t2 = 2;
t1 = (C >> 4) & 0x1;
uint8_t C3 = (C >> 3) & 0x1;
uint8_t C2 = (C >> 2) & 0x1;
t0 = (C3 << 1) | (C2 & ~C3);
} else if (((C >> 2) & 0x3) == 0x3) {
t2 = 2;
t1 = 2;
t0 = C & 0x3;
} else {
t2 = (C >> 4) & 0x1;
t1 = (C >> 2) & 0x3;
uint8_t C1 = (C >> 1) & 0x1;
uint8_t C0 = (C >> 0) & 0x1;
t0 = (C1 << 1) | (C0 & ~C1);
}
out[0] = (t0 << n) | m0;
out[1] = (t1 << n) | m1;
out[2] = (t2 << n) | m2;
out[3] = (t3 << n) | m3;
out[4] = (t4 << n) | m4;
}
/**
* Unpack 3n+7 bits from 'in' into 3 output values
*/
static void unpack_quint_block(int n, uint32_t in, uint8_t *out)
{
assert(n <= 5); /* else output will overflow uint8_t */
uint8_t Q0 = (in >> (n)) & 0x1;
uint8_t Q1 = (in >> (n+1)) & 0x1;
uint8_t Q2 = (in >> (n+2)) & 0x1;
uint8_t Q3 = (in >> (2*n+3)) & 0x1;
uint8_t Q4 = (in >> (2*n+4)) & 0x1;
uint8_t Q5 = (in >> (3*n+5)) & 0x1;
uint8_t Q6 = (in >> (3*n+6)) & 0x1;
uint8_t mmask = (1 << n) - 1;
uint8_t m0 = (in >> (0)) & mmask;
uint8_t m1 = (in >> (n+3)) & mmask;
uint8_t m2 = (in >> (2*n+5)) & mmask;
uint8_t C;
uint8_t q2, q1, q0;
if (CAT_BITS_4(Q6, Q5, Q2, Q1) == 0x3) {
q2 = CAT_BITS_3(Q0, Q4 & ~Q0, Q3 & ~Q0);
q1 = 4;
q0 = 4;
} else {
if (CAT_BITS_2(Q2, Q1) == 0x3) {
q2 = 4;
C = CAT_BITS_5(Q4, Q3, 0x1 & ~Q6, 0x1 & ~Q5, Q0);
} else {
q2 = CAT_BITS_2(Q6, Q5);
C = CAT_BITS_5(Q4, Q3, Q2, Q1, Q0);
}
if ((C & 0x7) == 0x5) {
q1 = 4;
q0 = (C >> 3) & 0x3;
} else {
q1 = (C >> 3) & 0x3;
q0 = C & 0x7;
}
}
out[0] = (q0 << n) | m0;
out[1] = (q1 << n) | m1;
out[2] = (q2 << n) | m2;
}
struct uint8x4_t
{
uint8_t v[4];
uint8x4_t() { }
uint8x4_t(int a, int b, int c, int d)
{
assert(0 <= a && a <= 255);
assert(0 <= b && b <= 255);
assert(0 <= c && c <= 255);
assert(0 <= d && d <= 255);
v[0] = a;
v[1] = b;
v[2] = c;
v[3] = d;
}
static uint8x4_t clamped(int a, int b, int c, int d)
{
uint8x4_t r;
r.v[0] = MAX2(0, MIN2(255, a));
r.v[1] = MAX2(0, MIN2(255, b));
r.v[2] = MAX2(0, MIN2(255, c));
r.v[3] = MAX2(0, MIN2(255, d));
return r;
}
};
static uint8x4_t blue_contract(int r, int g, int b, int a)
{
return uint8x4_t((r+b) >> 1, (g+b) >> 1, b, a);
}
static uint8x4_t blue_contract_clamped(int r, int g, int b, int a)
{
return uint8x4_t::clamped((r+b) >> 1, (g+b) >> 1, b, a);
}
static void bit_transfer_signed(int &a, int &b)
{
b >>= 1;
b |= a & 0x80;
a >>= 1;
a &= 0x3f;
if (a & 0x20)
a -= 0x40;
}
static uint32_t hash52(uint32_t p)
{
p ^= p >> 15;
p -= p << 17;
p += p << 7;
p += p << 4;
p ^= p >> 5;
p += p << 16;
p ^= p >> 7;
p ^= p >> 3;
p ^= p << 6;
p ^= p >> 17;
return p;
}
static int select_partition(int seed, int x, int y, int z, int partitioncount,
int small_block)
{
if (small_block) {
x <<= 1;
y <<= 1;
z <<= 1;
}
seed += (partitioncount - 1) * 1024;
uint32_t rnum = hash52(seed);
uint8_t seed1 = rnum & 0xF;
uint8_t seed2 = (rnum >> 4) & 0xF;
uint8_t seed3 = (rnum >> 8) & 0xF;
uint8_t seed4 = (rnum >> 12) & 0xF;
uint8_t seed5 = (rnum >> 16) & 0xF;
uint8_t seed6 = (rnum >> 20) & 0xF;
uint8_t seed7 = (rnum >> 24) & 0xF;
uint8_t seed8 = (rnum >> 28) & 0xF;
uint8_t seed9 = (rnum >> 18) & 0xF;
uint8_t seed10 = (rnum >> 22) & 0xF;
uint8_t seed11 = (rnum >> 26) & 0xF;
uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF;
seed1 *= seed1;
seed2 *= seed2;
seed3 *= seed3;
seed4 *= seed4;
seed5 *= seed5;
seed6 *= seed6;
seed7 *= seed7;
seed8 *= seed8;
seed9 *= seed9;
seed10 *= seed10;
seed11 *= seed11;
seed12 *= seed12;
int sh1, sh2, sh3;
if (seed & 1) {
sh1 = (seed & 2 ? 4 : 5);
sh2 = (partitioncount == 3 ? 6 : 5);
} else {
sh1 = (partitioncount == 3 ? 6 : 5);
sh2 = (seed & 2 ? 4 : 5);
}
sh3 = (seed & 0x10) ? sh1 : sh2;
seed1 >>= sh1;
seed2 >>= sh2;
seed3 >>= sh1;
seed4 >>= sh2;
seed5 >>= sh1;
seed6 >>= sh2;
seed7 >>= sh1;
seed8 >>= sh2;
seed9 >>= sh3;
seed10 >>= sh3;
seed11 >>= sh3;
seed12 >>= sh3;
int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
a &= 0x3F;
b &= 0x3F;
c &= 0x3F;
d &= 0x3F;
if (partitioncount < 4)
d = 0;
if (partitioncount < 3)
c = 0;
if (a >= b && a >= c && a >= d)
return 0;
else if (b >= c && b >= d)
return 1;
else if (c >= d)
return 2;
else
return 3;
}
struct InputBitVector
{
uint32_t data[4];
void printf_bits(int offset, int count, const char *fmt = "", ...)
{
char out[129];
memset(out, '.', 128);
out[128] = '\0';
int idx = offset;
for (int i = 0; i < count; ++i) {
out[127 - idx] = ((data[idx >> 5] >> (idx & 31)) & 1) ? '1' : '0';
++idx;
}
printf("%s ", out);
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
printf("\n");
}
uint32_t get_bits(int offset, int count)
{
assert(count >= 0 && count < 32);
uint32_t out = 0;
if (offset < 32)
out |= data[0] >> offset;
if (0 < offset && offset <= 32)
out |= data[1] << (32 - offset);
if (32 < offset && offset < 64)
out |= data[1] >> (offset - 32);
if (32 < offset && offset <= 64)
out |= data[2] << (64 - offset);
if (64 < offset && offset < 96)
out |= data[2] >> (offset - 64);
if (64 < offset && offset <= 96)
out |= data[3] << (96 - offset);
if (96 < offset && offset < 128)
out |= data[3] >> (offset - 96);
out &= (1 << count) - 1;
return out;
}
uint64_t get_bits64(int offset, int count)
{
assert(count >= 0 && count < 64);
uint64_t out = 0;
if (offset < 32)
out |= data[0] >> offset;
if (offset <= 32)
out |= (uint64_t)data[1] << (32 - offset);
if (32 < offset && offset < 64)
out |= data[1] >> (offset - 32);
if (0 < offset && offset <= 64)
out |= (uint64_t)data[2] << (64 - offset);
if (64 < offset && offset < 96)
out |= data[2] >> (offset - 64);
if (32 < offset && offset <= 96)
out |= (uint64_t)data[3] << (96 - offset);
if (96 < offset && offset < 128)
out |= data[3] >> (offset - 96);
out &= ((uint64_t)1 << count) - 1;
return out;
}
uint32_t get_bits_rev(int offset, int count)
{
assert(offset >= count);
uint32_t tmp = get_bits(offset - count, count);
uint32_t out = 0;
for (int i = 0; i < count; ++i)
out |= ((tmp >> i) & 1) << (count - 1 - i);
return out;
}
};
struct OutputBitVector
{
uint32_t data[4];
int offset;
OutputBitVector()
: offset(0)
{
memset(data, 0, sizeof(data));
}
void append(uint32_t value, int size)
{
if (VERBOSE_WRITE)
printf("append offset=%d size=%d values=0x%x\n", offset, size, value);
assert(offset + size <= 128);
assert(size <= 32);
if (size < 32)
assert((value >> size) == 0);
while (size) {
int c = MIN2(size, 32 - (offset & 31));
data[offset >> 5] |= (value << (offset & 31));
offset += c;
size -= c;
value >>= c;
}
}
void append64(uint64_t value, int size)
{
if (VERBOSE_WRITE)
printf("append offset=%d size=%d values=0x%llx\n", offset, size, (unsigned long long)value);
assert(offset + size <= 128);
assert(size <= 64);
if (size < 64)
assert((value >> size) == 0);
while (size) {
int c = MIN2(size, 32 - (offset & 31));
data[offset >> 5] |= (value << (offset & 31));
offset += c;
size -= c;
value >>= c;
}
}
void append(OutputBitVector &v, int size)
{
if (VERBOSE_WRITE)
printf("append vector offset=%d size=%d\n", offset, size);
assert(offset + size <= 128);
int i = 0;
while (size >= 32) {
append(v.data[i++], 32);
size -= 32;
}
if (size > 0)
append(v.data[i] & ((1 << size) - 1), size);
}
void append_end(OutputBitVector &v, int size)
{
for (int i = 0; i < size; ++i)
data[(127 - i) >> 5] |= ((v.data[i >> 5] >> (i & 31)) & 1) << ((127 - i) & 31);
}
/* Insert the given number of '1' bits. (We could use 0s instead, but 1s are
* more likely to flush out bugs where we accidentally read undefined bits.)
*/
void skip(int size)
{
if (VERBOSE_WRITE)
printf("skip offset=%d size=%d\n", offset, size);
assert(offset + size <= 128);
while (size >= 32) {
append(0xffffffff, 32);
size -= 32;
}
if (size > 0)
append(0xffffffff >> (32 - size), size);
}
};
class Decoder
{
public:
Decoder(int block_w, int block_h, int block_d, bool srgb, bool output_unorm8)
: block_w(block_w), block_h(block_h), block_d(block_d), srgb(srgb),
output_unorm8(output_unorm8) {}
decode_error::type decode(const uint8_t *in, uint16_t *output) const;
int block_w, block_h, block_d;
bool srgb, output_unorm8;
};
struct Block
{
bool is_error;
bool bogus_colour_endpoints;
bool bogus_weights;
int high_prec;
int dual_plane;
int colour_component_selector;
int wt_range;
int wt_w, wt_h, wt_d;
int num_parts;
int partition_index;
bool is_void_extent;
int void_extent_d;
int void_extent_min_s;
int void_extent_max_s;
int void_extent_min_t;
int void_extent_max_t;
uint16_t void_extent_colour_r;
uint16_t void_extent_colour_g;
uint16_t void_extent_colour_b;
uint16_t void_extent_colour_a;
bool is_multi_cem;
int num_extra_cem_bits;
int colour_endpoint_data_offset;
int extra_cem_bits;
int cem_base_class;
int cems[4];
int num_cem_values;
/* Calculated by unpack_weights(): */
uint8_t weights_quant[64 + 4]; /* max 64 values, plus padding for overflows in trit parsing */
/* Calculated by unquantise_weights(): */
uint8_t weights[64 + 18]; /* max 64 values, plus padding for the infill interpolation */
/* Calculated by unpack_colour_endpoints(): */
uint8_t colour_endpoints_quant[18 + 4]; /* max 18 values, plus padding for overflows in trit parsing */
/* Calculated by unquantise_colour_endpoints(): */
uint8_t colour_endpoints[18];
/* Calculated by calculate_from_weights(): */
int wt_trits;
int wt_quints;
int wt_bits;
int wt_max;
int num_weights;
int weight_bits;
/* Calculated by calculate_remaining_bits(): */
int remaining_bits;
/* Calculated by calculate_colour_endpoints_size(): */
int colour_endpoint_bits;
int ce_max;
int ce_trits;
int ce_quints;
int ce_bits;
/* Calculated by compute_infill_weights(); */
uint8_t infill_weights[2][216]; /* large enough for 6x6x6 */
/* Calculated by decode_colour_endpoints(); */
uint8x4_t endpoints_decoded[2][4];
void calculate_from_weights();
void calculate_remaining_bits();
decode_error::type calculate_colour_endpoints_size();
void unquantise_weights();
void unquantise_colour_endpoints();
decode_error::type decode(const Decoder &decoder, InputBitVector in);
decode_error::type decode_block_mode(InputBitVector in);
decode_error::type decode_void_extent(InputBitVector in);
void decode_cem(InputBitVector in);
void unpack_colour_endpoints(InputBitVector in);
void decode_colour_endpoints();
void unpack_weights(InputBitVector in);
void compute_infill_weights(int block_w, int block_h, int block_d);
void write_decoded(const Decoder &decoder, uint16_t *output);
};
decode_error::type Decoder::decode(const uint8_t *in, uint16_t *output) const
{
Block blk;
InputBitVector in_vec;
memcpy(&in_vec.data, in, 16);
decode_error::type err = blk.decode(*this, in_vec);
if (err == decode_error::ok) {
blk.write_decoded(*this, output);
} else {
/* Fill output with the error colour */
for (int i = 0; i < block_w * block_h * block_d; ++i) {
if (output_unorm8) {
output[i*4+0] = 0xff;
output[i*4+1] = 0;
output[i*4+2] = 0xff;
output[i*4+3] = 0xff;
} else {
assert(!srgb); /* srgb must use unorm8 */
output[i*4+0] = FP16_ONE;
output[i*4+1] = FP16_ZERO;
output[i*4+2] = FP16_ONE;
output[i*4+3] = FP16_ONE;
}
}
}
return err;
}
decode_error::type Block::decode_void_extent(InputBitVector block)
{
/* TODO: 3D */
is_void_extent = true;
void_extent_d = block.get_bits(9, 1);
void_extent_min_s = block.get_bits(12, 13);
void_extent_max_s = block.get_bits(25, 13);
void_extent_min_t = block.get_bits(38, 13);
void_extent_max_t = block.get_bits(51, 13);
void_extent_colour_r = block.get_bits(64, 16);
void_extent_colour_g = block.get_bits(80, 16);
void_extent_colour_b = block.get_bits(96, 16);
void_extent_colour_a = block.get_bits(112, 16);
/* TODO: maybe we should do something useful with the extent coordinates? */
if (void_extent_d) {
return decode_error::unsupported_hdr_void_extent;
}
if (void_extent_min_s == 0x1fff && void_extent_max_s == 0x1fff
&& void_extent_min_t == 0x1fff && void_extent_max_t == 0x1fff) {
/* No extents */
} else {
/* Check for illegal encoding */
if (void_extent_min_s >= void_extent_max_s || void_extent_min_t >= void_extent_max_t) {
return decode_error::invalid_range_in_void_extent;
}
}
return decode_error::ok;
}
decode_error::type Block::decode_block_mode(InputBitVector in)
{
dual_plane = in.get_bits(10, 1);
high_prec = in.get_bits(9, 1);
if (in.get_bits(0, 2) != 0x0) {
wt_range = (in.get_bits(0, 2) << 1) | in.get_bits(4, 1);
int a = in.get_bits(5, 2);
int b = in.get_bits(7, 2);
switch (in.get_bits(2, 2)) {
case 0x0:
if (VERBOSE_DECODE)
in.printf_bits(0, 11, "DHBBAAR00RR");
wt_w = b + 4;
wt_h = a + 2;
break;
case 0x1:
if (VERBOSE_DECODE)
in.printf_bits(0, 11, "DHBBAAR01RR");
wt_w = b + 8;
wt_h = a + 2;
break;
case 0x2:
if (VERBOSE_DECODE)
in.printf_bits(0, 11, "DHBBAAR10RR");
wt_w = a + 2;
wt_h = b + 8;
break;
case 0x3:
if ((b & 0x2) == 0) {
if (VERBOSE_DECODE)
in.printf_bits(0, 11, "DH0BAAR11RR");
wt_w = a + 2;
wt_h = b + 6;
} else {
if (VERBOSE_DECODE)
in.printf_bits(0, 11, "DH1BAAR11RR");
wt_w = (b & 0x1) + 2;
wt_h = a + 2;
}
break;
}
} else {
if (in.get_bits(6, 3) == 0x7) {
if (in.get_bits(0, 9) == 0x1fc) {
if (VERBOSE_DECODE)
in.printf_bits(0, 11, "xx111111100 (void extent)");
return decode_void_extent(in);
} else {
if (VERBOSE_DECODE)
in.printf_bits(0, 11, "xx111xxxx00");
return decode_error::reserved_block_mode_1;
}
}
if (in.get_bits(0, 4) == 0x0) {
if (VERBOSE_DECODE)
in.printf_bits(0, 11, "xxxxxxx0000");
return decode_error::reserved_block_mode_2;
}
wt_range = in.get_bits(1, 3) | in.get_bits(4, 1);
int a = in.get_bits(5, 2);
int b;
switch (in.get_bits(7, 2)) {
case 0x0:
if (VERBOSE_DECODE)
in.printf_bits(0, 11, "DH00AARRR00");
wt_w = 12;
wt_h = a + 2;
break;
case 0x1:
if (VERBOSE_DECODE)
in.printf_bits(0, 11, "DH01AARRR00");
wt_w = a + 2;
wt_h = 12;
break;
case 0x3:
if (in.get_bits(5, 1) == 0) {
if (VERBOSE_DECODE)
in.printf_bits(0, 11, "DH1100RRR00");
wt_w = 6;
wt_h = 10;
} else {
if (VERBOSE_DECODE)
in.printf_bits(0, 11, "DH1101RRR00");
wt_w = 10;
wt_h = 6;
}
break;
case 0x2:
if (VERBOSE_DECODE)
in.printf_bits(0, 11, "BB10AARRR00");
b = in.get_bits(9, 2);
wt_w = a + 6;
wt_h = b + 6;
dual_plane = 0;
high_prec = 0;
break;
}
}
return decode_error::ok;
}
void Block::decode_cem(InputBitVector in)
{
cems[0] = cems[1] = cems[2] = cems[3] = -1;
num_extra_cem_bits = 0;
extra_cem_bits = 0;
if (num_parts > 1) {
partition_index = in.get_bits(13, 10);
if (VERBOSE_DECODE)
in.printf_bits(13, 10, "partition ID (%d)", partition_index);
uint32_t cem = in.get_bits(23, 6);
if ((cem & 0x3) == 0x0) {
cem >>= 2;
cem_base_class = cem >> 2;
is_multi_cem = false;
for (int i = 0; i < num_parts; ++i)
cems[i] = cem;
if (VERBOSE_DECODE)
in.printf_bits(23, 6, "CEM (single, %d)", cem);
} else {
cem_base_class = (cem & 0x3) - 1;
is_multi_cem = true;
if (VERBOSE_DECODE)
in.printf_bits(23, 6, "CEM (multi, base class %d)", cem_base_class);
int offset = 128 - weight_bits;
if (num_parts == 2) {
if (VERBOSE_DECODE) {
in.printf_bits(25, 4, "M0M0 C1 C0");
in.printf_bits(offset - 2, 2, "M1M1");
}
uint32_t c0 = in.get_bits(25, 1);
uint32_t c1 = in.get_bits(26, 1);
extra_cem_bits = c0 + c1;
num_extra_cem_bits = 2;
uint32_t m0 = in.get_bits(27, 2);
uint32_t m1 = in.get_bits(offset - 2, 2);
cems[0] = ((cem_base_class + c0) << 2) | m0;
cems[1] = ((cem_base_class + c1) << 2) | m1;
} else if (num_parts == 3) {
if (VERBOSE_DECODE) {
in.printf_bits(25, 4, "M0 C2 C1 C0");
in.printf_bits(offset - 5, 5, "M2M2 M1M1 M0");
}
uint32_t c0 = in.get_bits(25, 1);
uint32_t c1 = in.get_bits(26, 1);
uint32_t c2 = in.get_bits(27, 1);
extra_cem_bits = c0 + c1 + c2;
num_extra_cem_bits = 5;
uint32_t m0 = in.get_bits(28, 1) | (in.get_bits(128 - weight_bits - 5, 1) << 1);
uint32_t m1 = in.get_bits(offset - 4, 2);
uint32_t m2 = in.get_bits(offset - 2, 2);
cems[0] = ((cem_base_class + c0) << 2) | m0;
cems[1] = ((cem_base_class + c1) << 2) | m1;
cems[2] = ((cem_base_class + c2) << 2) | m2;
} else if (num_parts == 4) {
if (VERBOSE_DECODE) {
in.printf_bits(25, 4, "C3 C2 C1 C0");
in.printf_bits(offset - 8, 8, "M3M3 M2M2 M1M1 M0M0");
}
uint32_t c0 = in.get_bits(25, 1);
uint32_t c1 = in.get_bits(26, 1);
uint32_t c2 = in.get_bits(27, 1);
uint32_t c3 = in.get_bits(28, 1);
extra_cem_bits = c0 + c1 + c2 + c3;
num_extra_cem_bits = 8;
uint32_t m0 = in.get_bits(offset - 8, 2);
uint32_t m1 = in.get_bits(offset - 6, 2);
uint32_t m2 = in.get_bits(offset - 4, 2);
uint32_t m3 = in.get_bits(offset - 2, 2);
cems[0] = ((cem_base_class + c0) << 2) | m0;
cems[1] = ((cem_base_class + c1) << 2) | m1;
cems[2] = ((cem_base_class + c2) << 2) | m2;
cems[3] = ((cem_base_class + c3) << 2) | m3;
} else {
unreachable("");
}
}
colour_endpoint_data_offset = 29;
} else {
uint32_t cem = in.get_bits(13, 4);
cem_base_class = cem >> 2;
is_multi_cem = false;
cems[0] = cem;
partition_index = -1;
if (VERBOSE_DECODE)
in.printf_bits(13, 4, "CEM = %d (class %d)", cem, cem_base_class);
colour_endpoint_data_offset = 17;
}
}
void Block::unpack_colour_endpoints(InputBitVector in)
{
if (ce_trits) {
int offset = colour_endpoint_data_offset;
int bits_left = colour_endpoint_bits;
for (int i = 0; i < num_cem_values; i += 5) {
int bits_to_read = MIN2(bits_left, 8 + ce_bits * 5);
/* If ce_trits then ce_bits <= 6, so bits_to_read <= 38 and we have to use uint64_t */
uint64_t raw = in.get_bits64(offset, bits_to_read);
unpack_trit_block(ce_bits, raw, &colour_endpoints_quant[i]);
if (VERBOSE_DECODE)
in.printf_bits(offset, bits_to_read,
"trits [%d,%d,%d,%d,%d]",
colour_endpoints_quant[i+0], colour_endpoints_quant[i+1],
colour_endpoints_quant[i+2], colour_endpoints_quant[i+3],
colour_endpoints_quant[i+4]);
offset += 8 + ce_bits * 5;
bits_left -= 8 + ce_bits * 5;
}
} else if (ce_quints) {
int offset = colour_endpoint_data_offset;
int bits_left = colour_endpoint_bits;
for (int i = 0; i < num_cem_values; i += 3) {
int bits_to_read = MIN2(bits_left, 7 + ce_bits * 3);
/* If ce_quints then ce_bits <= 5, so bits_to_read <= 22 and we can use uint32_t */
uint32_t raw = in.get_bits(offset, bits_to_read);
unpack_quint_block(ce_bits, raw, &colour_endpoints_quant[i]);
if (VERBOSE_DECODE)
in.printf_bits(offset, bits_to_read,
"quints [%d,%d,%d]",
colour_endpoints_quant[i], colour_endpoints_quant[i+1], colour_endpoints_quant[i+2]);
offset += 7 + ce_bits * 3;
bits_left -= 7 + ce_bits * 3;
}
} else {
assert((colour_endpoint_bits % ce_bits) == 0);
int offset = colour_endpoint_data_offset;
for (int i = 0; i < num_cem_values; i++) {
colour_endpoints_quant[i] = in.get_bits(offset, ce_bits);
if (VERBOSE_DECODE)
in.printf_bits(offset, ce_bits, "bits [%d]", colour_endpoints_quant[i]);
offset += ce_bits;
}
}
}
void Block::decode_colour_endpoints()
{
int cem_values_idx = 0;
for (int part = 0; part < num_parts; ++part) {
uint8_t *v = &colour_endpoints[cem_values_idx];
int v0 = v[0];
int v1 = v[1];
int v2 = v[2];
int v3 = v[3];
int v4 = v[4];
int v5 = v[5];
int v6 = v[6];
int v7 = v[7];
cem_values_idx += ((cems[part] >> 2) + 1) * 2;
uint8x4_t e0, e1;
int s0, s1, L0, L1;
switch (cems[part])
{
case 0:
e0 = uint8x4_t(v0, v0, v0, 0xff);
e1 = uint8x4_t(v1, v1, v1, 0xff);
break;
case 1:
L0 = (v0 >> 2) | (v1 & 0xc0);
L1 = L0 + (v1 & 0x3f);
if (L1 > 0xff)
L1 = 0xff;
e0 = uint8x4_t(L0, L0, L0, 0xff);
e1 = uint8x4_t(L1, L1, L1, 0xff);
break;
case 4:
e0 = uint8x4_t(v0, v0, v0, v2);
e1 = uint8x4_t(v1, v1, v1, v3);
break;
case 5:
bit_transfer_signed(v1, v0);
bit_transfer_signed(v3, v2);
e0 = uint8x4_t(v0, v0, v0, v2);
e1 = uint8x4_t::clamped(v0+v1, v0+v1, v0+v1, v2+v3);
break;
case 6:
e0 = uint8x4_t(v0*v3 >> 8, v1*v3 >> 8, v2*v3 >> 8, 0xff);
e1 = uint8x4_t(v0, v1, v2, 0xff);
break;
case 8:
s0 = v0 + v2 + v4;
s1 = v1 + v3 + v5;
if (s1 >= s0) {
e0 = uint8x4_t(v0, v2, v4, 0xff);
e1 = uint8x4_t(v1, v3, v5, 0xff);
} else {
e0 = blue_contract(v1, v3, v5, 0xff);
e1 = blue_contract(v0, v2, v4, 0xff);
}
break;
case 9:
bit_transfer_signed(v1, v0);
bit_transfer_signed(v3, v2);
bit_transfer_signed(v5, v4);
if (v1 + v3 + v5 >= 0) {
e0 = uint8x4_t(v0, v2, v4, 0xff);
e1 = uint8x4_t::clamped(v0+v1, v2+v3, v4+v5, 0xff);
} else {
e0 = blue_contract_clamped(v0+v1, v2+v3, v4+v5, 0xff);
e1 = blue_contract(v0, v2, v4, 0xff);
}
break;
case 10:
e0 = uint8x4_t(v0*v3 >> 8, v1*v3 >> 8, v2*v3 >> 8, v4);
e1 = uint8x4_t(v0, v1, v2, v5);
break;
case 12:
s0 = v0 + v2 + v4;
s1 = v1 + v3 + v5;
if (s1 >= s0) {
e0 = uint8x4_t(v0, v2, v4, v6);
e1 = uint8x4_t(v1, v3, v5, v7);
} else {
e0 = blue_contract(v1, v3, v5, v7);
e1 = blue_contract(v0, v2, v4, v6);
}
break;
case 13:
bit_transfer_signed(v1, v0);
bit_transfer_signed(v3, v2);
bit_transfer_signed(v5, v4);
bit_transfer_signed(v7, v6);
if (v1 + v3 + v5 >= 0) {
e0 = uint8x4_t(v0, v2, v4, v6);
e1 = uint8x4_t::clamped(v0+v1, v2+v3, v4+v5, v6+v7);
} else {
e0 = blue_contract_clamped(v0+v1, v2+v3, v4+v5, v6+v7);
e1 = blue_contract(v0, v2, v4, v6);
}
break;
default:
/* HDR endpoints not supported; return error colour */
e0 = uint8x4_t(255, 0, 255, 255);
e1 = uint8x4_t(255, 0, 255, 255);
break;
}
endpoints_decoded[0][part] = e0;
endpoints_decoded[1][part] = e1;
if (VERBOSE_DECODE) {
printf("cems[%d]=%d v=[", part, cems[part]);
for (int i = 0; i < (cems[part] >> 2) + 1; ++i) {
if (i)
printf(", ");
printf("%3d", v[i]);
}
printf("] e0=[%3d,%4d,%4d,%4d] e1=[%3d,%4d,%4d,%4d]\n",
e0.v[0], e0.v[1], e0.v[2], e0.v[3],
e1.v[0], e1.v[1], e1.v[2], e1.v[3]);
}
}
}
void Block::unpack_weights(InputBitVector in)
{
if (wt_trits) {
int offset = 128;
int bits_left = weight_bits;
for (int i = 0; i < num_weights; i += 5) {
int bits_to_read = MIN2(bits_left, 8 + 5*wt_bits);
/* If wt_trits then wt_bits <= 3, so bits_to_read <= 23 and we can use uint32_t */
uint32_t raw = in.get_bits_rev(offset, bits_to_read);
unpack_trit_block(wt_bits, raw, &weights_quant[i]);
if (VERBOSE_DECODE)
in.printf_bits(offset - bits_to_read, bits_to_read, "weight trits [%d,%d,%d,%d,%d]",
weights_quant[i+0], weights_quant[i+1],
weights_quant[i+2], weights_quant[i+3],
weights_quant[i+4]);
offset -= 8 + wt_bits * 5;
bits_left -= 8 + wt_bits * 5;
}
} else if (wt_quints) {
int offset = 128;
int bits_left = weight_bits;
for (int i = 0; i < num_weights; i += 3) {
int bits_to_read = MIN2(bits_left, 7 + 3*wt_bits);
/* If wt_quints then wt_bits <= 2, so bits_to_read <= 13 and we can use uint32_t */
uint32_t raw = in.get_bits_rev(offset, bits_to_read);
unpack_quint_block(wt_bits, raw, &weights_quant[i]);
if (VERBOSE_DECODE)
in.printf_bits(offset - bits_to_read, bits_to_read, "weight quints [%d,%d,%d]",
weights_quant[i], weights_quant[i+1], weights_quant[i+2]);
offset -= 7 + wt_bits * 3;
bits_left -= 7 + wt_bits * 3;
}
} else {
int offset = 128;
assert((weight_bits % wt_bits) == 0);
for (int i = 0; i < num_weights; ++i) {
weights_quant[i] = in.get_bits_rev(offset, wt_bits);
if (VERBOSE_DECODE)
in.printf_bits(offset - wt_bits, wt_bits, "weight bits [%d]", weights_quant[i]);
offset -= wt_bits;
}
}
}
void Block::unquantise_weights()
{
assert(num_weights <= (int)ARRAY_SIZE(weights_quant));
assert(num_weights <= (int)ARRAY_SIZE(weights));
memset(weights, 0, sizeof(weights));
for (int i = 0; i < num_weights; ++i) {
uint8_t v = weights_quant[i];
uint8_t w;
if (wt_trits) {
if (wt_bits == 0) {
w = v * 32;
} else {
uint8_t A, B, C, D;
A = (v & 0x1) ? 0x7F : 0x00;
switch (wt_bits) {
case 1:
B = 0;
C = 50;
D = v >> 1;
break;
case 2:
B = (v & 0x2) ? 0x45 : 0x00;
C = 23;
D = v >> 2;
break;
case 3:
B = ((v & 0x6) >> 1) | ((v & 0x6) << 4);
C = 11;
D = v >> 3;
break;
default:
unreachable("");
}
uint16_t T = D * C + B;
T = T ^ A;
T = (A & 0x20) | (T >> 2);
assert(T < 64);
if (T > 32)
T++;
w = T;
}
} else if (wt_quints) {
if (wt_bits == 0) {
w = v * 16;
} else {
uint8_t A, B, C, D;
A = (v & 0x1) ? 0x7F : 0x00;
switch (wt_bits) {
case 1:
B = 0;
C = 28;
D = v >> 1;
break;
case 2:
B = (v & 0x2) ? 0x42 : 0x00;
C = 13;
D = v >> 2;
break;
default:
unreachable("");
}
uint16_t T = D * C + B;
T = T ^ A;
T = (A & 0x20) | (T >> 2);
assert(T < 64);
if (T > 32)
T++;
w = T;
}
weights[i] = w;
} else {
switch (wt_bits) {
case 1: w = v ? 0x3F : 0x00; break;
case 2: w = v | (v << 2) | (v << 4); break;
case 3: w = v | (v << 3); break;
case 4: w = (v >> 2) | (v << 2); break;
case 5: w = (v >> 4) | (v << 1); break;
default: unreachable("");
}
assert(w < 64);
if (w > 32)
w++;
}
weights[i] = w;
}
}
void Block::compute_infill_weights(int block_w, int block_h, int block_d)
{
int Ds = block_w <= 1 ? 0 : (1024 + block_w / 2) / (block_w - 1);
int Dt = block_h <= 1 ? 0 : (1024 + block_h / 2) / (block_h - 1);
int Dr = block_d <= 1 ? 0 : (1024 + block_d / 2) / (block_d - 1);
for (int r = 0; r < block_d; ++r) {
for (int t = 0; t < block_h; ++t) {
for (int s = 0; s < block_w; ++s) {
int cs = Ds * s;
int ct = Dt * t;
int cr = Dr * r;
int gs = (cs * (wt_w - 1) + 32) >> 6;
int gt = (ct * (wt_h - 1) + 32) >> 6;
int gr = (cr * (wt_d - 1) + 32) >> 6;
assert(gs >= 0 && gs <= 176);
assert(gt >= 0 && gt <= 176);
assert(gr >= 0 && gr <= 176);
int js = gs >> 4;
int fs = gs & 0xf;
int jt = gt >> 4;
int ft = gt & 0xf;
int jr = gr >> 4;
int fr = gr & 0xf;
/* TODO: 3D */
(void)jr;
(void)fr;
int w11 = (fs * ft + 8) >> 4;
int w10 = ft - w11;
int w01 = fs - w11;
int w00 = 16 - fs - ft + w11;
if (dual_plane) {
int p00, p01, p10, p11, i0, i1;
int v0 = js + jt * wt_w;
p00 = weights[(v0) * 2];
p01 = weights[(v0 + 1) * 2];
p10 = weights[(v0 + wt_w) * 2];
p11 = weights[(v0 + wt_w + 1) * 2];
i0 = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
p00 = weights[(v0) * 2 + 1];
p01 = weights[(v0 + 1) * 2 + 1];
p10 = weights[(v0 + wt_w) * 2 + 1];
p11 = weights[(v0 + wt_w + 1) * 2 + 1];
assert((v0 + wt_w + 1) * 2 + 1 < (int)ARRAY_SIZE(weights));
i1 = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
assert(0 <= i0 && i0 <= 64);
infill_weights[0][s + t*block_w + r*block_w*block_h] = i0;
infill_weights[1][s + t*block_w + r*block_w*block_h] = i1;
} else {
int p00, p01, p10, p11, i;
int v0 = js + jt * wt_w;
p00 = weights[v0];
p01 = weights[v0 + 1];
p10 = weights[v0 + wt_w];
p11 = weights[v0 + wt_w + 1];
assert(v0 + wt_w + 1 < (int)ARRAY_SIZE(weights));
i = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
assert(0 <= i && i <= 64);
infill_weights[0][s + t*block_w + r*block_w*block_h] = i;
}
}
}
}
}
void Block::unquantise_colour_endpoints()
{
assert(num_cem_values <= (int)ARRAY_SIZE(colour_endpoints_quant));
assert(num_cem_values <= (int)ARRAY_SIZE(colour_endpoints));
for (int i = 0; i < num_cem_values; ++i) {
uint8_t v = colour_endpoints_quant[i];
if (ce_trits) {
uint16_t A, B, C, D;
uint16_t t;
A = (v & 0x1) ? 0x1FF : 0x000;
switch (ce_bits) {
case 1:
B = 0;
C = 204;
D = v >> 1;
break;
case 2:
B = (v & 0x2) ? 0x116 : 0x000;
C = 93;
D = v >> 2;
break;
case 3:
t = ((v >> 1) & 0x3);
B = t | (t << 2) | (t << 7);
C = 44;
D = v >> 3;
break;
case 4:
t = ((v >> 1) & 0x7);
B = t | (t << 6);
C = 22;
D = v >> 4;
break;
case 5:
t = ((v >> 1) & 0xF);
B = (t >> 2) | (t << 5);
C = 11;
D = v >> 5;
break;
case 6:
B = ((v & 0x3E) << 3) | ((v >> 5) & 0x1);
C = 5;
D = v >> 6;
break;
default:
unreachable("");
}
uint16_t T = D * C + B;
T = T ^ A;
T = (A & 0x80) | (T >> 2);
assert(T < 256);
colour_endpoints[i] = T;
} else if (ce_quints) {
uint16_t A, B, C, D;
uint16_t t;
A = (v & 0x1) ? 0x1FF : 0x000;
switch (ce_bits) {
case 1:
B = 0;
C = 113;
D = v >> 1;
break;
case 2:
B = (v & 0x2) ? 0x10C : 0x000;
C = 54;
D = v >> 2;
break;
case 3:
t = ((v >> 1) & 0x3);
B = (t >> 1) | (t << 1) | (t << 7);
C = 26;
D = v >> 3;
break;
case 4:
t = ((v >> 1) & 0x7);
B = (t >> 1) | (t << 6);
C = 13;
D = v >> 4;
break;
case 5:
t = ((v >> 1) & 0xF);
B = (t >> 4) | (t << 5);
C = 6;
D = v >> 5;
break;
default:
unreachable("");
}
uint16_t T = D * C + B;
T = T ^ A;
T = (A & 0x80) | (T >> 2);
assert(T < 256);
colour_endpoints[i] = T;
} else {
switch (ce_bits) {
case 1: v = v ? 0xFF : 0x00; break;
case 2: v = (v << 6) | (v << 4) | (v << 2) | v; break;
case 3: v = (v << 5) | (v << 2) | (v >> 1); break;
case 4: v = (v << 4) | v; break;
case 5: v = (v << 3) | (v >> 2); break;
case 6: v = (v << 2) | (v >> 4); break;
case 7: v = (v << 1) | (v >> 6); break;
case 8: break;
default: unreachable("");
}
colour_endpoints[i] = v;
}
}
}
decode_error::type Block::decode(const Decoder &decoder, InputBitVector in)
{
decode_error::type err;
is_error = false;
bogus_colour_endpoints = false;
bogus_weights = false;
is_void_extent = false;
wt_d = 1;
/* TODO: 3D */
/* TODO: test for all the illegal encodings */
if (VERBOSE_DECODE)
in.printf_bits(0, 128);
err = decode_block_mode(in);
if (err != decode_error::ok)
return err;
if (is_void_extent)
return decode_error::ok;
/* TODO: 3D */
calculate_from_weights();
if (VERBOSE_DECODE)
printf("weights_grid=%dx%dx%d dual_plane=%d num_weights=%d high_prec=%d r=%d range=0..%d (%dt %dq %db) weight_bits=%d\n",
wt_w, wt_h, wt_d, dual_plane, num_weights, high_prec, wt_range, wt_max, wt_trits, wt_quints, wt_bits, weight_bits);
if (wt_w > decoder.block_w || wt_h > decoder.block_h || wt_d > decoder.block_d)
return decode_error::weight_grid_exceeds_block_size;
num_parts = in.get_bits(11, 2) + 1;
if (VERBOSE_DECODE)
in.printf_bits(11, 2, "partitions = %d", num_parts);
if (dual_plane && num_parts > 3)
return decode_error::dual_plane_and_too_many_partitions;
decode_cem(in);
if (VERBOSE_DECODE)
printf("cem=[%d,%d,%d,%d] base_cem_class=%d\n", cems[0], cems[1], cems[2], cems[3], cem_base_class);
int num_cem_pairs = (cem_base_class + 1) * num_parts + extra_cem_bits;
num_cem_values = num_cem_pairs * 2;
calculate_remaining_bits();
err = calculate_colour_endpoints_size();
if (err != decode_error::ok)
return err;
if (VERBOSE_DECODE)
in.printf_bits(colour_endpoint_data_offset, colour_endpoint_bits,
"endpoint data (%d bits, %d vals, %dt %dq %db)",
colour_endpoint_bits, num_cem_values, ce_trits, ce_quints, ce_bits);
unpack_colour_endpoints(in);
if (VERBOSE_DECODE) {
printf("cem values raw =[");
for (int i = 0; i < num_cem_values; i++) {
if (i)
printf(", ");
printf("%3d", colour_endpoints_quant[i]);
}
printf("]\n");
}
if (num_cem_values > 18)
return decode_error::invalid_colour_endpoints_count;
unquantise_colour_endpoints();
if (VERBOSE_DECODE) {
printf("cem values norm=[");
for (int i = 0; i < num_cem_values; i++) {
if (i)
printf(", ");
printf("%3d", colour_endpoints[i]);
}
printf("]\n");
}
decode_colour_endpoints();
if (dual_plane) {
int ccs_offset = 128 - weight_bits - num_extra_cem_bits - 2;
colour_component_selector = in.get_bits(ccs_offset, 2);
if (VERBOSE_DECODE)
in.printf_bits(ccs_offset, 2, "colour component selector = %d", colour_component_selector);
} else {
colour_component_selector = 0;
}
if (VERBOSE_DECODE)
in.printf_bits(128 - weight_bits, weight_bits, "weights (%d bits)", weight_bits);
if (num_weights > 64)
return decode_error::invalid_num_weights;
if (weight_bits < 24 || weight_bits > 96)
return decode_error::invalid_weight_bits;
unpack_weights(in);
unquantise_weights();
if (VERBOSE_DECODE) {
printf("weights=[");
for (int i = 0; i < num_weights; ++i) {
if (i)
printf(", ");
printf("%d", weights[i]);
}
printf("]\n");
for (int plane = 0; plane <= dual_plane; ++plane) {
printf("weights (plane %d):\n", plane);
int i = 0;
(void)i;
for (int r = 0; r < wt_d; ++r) {
for (int t = 0; t < wt_h; ++t) {
for (int s = 0; s < wt_w; ++s) {
printf("%3d", weights[i++ * (1 + dual_plane) + plane]);
}
printf("\n");
}
if (r < wt_d - 1)
printf("\n");
}
}
}
compute_infill_weights(decoder.block_w, decoder.block_h, decoder.block_d);
if (VERBOSE_DECODE) {
for (int plane = 0; plane <= dual_plane; ++plane) {
printf("infilled weights (plane %d):\n", plane);
int i = 0;
(void)i;
for (int r = 0; r < decoder.block_d; ++r) {
for (int t = 0; t < decoder.block_h; ++t) {
for (int s = 0; s < decoder.block_w; ++s) {
printf("%3d", infill_weights[plane][i++]);
}
printf("\n");
}
if (r < decoder.block_d - 1)
printf("\n");
}
}
}
if (VERBOSE_DECODE)
printf("\n");
return decode_error::ok;
}
void Block::write_decoded(const Decoder &decoder, uint16_t *output)
{
/* sRGB can only be stored as unorm8. */
assert(!decoder.srgb || decoder.output_unorm8);
if (is_void_extent) {
for (int idx = 0; idx < decoder.block_w*decoder.block_h*decoder.block_d; ++idx) {
if (decoder.output_unorm8) {
if (decoder.srgb) {
output[idx*4+0] = void_extent_colour_r >> 8;
output[idx*4+1] = void_extent_colour_g >> 8;
output[idx*4+2] = void_extent_colour_b >> 8;
} else {
output[idx*4+0] = uint16_div_64k_to_half_to_unorm8(void_extent_colour_r);
output[idx*4+1] = uint16_div_64k_to_half_to_unorm8(void_extent_colour_g);
output[idx*4+2] = uint16_div_64k_to_half_to_unorm8(void_extent_colour_b);
}
output[idx*4+3] = uint16_div_64k_to_half_to_unorm8(void_extent_colour_a);
} else {
/* Store the color as FP16. */
output[idx*4+0] = _mesa_uint16_div_64k_to_half(void_extent_colour_r);
output[idx*4+1] = _mesa_uint16_div_64k_to_half(void_extent_colour_g);
output[idx*4+2] = _mesa_uint16_div_64k_to_half(void_extent_colour_b);
output[idx*4+3] = _mesa_uint16_div_64k_to_half(void_extent_colour_a);
}
}
return;
}
int small_block = (decoder.block_w * decoder.block_h * decoder.block_d) < 31;
int idx = 0;
for (int z = 0; z < decoder.block_d; ++z) {
for (int y = 0; y < decoder.block_h; ++y) {
for (int x = 0; x < decoder.block_w; ++x) {
int partition;
if (num_parts > 1) {
partition = select_partition(partition_index, x, y, z, num_parts, small_block);
assert(partition < num_parts);
} else {
partition = 0;
}
/* TODO: HDR */
uint8x4_t e0 = endpoints_decoded[0][partition];
uint8x4_t e1 = endpoints_decoded[1][partition];
uint16_t c0[4], c1[4];
/* Expand to 16 bits. */
if (decoder.srgb) {
c0[0] = (uint16_t)((e0.v[0] << 8) | 0x80);
c0[1] = (uint16_t)((e0.v[1] << 8) | 0x80);
c0[2] = (uint16_t)((e0.v[2] << 8) | 0x80);
c0[3] = (uint16_t)((e0.v[3] << 8) | 0x80);
c1[0] = (uint16_t)((e1.v[0] << 8) | 0x80);
c1[1] = (uint16_t)((e1.v[1] << 8) | 0x80);
c1[2] = (uint16_t)((e1.v[2] << 8) | 0x80);
c1[3] = (uint16_t)((e1.v[3] << 8) | 0x80);
} else {
c0[0] = (uint16_t)((e0.v[0] << 8) | e0.v[0]);
c0[1] = (uint16_t)((e0.v[1] << 8) | e0.v[1]);
c0[2] = (uint16_t)((e0.v[2] << 8) | e0.v[2]);
c0[3] = (uint16_t)((e0.v[3] << 8) | e0.v[3]);
c1[0] = (uint16_t)((e1.v[0] << 8) | e1.v[0]);
c1[1] = (uint16_t)((e1.v[1] << 8) | e1.v[1]);
c1[2] = (uint16_t)((e1.v[2] << 8) | e1.v[2]);
c1[3] = (uint16_t)((e1.v[3] << 8) | e1.v[3]);
}
int w[4];
if (dual_plane) {
int w0 = infill_weights[0][idx];
int w1 = infill_weights[1][idx];
w[0] = w[1] = w[2] = w[3] = w0;
w[colour_component_selector] = w1;
} else {
int w0 = infill_weights[0][idx];
w[0] = w[1] = w[2] = w[3] = w0;
}
/* Interpolate to produce UNORM16, applying weights. */
uint16_t c[4] = {
(uint16_t)((c0[0] * (64 - w[0]) + c1[0] * w[0] + 32) >> 6),
(uint16_t)((c0[1] * (64 - w[1]) + c1[1] * w[1] + 32) >> 6),
(uint16_t)((c0[2] * (64 - w[2]) + c1[2] * w[2] + 32) >> 6),
(uint16_t)((c0[3] * (64 - w[3]) + c1[3] * w[3] + 32) >> 6),
};
if (decoder.output_unorm8) {
if (decoder.srgb) {
output[idx*4+0] = c[0] >> 8;
output[idx*4+1] = c[1] >> 8;
output[idx*4+2] = c[2] >> 8;
} else {
output[idx*4+0] = c[0] == 65535 ? 0xff : uint16_div_64k_to_half_to_unorm8(c[0]);
output[idx*4+1] = c[1] == 65535 ? 0xff : uint16_div_64k_to_half_to_unorm8(c[1]);
output[idx*4+2] = c[2] == 65535 ? 0xff : uint16_div_64k_to_half_to_unorm8(c[2]);
}
output[idx*4+3] = c[3] == 65535 ? 0xff : uint16_div_64k_to_half_to_unorm8(c[3]);
} else {
/* Store the color as FP16. */
output[idx*4+0] = c[0] == 65535 ? FP16_ONE : _mesa_uint16_div_64k_to_half(c[0]);
output[idx*4+1] = c[1] == 65535 ? FP16_ONE : _mesa_uint16_div_64k_to_half(c[1]);
output[idx*4+2] = c[2] == 65535 ? FP16_ONE : _mesa_uint16_div_64k_to_half(c[2]);
output[idx*4+3] = c[3] == 65535 ? FP16_ONE : _mesa_uint16_div_64k_to_half(c[3]);
}
idx++;
}
}
}
}
void Block::calculate_from_weights()
{
wt_trits = 0;
wt_quints = 0;
wt_bits = 0;
switch (high_prec) {
case 0:
switch (wt_range) {
case 0x2: wt_max = 1; wt_bits = 1; break;
case 0x3: wt_max = 2; wt_trits = 1; break;
case 0x4: wt_max = 3; wt_bits = 2; break;
case 0x5: wt_max = 4; wt_quints = 1; break;
case 0x6: wt_max = 5; wt_trits = 1; wt_bits = 1; break;
case 0x7: wt_max = 7; wt_bits = 3; break;
default: abort();
}
break;
case 1:
switch (wt_range) {
case 0x2: wt_max = 9; wt_quints = 1; wt_bits = 1; break;
case 0x3: wt_max = 11; wt_trits = 1; wt_bits = 2; break;
case 0x4: wt_max = 15; wt_bits = 4; break;
case 0x5: wt_max = 19; wt_quints = 1; wt_bits = 2; break;
case 0x6: wt_max = 23; wt_trits = 1; wt_bits = 3; break;
case 0x7: wt_max = 31; wt_bits = 5; break;
default: abort();
}
break;
}
assert(wt_trits || wt_quints || wt_bits);
num_weights = wt_w * wt_h * wt_d;
if (dual_plane)
num_weights *= 2;
weight_bits =
(num_weights * 8 * wt_trits + 4) / 5
+ (num_weights * 7 * wt_quints + 2) / 3
+ num_weights * wt_bits;
}
void Block::calculate_remaining_bits()
{
int config_bits;
if (num_parts > 1) {
if (!is_multi_cem)
config_bits = 29;
else
config_bits = 25 + 3 * num_parts;
} else {
config_bits = 17;
}
if (dual_plane)
config_bits += 2;
remaining_bits = 128 - config_bits - weight_bits;
}
decode_error::type Block::calculate_colour_endpoints_size()
{
/* Specified as illegal */
if (remaining_bits < (13 * num_cem_values + 4) / 5) {
colour_endpoint_bits = ce_max = ce_trits = ce_quints = ce_bits = 0;
return decode_error::invalid_colour_endpoints_size;
}
/* Find the largest cem_ranges that fits within remaining_bits */
for (int i = ARRAY_SIZE(cem_ranges)-1; i >= 0; --i) {
int cem_bits;
cem_bits = (num_cem_values * 8 * cem_ranges[i].t + 4) / 5
+ (num_cem_values * 7 * cem_ranges[i].q + 2) / 3
+ num_cem_values * cem_ranges[i].b;
if (cem_bits <= remaining_bits)
{
colour_endpoint_bits = cem_bits;
ce_max = cem_ranges[i].max;
ce_trits = cem_ranges[i].t;
ce_quints = cem_ranges[i].q;
ce_bits = cem_ranges[i].b;
return decode_error::ok;
}
}
assert(0);
return decode_error::invalid_colour_endpoints_size;
}
/**
* Decode ASTC 2D LDR texture data.
*
* \param src_width in pixels
* \param src_height in pixels
* \param dst_stride in bytes
*/
extern "C" void
_mesa_unpack_astc_2d_ldr(uint8_t *dst_row,
unsigned dst_stride,
const uint8_t *src_row,
unsigned src_stride,
unsigned src_width,
unsigned src_height,
mesa_format format)
{
assert(_mesa_is_format_astc_2d(format));
bool srgb = _mesa_is_format_srgb(format);
unsigned blk_w, blk_h;
_mesa_get_format_block_size(format, &blk_w, &blk_h);
const unsigned block_size = 16;
unsigned x_blocks = (src_width + blk_w - 1) / blk_w;
unsigned y_blocks = (src_height + blk_h - 1) / blk_h;
Decoder dec(blk_w, blk_h, 1, srgb, true);
for (unsigned y = 0; y < y_blocks; ++y) {
for (unsigned x = 0; x < x_blocks; ++x) {
/* Same size as the largest block. */
uint16_t block_out[12 * 12 * 4];
dec.decode(src_row + x * block_size, block_out);
/* This can be smaller with NPOT dimensions. */
unsigned dst_blk_w = MIN2(blk_w, src_width - x*blk_w);
unsigned dst_blk_h = MIN2(blk_h, src_height - y*blk_h);
for (unsigned sub_y = 0; sub_y < dst_blk_h; ++sub_y) {
for (unsigned sub_x = 0; sub_x < dst_blk_w; ++sub_x) {
uint8_t *dst = dst_row + sub_y * dst_stride +
(x * blk_w + sub_x) * 4;
const uint16_t *src = &block_out[(sub_y * blk_w + sub_x) * 4];
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
}
}
}
src_row += src_stride;
dst_row += dst_stride * blk_h;
}
}