blob: 2d1b14b0b882f17517f653127a25d65ab82c70c7 [file] [log] [blame]
/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
* (C) Copyright IBM Corporation 2006
* Copyright (C) 2009 VMware, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file arrayobj.c
*
* Implementation of Vertex Array Objects (VAOs), from OpenGL 3.1+ /
* the GL_ARB_vertex_array_object extension.
*
* \todo
* The code in this file borrows a lot from bufferobj.c. There's a certain
* amount of cruft left over from that origin that may be unnecessary.
*
* \author Ian Romanick <idr@us.ibm.com>
* \author Brian Paul
*/
#include "glheader.h"
#include "hash.h"
#include "image.h"
#include "context.h"
#include "bufferobj.h"
#include "arrayobj.h"
#include "macros.h"
#include "mtypes.h"
#include "state.h"
#include "varray.h"
#include "util/bitscan.h"
#include "util/u_atomic.h"
#include "util/u_math.h"
#include "util/u_memory.h"
const GLubyte
_mesa_vao_attribute_map[ATTRIBUTE_MAP_MODE_MAX][VERT_ATTRIB_MAX] =
{
/* ATTRIBUTE_MAP_MODE_IDENTITY
*
* Grab vertex processing attribute VERT_ATTRIB_POS from
* the VAO attribute VERT_ATTRIB_POS, and grab vertex processing
* attribute VERT_ATTRIB_GENERIC0 from the VAO attribute
* VERT_ATTRIB_GENERIC0.
*/
{
VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
},
/* ATTRIBUTE_MAP_MODE_POSITION
*
* Grab vertex processing attribute VERT_ATTRIB_POS as well as
* vertex processing attribute VERT_ATTRIB_GENERIC0 from the
* VAO attribute VERT_ATTRIB_POS.
*/
{
VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
VERT_ATTRIB_POS, /* VERT_ATTRIB_GENERIC0 */
VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
},
/* ATTRIBUTE_MAP_MODE_GENERIC0
*
* Grab vertex processing attribute VERT_ATTRIB_POS as well as
* vertex processing attribute VERT_ATTRIB_GENERIC0 from the
* VAO attribute VERT_ATTRIB_GENERIC0.
*/
{
VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_POS */
VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
}
};
/**
* Look up the array object for the given ID.
*
* \returns
* Either a pointer to the array object with the specified ID or \c NULL for
* a non-existent ID. The spec defines ID 0 as being technically
* non-existent.
*/
struct gl_vertex_array_object *
_mesa_lookup_vao(struct gl_context *ctx, GLuint id)
{
/* The ARB_direct_state_access specification says:
*
* "<vaobj> is [compatibility profile:
* zero, indicating the default vertex array object, or]
* the name of the vertex array object."
*/
if (id == 0) {
if (ctx->API == API_OPENGL_COMPAT)
return ctx->Array.DefaultVAO;
return NULL;
} else {
struct gl_vertex_array_object *vao;
if (ctx->Array.LastLookedUpVAO &&
ctx->Array.LastLookedUpVAO->Name == id) {
vao = ctx->Array.LastLookedUpVAO;
} else {
vao = (struct gl_vertex_array_object *)
_mesa_HashLookupLocked(ctx->Array.Objects, id);
_mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
}
return vao;
}
}
/**
* Looks up the array object for the given ID.
*
* While _mesa_lookup_vao doesn't generate an error if the object does not
* exist, this function comes in two variants.
* If is_ext_dsa is false, this function generates a GL_INVALID_OPERATION
* error if the array object does not exist. It also returns the default
* array object when ctx is a compatibility profile context and id is zero.
* If is_ext_dsa is true, 0 is not a valid name. If the name exists but
* the object has never been bound, it is initialized.
*/
struct gl_vertex_array_object *
_mesa_lookup_vao_err(struct gl_context *ctx, GLuint id,
bool is_ext_dsa, const char *caller)
{
/* The ARB_direct_state_access specification says:
*
* "<vaobj> is [compatibility profile:
* zero, indicating the default vertex array object, or]
* the name of the vertex array object."
*/
if (id == 0) {
if (is_ext_dsa || ctx->API == API_OPENGL_CORE) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(zero is not valid vaobj name%s)",
caller,
is_ext_dsa ? "" : " in a core profile context");
return NULL;
}
return ctx->Array.DefaultVAO;
} else {
struct gl_vertex_array_object *vao;
if (ctx->Array.LastLookedUpVAO &&
ctx->Array.LastLookedUpVAO->Name == id) {
vao = ctx->Array.LastLookedUpVAO;
} else {
vao = (struct gl_vertex_array_object *)
_mesa_HashLookupLocked(ctx->Array.Objects, id);
/* The ARB_direct_state_access specification says:
*
* "An INVALID_OPERATION error is generated if <vaobj> is not
* [compatibility profile: zero or] the name of an existing
* vertex array object."
*/
if (!vao || (!is_ext_dsa && !vao->EverBound)) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"%s(non-existent vaobj=%u)", caller, id);
return NULL;
}
/* The EXT_direct_state_access specification says:
*
* "If the vertex array object named by the vaobj parameter has not
* been previously bound but has been generated (without subsequent
* deletion) by GenVertexArrays, the GL first creates a new state
* vector in the same manner as when BindVertexArray creates a new
* vertex array object."
*/
if (vao && is_ext_dsa && !vao->EverBound)
vao->EverBound = true;
_mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
}
return vao;
}
}
/**
* For all the vertex binding points in the array object, unbind any pointers
* to any buffer objects (VBOs).
* This is done just prior to array object destruction.
*/
void
_mesa_unbind_array_object_vbos(struct gl_context *ctx,
struct gl_vertex_array_object *obj)
{
GLuint i;
for (i = 0; i < ARRAY_SIZE(obj->BufferBinding); i++)
_mesa_reference_buffer_object(ctx, &obj->BufferBinding[i].BufferObj, NULL);
}
/**
* Allocate and initialize a new vertex array object.
*/
struct gl_vertex_array_object *
_mesa_new_vao(struct gl_context *ctx, GLuint name)
{
struct gl_vertex_array_object *obj = MALLOC_STRUCT(gl_vertex_array_object);
if (obj)
_mesa_initialize_vao(ctx, obj, name);
return obj;
}
/**
* Delete an array object.
*/
void
_mesa_delete_vao(struct gl_context *ctx, struct gl_vertex_array_object *obj)
{
_mesa_unbind_array_object_vbos(ctx, obj);
_mesa_reference_buffer_object(ctx, &obj->IndexBufferObj, NULL);
free(obj->Label);
free(obj);
}
/**
* Set ptr to vao w/ reference counting.
* Note: this should only be called from the _mesa_reference_vao()
* inline function.
*/
void
_mesa_reference_vao_(struct gl_context *ctx,
struct gl_vertex_array_object **ptr,
struct gl_vertex_array_object *vao)
{
assert(*ptr != vao);
if (*ptr) {
/* Unreference the old array object */
struct gl_vertex_array_object *oldObj = *ptr;
bool deleteFlag;
if (oldObj->SharedAndImmutable) {
deleteFlag = p_atomic_dec_zero(&oldObj->RefCount);
} else {
assert(oldObj->RefCount > 0);
oldObj->RefCount--;
deleteFlag = (oldObj->RefCount == 0);
}
if (deleteFlag)
_mesa_delete_vao(ctx, oldObj);
*ptr = NULL;
}
assert(!*ptr);
if (vao) {
/* reference new array object */
if (vao->SharedAndImmutable) {
p_atomic_inc(&vao->RefCount);
} else {
assert(vao->RefCount > 0);
vao->RefCount++;
}
*ptr = vao;
}
}
/**
* Initialize a gl_vertex_array_object's arrays.
*/
void
_mesa_initialize_vao(struct gl_context *ctx,
struct gl_vertex_array_object *vao,
GLuint name)
{
memcpy(vao, &ctx->Array.DefaultVAOState, sizeof(*vao));
vao->Name = name;
}
/**
* Compute the offset range for the provided binding.
*
* This is a helper function for the below.
*/
static void
compute_vbo_offset_range(const struct gl_vertex_array_object *vao,
const struct gl_vertex_buffer_binding *binding,
GLsizeiptr* min, GLsizeiptr* max)
{
/* The function is meant to work on VBO bindings */
assert(binding->BufferObj);
/* Start with an inverted range of relative offsets. */
GLuint min_offset = ~(GLuint)0;
GLuint max_offset = 0;
/* We work on the unmapped originaly VAO array entries. */
GLbitfield mask = vao->Enabled & binding->_BoundArrays;
/* The binding should be active somehow, not to return inverted ranges */
assert(mask);
while (mask) {
const int i = u_bit_scan(&mask);
const GLuint off = vao->VertexAttrib[i].RelativeOffset;
min_offset = MIN2(off, min_offset);
max_offset = MAX2(off, max_offset);
}
*min = binding->Offset + (GLsizeiptr)min_offset;
*max = binding->Offset + (GLsizeiptr)max_offset;
}
/**
* Update the unique binding and pos/generic0 map tracking in the vao.
*
* The idea is to build up information in the vao so that a consuming
* backend can execute the following to set up buffer and vertex element
* information:
*
* const GLbitfield inputs_read = VERT_BIT_ALL; // backend vp inputs
*
* // Attribute data is in a VBO.
* GLbitfield vbomask = inputs_read & _mesa_draw_vbo_array_bits(ctx);
* while (vbomask) {
* // The attribute index to start pulling a binding
* const gl_vert_attrib i = ffs(vbomask) - 1;
* const struct gl_vertex_buffer_binding *const binding
* = _mesa_draw_buffer_binding(vao, i);
*
* <insert code to handle the vertex buffer object at binding>
*
* const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
* GLbitfield attrmask = vbomask & boundmask;
* assert(attrmask);
* // Walk attributes belonging to the binding
* while (attrmask) {
* const gl_vert_attrib attr = u_bit_scan(&attrmask);
* const struct gl_array_attributes *const attrib
* = _mesa_draw_array_attrib(vao, attr);
*
* <insert code to handle the vertex element refering to the binding>
* }
* vbomask &= ~boundmask;
* }
*
* // Process user space buffers
* GLbitfield usermask = inputs_read & _mesa_draw_user_array_bits(ctx);
* while (usermask) {
* // The attribute index to start pulling a binding
* const gl_vert_attrib i = ffs(usermask) - 1;
* const struct gl_vertex_buffer_binding *const binding
* = _mesa_draw_buffer_binding(vao, i);
*
* <insert code to handle a set of interleaved user space arrays at binding>
*
* const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
* GLbitfield attrmask = usermask & boundmask;
* assert(attrmask);
* // Walk interleaved attributes with a common stride and instance divisor
* while (attrmask) {
* const gl_vert_attrib attr = u_bit_scan(&attrmask);
* const struct gl_array_attributes *const attrib
* = _mesa_draw_array_attrib(vao, attr);
*
* <insert code to handle non vbo vertex arrays>
* }
* usermask &= ~boundmask;
* }
*
* // Process values that should have better been uniforms in the application
* GLbitfield curmask = inputs_read & _mesa_draw_current_bits(ctx);
* while (curmask) {
* const gl_vert_attrib attr = u_bit_scan(&curmask);
* const struct gl_array_attributes *const attrib
* = _mesa_draw_current_attrib(ctx, attr);
*
* <insert code to handle current values>
* }
*
*
* Note that the scan below must not incoporate any context state.
* The rationale is that once a VAO is finalized it should not
* be touched anymore. That means, do not incorporate the
* gl_context::Array._DrawVAOEnabledAttribs bitmask into this scan.
* A backend driver may further reduce the handled vertex processing
* inputs based on their vertex shader inputs. But scanning for
* collapsable binding points to reduce relocs is done based on the
* enabled arrays.
* Also VAOs may be shared between contexts due to their use in dlists
* thus no context state should bleed into the VAO.
*/
void
_mesa_update_vao_derived_arrays(struct gl_context *ctx,
struct gl_vertex_array_object *vao)
{
/* Make sure we do not run into problems with shared objects */
assert(!vao->SharedAndImmutable || vao->NewArrays == 0);
/* Limit used for common binding scanning below. */
const GLsizeiptr MaxRelativeOffset =
ctx->Const.MaxVertexAttribRelativeOffset;
/* The gl_vertex_array_object::_AttributeMapMode denotes the way
* VERT_ATTRIB_{POS,GENERIC0} mapping is done.
*
* This mapping is used to map between the OpenGL api visible
* VERT_ATTRIB_* arrays to mesa driver arrayinputs or shader inputs.
* The mapping only depends on the enabled bits of the
* VERT_ATTRIB_{POS,GENERIC0} arrays and is tracked in the VAO.
*
* This map needs to be applied when finally translating to the bitmasks
* as consumed by the driver backends. The duplicate scanning is here
* can as well be done in the OpenGL API numbering without this map.
*/
const gl_attribute_map_mode mode = vao->_AttributeMapMode;
/* Enabled array bits. */
const GLbitfield enabled = vao->Enabled;
/* VBO array bits. */
const GLbitfield vbos = vao->VertexAttribBufferMask;
const GLbitfield divisor_is_nonzero = vao->NonZeroDivisorMask;
/* Compute and store effectively enabled and mapped vbo arrays */
vao->_EffEnabledVBO = _mesa_vao_enable_to_vp_inputs(mode, enabled & vbos);
vao->_EffEnabledNonZeroDivisor =
_mesa_vao_enable_to_vp_inputs(mode, enabled & divisor_is_nonzero);
/* Fast path when the VAO is updated too often. */
if (vao->IsDynamic)
return;
/* More than 4 updates turn the VAO to dynamic. */
if (ctx->Const.AllowDynamicVAOFastPath && ++vao->NumUpdates > 4) {
vao->IsDynamic = true;
return;
}
/* Walk those enabled arrays that have a real vbo attached */
GLbitfield mask = enabled;
while (mask) {
/* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
const int i = ffs(mask) - 1;
/* The binding from the first to be processed attribute. */
const GLuint bindex = vao->VertexAttrib[i].BufferBindingIndex;
struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
/* The scan goes different for user space arrays than vbos */
if (binding->BufferObj) {
/* The bound arrays. */
const GLbitfield bound = enabled & binding->_BoundArrays;
/* Start this current effective binding with the actual bound arrays */
GLbitfield eff_bound_arrays = bound;
/*
* If there is nothing left to scan just update the effective binding
* information. If the VAO is already only using a single binding point
* we end up here. So the overhead of this scan for an application
* carefully preparing the VAO for draw is low.
*/
GLbitfield scanmask = mask & vbos & ~bound;
/* Is there something left to scan? */
if (scanmask == 0) {
/* Just update the back reference from the attrib to the binding and
* the effective offset.
*/
GLbitfield attrmask = eff_bound_arrays;
while (attrmask) {
const int j = u_bit_scan(&attrmask);
struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
/* Update the index into the common binding point and offset */
attrib2->_EffBufferBindingIndex = bindex;
attrib2->_EffRelativeOffset = attrib2->RelativeOffset;
assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
}
/* Finally this is the set of effectively bound arrays with the
* original binding offset.
*/
binding->_EffOffset = binding->Offset;
/* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
binding->_EffBoundArrays =
_mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
} else {
/* In the VBO case, scan for attribute/binding
* combinations with relative bindings in the range of
* [0, ctx->Const.MaxVertexAttribRelativeOffset].
* Note that this does also go beyond just interleaved arrays
* as long as they use the same VBO, binding parameters and the
* offsets stay within bounds that the backend still can handle.
*/
GLsizeiptr min_offset, max_offset;
compute_vbo_offset_range(vao, binding, &min_offset, &max_offset);
assert(max_offset <= min_offset + MaxRelativeOffset);
/* Now scan. */
while (scanmask) {
/* Do not use u_bit_scan as we can walk multiple
* attrib arrays at once
*/
const int j = ffs(scanmask) - 1;
const struct gl_array_attributes *attrib2 =
&vao->VertexAttrib[j];
const struct gl_vertex_buffer_binding *binding2 =
&vao->BufferBinding[attrib2->BufferBindingIndex];
/* Remove those attrib bits from the mask that are bound to the
* same effective binding point.
*/
const GLbitfield bound2 = enabled & binding2->_BoundArrays;
scanmask &= ~bound2;
/* Check if we have an identical binding */
if (binding->Stride != binding2->Stride)
continue;
if (binding->InstanceDivisor != binding2->InstanceDivisor)
continue;
if (binding->BufferObj != binding2->BufferObj)
continue;
/* Check if we can fold both bindings into a common binding */
GLsizeiptr min_offset2, max_offset2;
compute_vbo_offset_range(vao, binding2,
&min_offset2, &max_offset2);
/* If the relative offset is within the limits ... */
if (min_offset + MaxRelativeOffset < max_offset2)
continue;
if (min_offset2 + MaxRelativeOffset < max_offset)
continue;
/* ... add this array to the effective binding */
eff_bound_arrays |= bound2;
min_offset = MIN2(min_offset, min_offset2);
max_offset = MAX2(max_offset, max_offset2);
assert(max_offset <= min_offset + MaxRelativeOffset);
}
/* Update the back reference from the attrib to the binding */
GLbitfield attrmask = eff_bound_arrays;
while (attrmask) {
const int j = u_bit_scan(&attrmask);
struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
const struct gl_vertex_buffer_binding *binding2 =
&vao->BufferBinding[attrib2->BufferBindingIndex];
/* Update the index into the common binding point and offset */
attrib2->_EffBufferBindingIndex = bindex;
attrib2->_EffRelativeOffset =
binding2->Offset + attrib2->RelativeOffset - min_offset;
assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
}
/* Finally this is the set of effectively bound arrays */
binding->_EffOffset = min_offset;
/* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
binding->_EffBoundArrays =
_mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
}
/* Mark all the effective bound arrays as processed. */
mask &= ~eff_bound_arrays;
} else {
/* Scanning of common bindings for user space arrays.
*/
const struct gl_array_attributes *attrib = &vao->VertexAttrib[i];
const GLbitfield bound = VERT_BIT(i);
/* Note that user space array pointers can only happen using a one
* to one binding point to array mapping.
* The OpenGL 4.x/ARB_vertex_attrib_binding api does not support
* user space arrays collected at multiple binding points.
* The only provider of user space interleaved arrays with a single
* binding point is the mesa internal vbo module. But that one
* provides a perfect interleaved set of arrays.
*
* If this would not be true we would potentially get attribute arrays
* with user space pointers that may not lie within the
* MaxRelativeOffset range but still attached to a single binding.
* Then we would need to store the effective attribute and binding
* grouping information in a seperate array beside
* gl_array_attributes/gl_vertex_buffer_binding.
*/
assert(util_bitcount(binding->_BoundArrays & vao->Enabled) == 1
|| (vao->Enabled & ~binding->_BoundArrays) == 0);
/* Start this current effective binding with the array */
GLbitfield eff_bound_arrays = bound;
const GLubyte *ptr = attrib->Ptr;
unsigned vertex_end = attrib->Format._ElementSize;
/* Walk other user space arrays and see which are interleaved
* using the same binding parameters.
*/
GLbitfield scanmask = mask & ~vbos & ~bound;
while (scanmask) {
const int j = u_bit_scan(&scanmask);
const struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
const struct gl_vertex_buffer_binding *binding2 =
&vao->BufferBinding[attrib2->BufferBindingIndex];
/* See the comment at the same assert above. */
assert(util_bitcount(binding2->_BoundArrays & vao->Enabled) == 1
|| (vao->Enabled & ~binding->_BoundArrays) == 0);
/* Check if we have an identical binding */
if (binding->Stride != binding2->Stride)
continue;
if (binding->InstanceDivisor != binding2->InstanceDivisor)
continue;
if (ptr <= attrib2->Ptr) {
if (ptr + binding->Stride < attrib2->Ptr +
attrib2->Format._ElementSize)
continue;
unsigned end = attrib2->Ptr + attrib2->Format._ElementSize - ptr;
vertex_end = MAX2(vertex_end, end);
} else {
if (attrib2->Ptr + binding->Stride < ptr + vertex_end)
continue;
vertex_end += (GLsizei)(ptr - attrib2->Ptr);
ptr = attrib2->Ptr;
}
/* User space buffer object */
assert(!binding2->BufferObj);
eff_bound_arrays |= VERT_BIT(j);
}
/* Update the back reference from the attrib to the binding */
GLbitfield attrmask = eff_bound_arrays;
while (attrmask) {
const int j = u_bit_scan(&attrmask);
struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
/* Update the index into the common binding point and the offset */
attrib2->_EffBufferBindingIndex = bindex;
attrib2->_EffRelativeOffset = attrib2->Ptr - ptr;
assert(attrib2->_EffRelativeOffset <= binding->Stride);
}
/* Finally this is the set of effectively bound arrays */
binding->_EffOffset = (GLintptr)ptr;
/* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
binding->_EffBoundArrays =
_mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
/* Mark all the effective bound arrays as processed. */
mask &= ~eff_bound_arrays;
}
}
#ifndef NDEBUG
/* Make sure the above code works as expected. */
for (gl_vert_attrib attr = 0; attr < VERT_ATTRIB_MAX; ++attr) {
/* Query the original api defined attrib/binding information ... */
const unsigned char *const map =_mesa_vao_attribute_map[mode];
if (vao->Enabled & VERT_BIT(map[attr])) {
const struct gl_array_attributes *attrib =
&vao->VertexAttrib[map[attr]];
const struct gl_vertex_buffer_binding *binding =
&vao->BufferBinding[attrib->BufferBindingIndex];
/* ... and compare that with the computed attrib/binding */
const struct gl_vertex_buffer_binding *binding2 =
&vao->BufferBinding[attrib->_EffBufferBindingIndex];
assert(binding->Stride == binding2->Stride);
assert(binding->InstanceDivisor == binding2->InstanceDivisor);
assert(binding->BufferObj == binding2->BufferObj);
if (binding->BufferObj) {
assert(attrib->_EffRelativeOffset <= MaxRelativeOffset);
assert(binding->Offset + attrib->RelativeOffset ==
binding2->_EffOffset + attrib->_EffRelativeOffset);
} else {
assert(attrib->_EffRelativeOffset < binding->Stride);
assert((GLintptr)attrib->Ptr ==
binding2->_EffOffset + attrib->_EffRelativeOffset);
}
}
}
#endif
}
void
_mesa_set_vao_immutable(struct gl_context *ctx,
struct gl_vertex_array_object *vao)
{
_mesa_update_vao_derived_arrays(ctx, vao);
vao->NewArrays = 0;
vao->SharedAndImmutable = true;
}
bool
_mesa_all_varyings_in_vbos(const struct gl_vertex_array_object *vao)
{
/* Walk those enabled arrays that have the default vbo attached */
GLbitfield mask = vao->Enabled & ~vao->VertexAttribBufferMask;
while (mask) {
/* Do not use u_bit_scan64 as we can walk multiple
* attrib arrays at once
*/
const int i = ffs(mask) - 1;
const struct gl_array_attributes *attrib_array =
&vao->VertexAttrib[i];
const struct gl_vertex_buffer_binding *buffer_binding =
&vao->BufferBinding[attrib_array->BufferBindingIndex];
/* We have already masked out vao->VertexAttribBufferMask */
assert(!buffer_binding->BufferObj);
/* Bail out once we find the first non vbo with a non zero stride */
if (buffer_binding->Stride != 0)
return false;
/* Note that we cannot use the xor variant since the _BoundArray mask
* may contain array attributes that are bound but not enabled.
*/
mask &= ~buffer_binding->_BoundArrays;
}
return true;
}
bool
_mesa_all_buffers_are_unmapped(const struct gl_vertex_array_object *vao)
{
/* Walk the enabled arrays that have a vbo attached */
GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
while (mask) {
const int i = ffs(mask) - 1;
const struct gl_array_attributes *attrib_array =
&vao->VertexAttrib[i];
const struct gl_vertex_buffer_binding *buffer_binding =
&vao->BufferBinding[attrib_array->BufferBindingIndex];
/* We have already masked with vao->VertexAttribBufferMask */
assert(buffer_binding->BufferObj);
/* Bail out once we find the first disallowed mapping */
if (_mesa_check_disallowed_mapping(buffer_binding->BufferObj))
return false;
/* We have handled everything that is bound to this buffer_binding. */
mask &= ~buffer_binding->_BoundArrays;
}
return true;
}
/**
* Map buffer objects used in attribute arrays.
*/
void
_mesa_vao_map_arrays(struct gl_context *ctx, struct gl_vertex_array_object *vao,
GLbitfield access)
{
GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
while (mask) {
/* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
const gl_vert_attrib attr = ffs(mask) - 1;
const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
mask &= ~binding->_BoundArrays;
struct gl_buffer_object *bo = binding->BufferObj;
assert(bo);
if (_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
continue;
ctx->Driver.MapBufferRange(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
}
}
/**
* Map buffer objects used in the vao, attribute arrays and index buffer.
*/
void
_mesa_vao_map(struct gl_context *ctx, struct gl_vertex_array_object *vao,
GLbitfield access)
{
struct gl_buffer_object *bo = vao->IndexBufferObj;
/* map the index buffer, if there is one, and not already mapped */
if (bo && !_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
ctx->Driver.MapBufferRange(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
_mesa_vao_map_arrays(ctx, vao, access);
}
/**
* Unmap buffer objects used in attribute arrays.
*/
void
_mesa_vao_unmap_arrays(struct gl_context *ctx,
struct gl_vertex_array_object *vao)
{
GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
while (mask) {
/* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
const gl_vert_attrib attr = ffs(mask) - 1;
const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
mask &= ~binding->_BoundArrays;
struct gl_buffer_object *bo = binding->BufferObj;
assert(bo);
if (!_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
continue;
ctx->Driver.UnmapBuffer(ctx, bo, MAP_INTERNAL);
}
}
/**
* Unmap buffer objects used in the vao, attribute arrays and index buffer.
*/
void
_mesa_vao_unmap(struct gl_context *ctx, struct gl_vertex_array_object *vao)
{
struct gl_buffer_object *bo = vao->IndexBufferObj;
/* unmap the index buffer, if there is one, and still mapped */
if (bo && _mesa_bufferobj_mapped(bo, MAP_INTERNAL))
ctx->Driver.UnmapBuffer(ctx, bo, MAP_INTERNAL);
_mesa_vao_unmap_arrays(ctx, vao);
}
/**********************************************************************/
/* API Functions */
/**********************************************************************/
/**
* ARB version of glBindVertexArray()
*/
static ALWAYS_INLINE void
bind_vertex_array(struct gl_context *ctx, GLuint id, bool no_error)
{
struct gl_vertex_array_object *const oldObj = ctx->Array.VAO;
struct gl_vertex_array_object *newObj = NULL;
assert(oldObj != NULL);
if (oldObj->Name == id)
return; /* rebinding the same array object- no change */
/*
* Get pointer to new array object (newObj)
*/
if (id == 0) {
/* The spec says there is no array object named 0, but we use
* one internally because it simplifies things.
*/
newObj = ctx->Array.DefaultVAO;
}
else {
/* non-default array object */
newObj = _mesa_lookup_vao(ctx, id);
if (!no_error && !newObj) {
_mesa_error(ctx, GL_INVALID_OPERATION,
"glBindVertexArray(non-gen name)");
return;
}
newObj->EverBound = GL_TRUE;
}
/* The _DrawArrays pointer is pointing at the VAO being unbound and
* that VAO may be in the process of being deleted. If it's not going
* to be deleted, this will have no effect, because the pointer needs
* to be updated by the VBO module anyway.
*
* Before the VBO module can update the pointer, we have to set it
* to NULL for drivers not to set up arrays which are not bound,
* or to prevent a crash if the VAO being unbound is going to be
* deleted.
*/
_mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
_mesa_reference_vao(ctx, &ctx->Array.VAO, newObj);
}
void GLAPIENTRY
_mesa_BindVertexArray_no_error(GLuint id)
{
GET_CURRENT_CONTEXT(ctx);
bind_vertex_array(ctx, id, true);
}
void GLAPIENTRY
_mesa_BindVertexArray(GLuint id)
{
GET_CURRENT_CONTEXT(ctx);
bind_vertex_array(ctx, id, false);
}
/**
* Delete a set of array objects.
*
* \param n Number of array objects to delete.
* \param ids Array of \c n array object IDs.
*/
static void
delete_vertex_arrays(struct gl_context *ctx, GLsizei n, const GLuint *ids)
{
GLsizei i;
for (i = 0; i < n; i++) {
/* IDs equal to 0 should be silently ignored. */
if (!ids[i])
continue;
struct gl_vertex_array_object *obj = _mesa_lookup_vao(ctx, ids[i]);
if (obj) {
assert(obj->Name == ids[i]);
/* If the array object is currently bound, the spec says "the binding
* for that object reverts to zero and the default vertex array
* becomes current."
*/
if (obj == ctx->Array.VAO)
_mesa_BindVertexArray_no_error(0);
/* The ID is immediately freed for re-use */
_mesa_HashRemoveLocked(ctx->Array.Objects, obj->Name);
if (ctx->Array.LastLookedUpVAO == obj)
_mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, NULL);
if (ctx->Array._DrawVAO == obj)
_mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
/* Unreference the array object.
* If refcount hits zero, the object will be deleted.
*/
_mesa_reference_vao(ctx, &obj, NULL);
}
}
}
void GLAPIENTRY
_mesa_DeleteVertexArrays_no_error(GLsizei n, const GLuint *ids)
{
GET_CURRENT_CONTEXT(ctx);
delete_vertex_arrays(ctx, n, ids);
}
void GLAPIENTRY
_mesa_DeleteVertexArrays(GLsizei n, const GLuint *ids)
{
GET_CURRENT_CONTEXT(ctx);
if (n < 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "glDeleteVertexArray(n)");
return;
}
delete_vertex_arrays(ctx, n, ids);
}
/**
* Generate a set of unique array object IDs and store them in \c arrays.
* Helper for _mesa_GenVertexArrays() and _mesa_CreateVertexArrays()
* below.
*
* \param n Number of IDs to generate.
* \param arrays Array of \c n locations to store the IDs.
* \param create Indicates that the objects should also be created.
* \param func The name of the GL entry point.
*/
static void
gen_vertex_arrays(struct gl_context *ctx, GLsizei n, GLuint *arrays,
bool create, const char *func)
{
GLint i;
if (!arrays)
return;
_mesa_HashFindFreeKeys(ctx->Array.Objects, arrays, n);
/* For the sake of simplicity we create the array objects in both
* the Gen* and Create* cases. The only difference is the value of
* EverBound, which is set to true in the Create* case.
*/
for (i = 0; i < n; i++) {
struct gl_vertex_array_object *obj;
obj = _mesa_new_vao(ctx, arrays[i]);
if (!obj) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func);
return;
}
obj->EverBound = create;
_mesa_HashInsertLocked(ctx->Array.Objects, obj->Name, obj, true);
}
}
static void
gen_vertex_arrays_err(struct gl_context *ctx, GLsizei n, GLuint *arrays,
bool create, const char *func)
{
if (n < 0) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(n < 0)", func);
return;
}
gen_vertex_arrays(ctx, n, arrays, create, func);
}
/**
* ARB version of glGenVertexArrays()
* All arrays will be required to live in VBOs.
*/
void GLAPIENTRY
_mesa_GenVertexArrays_no_error(GLsizei n, GLuint *arrays)
{
GET_CURRENT_CONTEXT(ctx);
gen_vertex_arrays(ctx, n, arrays, false, "glGenVertexArrays");
}
void GLAPIENTRY
_mesa_GenVertexArrays(GLsizei n, GLuint *arrays)
{
GET_CURRENT_CONTEXT(ctx);
gen_vertex_arrays_err(ctx, n, arrays, false, "glGenVertexArrays");
}
/**
* ARB_direct_state_access
* Generates ID's and creates the array objects.
*/
void GLAPIENTRY
_mesa_CreateVertexArrays_no_error(GLsizei n, GLuint *arrays)
{
GET_CURRENT_CONTEXT(ctx);
gen_vertex_arrays(ctx, n, arrays, true, "glCreateVertexArrays");
}
void GLAPIENTRY
_mesa_CreateVertexArrays(GLsizei n, GLuint *arrays)
{
GET_CURRENT_CONTEXT(ctx);
gen_vertex_arrays_err(ctx, n, arrays, true, "glCreateVertexArrays");
}
/**
* Determine if ID is the name of an array object.
*
* \param id ID of the potential array object.
* \return \c GL_TRUE if \c id is the name of a array object,
* \c GL_FALSE otherwise.
*/
GLboolean GLAPIENTRY
_mesa_IsVertexArray( GLuint id )
{
struct gl_vertex_array_object * obj;
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
obj = _mesa_lookup_vao(ctx, id);
return obj != NULL && obj->EverBound;
}
/**
* Sets the element array buffer binding of a vertex array object.
*
* This is the ARB_direct_state_access equivalent of
* glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer).
*/
static ALWAYS_INLINE void
vertex_array_element_buffer(struct gl_context *ctx, GLuint vaobj, GLuint buffer,
bool no_error)
{
struct gl_vertex_array_object *vao;
struct gl_buffer_object *bufObj;
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (!no_error) {
/* The GL_ARB_direct_state_access specification says:
*
* "An INVALID_OPERATION error is generated by
* VertexArrayElementBuffer if <vaobj> is not [compatibility profile:
* zero or] the name of an existing vertex array object."
*/
vao =_mesa_lookup_vao_err(ctx, vaobj, false, "glVertexArrayElementBuffer");
if (!vao)
return;
} else {
vao = _mesa_lookup_vao(ctx, vaobj);
}
if (buffer != 0) {
if (!no_error) {
/* The GL_ARB_direct_state_access specification says:
*
* "An INVALID_OPERATION error is generated if <buffer> is not zero
* or the name of an existing buffer object."
*/
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
"glVertexArrayElementBuffer");
} else {
bufObj = _mesa_lookup_bufferobj(ctx, buffer);
}
if (!bufObj)
return;
bufObj->UsageHistory |= USAGE_ELEMENT_ARRAY_BUFFER;
} else {
bufObj = NULL;
}
_mesa_reference_buffer_object(ctx, &vao->IndexBufferObj, bufObj);
}
void GLAPIENTRY
_mesa_VertexArrayElementBuffer_no_error(GLuint vaobj, GLuint buffer)
{
GET_CURRENT_CONTEXT(ctx);
vertex_array_element_buffer(ctx, vaobj, buffer, true);
}
void GLAPIENTRY
_mesa_VertexArrayElementBuffer(GLuint vaobj, GLuint buffer)
{
GET_CURRENT_CONTEXT(ctx);
vertex_array_element_buffer(ctx, vaobj, buffer, false);
}
void GLAPIENTRY
_mesa_GetVertexArrayiv(GLuint vaobj, GLenum pname, GLint *param)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_vertex_array_object *vao;
ASSERT_OUTSIDE_BEGIN_END(ctx);
/* The GL_ARB_direct_state_access specification says:
*
* "An INVALID_OPERATION error is generated if <vaobj> is not
* [compatibility profile: zero or] the name of an existing
* vertex array object."
*/
vao = _mesa_lookup_vao_err(ctx, vaobj, false, "glGetVertexArrayiv");
if (!vao)
return;
/* The GL_ARB_direct_state_access specification says:
*
* "An INVALID_ENUM error is generated if <pname> is not
* ELEMENT_ARRAY_BUFFER_BINDING."
*/
if (pname != GL_ELEMENT_ARRAY_BUFFER_BINDING) {
_mesa_error(ctx, GL_INVALID_ENUM,
"glGetVertexArrayiv(pname != "
"GL_ELEMENT_ARRAY_BUFFER_BINDING)");
return;
}
param[0] = vao->IndexBufferObj ? vao->IndexBufferObj->Name : 0;
}