blob: d884ed541fe6a989296d4ea6516b7ee2152ffa96 [file] [log] [blame]
/*
* Copyright © 2019 Red Hat.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "val_private.h"
#include "glsl_types.h"
#include "spirv/nir_spirv.h"
#include "nir/nir_builder.h"
#include "val_lower_vulkan_resource.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#define SPIR_V_MAGIC_NUMBER 0x07230203
VkResult val_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule)
{
VAL_FROM_HANDLE(val_device, device, _device);
struct val_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = vk_alloc2(&device->alloc, pAllocator,
sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (module == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &module->base,
VK_OBJECT_TYPE_SHADER_MODULE);
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
*pShaderModule = val_shader_module_to_handle(module);
return VK_SUCCESS;
}
void val_DestroyShaderModule(
VkDevice _device,
VkShaderModule _module,
const VkAllocationCallbacks* pAllocator)
{
VAL_FROM_HANDLE(val_device, device, _device);
VAL_FROM_HANDLE(val_shader_module, module, _module);
if (!_module)
return;
vk_object_base_finish(&module->base);
vk_free2(&device->alloc, pAllocator, module);
}
void val_DestroyPipeline(
VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks* pAllocator)
{
VAL_FROM_HANDLE(val_device, device, _device);
VAL_FROM_HANDLE(val_pipeline, pipeline, _pipeline);
if (!_pipeline)
return;
if (pipeline->shader_cso[PIPE_SHADER_VERTEX])
device->queue.ctx->delete_vs_state(device->queue.ctx, pipeline->shader_cso[PIPE_SHADER_VERTEX]);
if (pipeline->shader_cso[PIPE_SHADER_FRAGMENT])
device->queue.ctx->delete_fs_state(device->queue.ctx, pipeline->shader_cso[PIPE_SHADER_FRAGMENT]);
if (pipeline->shader_cso[PIPE_SHADER_GEOMETRY])
device->queue.ctx->delete_gs_state(device->queue.ctx, pipeline->shader_cso[PIPE_SHADER_GEOMETRY]);
if (pipeline->shader_cso[PIPE_SHADER_TESS_CTRL])
device->queue.ctx->delete_tcs_state(device->queue.ctx, pipeline->shader_cso[PIPE_SHADER_TESS_CTRL]);
if (pipeline->shader_cso[PIPE_SHADER_TESS_EVAL])
device->queue.ctx->delete_tes_state(device->queue.ctx, pipeline->shader_cso[PIPE_SHADER_TESS_EVAL]);
if (pipeline->shader_cso[PIPE_SHADER_COMPUTE])
device->queue.ctx->delete_compute_state(device->queue.ctx, pipeline->shader_cso[PIPE_SHADER_COMPUTE]);
if (!pipeline->is_compute_pipeline) {
for (unsigned i = 0; i < pipeline->graphics_create_info.stageCount; i++)
if (pipeline->graphics_create_info.pStages[i].pSpecializationInfo)
free((void *)pipeline->graphics_create_info.pStages[i].pSpecializationInfo);
free((void *)pipeline->graphics_create_info.pStages);
free((void *)pipeline->graphics_create_info.pVertexInputState->pVertexBindingDescriptions);
free((void *)pipeline->graphics_create_info.pVertexInputState->pVertexAttributeDescriptions);
free((void *)pipeline->graphics_create_info.pVertexInputState);
free((void *)pipeline->graphics_create_info.pInputAssemblyState);
if (pipeline->graphics_create_info.pViewportState) {
free((void *)pipeline->graphics_create_info.pViewportState->pViewports);
free((void *)pipeline->graphics_create_info.pViewportState->pScissors);
}
free((void *)pipeline->graphics_create_info.pViewportState);
if (pipeline->graphics_create_info.pTessellationState)
free((void *)pipeline->graphics_create_info.pTessellationState);
free((void *)pipeline->graphics_create_info.pRasterizationState);
free((void *)pipeline->graphics_create_info.pMultisampleState);
free((void *)pipeline->graphics_create_info.pDepthStencilState);
if (pipeline->graphics_create_info.pColorBlendState)
free((void *)pipeline->graphics_create_info.pColorBlendState->pAttachments);
free((void *)pipeline->graphics_create_info.pColorBlendState);
if (pipeline->graphics_create_info.pDynamicState)
free((void *)pipeline->graphics_create_info.pDynamicState->pDynamicStates);
free((void *)pipeline->graphics_create_info.pDynamicState);
} else
if (pipeline->compute_create_info.stage.pSpecializationInfo)
free((void *)pipeline->compute_create_info.stage.pSpecializationInfo);
vk_object_base_finish(&pipeline->base);
vk_free2(&device->alloc, pAllocator, pipeline);
}
static VkResult
deep_copy_shader_stage(struct VkPipelineShaderStageCreateInfo *dst,
const struct VkPipelineShaderStageCreateInfo *src)
{
dst->sType = src->sType;
dst->pNext = NULL;
dst->flags = src->flags;
dst->stage = src->stage;
dst->module = src->module;
dst->pName = src->pName;
dst->pSpecializationInfo = NULL;
if (src->pSpecializationInfo) {
const VkSpecializationInfo *src_spec = src->pSpecializationInfo;
VkSpecializationInfo *dst_spec = malloc(sizeof(VkSpecializationInfo) +
src_spec->mapEntryCount * sizeof(VkSpecializationMapEntry) +
src_spec->dataSize);
VkSpecializationMapEntry *maps = (VkSpecializationMapEntry *)(dst_spec + 1);
dst_spec->pMapEntries = maps;
void *pdata = (void *)(dst_spec->pMapEntries + src_spec->mapEntryCount);
dst_spec->pData = pdata;
dst_spec->mapEntryCount = src_spec->mapEntryCount;
dst_spec->dataSize = src_spec->dataSize;
memcpy(pdata, src_spec->pData, src->pSpecializationInfo->dataSize);
memcpy(maps, src_spec->pMapEntries, src_spec->mapEntryCount * sizeof(VkSpecializationMapEntry));
dst->pSpecializationInfo = dst_spec;
}
return VK_SUCCESS;
}
static VkResult
deep_copy_vertex_input_state(struct VkPipelineVertexInputStateCreateInfo *dst,
const struct VkPipelineVertexInputStateCreateInfo *src)
{
int i;
VkVertexInputBindingDescription *dst_binding_descriptions;
VkVertexInputAttributeDescription *dst_attrib_descriptions;
dst->sType = src->sType;
dst->pNext = NULL;
dst->flags = src->flags;
dst->vertexBindingDescriptionCount = src->vertexBindingDescriptionCount;
dst_binding_descriptions = malloc(src->vertexBindingDescriptionCount * sizeof(VkVertexInputBindingDescription));
if (!dst_binding_descriptions)
return VK_ERROR_OUT_OF_HOST_MEMORY;
for (i = 0; i < dst->vertexBindingDescriptionCount; i++) {
memcpy(&dst_binding_descriptions[i], &src->pVertexBindingDescriptions[i], sizeof(VkVertexInputBindingDescription));
}
dst->pVertexBindingDescriptions = dst_binding_descriptions;
dst->vertexAttributeDescriptionCount = src->vertexAttributeDescriptionCount;
dst_attrib_descriptions = malloc(src->vertexAttributeDescriptionCount * sizeof(VkVertexInputAttributeDescription));
if (!dst_attrib_descriptions)
return VK_ERROR_OUT_OF_HOST_MEMORY;
for (i = 0; i < dst->vertexAttributeDescriptionCount; i++) {
memcpy(&dst_attrib_descriptions[i], &src->pVertexAttributeDescriptions[i], sizeof(VkVertexInputAttributeDescription));
}
dst->pVertexAttributeDescriptions = dst_attrib_descriptions;
return VK_SUCCESS;
}
static VkResult
deep_copy_viewport_state(VkPipelineViewportStateCreateInfo *dst,
const VkPipelineViewportStateCreateInfo *src)
{
int i;
VkViewport *viewports;
VkRect2D *scissors;
dst->sType = src->sType;
dst->pNext = src->pNext;
dst->flags = src->flags;
if (src->pViewports) {
viewports = malloc(src->viewportCount * sizeof(VkViewport));
for (i = 0; i < src->viewportCount; i++)
memcpy(&viewports[i], &src->pViewports[i], sizeof(VkViewport));
dst->pViewports = viewports;
} else
dst->pViewports = NULL;
dst->viewportCount = src->viewportCount;
if (src->pScissors) {
scissors = malloc(src->scissorCount * sizeof(VkRect2D));
for (i = 0; i < src->scissorCount; i++)
memcpy(&scissors[i], &src->pScissors[i], sizeof(VkRect2D));
dst->pScissors = scissors;
} else
dst->pScissors = NULL;
dst->scissorCount = src->scissorCount;
return VK_SUCCESS;
}
static VkResult
deep_copy_color_blend_state(VkPipelineColorBlendStateCreateInfo *dst,
const VkPipelineColorBlendStateCreateInfo *src)
{
VkPipelineColorBlendAttachmentState *attachments;
dst->sType = src->sType;
dst->pNext = src->pNext;
dst->flags = src->flags;
dst->logicOpEnable = src->logicOpEnable;
dst->logicOp = src->logicOp;
attachments = malloc(src->attachmentCount * sizeof(VkPipelineColorBlendAttachmentState));
memcpy(attachments, src->pAttachments, src->attachmentCount * sizeof(VkPipelineColorBlendAttachmentState));
dst->attachmentCount = src->attachmentCount;
dst->pAttachments = attachments;
memcpy(&dst->blendConstants, &src->blendConstants, sizeof(float) * 4);
return VK_SUCCESS;
}
static VkResult
deep_copy_dynamic_state(VkPipelineDynamicStateCreateInfo *dst,
const VkPipelineDynamicStateCreateInfo *src)
{
VkDynamicState *dynamic_states;
dst->sType = src->sType;
dst->pNext = src->pNext;
dst->flags = src->flags;
dynamic_states = malloc(src->dynamicStateCount * sizeof(VkDynamicState));
if (!dynamic_states)
return VK_ERROR_OUT_OF_HOST_MEMORY;
memcpy(dynamic_states, src->pDynamicStates, src->dynamicStateCount * sizeof(VkDynamicState));
dst->dynamicStateCount = src->dynamicStateCount;
dst->pDynamicStates = dynamic_states;
return VK_SUCCESS;
}
static VkResult
deep_copy_graphics_create_info(VkGraphicsPipelineCreateInfo *dst,
const VkGraphicsPipelineCreateInfo *src)
{
int i;
VkResult result;
VkPipelineShaderStageCreateInfo *stages;
VkPipelineVertexInputStateCreateInfo *vertex_input;
VkPipelineInputAssemblyStateCreateInfo *input_assembly;
VkPipelineRasterizationStateCreateInfo* raster_state;
dst->sType = src->sType;
dst->pNext = NULL;
dst->flags = src->flags;
dst->layout = src->layout;
dst->renderPass = src->renderPass;
dst->subpass = src->subpass;
dst->basePipelineHandle = src->basePipelineHandle;
dst->basePipelineIndex = src->basePipelineIndex;
/* pStages */
dst->stageCount = src->stageCount;
stages = malloc(dst->stageCount * sizeof(VkPipelineShaderStageCreateInfo));
for (i = 0 ; i < dst->stageCount; i++) {
result = deep_copy_shader_stage(&stages[i], &src->pStages[i]);
if (result != VK_SUCCESS)
return result;
}
dst->pStages = stages;
/* pVertexInputState */
vertex_input = malloc(sizeof(VkPipelineVertexInputStateCreateInfo));
result = deep_copy_vertex_input_state(vertex_input,
src->pVertexInputState);
if (result != VK_SUCCESS)
return result;
dst->pVertexInputState = vertex_input;
/* pInputAssemblyState */
input_assembly = malloc(sizeof(VkPipelineInputAssemblyStateCreateInfo));
if (!input_assembly)
return VK_ERROR_OUT_OF_HOST_MEMORY;
memcpy(input_assembly, src->pInputAssemblyState, sizeof(VkPipelineInputAssemblyStateCreateInfo));
dst->pInputAssemblyState = input_assembly;
/* pTessellationState */
if (src->pTessellationState) {
VkPipelineTessellationStateCreateInfo *tess_state;
tess_state = malloc(sizeof(VkPipelineTessellationStateCreateInfo));
if (!tess_state)
return VK_ERROR_OUT_OF_HOST_MEMORY;
memcpy(tess_state, src->pTessellationState, sizeof(VkPipelineTessellationStateCreateInfo));
dst->pTessellationState = tess_state;
}
/* pViewportState */
if (src->pViewportState) {
VkPipelineViewportStateCreateInfo *viewport_state;
viewport_state = malloc(sizeof(VkPipelineViewportStateCreateInfo));
if (!viewport_state)
return VK_ERROR_OUT_OF_HOST_MEMORY;
deep_copy_viewport_state(viewport_state, src->pViewportState);
dst->pViewportState = viewport_state;
} else
dst->pViewportState = NULL;
/* pRasterizationState */
raster_state = malloc(sizeof(VkPipelineRasterizationStateCreateInfo));
if (!raster_state)
return VK_ERROR_OUT_OF_HOST_MEMORY;
memcpy(raster_state, src->pRasterizationState, sizeof(VkPipelineRasterizationStateCreateInfo));
dst->pRasterizationState = raster_state;
/* pMultisampleState */
if (src->pMultisampleState) {
VkPipelineMultisampleStateCreateInfo* ms_state;
ms_state = malloc(sizeof(VkPipelineMultisampleStateCreateInfo) + sizeof(VkSampleMask));
if (!ms_state)
return VK_ERROR_OUT_OF_HOST_MEMORY;
/* does samplemask need deep copy? */
memcpy(ms_state, src->pMultisampleState, sizeof(VkPipelineMultisampleStateCreateInfo));
if (src->pMultisampleState->pSampleMask) {
VkSampleMask *sample_mask = (VkSampleMask *)(ms_state + 1);
sample_mask[0] = src->pMultisampleState->pSampleMask[0];
ms_state->pSampleMask = sample_mask;
}
dst->pMultisampleState = ms_state;
} else
dst->pMultisampleState = NULL;
/* pDepthStencilState */
if (src->pDepthStencilState) {
VkPipelineDepthStencilStateCreateInfo* ds_state;
ds_state = malloc(sizeof(VkPipelineDepthStencilStateCreateInfo));
if (!ds_state)
return VK_ERROR_OUT_OF_HOST_MEMORY;
memcpy(ds_state, src->pDepthStencilState, sizeof(VkPipelineDepthStencilStateCreateInfo));
dst->pDepthStencilState = ds_state;
} else
dst->pDepthStencilState = NULL;
/* pColorBlendState */
if (src->pColorBlendState) {
VkPipelineColorBlendStateCreateInfo* cb_state;
cb_state = malloc(sizeof(VkPipelineColorBlendStateCreateInfo));
if (!cb_state)
return VK_ERROR_OUT_OF_HOST_MEMORY;
deep_copy_color_blend_state(cb_state, src->pColorBlendState);
dst->pColorBlendState = cb_state;
} else
dst->pColorBlendState = NULL;
if (src->pDynamicState) {
VkPipelineDynamicStateCreateInfo* dyn_state;
/* pDynamicState */
dyn_state = malloc(sizeof(VkPipelineDynamicStateCreateInfo));
if (!dyn_state)
return VK_ERROR_OUT_OF_HOST_MEMORY;
deep_copy_dynamic_state(dyn_state, src->pDynamicState);
dst->pDynamicState = dyn_state;
} else
dst->pDynamicState = NULL;
return VK_SUCCESS;
}
static VkResult
deep_copy_compute_create_info(VkComputePipelineCreateInfo *dst,
const VkComputePipelineCreateInfo *src)
{
VkResult result;
dst->sType = src->sType;
dst->pNext = NULL;
dst->flags = src->flags;
dst->layout = src->layout;
dst->basePipelineHandle = src->basePipelineHandle;
dst->basePipelineIndex = src->basePipelineIndex;
result = deep_copy_shader_stage(&dst->stage, &src->stage);
if (result != VK_SUCCESS)
return result;
return VK_SUCCESS;
}
static inline unsigned
st_shader_stage_to_ptarget(gl_shader_stage stage)
{
switch (stage) {
case MESA_SHADER_VERTEX:
return PIPE_SHADER_VERTEX;
case MESA_SHADER_FRAGMENT:
return PIPE_SHADER_FRAGMENT;
case MESA_SHADER_GEOMETRY:
return PIPE_SHADER_GEOMETRY;
case MESA_SHADER_TESS_CTRL:
return PIPE_SHADER_TESS_CTRL;
case MESA_SHADER_TESS_EVAL:
return PIPE_SHADER_TESS_EVAL;
case MESA_SHADER_COMPUTE:
return PIPE_SHADER_COMPUTE;
default:
break;
}
assert(!"should not be reached");
return PIPE_SHADER_VERTEX;
}
static void
shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
{
assert(glsl_type_is_vector_or_scalar(type));
uint32_t comp_size = glsl_type_is_boolean(type)
? 4 : glsl_get_bit_size(type) / 8;
unsigned length = glsl_get_vector_elements(type);
*size = comp_size * length,
*align = comp_size;
}
#define OPT(pass, ...) ({ \
bool this_progress = false; \
NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \
if (this_progress) \
progress = true; \
this_progress; \
})
static void
val_shader_compile_to_ir(struct val_pipeline *pipeline,
struct val_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info)
{
nir_shader *nir;
const nir_shader_compiler_options *drv_options = pipeline->device->pscreen->get_compiler_options(pipeline->device->pscreen, PIPE_SHADER_IR_NIR, st_shader_stage_to_ptarget(stage));
bool progress;
uint32_t *spirv = (uint32_t *) module->data;
assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
assert(module->size % 4 == 0);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = NULL;
if (spec_info && spec_info->mapEntryCount > 0) {
num_spec_entries = spec_info->mapEntryCount;
spec_entries = calloc(num_spec_entries, sizeof(*spec_entries));
for (uint32_t i = 0; i < num_spec_entries; i++) {
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
const void *data =
spec_info->pData + entry.offset;
assert((const void *)(data + entry.size) <=
spec_info->pData + spec_info->dataSize);
spec_entries[i].id = entry.constantID;
switch (entry.size) {
case 8:
spec_entries[i].value.u64 = *(const uint64_t *)data;
break;
case 4:
spec_entries[i].value.u32 = *(const uint32_t *)data;
break;
case 2:
spec_entries[i].value.u16 = *(const uint16_t *)data;
break;
case 1:
spec_entries[i].value.u8 = *(const uint8_t *)data;
break;
default:
assert(!"Invalid spec constant size");
break;
}
}
}
struct val_device *pdevice = pipeline->device;
const struct spirv_to_nir_options spirv_options = {
.environment = NIR_SPIRV_VULKAN,
.lower_ubo_ssbo_access_to_offsets = true,
.caps = {
.float64 = (pdevice->pscreen->get_param(pdevice->pscreen, PIPE_CAP_DOUBLES) == 1),
.int16 = true,
.int64 = (pdevice->pscreen->get_param(pdevice->pscreen, PIPE_CAP_INT64) == 1),
.tessellation = true,
.image_ms_array = true,
.storage_image_ms = true,
.geometry_streams = true,
.storage_16bit = true,
.variable_pointers = true,
},
.ubo_addr_format = nir_address_format_32bit_index_offset,
.ssbo_addr_format = nir_address_format_32bit_index_offset,
.phys_ssbo_addr_format = nir_address_format_64bit_global,
.push_const_addr_format = nir_address_format_logical,
.shared_addr_format = nir_address_format_32bit_offset,
.frag_coord_is_sysval = false,
};
nir = spirv_to_nir(spirv, module->size / 4,
spec_entries, num_spec_entries,
stage, entrypoint_name, &spirv_options, drv_options);
nir_validate_shader(nir, NULL);
free(spec_entries);
NIR_PASS_V(nir, nir_lower_variable_initializers, nir_var_function_temp);
NIR_PASS_V(nir, nir_lower_returns);
NIR_PASS_V(nir, nir_inline_functions);
NIR_PASS_V(nir, nir_copy_prop);
NIR_PASS_V(nir, nir_opt_deref);
/* Pick off the single entrypoint that we want */
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (!func->is_entrypoint)
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
NIR_PASS_V(nir, nir_lower_variable_initializers, ~0);
NIR_PASS_V(nir, nir_split_var_copies);
NIR_PASS_V(nir, nir_split_per_member_structs);
NIR_PASS_V(nir, nir_remove_dead_variables,
nir_var_shader_in | nir_var_shader_out | nir_var_system_value, NULL);
if (stage == MESA_SHADER_FRAGMENT)
val_lower_input_attachments(nir, false);
NIR_PASS_V(nir, nir_lower_system_values);
NIR_PASS_V(nir, nir_lower_compute_system_values, NULL);
NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
nir_remove_dead_variables(nir, nir_var_uniform, NULL);
val_lower_pipeline_layout(pipeline->device, pipeline->layout, nir);
NIR_PASS_V(nir, nir_lower_io_to_temporaries, nir_shader_get_entrypoint(nir), true, true);
NIR_PASS_V(nir, nir_split_var_copies);
NIR_PASS_V(nir, nir_lower_global_vars_to_local);
NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_push_const,
nir_address_format_32bit_offset);
if (nir->info.stage == MESA_SHADER_COMPUTE) {
NIR_PASS_V(nir, nir_lower_vars_to_explicit_types, nir_var_mem_shared, shared_var_info);
NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_shared, nir_address_format_32bit_offset);
}
NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
if (nir->info.stage == MESA_SHADER_VERTEX ||
nir->info.stage == MESA_SHADER_GEOMETRY) {
NIR_PASS_V(nir, nir_lower_io_arrays_to_elements_no_indirects, false);
} else if (nir->info.stage == MESA_SHADER_FRAGMENT) {
NIR_PASS_V(nir, nir_lower_io_arrays_to_elements_no_indirects, true);
}
do {
progress = false;
progress |= OPT(nir_lower_flrp, 32|64, true);
progress |= OPT(nir_split_array_vars, nir_var_function_temp);
progress |= OPT(nir_shrink_vec_array_vars, nir_var_function_temp);
progress |= OPT(nir_opt_deref);
progress |= OPT(nir_lower_vars_to_ssa);
progress |= nir_copy_prop(nir);
progress |= nir_opt_dce(nir);
progress |= nir_opt_dead_cf(nir);
progress |= nir_opt_cse(nir);
progress |= nir_opt_algebraic(nir);
progress |= nir_opt_constant_folding(nir);
progress |= nir_opt_undef(nir);
progress |= nir_opt_deref(nir);
progress |= nir_lower_alu_to_scalar(nir, NULL, NULL);
} while (progress);
nir_lower_var_copies(nir);
nir_remove_dead_variables(nir, nir_var_function_temp, NULL);
nir_validate_shader(nir, NULL);
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
if (nir->info.stage != MESA_SHADER_VERTEX)
nir_assign_io_var_locations(nir, nir_var_shader_in, &nir->num_inputs, nir->info.stage);
else {
nir->num_inputs = util_last_bit64(nir->info.inputs_read);
nir_foreach_shader_in_variable(var, nir) {
var->data.driver_location = var->data.location - VERT_ATTRIB_GENERIC0;
}
}
nir_assign_io_var_locations(nir, nir_var_shader_out, &nir->num_outputs,
nir->info.stage);
pipeline->pipeline_nir[stage] = nir;
}
static void fill_shader_prog(struct pipe_shader_state *state, gl_shader_stage stage, struct val_pipeline *pipeline)
{
state->type = PIPE_SHADER_IR_NIR;
state->ir.nir = pipeline->pipeline_nir[stage];
}
static void
merge_tess_info(struct shader_info *tes_info,
const struct shader_info *tcs_info)
{
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
*
* "PointMode. Controls generation of points rather than triangles
* or lines. This functionality defaults to disabled, and is
* enabled if either shader stage includes the execution mode.
*
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
* and OutputVertices, it says:
*
* "One mode must be set in at least one of the tessellation
* shader stages."
*
* So, the fields can be set in either the TCS or TES, but they must
* agree if set in both. Our backend looks at TES, so bitwise-or in
* the values from the TCS.
*/
assert(tcs_info->tess.tcs_vertices_out == 0 ||
tes_info->tess.tcs_vertices_out == 0 ||
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tcs_info->tess.spacing == tes_info->tess.spacing);
tes_info->tess.spacing |= tcs_info->tess.spacing;
assert(tcs_info->tess.primitive_mode == 0 ||
tes_info->tess.primitive_mode == 0 ||
tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
tes_info->tess.ccw |= tcs_info->tess.ccw;
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
}
static gl_shader_stage
val_shader_stage(VkShaderStageFlagBits stage)
{
switch (stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
return MESA_SHADER_VERTEX;
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
return MESA_SHADER_TESS_CTRL;
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
return MESA_SHADER_TESS_EVAL;
case VK_SHADER_STAGE_GEOMETRY_BIT:
return MESA_SHADER_GEOMETRY;
case VK_SHADER_STAGE_FRAGMENT_BIT:
return MESA_SHADER_FRAGMENT;
case VK_SHADER_STAGE_COMPUTE_BIT:
return MESA_SHADER_COMPUTE;
default:
unreachable("invalid VkShaderStageFlagBits");
return MESA_SHADER_NONE;
}
}
static VkResult
val_pipeline_compile(struct val_pipeline *pipeline,
gl_shader_stage stage)
{
struct val_device *device = pipeline->device;
device->physical_device->pscreen->finalize_nir(device->physical_device->pscreen, pipeline->pipeline_nir[stage], true);
if (stage == MESA_SHADER_COMPUTE) {
struct pipe_compute_state shstate = {};
shstate.prog = (void *)pipeline->pipeline_nir[MESA_SHADER_COMPUTE];
shstate.ir_type = PIPE_SHADER_IR_NIR;
shstate.req_local_mem = pipeline->pipeline_nir[MESA_SHADER_COMPUTE]->info.cs.shared_size;
pipeline->shader_cso[PIPE_SHADER_COMPUTE] = device->queue.ctx->create_compute_state(device->queue.ctx, &shstate);
} else {
struct pipe_shader_state shstate = {};
fill_shader_prog(&shstate, stage, pipeline);
switch (stage) {
case MESA_SHADER_FRAGMENT:
pipeline->shader_cso[PIPE_SHADER_FRAGMENT] = device->queue.ctx->create_fs_state(device->queue.ctx, &shstate);
break;
case MESA_SHADER_VERTEX:
pipeline->shader_cso[PIPE_SHADER_VERTEX] = device->queue.ctx->create_vs_state(device->queue.ctx, &shstate);
break;
case MESA_SHADER_GEOMETRY:
pipeline->shader_cso[PIPE_SHADER_GEOMETRY] = device->queue.ctx->create_gs_state(device->queue.ctx, &shstate);
break;
case MESA_SHADER_TESS_CTRL:
pipeline->shader_cso[PIPE_SHADER_TESS_CTRL] = device->queue.ctx->create_tcs_state(device->queue.ctx, &shstate);
break;
case MESA_SHADER_TESS_EVAL:
pipeline->shader_cso[PIPE_SHADER_TESS_EVAL] = device->queue.ctx->create_tes_state(device->queue.ctx, &shstate);
break;
default:
unreachable("illegal shader");
break;
}
}
return VK_SUCCESS;
}
static VkResult
val_graphics_pipeline_init(struct val_pipeline *pipeline,
struct val_device *device,
struct val_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *alloc)
{
if (alloc == NULL)
alloc = &device->alloc;
pipeline->device = device;
pipeline->layout = val_pipeline_layout_from_handle(pCreateInfo->layout);
pipeline->force_min_sample = false;
/* recreate createinfo */
deep_copy_graphics_create_info(&pipeline->graphics_create_info, pCreateInfo);
pipeline->is_compute_pipeline = false;
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
VAL_FROM_HANDLE(val_shader_module, module,
pCreateInfo->pStages[i].module);
gl_shader_stage stage = val_shader_stage(pCreateInfo->pStages[i].stage);
val_shader_compile_to_ir(pipeline, module,
pCreateInfo->pStages[i].pName,
stage,
pCreateInfo->pStages[i].pSpecializationInfo);
}
if (pipeline->pipeline_nir[MESA_SHADER_FRAGMENT]) {
if (pipeline->pipeline_nir[MESA_SHADER_FRAGMENT]->info.fs.uses_sample_qualifier ||
pipeline->pipeline_nir[MESA_SHADER_FRAGMENT]->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
SYSTEM_BIT_SAMPLE_POS))
pipeline->force_min_sample = true;
}
if (pipeline->pipeline_nir[MESA_SHADER_TESS_CTRL]) {
nir_lower_patch_vertices(pipeline->pipeline_nir[MESA_SHADER_TESS_EVAL], pipeline->pipeline_nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out, NULL);
merge_tess_info(&pipeline->pipeline_nir[MESA_SHADER_TESS_EVAL]->info, &pipeline->pipeline_nir[MESA_SHADER_TESS_CTRL]->info);
pipeline->pipeline_nir[MESA_SHADER_TESS_EVAL]->info.tess.ccw = !pipeline->pipeline_nir[MESA_SHADER_TESS_EVAL]->info.tess.ccw;
}
bool has_fragment_shader = false;
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
gl_shader_stage stage = val_shader_stage(pCreateInfo->pStages[i].stage);
val_pipeline_compile(pipeline, stage);
if (stage == MESA_SHADER_FRAGMENT)
has_fragment_shader = true;
}
if (has_fragment_shader == false) {
/* create a dummy fragment shader for this pipeline. */
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
b.shader->info.name = ralloc_strdup(b.shader, "dummy_frag");
pipeline->pipeline_nir[MESA_SHADER_FRAGMENT] = b.shader;
struct pipe_shader_state shstate = {};
shstate.type = PIPE_SHADER_IR_NIR;
shstate.ir.nir = pipeline->pipeline_nir[MESA_SHADER_FRAGMENT];
pipeline->shader_cso[PIPE_SHADER_FRAGMENT] = device->queue.ctx->create_fs_state(device->queue.ctx, &shstate);
}
return VK_SUCCESS;
}
static VkResult
val_graphics_pipeline_create(
VkDevice _device,
VkPipelineCache _cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
VAL_FROM_HANDLE(val_device, device, _device);
VAL_FROM_HANDLE(val_pipeline_cache, cache, _cache);
struct val_pipeline *pipeline;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &pipeline->base,
VK_OBJECT_TYPE_PIPELINE);
result = val_graphics_pipeline_init(pipeline, device, cache, pCreateInfo,
pAllocator);
if (result != VK_SUCCESS) {
vk_free2(&device->alloc, pAllocator, pipeline);
return result;
}
*pPipeline = val_pipeline_to_handle(pipeline);
return VK_SUCCESS;
}
VkResult val_CreateGraphicsPipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
VkResult r;
r = val_graphics_pipeline_create(_device,
pipelineCache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (r != VK_SUCCESS) {
result = r;
pPipelines[i] = VK_NULL_HANDLE;
}
}
return result;
}
static VkResult
val_compute_pipeline_init(struct val_pipeline *pipeline,
struct val_device *device,
struct val_pipeline_cache *cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *alloc)
{
VAL_FROM_HANDLE(val_shader_module, module,
pCreateInfo->stage.module);
if (alloc == NULL)
alloc = &device->alloc;
pipeline->device = device;
pipeline->layout = val_pipeline_layout_from_handle(pCreateInfo->layout);
pipeline->force_min_sample = false;
deep_copy_compute_create_info(&pipeline->compute_create_info, pCreateInfo);
pipeline->is_compute_pipeline = true;
val_shader_compile_to_ir(pipeline, module,
pCreateInfo->stage.pName,
MESA_SHADER_COMPUTE,
pCreateInfo->stage.pSpecializationInfo);
val_pipeline_compile(pipeline, MESA_SHADER_COMPUTE);
return VK_SUCCESS;
}
static VkResult
val_compute_pipeline_create(
VkDevice _device,
VkPipelineCache _cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
VAL_FROM_HANDLE(val_device, device, _device);
VAL_FROM_HANDLE(val_pipeline_cache, cache, _cache);
struct val_pipeline *pipeline;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
vk_object_base_init(&device->vk, &pipeline->base,
VK_OBJECT_TYPE_PIPELINE);
result = val_compute_pipeline_init(pipeline, device, cache, pCreateInfo,
pAllocator);
if (result != VK_SUCCESS) {
vk_free2(&device->alloc, pAllocator, pipeline);
return result;
}
*pPipeline = val_pipeline_to_handle(pipeline);
return VK_SUCCESS;
}
VkResult val_CreateComputePipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkComputePipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
VkResult r;
r = val_compute_pipeline_create(_device,
pipelineCache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (r != VK_SUCCESS) {
result = r;
pPipelines[i] = VK_NULL_HANDLE;
}
}
return result;
}