blob: e31f127f322717d222d13da550d6794f183a8d03 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "tu_private.h"
#include "registers/adreno_pm4.xml.h"
#include "registers/adreno_common.xml.h"
#include "vk_format.h"
#include "tu_cs.h"
void
tu_bo_list_init(struct tu_bo_list *list)
{
list->count = list->capacity = 0;
list->bo_infos = NULL;
}
void
tu_bo_list_destroy(struct tu_bo_list *list)
{
free(list->bo_infos);
}
void
tu_bo_list_reset(struct tu_bo_list *list)
{
list->count = 0;
}
/**
* \a flags consists of MSM_SUBMIT_BO_FLAGS.
*/
static uint32_t
tu_bo_list_add_info(struct tu_bo_list *list,
const struct drm_msm_gem_submit_bo *bo_info)
{
assert(bo_info->handle != 0);
for (uint32_t i = 0; i < list->count; ++i) {
if (list->bo_infos[i].handle == bo_info->handle) {
assert(list->bo_infos[i].presumed == bo_info->presumed);
list->bo_infos[i].flags |= bo_info->flags;
return i;
}
}
/* grow list->bo_infos if needed */
if (list->count == list->capacity) {
uint32_t new_capacity = MAX2(2 * list->count, 16);
struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
if (!new_bo_infos)
return TU_BO_LIST_FAILED;
list->bo_infos = new_bo_infos;
list->capacity = new_capacity;
}
list->bo_infos[list->count] = *bo_info;
return list->count++;
}
uint32_t
tu_bo_list_add(struct tu_bo_list *list,
const struct tu_bo *bo,
uint32_t flags)
{
return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
.flags = flags,
.handle = bo->gem_handle,
.presumed = bo->iova,
});
}
VkResult
tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
{
for (uint32_t i = 0; i < other->count; i++) {
if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
return VK_SUCCESS;
}
void
tu6_emit_event_write(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
enum vgt_event_type event)
{
bool need_seqno = false;
switch (event) {
case CACHE_FLUSH_TS:
case WT_DONE_TS:
case RB_DONE_TS:
case PC_CCU_FLUSH_DEPTH_TS:
case PC_CCU_FLUSH_COLOR_TS:
case PC_CCU_RESOLVE_TS:
need_seqno = true;
break;
default:
break;
}
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
if (need_seqno) {
tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
tu_cs_emit(cs, 0);
}
}
static void
tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs,
enum tu_cmd_flush_bits flushes)
{
/* Experiments show that invalidating CCU while it still has data in it
* doesn't work, so make sure to always flush before invalidating in case
* any data remains that hasn't yet been made available through a barrier.
* However it does seem to work for UCHE.
*/
if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
if (flushes & TU_CMD_FLAG_WFI)
tu_cs_emit_wfi(cs);
}
/* "Normal" cache flushes, that don't require any special handling */
static void
tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs)
{
tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
cmd_buffer->state.cache.flush_bits = 0;
}
/* Renderpass cache flushes */
void
tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs)
{
tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
cmd_buffer->state.renderpass_cache.flush_bits = 0;
}
/* Cache flushes for things that use the color/depth read/write path (i.e.
* blits and draws). This deals with changing CCU state as well as the usual
* cache flushing.
*/
void
tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
struct tu_cs *cs,
enum tu_cmd_ccu_state ccu_state)
{
enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
assert(ccu_state != TU_CMD_CCU_UNKNOWN);
/* Changing CCU state must involve invalidating the CCU. In sysmem mode,
* the CCU may also contain data that we haven't flushed out yet, so we
* also need to flush. Also, in order to program RB_CCU_CNTL, we need to
* emit a WFI as it isn't pipelined.
*/
if (ccu_state != cmd_buffer->state.ccu_state) {
if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
flushes |=
TU_CMD_FLAG_CCU_FLUSH_COLOR |
TU_CMD_FLAG_CCU_FLUSH_DEPTH;
cmd_buffer->state.cache.pending_flush_bits &= ~(
TU_CMD_FLAG_CCU_FLUSH_COLOR |
TU_CMD_FLAG_CCU_FLUSH_DEPTH);
}
flushes |=
TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
TU_CMD_FLAG_WFI;
cmd_buffer->state.cache.pending_flush_bits &= ~(
TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
TU_CMD_FLAG_CCU_INVALIDATE_DEPTH);
}
tu6_emit_flushes(cmd_buffer, cs, flushes);
cmd_buffer->state.cache.flush_bits = 0;
if (ccu_state != cmd_buffer->state.ccu_state) {
struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
tu_cs_emit_regs(cs,
A6XX_RB_CCU_CNTL(.offset =
ccu_state == TU_CMD_CCU_GMEM ?
phys_dev->ccu_offset_gmem :
phys_dev->ccu_offset_bypass,
.gmem = ccu_state == TU_CMD_CCU_GMEM));
cmd_buffer->state.ccu_state = ccu_state;
}
}
static void
tu6_emit_zs(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
const uint32_t a = subpass->depth_stencil_attachment.attachment;
if (a == VK_ATTACHMENT_UNUSED) {
tu_cs_emit_regs(cs,
A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
A6XX_RB_DEPTH_BUFFER_PITCH(0),
A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
A6XX_RB_DEPTH_BUFFER_BASE(0),
A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
tu_cs_emit_regs(cs,
A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
tu_cs_emit_regs(cs,
A6XX_GRAS_LRZ_BUFFER_BASE(0),
A6XX_GRAS_LRZ_BUFFER_PITCH(0),
A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
return;
}
const struct tu_image_view *iview = fb->attachments[a].attachment;
const struct tu_render_pass_attachment *attachment =
&cmd->state.pass->attachments[a];
enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
tu_cs_image_ref(cs, iview, 0);
tu_cs_emit(cs, attachment->gmem_offset);
tu_cs_emit_regs(cs,
A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
tu_cs_image_flag_ref(cs, iview, 0);
tu_cs_emit_regs(cs,
A6XX_GRAS_LRZ_BUFFER_BASE(0),
A6XX_GRAS_LRZ_BUFFER_PITCH(0),
A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
if (attachment->format == VK_FORMAT_S8_UINT) {
tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
tu_cs_image_ref(cs, iview, 0);
tu_cs_emit(cs, attachment->gmem_offset);
} else {
tu_cs_emit_regs(cs,
A6XX_RB_STENCIL_INFO(0));
}
}
static void
tu6_emit_mrt(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
for (uint32_t i = 0; i < subpass->color_count; ++i) {
uint32_t a = subpass->color_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
const struct tu_image_view *iview = fb->attachments[a].attachment;
tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
tu_cs_image_ref(cs, iview, 0);
tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
tu_cs_emit_regs(cs,
A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
tu_cs_image_flag_ref(cs, iview, 0);
}
tu_cs_emit_regs(cs,
A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
tu_cs_emit_regs(cs,
A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
}
void
tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
{
const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
bool msaa_disable = samples == MSAA_ONE;
tu_cs_emit_regs(cs,
A6XX_SP_TP_RAS_MSAA_CNTL(samples),
A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
.msaa_disable = msaa_disable));
tu_cs_emit_regs(cs,
A6XX_GRAS_RAS_MSAA_CNTL(samples),
A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
.msaa_disable = msaa_disable));
tu_cs_emit_regs(cs,
A6XX_RB_RAS_MSAA_CNTL(samples),
A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
.msaa_disable = msaa_disable));
tu_cs_emit_regs(cs,
A6XX_RB_MSAA_CNTL(samples));
}
static void
tu6_emit_bin_size(struct tu_cs *cs,
uint32_t bin_w, uint32_t bin_h, uint32_t flags)
{
tu_cs_emit_regs(cs,
A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
.binh = bin_h,
.dword = flags));
tu_cs_emit_regs(cs,
A6XX_RB_BIN_CONTROL(.binw = bin_w,
.binh = bin_h,
.dword = flags));
/* no flag for RB_BIN_CONTROL2... */
tu_cs_emit_regs(cs,
A6XX_RB_BIN_CONTROL2(.binw = bin_w,
.binh = bin_h));
}
static void
tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
struct tu_cs *cs,
bool binning)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
uint32_t cntl = 0;
cntl |= A6XX_RB_RENDER_CNTL_UNK4;
if (binning) {
cntl |= A6XX_RB_RENDER_CNTL_BINNING;
} else {
uint32_t mrts_ubwc_enable = 0;
for (uint32_t i = 0; i < subpass->color_count; ++i) {
uint32_t a = subpass->color_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
const struct tu_image_view *iview = fb->attachments[a].attachment;
if (iview->ubwc_enabled)
mrts_ubwc_enable |= 1 << i;
}
cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
const uint32_t a = subpass->depth_stencil_attachment.attachment;
if (a != VK_ATTACHMENT_UNUSED) {
const struct tu_image_view *iview = fb->attachments[a].attachment;
if (iview->ubwc_enabled)
cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
}
/* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
* in order to set it correctly for the different subpasses. However,
* that means the packets we're emitting also happen during binning. So
* we need to guard the write on !BINNING at CP execution time.
*/
tu_cs_reserve(cs, 3 + 4);
tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
}
tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
tu_cs_emit(cs, cntl);
}
static void
tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
{
const VkRect2D *render_area = &cmd->state.render_area;
uint32_t x1 = render_area->offset.x;
uint32_t y1 = render_area->offset.y;
uint32_t x2 = x1 + render_area->extent.width - 1;
uint32_t y2 = y1 + render_area->extent.height - 1;
if (align) {
x1 = x1 & ~(GMEM_ALIGN_W - 1);
y1 = y1 & ~(GMEM_ALIGN_H - 1);
x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
}
tu_cs_emit_regs(cs,
A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
}
void
tu6_emit_window_scissor(struct tu_cs *cs,
uint32_t x1,
uint32_t y1,
uint32_t x2,
uint32_t y2)
{
tu_cs_emit_regs(cs,
A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
tu_cs_emit_regs(cs,
A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1),
A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2));
}
void
tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
{
tu_cs_emit_regs(cs,
A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
tu_cs_emit_regs(cs,
A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
tu_cs_emit_regs(cs,
A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
tu_cs_emit_regs(cs,
A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
}
static void
tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
{
uint32_t enable_mask;
switch (id) {
case TU_DRAW_STATE_PROGRAM:
case TU_DRAW_STATE_VI:
case TU_DRAW_STATE_FS_CONST:
/* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
* when resources would actually be used in the binning shader.
* Presumably the overhead of prefetching the resources isn't
* worth it.
*/
case TU_DRAW_STATE_DESC_SETS_LOAD:
enable_mask = CP_SET_DRAW_STATE__0_GMEM |
CP_SET_DRAW_STATE__0_SYSMEM;
break;
case TU_DRAW_STATE_PROGRAM_BINNING:
case TU_DRAW_STATE_VI_BINNING:
enable_mask = CP_SET_DRAW_STATE__0_BINNING;
break;
case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
enable_mask = CP_SET_DRAW_STATE__0_GMEM;
break;
case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
break;
default:
enable_mask = CP_SET_DRAW_STATE__0_GMEM |
CP_SET_DRAW_STATE__0_SYSMEM |
CP_SET_DRAW_STATE__0_BINNING;
break;
}
/* We need to reload the descriptors every time the descriptor sets
* change. However, the commands we send only depend on the pipeline
* because the whole point is to cache descriptors which are used by the
* pipeline. There's a problem here, in that the firmware has an
* "optimization" which skips executing groups that are set to the same
* value as the last draw. This means that if the descriptor sets change
* but not the pipeline, we'd try to re-execute the same buffer which
* the firmware would ignore and we wouldn't pre-load the new
* descriptors. Set the DIRTY bit to avoid this optimization
*/
if (id == TU_DRAW_STATE_DESC_SETS_LOAD)
enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
enable_mask |
CP_SET_DRAW_STATE__0_GROUP_ID(id) |
COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
tu_cs_emit_qw(cs, state.iova);
}
static bool
use_hw_binning(struct tu_cmd_buffer *cmd)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
/* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
* with non-hw binning GMEM rendering. this is required because some of the
* XFB commands need to only be executed once
*/
if (cmd->state.xfb_used)
return true;
if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
return false;
if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
return true;
return (fb->tile_count.width * fb->tile_count.height) > 2;
}
static bool
use_sysmem_rendering(struct tu_cmd_buffer *cmd)
{
if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
return true;
/* can't fit attachments into gmem */
if (!cmd->state.pass->gmem_pixels)
return true;
if (cmd->state.framebuffer->layers > 1)
return true;
if (cmd->has_tess)
return true;
return false;
}
static void
tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
const uint32_t x1 = fb->tile0.width * tx;
const uint32_t y1 = fb->tile0.height * ty;
const uint32_t x2 = x1 + fb->tile0.width - 1;
const uint32_t y2 = y1 + fb->tile0.height - 1;
tu6_emit_window_scissor(cs, x1, y1, x2, y2);
tu6_emit_window_offset(cs, x1, y1);
tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
if (use_hw_binning(cmd)) {
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
tu_cs_emit(cs, fb->pipe_sizes[pipe] |
CP_SET_BIN_DATA5_0_VSC_N(slot));
tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
tu_cs_emit(cs, pipe * 4);
tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
} else {
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
}
}
static void
tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
uint32_t a,
uint32_t gmem_a)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
struct tu_image_view *dst = fb->attachments[a].attachment;
struct tu_image_view *src = fb->attachments[gmem_a].attachment;
tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.render_area);
}
static void
tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
const struct tu_subpass *subpass)
{
if (subpass->resolve_attachments) {
/* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
* Commands":
*
* End-of-subpass multisample resolves are treated as color
* attachment writes for the purposes of synchronization. That is,
* they are considered to execute in the
* VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
* their writes are synchronized with
* VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
* rendering within a subpass and any resolve operations at the end
* of the subpass occurs automatically, without need for explicit
* dependencies or pipeline barriers. However, if the resolve
* attachment is also used in a different subpass, an explicit
* dependency is needed.
*
* We use the CP_BLIT path for sysmem resolves, which is really a
* transfer command, so we have to manually flush similar to the gmem
* resolve case. However, a flush afterwards isn't needed because of the
* last sentence and the fact that we're in sysmem mode.
*/
tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
/* Wait for the flushes to land before using the 2D engine */
tu_cs_emit_wfi(cs);
for (unsigned i = 0; i < subpass->color_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
tu6_emit_sysmem_resolve(cmd, cs, a,
subpass->color_attachments[i].attachment);
}
}
}
static void
tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
const struct tu_render_pass *pass = cmd->state.pass;
const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
CP_SET_DRAW_STATE__0_GROUP_ID(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
tu6_emit_blit_scissor(cmd, cs, true);
for (uint32_t a = 0; a < pass->attachment_count; ++a) {
if (pass->attachments[a].gmem_offset >= 0)
tu_store_gmem_attachment(cmd, cs, a, a);
}
if (subpass->resolve_attachments) {
for (unsigned i = 0; i < subpass->color_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a != VK_ATTACHMENT_UNUSED)
tu_store_gmem_attachment(cmd, cs, a,
subpass->color_attachments[i].attachment);
}
}
}
static void
tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
struct tu_device *dev = cmd->device;
const struct tu_physical_device *phys_dev = dev->physical_device;
tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
.vs_state = true,
.hs_state = true,
.ds_state = true,
.gs_state = true,
.fs_state = true,
.cs_state = true,
.gfx_ibo = true,
.cs_ibo = true,
.gfx_shared_const = true,
.cs_shared_const = true,
.gfx_bindless = 0x1f,
.cs_bindless = 0x1f));
tu_cs_emit_regs(cs,
A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_SHARED_CONSTS, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
/* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false));
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9801, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
/* we don't use this yet.. probably best to disable.. */
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
CP_SET_DRAW_STATE__0_GROUP_ID(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
tu_cs_emit_regs(cs,
A6XX_SP_HS_CTRL_REG0(0));
tu_cs_emit_regs(cs,
A6XX_SP_GS_CTRL_REG0(0));
tu_cs_emit_regs(cs,
A6XX_GRAS_LRZ_CNTL(0));
tu_cs_emit_regs(cs,
A6XX_RB_LRZ_CNTL(0));
tu_cs_emit_regs(cs,
A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
.bo_offset = gb_offset(border_color)));
tu_cs_emit_regs(cs,
A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
.bo_offset = gb_offset(border_color)));
/* VSC buffers:
* use vsc pitches from the largest values used so far with this device
* if there hasn't been overflow, there will already be a scratch bo
* allocated for these sizes
*
* if overflow is detected, the stream size is increased by 2x
*/
mtx_lock(&dev->vsc_pitch_mtx);
struct tu6_global *global = dev->global_bo.map;
uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
mtx_unlock(&dev->vsc_pitch_mtx);
struct tu_bo *vsc_bo;
uint32_t size0 = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES +
cmd->vsc_draw_strm_pitch * MAX_VSC_PIPES;
tu_get_scratch_bo(dev, size0 + MAX_VSC_PIPES * 4, &vsc_bo);
tu_cs_emit_regs(cs,
A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
tu_cs_emit_regs(cs,
A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
tu_cs_emit_regs(cs,
A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
.bo_offset = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES));
tu_bo_list_add(&cmd->bo_list, vsc_bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
tu_cs_sanity_check(cs);
}
static void
update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
tu_cs_emit_regs(cs,
A6XX_VSC_BIN_SIZE(.width = fb->tile0.width,
.height = fb->tile0.height));
tu_cs_emit_regs(cs,
A6XX_VSC_BIN_COUNT(.nx = fb->tile_count.width,
.ny = fb->tile_count.height));
tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
tu_cs_emit_array(cs, fb->pipe_config, 32);
tu_cs_emit_regs(cs,
A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
tu_cs_emit_regs(cs,
A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
}
static void
emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
const uint32_t used_pipe_count =
fb->pipe_count.width * fb->pipe_count.height;
for (int i = 0; i < used_pipe_count; i++) {
tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
CP_COND_WRITE5_0_WRITE_MEMORY);
tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
CP_COND_WRITE5_0_WRITE_MEMORY);
tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
}
tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
}
static void
tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
struct tu_physical_device *phys_dev = cmd->device->physical_device;
const struct tu_framebuffer *fb = cmd->state.framebuffer;
tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_wfi(cs);
tu_cs_emit_regs(cs,
A6XX_VFD_MODE_CNTL(.binning_pass = true));
update_vsc_pipe(cmd, cs);
tu_cs_emit_regs(cs,
A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
tu_cs_emit_regs(cs,
A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
tu_cs_emit(cs, UNK_2C);
tu_cs_emit_regs(cs,
A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
tu_cs_emit_regs(cs,
A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
/* emit IB to binning drawcmds: */
tu_cs_emit_call(cs, &cmd->draw_cs);
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
CP_SET_DRAW_STATE__0_GROUP_ID(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
tu_cs_emit(cs, UNK_2D);
/* This flush is probably required because the VSC, which produces the
* visibility stream, is a client of UCHE, whereas the CP needs to read the
* visibility stream (without caching) to do draw skipping. The
* WFI+WAIT_FOR_ME combination guarantees that the binning commands
* submitted are finished before reading the VSC regs (in
* emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
* part of draws).
*/
tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
tu_cs_emit_wfi(cs);
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
emit_vsc_overflow_test(cmd, cs);
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x0);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
}
static struct tu_draw_state
tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
const struct tu_subpass *subpass,
bool gmem)
{
/* note: we can probably emit input attachments just once for the whole
* renderpass, this would avoid emitting both sysmem/gmem versions
*
* emit two texture descriptors for each input, as a workaround for
* d24s8, which can be sampled as both float (depth) and integer (stencil)
* tu_shader lowers uint input attachment loads to use the 2nd descriptor
* in the pair
* TODO: a smarter workaround
*/
if (!subpass->input_count)
return (struct tu_draw_state) {};
struct tu_cs_memory texture;
VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
A6XX_TEX_CONST_DWORDS, &texture);
assert(result == VK_SUCCESS);
for (unsigned i = 0; i < subpass->input_count * 2; i++) {
uint32_t a = subpass->input_attachments[i / 2].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
struct tu_image_view *iview =
cmd->state.framebuffer->attachments[a].attachment;
const struct tu_render_pass_attachment *att =
&cmd->state.pass->attachments[a];
uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
/* note this works because spec says fb and input attachments
* must use identity swizzle
*/
dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
}
if (!gmem)
continue;
/* patched for gmem */
dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
dst[2] =
A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
A6XX_TEX_CONST_2_PITCH(cmd->state.framebuffer->tile0.width * att->cpp);
dst[3] = 0;
dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
dst[i] = 0;
}
struct tu_cs cs;
struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
tu_cs_emit_qw(&cs, texture.iova);
tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
tu_cs_emit_qw(&cs, texture.iova);
tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
assert(cs.cur == cs.end); /* validate draw state size */
return ds;
}
static void
tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
{
struct tu_cs *cs = &cmd->draw_cs;
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
tu_emit_input_attachments(cmd, subpass, true));
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
tu_emit_input_attachments(cmd, subpass, false));
}
static void
tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
const VkRenderPassBeginInfo *info)
{
struct tu_cs *cs = &cmd->draw_cs;
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
tu6_emit_blit_scissor(cmd, cs, true);
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
tu_load_gmem_attachment(cmd, cs, i, false);
tu6_emit_blit_scissor(cmd, cs, false);
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
tu_clear_gmem_attachment(cmd, cs, i, info);
tu_cond_exec_end(cs);
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
tu_clear_sysmem_attachment(cmd, cs, i, info);
tu_cond_exec_end(cs);
}
static void
tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
assert(fb->width > 0 && fb->height > 0);
tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
tu6_emit_window_offset(cs, 0, 0);
tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
/* enable stream-out, with sysmem there is only one pass: */
tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
tu_cs_emit(cs, 0x1);
tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
tu_cs_emit(cs, 0x0);
tu_cs_sanity_check(cs);
}
static void
tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
/* Do any resolves of the last subpass. These are handled in the
* tile_store_ib in the gmem path.
*/
tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
tu_cs_sanity_check(cs);
}
static void
tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
struct tu_physical_device *phys_dev = cmd->device->physical_device;
tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
/* lrz clear? */
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x0);
tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
const struct tu_framebuffer *fb = cmd->state.framebuffer;
if (use_hw_binning(cmd)) {
/* enable stream-out during binning pass: */
tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
tu6_emit_binning_pass(cmd, cs);
/* and disable stream-out for draw pass: */
tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
tu_cs_emit_regs(cs,
A6XX_VFD_MODE_CNTL(0));
tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
tu_cs_emit(cs, 0x1);
} else {
/* no binning pass, so enable stream-out for draw pass:: */
tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height, 0x6000000);
}
tu_cs_sanity_check(cs);
}
static void
tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
tu_cs_emit_call(cs, &cmd->draw_cs);
if (use_hw_binning(cmd)) {
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
}
tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
tu_cs_sanity_check(cs);
}
static void
tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
{
tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
tu_cs_emit_regs(cs,
A6XX_GRAS_LRZ_CNTL(0));
tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
tu_cs_sanity_check(cs);
}
static void
tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
{
const struct tu_framebuffer *fb = cmd->state.framebuffer;
tu6_tile_render_begin(cmd, &cmd->cs);
uint32_t pipe = 0;
for (uint32_t py = 0; py < fb->pipe_count.height; py++) {
for (uint32_t px = 0; px < fb->pipe_count.width; px++, pipe++) {
uint32_t tx1 = px * fb->pipe0.width;
uint32_t ty1 = py * fb->pipe0.height;
uint32_t tx2 = MIN2(tx1 + fb->pipe0.width, fb->tile_count.width);
uint32_t ty2 = MIN2(ty1 + fb->pipe0.height, fb->tile_count.height);
uint32_t slot = 0;
for (uint32_t ty = ty1; ty < ty2; ty++) {
for (uint32_t tx = tx1; tx < tx2; tx++, slot++) {
tu6_emit_tile_select(cmd, &cmd->cs, tx, ty, pipe, slot);
tu6_render_tile(cmd, &cmd->cs);
}
}
}
}
tu6_tile_render_end(cmd, &cmd->cs);
}
static void
tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
{
tu6_sysmem_render_begin(cmd, &cmd->cs);
tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
tu6_sysmem_render_end(cmd, &cmd->cs);
}
static void
tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
{
const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
struct tu_cs sub_cs;
VkResult result =
tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
if (result != VK_SUCCESS) {
cmd->record_result = result;
return;
}
/* emit to tile-store sub_cs */
tu6_emit_tile_store(cmd, &sub_cs);
cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
}
static VkResult
tu_create_cmd_buffer(struct tu_device *device,
struct tu_cmd_pool *pool,
VkCommandBufferLevel level,
VkCommandBuffer *pCommandBuffer)
{
struct tu_cmd_buffer *cmd_buffer;
cmd_buffer = vk_object_zalloc(&device->vk, NULL, sizeof(*cmd_buffer),
VK_OBJECT_TYPE_COMMAND_BUFFER);
if (cmd_buffer == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
cmd_buffer->device = device;
cmd_buffer->pool = pool;
cmd_buffer->level = level;
if (pool) {
list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
cmd_buffer->queue_family_index = pool->queue_family_index;
} else {
/* Init the pool_link so we can safely call list_del when we destroy
* the command buffer
*/
list_inithead(&cmd_buffer->pool_link);
cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
}
tu_bo_list_init(&cmd_buffer->bo_list);
tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
*pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
list_inithead(&cmd_buffer->upload.list);
return VK_SUCCESS;
}
static void
tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
{
list_del(&cmd_buffer->pool_link);
tu_cs_finish(&cmd_buffer->cs);
tu_cs_finish(&cmd_buffer->draw_cs);
tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
tu_cs_finish(&cmd_buffer->sub_cs);
tu_bo_list_destroy(&cmd_buffer->bo_list);
vk_object_free(&cmd_buffer->device->vk, &cmd_buffer->pool->alloc, cmd_buffer);
}
static VkResult
tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
{
cmd_buffer->record_result = VK_SUCCESS;
tu_bo_list_reset(&cmd_buffer->bo_list);
tu_cs_reset(&cmd_buffer->cs);
tu_cs_reset(&cmd_buffer->draw_cs);
tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
tu_cs_reset(&cmd_buffer->sub_cs);
for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
return cmd_buffer->record_result;
}
VkResult
tu_AllocateCommandBuffers(VkDevice _device,
const VkCommandBufferAllocateInfo *pAllocateInfo,
VkCommandBuffer *pCommandBuffers)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
VkResult result = VK_SUCCESS;
uint32_t i;
for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
if (!list_is_empty(&pool->free_cmd_buffers)) {
struct tu_cmd_buffer *cmd_buffer = list_first_entry(
&pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
list_del(&cmd_buffer->pool_link);
list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
result = tu_reset_cmd_buffer(cmd_buffer);
cmd_buffer->level = pAllocateInfo->level;
pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
} else {
result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
&pCommandBuffers[i]);
}
if (result != VK_SUCCESS)
break;
}
if (result != VK_SUCCESS) {
tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
pCommandBuffers);
/* From the Vulkan 1.0.66 spec:
*
* "vkAllocateCommandBuffers can be used to create multiple
* command buffers. If the creation of any of those command
* buffers fails, the implementation must destroy all
* successfully created command buffer objects from this
* command, set all entries of the pCommandBuffers array to
* NULL and return the error."
*/
memset(pCommandBuffers, 0,
sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
}
return result;
}
void
tu_FreeCommandBuffers(VkDevice device,
VkCommandPool commandPool,
uint32_t commandBufferCount,
const VkCommandBuffer *pCommandBuffers)
{
for (uint32_t i = 0; i < commandBufferCount; i++) {
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
if (cmd_buffer) {
if (cmd_buffer->pool) {
list_del(&cmd_buffer->pool_link);
list_addtail(&cmd_buffer->pool_link,
&cmd_buffer->pool->free_cmd_buffers);
} else
tu_cmd_buffer_destroy(cmd_buffer);
}
}
}
VkResult
tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
return tu_reset_cmd_buffer(cmd_buffer);
}
/* Initialize the cache, assuming all necessary flushes have happened but *not*
* invalidations.
*/
static void
tu_cache_init(struct tu_cache_state *cache)
{
cache->flush_bits = 0;
cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
}
VkResult
tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo *pBeginInfo)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
VkResult result = VK_SUCCESS;
if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
/* If the command buffer has already been resetted with
* vkResetCommandBuffer, no need to do it again.
*/
result = tu_reset_cmd_buffer(cmd_buffer);
if (result != VK_SUCCESS)
return result;
}
memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
cmd_buffer->state.index_size = 0xff; /* dirty restart index */
tu_cache_init(&cmd_buffer->state.cache);
tu_cache_init(&cmd_buffer->state.renderpass_cache);
cmd_buffer->usage_flags = pBeginInfo->flags;
tu_cs_begin(&cmd_buffer->cs);
tu_cs_begin(&cmd_buffer->draw_cs);
tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
/* setup initial configuration into command buffer */
if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
switch (cmd_buffer->queue_family_index) {
case TU_QUEUE_GENERAL:
tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
break;
default:
break;
}
} else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
assert(pBeginInfo->pInheritanceInfo);
cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
cmd_buffer->state.subpass =
&cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
} else {
/* When executing in the middle of another command buffer, the CCU
* state is unknown.
*/
cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
}
}
cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
return VK_SUCCESS;
}
/* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
* rendering can skip over unused state), so we need to collect all the
* bindings together into a single state emit at draw time.
*/
void
tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
uint32_t firstBinding,
uint32_t bindingCount,
const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
assert(firstBinding + bindingCount <= MAX_VBS);
for (uint32_t i = 0; i < bindingCount; i++) {
struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
cmd->state.vb.buffers[firstBinding + i] = buf;
cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
}
cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
}
void
tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
VkBuffer buffer,
VkDeviceSize offset,
VkIndexType indexType)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buf, buffer);
uint32_t index_size, index_shift, restart_index;
switch (indexType) {
case VK_INDEX_TYPE_UINT16:
index_size = INDEX4_SIZE_16_BIT;
index_shift = 1;
restart_index = 0xffff;
break;
case VK_INDEX_TYPE_UINT32:
index_size = INDEX4_SIZE_32_BIT;
index_shift = 2;
restart_index = 0xffffffff;
break;
case VK_INDEX_TYPE_UINT8_EXT:
index_size = INDEX4_SIZE_8_BIT;
index_shift = 0;
restart_index = 0xff;
break;
default:
unreachable("invalid VkIndexType");
}
/* initialize/update the restart index */
if (cmd->state.index_size != index_size)
tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
assert(buf->size >= offset);
cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
cmd->state.max_index_count = (buf->size - offset) >> index_shift;
cmd->state.index_size = index_size;
tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
}
void
tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout,
uint32_t firstSet,
uint32_t descriptorSetCount,
const VkDescriptorSet *pDescriptorSets,
uint32_t dynamicOffsetCount,
const uint32_t *pDynamicOffsets)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
unsigned dyn_idx = 0;
struct tu_descriptor_state *descriptors_state =
tu_get_descriptors_state(cmd, pipelineBindPoint);
for (unsigned i = 0; i < descriptorSetCount; ++i) {
unsigned idx = i + firstSet;
TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
descriptors_state->sets[idx] = set;
for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
/* update the contents of the dynamic descriptor set */
unsigned src_idx = j;
unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
assert(dyn_idx < dynamicOffsetCount);
uint32_t *dst =
&descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
uint32_t *src =
&set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
uint32_t offset = pDynamicOffsets[dyn_idx];
/* Patch the storage/uniform descriptors right away. */
if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
/* Note: we can assume here that the addition won't roll over and
* change the SIZE field.
*/
uint64_t va = src[0] | ((uint64_t)src[1] << 32);
va += offset;
dst[0] = va;
dst[1] = va >> 32;
} else {
memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
/* Note: A6XX_IBO_5_DEPTH is always 0 */
uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
va += offset;
dst[4] = va;
dst[5] = va >> 32;
}
}
for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
if (set->buffers[j]) {
tu_bo_list_add(&cmd->bo_list, set->buffers[j],
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
}
}
if (set->size > 0) {
tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
}
}
assert(dyn_idx == dynamicOffsetCount);
uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_invalidate_value;
uint64_t addr[MAX_SETS + 1] = {};
struct tu_cs *cs, state_cs;
for (uint32_t i = 0; i < MAX_SETS; i++) {
struct tu_descriptor_set *set = descriptors_state->sets[i];
if (set)
addr[i] = set->va | 3;
}
if (layout->dynamic_offset_count) {
/* allocate and fill out dynamic descriptor set */
struct tu_cs_memory dynamic_desc_set;
VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
assert(result == VK_SUCCESS);
memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
addr[MAX_SETS] = dynamic_desc_set.iova | 3;
}
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_GFX_BINDLESS(0x1f);
cmd->state.desc_sets = tu_cs_draw_state(&cmd->sub_cs, &state_cs, 24);
cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
cs = &state_cs;
} else {
assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_CS_BINDLESS(0x1f);
cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
cs = &cmd->cs;
}
tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 10);
tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 10);
tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(.dword = hlsq_invalidate_value));
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
assert(cs->cur == cs->end); /* validate draw state size */
tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
}
}
void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
uint32_t firstBinding,
uint32_t bindingCount,
const VkBuffer *pBuffers,
const VkDeviceSize *pOffsets,
const VkDeviceSize *pSizes)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
/* using COND_REG_EXEC for xfb commands matches the blob behavior
* presumably there isn't any benefit using a draw state when the
* condition is (SYSMEM | BINNING)
*/
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_SYSMEM |
CP_COND_REG_EXEC_0_BINNING);
for (uint32_t i = 0; i < bindingCount; i++) {
TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
uint64_t iova = buf->bo->iova + pOffsets[i];
uint32_t size = buf->bo->size - pOffsets[i];
uint32_t idx = i + firstBinding;
if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
size = pSizes[i];
/* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
uint32_t offset = iova & 0x1f;
iova &= ~(uint64_t) 0x1f;
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
tu_cs_emit_qw(cs, iova);
tu_cs_emit(cs, size + offset);
cmd->state.streamout_offset[idx] = offset;
tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
}
tu_cond_exec_end(cs);
}
void
tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
uint32_t firstCounterBuffer,
uint32_t counterBufferCount,
const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_SYSMEM |
CP_COND_REG_EXEC_0_BINNING);
/* TODO: only update offset for active buffers */
for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
for (uint32_t i = 0; i < counterBufferCount; i++) {
uint32_t idx = firstCounterBuffer + i;
uint32_t offset = cmd->state.streamout_offset[idx];
if (!pCounterBuffers[i])
continue;
TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
CP_MEM_TO_REG_0_UNK31 |
CP_MEM_TO_REG_0_CNT(1));
tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
if (offset) {
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
CP_REG_RMW_0_SRC1_ADD);
tu_cs_emit_qw(cs, 0xffffffff);
tu_cs_emit_qw(cs, offset);
}
}
tu_cond_exec_end(cs);
}
void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
uint32_t firstCounterBuffer,
uint32_t counterBufferCount,
const VkBuffer *pCounterBuffers,
const VkDeviceSize *pCounterBufferOffsets)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
CP_COND_REG_EXEC_0_SYSMEM |
CP_COND_REG_EXEC_0_BINNING);
/* TODO: only flush buffers that need to be flushed */
for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
/* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
tu_cs_emit_qw(cs, global_iova(cmd, flush_base[i]));
tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
}
for (uint32_t i = 0; i < counterBufferCount; i++) {
uint32_t idx = firstCounterBuffer + i;
uint32_t offset = cmd->state.streamout_offset[idx];
if (!pCounterBuffers[i])
continue;
TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
/* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
CP_MEM_TO_REG_0_SHIFT_BY_2 |
0x40000 | /* ??? */
CP_MEM_TO_REG_0_UNK31 |
CP_MEM_TO_REG_0_CNT(1));
tu_cs_emit_qw(cs, global_iova(cmd, flush_base[idx]));
if (offset) {
tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
CP_REG_RMW_0_SRC1_ADD);
tu_cs_emit_qw(cs, 0xffffffff);
tu_cs_emit_qw(cs, -offset);
}
tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
CP_REG_TO_MEM_0_CNT(1));
tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
}
tu_cond_exec_end(cs);
cmd->state.xfb_used = true;
}
void
tu_CmdPushConstants(VkCommandBuffer commandBuffer,
VkPipelineLayout layout,
VkShaderStageFlags stageFlags,
uint32_t offset,
uint32_t size,
const void *pValues)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
memcpy((void*) cmd->push_constants + offset, pValues, size);
cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
}
/* Flush everything which has been made available but we haven't actually
* flushed yet.
*/
static void
tu_flush_all_pending(struct tu_cache_state *cache)
{
cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
}
VkResult
tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
/* We currently flush CCU at the end of the command buffer, like
* what the blob does. There's implicit synchronization around every
* vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
* know yet if this command buffer will be the last in the submit so we
* have to defensively flush everything else.
*
* TODO: We could definitely do better than this, since these flushes
* aren't required by Vulkan, but we'd need kernel support to do that.
* Ideally, we'd like the kernel to flush everything afterwards, so that we
* wouldn't have to do any flushes here, and when submitting multiple
* command buffers there wouldn't be any unnecessary flushes in between.
*/
if (cmd_buffer->state.pass) {
tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
} else {
tu_flush_all_pending(&cmd_buffer->state.cache);
cmd_buffer->state.cache.flush_bits |=
TU_CMD_FLAG_CCU_FLUSH_COLOR |
TU_CMD_FLAG_CCU_FLUSH_DEPTH;
tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
}
tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->global_bo,
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
}
for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
}
for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
}
tu_cs_end(&cmd_buffer->cs);
tu_cs_end(&cmd_buffer->draw_cs);
tu_cs_end(&cmd_buffer->draw_epilogue_cs);
cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
return cmd_buffer->record_result;
}
static struct tu_cs
tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
{
struct tu_cs cs;
assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
return cs;
}
void
tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline _pipeline)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
}
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
cmd->state.compute_pipeline = pipeline;
tu_cs_emit_state_ib(&cmd->cs, pipeline->program.state);
return;
}
assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
cmd->state.pipeline = pipeline;
cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
struct tu_cs *cs = &cmd->draw_cs;
uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
uint32_t i;
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
for_each_bit(i, mask)
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
/* If the new pipeline requires more VBs than we had previously set up, we
* need to re-emit them in SDS. If it requires the same set or fewer, we
* can just re-use the old SDS.
*/
if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
/* dynamic linewidth state depends pipeline state's gras_su_cntl
* so the dynamic state ib must be updated when pipeline changes
*/
if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
}
}
void
tu_CmdSetViewport(VkCommandBuffer commandBuffer,
uint32_t firstViewport,
uint32_t viewportCount,
const VkViewport *pViewports)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
assert(firstViewport == 0 && viewportCount == 1);
tu6_emit_viewport(&cs, pViewports);
}
void
tu_CmdSetScissor(VkCommandBuffer commandBuffer,
uint32_t firstScissor,
uint32_t scissorCount,
const VkRect2D *pScissors)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
assert(firstScissor == 0 && scissorCount == 1);
tu6_emit_scissor(&cs, pScissors);
}
void
tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
}
void
tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
float depthBiasConstantFactor,
float depthBiasClamp,
float depthBiasSlopeFactor)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
}
void
tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
const float blendConstants[4])
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
}
void
tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
float minDepthBounds,
float maxDepthBounds)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
tu_cs_emit_regs(&cs,
A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
}
static void
update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
{
if (face & VK_STENCIL_FACE_FRONT_BIT)
*value = (*value & 0xff00) | (mask & 0xff);
if (face & VK_STENCIL_FACE_BACK_BIT)
*value = (*value & 0xff) | (mask & 0xff) << 8;
}
void
tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t compareMask)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
}
void
tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t writeMask)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
}
void
tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t reference)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
}
void
tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
assert(pSampleLocationsInfo);
tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
}
static void
tu_flush_for_access(struct tu_cache_state *cache,
enum tu_cmd_access_mask src_mask,
enum tu_cmd_access_mask dst_mask)
{
enum tu_cmd_flush_bits flush_bits = 0;
if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
}
#define SRC_FLUSH(domain, flush, invalidate) \
if (src_mask & TU_ACCESS_##domain##_WRITE) { \
cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
(TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
}
SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
#undef SRC_FLUSH
#define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
flush_bits |= TU_CMD_FLAG_##flush; \
cache->pending_flush_bits |= \
(TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
}
SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
#undef SRC_INCOHERENT_FLUSH
if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
}
#define DST_FLUSH(domain, flush, invalidate) \
if (dst_mask & (TU_ACCESS_##domain##_READ | \
TU_ACCESS_##domain##_WRITE)) { \
flush_bits |= cache->pending_flush_bits & \
(TU_CMD_FLAG_##invalidate | \
(TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
}
DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
#undef DST_FLUSH
#define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
if (dst_mask & (TU_ACCESS_##domain##_READ | \
TU_ACCESS_##domain##_WRITE)) { \
flush_bits |= TU_CMD_FLAG_##invalidate | \
(cache->pending_flush_bits & \
(TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
}
DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
#undef DST_INCOHERENT_FLUSH
if (dst_mask & TU_ACCESS_WFI_READ) {
flush_bits |= TU_CMD_FLAG_WFI;
}
cache->flush_bits |= flush_bits;
cache->pending_flush_bits &= ~flush_bits;
}
static enum tu_cmd_access_mask
vk2tu_access(VkAccessFlags flags, bool gmem)
{
enum tu_cmd_access_mask mask = 0;
/* If the GPU writes a buffer that is then read by an indirect draw
* command, we theoretically need a WFI + WAIT_FOR_ME combination to
* wait for the writes to complete. The WAIT_FOR_ME is performed as part
* of the draw by the firmware, so we just need to execute a WFI.
*/
if (flags &
(VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
VK_ACCESS_MEMORY_READ_BIT)) {
mask |= TU_ACCESS_WFI_READ;
}
if (flags &
(VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP, I think */
VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
VK_ACCESS_HOST_READ_BIT | /* sysmem by definition */
VK_ACCESS_MEMORY_READ_BIT)) {
mask |= TU_ACCESS_SYSMEM_READ;
}
if (flags &
(VK_ACCESS_HOST_WRITE_BIT |
VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT | /* Write performed by CP, I think */
VK_ACCESS_MEMORY_WRITE_BIT)) {
mask |= TU_ACCESS_SYSMEM_WRITE;
}
if (flags &
(VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
/* TODO: Is there a no-cache bit for textures so that we can ignore
* these?
*/
VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
VK_ACCESS_MEMORY_READ_BIT)) {
mask |= TU_ACCESS_UCHE_READ;
}
if (flags &
(VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
VK_ACCESS_MEMORY_WRITE_BIT)) {
mask |= TU_ACCESS_UCHE_WRITE;
}
/* When using GMEM, the CCU is always flushed automatically to GMEM, and
* then GMEM is flushed to sysmem. Furthermore, we already had to flush any
* previous writes in sysmem mode when transitioning to GMEM. Therefore we
* can ignore CCU and pretend that color attachments and transfers use
* sysmem directly.
*/
if (flags &
(VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
VK_ACCESS_MEMORY_READ_BIT)) {
if (gmem)
mask |= TU_ACCESS_SYSMEM_READ;
else
mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
}
if (flags &
(VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_MEMORY_READ_BIT)) {
if (gmem)
mask |= TU_ACCESS_SYSMEM_READ;
else
mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
}
if (flags &
(VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_MEMORY_WRITE_BIT)) {
if (gmem) {
mask |= TU_ACCESS_SYSMEM_WRITE;
} else {
mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
}
}
if (flags &
(VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_MEMORY_WRITE_BIT)) {
if (gmem) {
mask |= TU_ACCESS_SYSMEM_WRITE;
} else {
mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
}
}
/* When the dst access is a transfer read/write, it seems we sometimes need
* to insert a WFI after any flushes, to guarantee that the flushes finish
* before the 2D engine starts. However the opposite (i.e. a WFI after
* CP_BLIT and before any subsequent flush) does not seem to be needed, and
* the blob doesn't emit such a WFI.
*/
if (flags &
(VK_ACCESS_TRANSFER_WRITE_BIT |
VK_ACCESS_MEMORY_WRITE_BIT)) {
if (gmem) {
mask |= TU_ACCESS_SYSMEM_WRITE;
} else {
mask |= TU_ACCESS_CCU_COLOR_WRITE;
}
mask |= TU_ACCESS_WFI_READ;
}
if (flags &
(VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
VK_ACCESS_MEMORY_READ_BIT)) {
mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
}
return mask;
}
void
tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer *pCmdBuffers)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
VkResult result;
assert(commandBufferCount > 0);
/* Emit any pending flushes. */
if (cmd->state.pass) {
tu_flush_all_pending(&cmd->state.renderpass_cache);
tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
} else {
tu_flush_all_pending(&cmd->state.cache);
tu_emit_cache_flush(cmd, &cmd->cs);
}
for (uint32_t i = 0; i < commandBufferCount; i++) {
TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
if (result != VK_SUCCESS) {
cmd->record_result = result;
break;
}
if (secondary->usage_flags &
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
assert(tu_cs_is_empty(&secondary->cs));
result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
if (result != VK_SUCCESS) {
cmd->record_result = result;
break;
}
result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
&secondary->draw_epilogue_cs);
if (result != VK_SUCCESS) {
cmd->record_result = result;
break;
}
if (secondary->has_tess)
cmd->has_tess = true;
} else {
assert(tu_cs_is_empty(&secondary->draw_cs));
assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
}
tu_cs_add_entries(&cmd->cs, &secondary->cs);
}
cmd->state.index_size = secondary->state.index_size; /* for restart index update */
}
cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
/* After executing secondary command buffers, there may have been arbitrary
* flushes executed, so when we encounter a pipeline barrier with a
* srcMask, we have to assume that we need to invalidate. Therefore we need
* to re-initialize the cache with all pending invalidate bits set.
*/
if (cmd->state.pass) {
tu_cache_init(&cmd->state.renderpass_cache);
} else {
tu_cache_init(&cmd->state.cache);
}
}
VkResult
tu_CreateCommandPool(VkDevice _device,
const VkCommandPoolCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkCommandPool *pCmdPool)
{
TU_FROM_HANDLE(tu_device, device, _device);
struct tu_cmd_pool *pool;
pool = vk_object_alloc(&device->vk, pAllocator, sizeof(*pool),
VK_OBJECT_TYPE_COMMAND_POOL);
if (pool == NULL)
return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
if (pAllocator)
pool->alloc = *pAllocator;
else
pool->alloc = device->vk.alloc;
list_inithead(&pool->cmd_buffers);
list_inithead(&pool->free_cmd_buffers);
pool->queue_family_index = pCreateInfo->queueFamilyIndex;
*pCmdPool = tu_cmd_pool_to_handle(pool);
return VK_SUCCESS;
}
void
tu_DestroyCommandPool(VkDevice _device,
VkCommandPool commandPool,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, device, _device);
TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
if (!pool)
return;
list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
&pool->cmd_buffers, pool_link)
{
tu_cmd_buffer_destroy(cmd_buffer);
}
list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
&pool->free_cmd_buffers, pool_link)
{
tu_cmd_buffer_destroy(cmd_buffer);
}
vk_object_free(&device->vk, pAllocator, pool);
}
VkResult
tu_ResetCommandPool(VkDevice device,
VkCommandPool commandPool,
VkCommandPoolResetFlags flags)
{
TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
VkResult result;
list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
pool_link)
{
result = tu_reset_cmd_buffer(cmd_buffer);
if (result != VK_SUCCESS)
return result;
}
return VK_SUCCESS;
}
void
tu_TrimCommandPool(VkDevice device,
VkCommandPool commandPool,
VkCommandPoolTrimFlags flags)
{
TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
if (!pool)
return;
list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
&pool->free_cmd_buffers, pool_link)
{
tu_cmd_buffer_destroy(cmd_buffer);
}
}
static void
tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
const struct tu_subpass_barrier *barrier,
bool external)
{
/* Note: we don't know until the end of the subpass whether we'll use
* sysmem, so assume sysmem here to be safe.
*/
struct tu_cache_state *cache =
external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
enum tu_cmd_access_mask src_flags =
vk2tu_access(barrier->src_access_mask, false);
enum tu_cmd_access_mask dst_flags =
vk2tu_access(barrier->dst_access_mask, false);
if (barrier->incoherent_ccu_color)
src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
if (barrier->incoherent_ccu_depth)
src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
tu_flush_for_access(cache, src_flags, dst_flags);
}
void
tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBegin,
VkSubpassContents contents)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
cmd->state.pass = pass;
cmd->state.subpass = pass->subpasses;
cmd->state.framebuffer = fb;
cmd->state.render_area = pRenderPassBegin->renderArea;
tu_cmd_prepare_tile_store_ib(cmd);
/* Note: because this is external, any flushes will happen before draw_cs
* gets called. However deferred flushes could have to happen later as part
* of the subpass.
*/
tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
cmd->state.renderpass_cache.pending_flush_bits =
cmd->state.cache.pending_flush_bits;
cmd->state.renderpass_cache.flush_bits = 0;
tu_emit_renderpass_begin(cmd, pRenderPassBegin);
tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
tu_set_input_attachments(cmd, cmd->state.subpass);
for (uint32_t i = 0; i < fb->attachment_count; ++i) {
const struct tu_image_view *iview = fb->attachments[i].attachment;
tu_bo_list_add(&cmd->bo_list, iview->image->bo,
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
}
cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
}
void
tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBeginInfo,
const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
{
tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
pSubpassBeginInfo->contents);
}
void
tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
const struct tu_render_pass *pass = cmd->state.pass;
struct tu_cs *cs = &cmd->draw_cs;
const struct tu_subpass *subpass = cmd->state.subpass++;
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
if (subpass->resolve_attachments) {
tu6_emit_blit_scissor(cmd, cs, true);
for (unsigned i = 0; i < subpass->color_count; i++) {
uint32_t a = subpass->resolve_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
tu_store_gmem_attachment(cmd, cs, a,
subpass->color_attachments[i].attachment);
if (pass->attachments[a].gmem_offset < 0)
continue;
/* TODO:
* check if the resolved attachment is needed by later subpasses,
* if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
*/
tu_finishme("missing GMEM->GMEM resolve path\n");
tu_load_gmem_attachment(cmd, cs, a, true);
}
}
tu_cond_exec_end(cs);
tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
tu6_emit_sysmem_resolves(cmd, cs, subpass);
tu_cond_exec_end(cs);
/* Handle dependencies for the next subpass */
tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
/* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
tu6_emit_zs(cmd, cmd->state.subpass, cs);
tu6_emit_mrt(cmd, cmd->state.subpass, cs);
tu6_emit_msaa(cs, cmd->state.subpass->samples);
tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
tu_set_input_attachments(cmd, cmd->state.subpass);
}
void
tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
const VkSubpassEndInfoKHR *pSubpassEndInfo)
{
tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
}
static void
tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
struct tu_descriptor_state *descriptors_state,
gl_shader_stage type,
uint32_t *push_constants)
{
const struct tu_program_descriptor_linkage *link =
&pipeline->program.link[type];
const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
if (link->push_consts.count > 0) {
unsigned num_units = link->push_consts.count;
unsigned offset = link->push_consts.lo;
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(num_units));
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
for (unsigned i = 0; i < num_units * 4; i++)
tu_cs_emit(cs, push_constants[i + offset * 4]);
}
for (uint32_t i = 0; i < state->num_enabled; i++) {
uint32_t size = state->range[i].end - state->range[i].start;
uint32_t offset = state->range[i].start;
/* and even if the start of the const buffer is before
* first_immediate, the end may not be:
*/
size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
if (size == 0)
continue;
/* things should be aligned to vec4: */
debug_assert((state->range[i].offset % 16) == 0);
debug_assert((size % 16) == 0);
debug_assert((offset % 16) == 0);
/* Dig out the descriptor from the descriptor state and read the VA from
* it.
*/
assert(state->range[i].ubo.bindless);
uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
descriptors_state->dynamic_descriptors :
descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
unsigned block = state->range[i].ubo.block;
uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
assert(va);
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
tu_cs_emit_qw(cs, va + offset);
}
}
static struct tu_draw_state
tu6_emit_consts(struct tu_cmd_buffer *cmd,
const struct tu_pipeline *pipeline,
struct tu_descriptor_state *descriptors_state,
gl_shader_stage type)
{
struct tu_cs cs;
tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
}
static struct tu_draw_state
tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
const struct tu_pipeline *pipeline)
{
struct tu_cs cs;
tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
int binding;
for_each_bit(binding, pipeline->vi.bindings_used) {
const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
const VkDeviceSize offset = buf->bo_offset +
cmd->state.vb.offsets[binding];
tu_cs_emit_regs(&cs,
A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
}
cmd->vertex_bindings_set = pipeline->vi.bindings_used;
return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
}
static uint64_t
get_tess_param_bo_size(const struct tu_pipeline *pipeline,
uint32_t draw_count)
{
/* TODO: For indirect draws, we can't compute the BO size ahead of time.
* Still not sure what to do here, so just allocate a reasonably large
* BO and hope for the best for now. */
if (!draw_count)
draw_count = 2048;
/* the tess param BO is pipeline->tess.param_stride bytes per patch,
* which includes both the per-vertex outputs and per-patch outputs
* build_primitive_map in ir3 calculates this stride
*/
uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
uint32_t num_patches = draw_count / verts_per_patch;
return num_patches * pipeline->tess.param_stride;
}
static uint64_t
get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
uint32_t draw_count)
{
/* TODO: For indirect draws, we can't compute the BO size ahead of time.
* Still not sure what to do here, so just allocate a reasonably large
* BO and hope for the best for now. */
if (!draw_count)
draw_count = 2048;
/* Each distinct patch gets its own tess factor output. */
uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
uint32_t num_patches = draw_count / verts_per_patch;
uint32_t factor_stride;
switch (pipeline->tess.patch_type) {
case IR3_TESS_ISOLINES:
factor_stride = 12;
break;
case IR3_TESS_TRIANGLES:
factor_stride = 20;
break;
case IR3_TESS_QUADS:
factor_stride = 28;
break;
default:
unreachable("bad tessmode");
}
return factor_stride * num_patches;
}
static VkResult
tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
uint32_t draw_count,
const struct tu_pipeline *pipeline,
struct tu_draw_state *state)
{
struct tu_cs cs;
VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 20, &cs);
if (result != VK_SUCCESS)
return result;
uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
uint64_t tess_bo_size = tess_factor_size + tess_param_size;
if (tess_bo_size > 0) {
struct tu_bo *tess_bo;
result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
if (result != VK_SUCCESS)
return result;
tu_bo_list_add(&cmd->bo_list, tess_bo,
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
uint64_t tess_factor_iova = tess_bo->iova;
uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
CP_LOAD_STATE6_0_NUM_UNIT(1));
tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
tu_cs_emit_qw(&cs, tess_param_iova);
tu_cs_emit_qw(&cs, tess_factor_iova);
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
CP_LOAD_STATE6_0_NUM_UNIT(1));
tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
tu_cs_emit_qw(&cs, tess_param_iova);
tu_cs_emit_qw(&cs, tess_factor_iova);
tu_cs_emit_pkt4(&cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
tu_cs_emit_qw(&cs, tess_factor_iova);
/* TODO: Without this WFI here, the hardware seems unable to read these
* addresses we just emitted. Freedreno emits these consts as part of
* IB1 instead of in a draw state which might make this WFI unnecessary,
* but it requires a bit more indirection (SS6_INDIRECT for consts). */
tu_cs_emit_wfi(&cs);
}
*state = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
return VK_SUCCESS;
}
static VkResult
tu6_draw_common(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
bool indexed,
/* note: draw_count is 0 for indirect */
uint32_t draw_count)
{
const struct tu_pipeline *pipeline = cmd->state.pipeline;
VkResult result;
struct tu_descriptor_state *descriptors_state =
&cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
tu_emit_cache_flush_renderpass(cmd, cs);
/* TODO lrz */
tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
.primitive_restart =
pipeline->ia.primitive_restart && indexed,
.tess_upper_left_domain_origin =
pipeline->tess.upper_left_domain_origin));
if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
cmd->state.shader_const[MESA_SHADER_VERTEX] =
tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
cmd->state.shader_const[MESA_SHADER_TESS_CTRL] =
tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
cmd->state.shader_const[MESA_SHADER_TESS_EVAL] =
tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
cmd->state.shader_const[MESA_SHADER_GEOMETRY] =
tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
cmd->state.shader_const[MESA_SHADER_FRAGMENT] =
tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
}
if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
cmd->state.vertex_buffers = tu6_emit_vertex_buffers(cmd, pipeline);
bool has_tess =
pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
struct tu_draw_state tess_consts = {};
if (has_tess) {
cmd->has_tess = true;
result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts);
if (result != VK_SUCCESS)
return result;
}
/* for the first draw in a renderpass, re-emit all the draw states
*
* and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
* used, then draw states must be re-emitted. note however this only happens
* in the sysmem path, so this can be skipped this for the gmem path (TODO)
*
* the two input attachment states are excluded because secondary command
* buffer doesn't have a state ib to restore it, and not re-emitting them
* is OK since CmdClearAttachments won't disable/overwrite them
*/
if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
((pipeline->dynamic_state_mask & BIT(i)) ?
cmd->state.dynamic_state[i] :
pipeline->dynamic_state[i]));
}
} else {
/* emit draw states that were just updated
* note we eventually don't want to have to emit anything here
*/
uint32_t draw_state_count =
has_tess +
((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
((cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD) ? 1 : 0) +
((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
1; /* vs_params */
tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
/* We may need to re-emit tess consts if the current draw call is
* sufficiently larger than the last draw call. */
if (has_tess)
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
}
if (cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD)
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
}
tu_cs_sanity_check(cs);
/* There are too many graphics dirty bits to list here, so just list the
* bits to preserve instead. The only things not emitted here are
* compute-related state.
*/
cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
return VK_SUCCESS;
}
static uint32_t
tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
{
const struct tu_pipeline *pipeline = cmd->state.pipeline;
uint32_t initiator =
CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
switch (pipeline->tess.patch_type) {
case IR3_TESS_TRIANGLES:
initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
break;
case IR3_TESS_ISOLINES:
initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
break;
case IR3_TESS_NONE:
initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
break;
case IR3_TESS_QUADS:
initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
break;
}
return initiator;
}
static uint32_t
vs_params_offset(struct tu_cmd_buffer *cmd)
{
const struct tu_program_descriptor_linkage *link =
&cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
const struct ir3_const_state *const_state = &link->const_state;
if (const_state->offsets.driver_param >= link->constlen)
return 0;
/* this layout is required by CP_DRAW_INDIRECT_MULTI */
STATIC_ASSERT(IR3_DP_DRAWID == 0);
STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
/* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
assert(const_state->offsets.driver_param != 0);
return const_state->offsets.driver_param;
}
static struct tu_draw_state
tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
uint32_t vertex_offset,
uint32_t first_instance)
{
uint32_t offset = vs_params_offset(cmd);
struct tu_cs cs;
VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 8 : 0), &cs);
if (result != VK_SUCCESS) {
cmd->record_result = result;
return (struct tu_draw_state) {};
}
/* TODO: don't make a new draw state when it doesn't change */
tu_cs_emit_regs(&cs,
A6XX_VFD_INDEX_OFFSET(vertex_offset),
A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
if (offset) {
tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
CP_LOAD_STATE6_0_NUM_UNIT(1));
tu_cs_emit(&cs, 0);
tu_cs_emit(&cs, 0);
tu_cs_emit(&cs, 0);
tu_cs_emit(&cs, vertex_offset);
tu_cs_emit(&cs, first_instance);
tu_cs_emit(&cs, 0);
}
struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
return (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
}
void
tu_CmdDraw(VkCommandBuffer commandBuffer,
uint32_t vertexCount,
uint32_t instanceCount,
uint32_t firstVertex,
uint32_t firstInstance)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
cmd->state.vs_params = tu6_emit_vs_params(cmd, firstVertex, firstInstance);
tu6_draw_common(cmd, cs, false, vertexCount);
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
tu_cs_emit(cs, instanceCount);
tu_cs_emit(cs, vertexCount);
}
void
tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
uint32_t indexCount,
uint32_t instanceCount,
uint32_t firstIndex,
int32_t vertexOffset,
uint32_t firstInstance)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_cs *cs = &cmd->draw_cs;
cmd->state.vs_params = tu6_emit_vs_params(cmd, vertexOffset, firstInstance);
tu6_draw_common(cmd, cs, true, indexCount);
tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
tu_cs_emit(cs, instanceCount);
tu_cs_emit(cs, indexCount);
tu_cs_emit(cs, firstIndex);
tu_cs_emit_qw(cs, cmd->state.index_va);
tu_cs_emit(cs, cmd->state.max_index_count);
}
void
tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buf, _buffer);
struct tu_cs *cs = &cmd->draw_cs;
cmd->state.vs_params = (struct tu_draw_state) {};
tu6_draw_common(cmd, cs, false, 0);
/* workaround for a firmware bug with CP_DRAW_INDIRECT_MULTI, where it
* doesn't wait for WFIs to be completed and leads to GPU fault/hang
* TODO: this could be worked around in a more performant way,
* or there may exist newer firmware that has been fixed
*/
if (cmd->device->physical_device->gpu_id != 650)
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
tu_cs_emit(cs, drawCount);
tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
tu_cs_emit(cs, stride);
tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
}
void
tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
uint32_t drawCount,
uint32_t stride)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buf, _buffer);
struct tu_cs *cs = &cmd->draw_cs;
cmd->state.vs_params = (struct tu_draw_state) {};
tu6_draw_common(cmd, cs, true, 0);
/* workaround for a firmware bug with CP_DRAW_INDIRECT_MULTI, where it
* doesn't wait for WFIs to be completed and leads to GPU fault/hang
* TODO: this could be worked around in a more performant way,
* or there may exist newer firmware that has been fixed
*/
if (cmd->device->physical_device->gpu_id != 650)
tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
tu_cs_emit(cs, drawCount);
tu_cs_emit_qw(cs, cmd->state.index_va);
tu_cs_emit(cs, cmd->state.max_index_count);
tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
tu_cs_emit(cs, stride);
tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
}
void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
uint32_t instanceCount,
uint32_t firstInstance,
VkBuffer _counterBuffer,
VkDeviceSize counterBufferOffset,
uint32_t counterOffset,
uint32_t vertexStride)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
struct tu_cs *cs = &cmd->draw_cs;
cmd->state.vs_params = tu6_emit_vs_params(cmd, 0, firstInstance);
tu6_draw_common(cmd, cs, false, 0);
tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
tu_cs_emit(cs, instanceCount);
tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
tu_cs_emit(cs, counterOffset);
tu_cs_emit(cs, vertexStride);
tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
}
struct tu_dispatch_info
{
/**
* Determine the layout of the grid (in block units) to be used.
*/
uint32_t blocks[3];
/**
* A starting offset for the grid. If unaligned is set, the offset
* must still be aligned.
*/
uint32_t offsets[3];
/**
* Whether it's an unaligned compute dispatch.
*/
bool unaligned;
/**
* Indirect compute parameters resource.
*/
struct tu_buffer *indirect;
uint64_t indirect_offset;
};
static void
tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
const struct tu_dispatch_info *info)
{
gl_shader_stage type = MESA_SHADER_COMPUTE;
const struct tu_program_descriptor_linkage *link =
&pipeline->program.link[type];
const struct ir3_const_state *const_state = &link->const_state;
uint32_t offset = const_state->offsets.driver_param;
if (link->constlen <= offset)
return;
if (!info->indirect) {
uint32_t driver_params[IR3_DP_CS_COUNT] = {
[IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
[IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
[IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
[IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
[IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
[IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
};
uint32_t num_consts = MIN2(const_state->num_driver_params,
(link->constlen - offset) * 4);
/* push constants */
tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
tu_cs_emit(cs, 0);
tu_cs_emit(cs, 0);
uint32_t i;
for (i = 0; i < num_consts; i++)
tu_cs_emit(cs, driver_params[i]);
} else {
tu_finishme("Indirect driver params");
}
}
static void
tu_dispatch(struct tu_cmd_buffer *cmd,
const struct tu_dispatch_info *info)
{
struct tu_cs *cs = &cmd->cs;
struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
struct tu_descriptor_state *descriptors_state =
&cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
/* TODO: We could probably flush less if we add a compute_flush_bits
* bitfield.
*/
tu_emit_cache_flush(cmd, cs);
/* note: no reason to have this in a separate IB */
tu_cs_emit_state_ib(cs,
tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE));
tu_emit_compute_driver_params(cs, pipeline, info);
if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD)
tu_cs_emit_state_ib(cs, pipeline->load_state);
cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
const uint32_t *local_size = pipeline->compute.local_size;
const uint32_t *num_groups = info->blocks;
tu_cs_emit_regs(cs,
A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
.localsizex = local_size[0] - 1,
.localsizey = local_size[1] - 1,
.localsizez = local_size[2] - 1),
A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
tu_cs_emit_regs(cs,
A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
if (info->indirect) {
uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
tu_cs_emit(cs, 0x00000000);
tu_cs_emit_qw(cs, iova);
tu_cs_emit(cs,
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
} else {
tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
tu_cs_emit(cs, 0x00000000);
tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
}
tu_cs_emit_wfi(cs);
}
void
tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
uint32_t base_x,
uint32_t base_y,
uint32_t base_z,
uint32_t x,
uint32_t y,
uint32_t z)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
struct tu_dispatch_info info = {};
info.blocks[0] = x;
info.blocks[1] = y;
info.blocks[2] = z;
info.offsets[0] = base_x;
info.offsets[1] = base_y;
info.offsets[2] = base_z;
tu_dispatch(cmd_buffer, &info);
}
void
tu_CmdDispatch(VkCommandBuffer commandBuffer,
uint32_t x,
uint32_t y,
uint32_t z)
{
tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
}
void
tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
struct tu_dispatch_info info = {};
info.indirect = buffer;
info.indirect_offset = offset;
tu_dispatch(cmd_buffer, &info);
}
void
tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
tu_cs_end(&cmd_buffer->draw_cs);
tu_cs_end(&cmd_buffer->draw_epilogue_cs);
if (use_sysmem_rendering(cmd_buffer))
tu_cmd_render_sysmem(cmd_buffer);
else
tu_cmd_render_tiles(cmd_buffer);
/* discard draw_cs and draw_epilogue_cs entries now that the tiles are
rendered */
tu_cs_discard_entries(&cmd_buffer->draw_cs);
tu_cs_begin(&cmd_buffer->draw_cs);
tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
cmd_buffer->state.cache.pending_flush_bits |=
cmd_buffer->state.renderpass_cache.pending_flush_bits;
tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
cmd_buffer->state.pass = NULL;
cmd_buffer->state.subpass = NULL;
cmd_buffer->state.framebuffer = NULL;
}
void
tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
const VkSubpassEndInfoKHR *pSubpassEndInfo)
{
tu_CmdEndRenderPass(commandBuffer);
}
struct tu_barrier_info
{
uint32_t eventCount;
const VkEvent *pEvents;
VkPipelineStageFlags srcStageMask;
};
static void
tu_barrier(struct tu_cmd_buffer *cmd,
uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers,
const struct tu_barrier_info *info)
{
struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
VkAccessFlags srcAccessMask = 0;
VkAccessFlags dstAccessMask = 0;
for (uint32_t i = 0; i < memoryBarrierCount; i++) {
srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
}
for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
}
enum tu_cmd_access_mask src_flags = 0;
enum tu_cmd_access_mask dst_flags = 0;
for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
/* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
(image->tiling != VK_IMAGE_TILING_LINEAR &&
old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
/* The underlying memory for this image may have been used earlier
* within the same queue submission for a different image, which
* means that there may be old, stale cache entries which are in the
* "wrong" location, which could cause problems later after writing
* to the image. We don't want these entries being flushed later and
* overwriting the actual image, so we need to flush the CCU.
*/
src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
}
srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
}
/* Inside a renderpass, we don't know yet whether we'll be using sysmem
* so we have to use the sysmem flushes.
*/
bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
!cmd->state.pass;
src_flags |= vk2tu_access(srcAccessMask, gmem);
dst_flags |= vk2tu_access(dstAccessMask, gmem);
struct tu_cache_state *cache =
cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
tu_flush_for_access(cache, src_flags, dst_flags);
for (uint32_t i = 0; i < info->eventCount; i++) {
TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
CP_WAIT_REG_MEM_0_POLL_MEMORY);
tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
}
}
void
tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
struct tu_barrier_info info;
info.eventCount = 0;
info.pEvents = NULL;
info.srcStageMask = srcStageMask;
tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers, &info);
}
static void
write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
VkPipelineStageFlags stageMask, unsigned value)
{
struct tu_cs *cs = &cmd->cs;
/* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
assert(!cmd->state.pass);
tu_emit_cache_flush(cmd, cs);
tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
/* Flags that only require a top-of-pipe event. DrawIndirect parameters are
* read by the CP, so the draw indirect stage counts as top-of-pipe too.
*/
VkPipelineStageFlags top_of_pipe_flags =
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
if (!(stageMask & ~top_of_pipe_flags)) {
tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
tu_cs_emit(cs, value);
} else {
/* Use a RB_DONE_TS event to wait for everything to complete. */
tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
tu_cs_emit_qw(cs, event->bo.iova);
tu_cs_emit(cs, value);
}
}
void
tu_CmdSetEvent(VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags stageMask)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_event, event, _event);
write_event(cmd, event, stageMask, 1);
}
void
tu_CmdResetEvent(VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags stageMask)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
TU_FROM_HANDLE(tu_event, event, _event);
write_event(cmd, event, stageMask, 0);
}
void
tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
uint32_t eventCount,
const VkEvent *pEvents,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
{
TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
struct tu_barrier_info info;
info.eventCount = eventCount;
info.pEvents = pEvents;
info.srcStageMask = 0;
tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers, &info);
}
void
tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
{
/* No-op */
}