blob: 1a5d4c7988db4925996b77a28e22588d9eb1ee1f [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Jason Ekstrand (jason@jlekstrand.net)
*
*/
#include "vtn_private.h"
#include "nir/nir_vla.h"
#include "nir/nir_control_flow.h"
#include "nir/nir_constant_expressions.h"
#include "nir/nir_deref.h"
#include "spirv_info.h"
#include "util/u_math.h"
#include <stdio.h>
void
vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
size_t spirv_offset, const char *message)
{
if (b->options->debug.func) {
b->options->debug.func(b->options->debug.private_data,
level, spirv_offset, message);
}
#ifndef NDEBUG
if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
fprintf(stderr, "%s\n", message);
#endif
}
void
vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
size_t spirv_offset, const char *fmt, ...)
{
va_list args;
char *msg;
va_start(args, fmt);
msg = ralloc_vasprintf(NULL, fmt, args);
va_end(args);
vtn_log(b, level, spirv_offset, msg);
ralloc_free(msg);
}
static void
vtn_log_err(struct vtn_builder *b,
enum nir_spirv_debug_level level, const char *prefix,
const char *file, unsigned line,
const char *fmt, va_list args)
{
char *msg;
msg = ralloc_strdup(NULL, prefix);
#ifndef NDEBUG
ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
#endif
ralloc_asprintf_append(&msg, " ");
ralloc_vasprintf_append(&msg, fmt, args);
ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
b->spirv_offset);
if (b->file) {
ralloc_asprintf_append(&msg,
"\n in SPIR-V source file %s, line %d, col %d",
b->file, b->line, b->col);
}
vtn_log(b, level, b->spirv_offset, msg);
ralloc_free(msg);
}
static void
vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
{
static int idx = 0;
char filename[1024];
int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
path, prefix, idx++);
if (len < 0 || len >= sizeof(filename))
return;
FILE *f = fopen(filename, "w");
if (f == NULL)
return;
fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
fclose(f);
vtn_info("SPIR-V shader dumped to %s", filename);
}
void
_vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
file, line, fmt, args);
va_end(args);
}
void
_vtn_err(struct vtn_builder *b, const char *file, unsigned line,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
file, line, fmt, args);
va_end(args);
}
void
_vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
file, line, fmt, args);
va_end(args);
const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
if (dump_path)
vtn_dump_shader(b, dump_path, "fail");
longjmp(b->fail_jump, 1);
}
struct spec_constant_value {
bool is_double;
union {
uint32_t data32;
uint64_t data64;
};
};
static struct vtn_ssa_value *
vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
{
struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
val->type = type;
if (glsl_type_is_vector_or_scalar(type)) {
unsigned num_components = glsl_get_vector_elements(val->type);
unsigned bit_size = glsl_get_bit_size(val->type);
val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
} else {
unsigned elems = glsl_get_length(val->type);
val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
if (glsl_type_is_matrix(type)) {
const struct glsl_type *elem_type =
glsl_vector_type(glsl_get_base_type(type),
glsl_get_vector_elements(type));
for (unsigned i = 0; i < elems; i++)
val->elems[i] = vtn_undef_ssa_value(b, elem_type);
} else if (glsl_type_is_array(type)) {
const struct glsl_type *elem_type = glsl_get_array_element(type);
for (unsigned i = 0; i < elems; i++)
val->elems[i] = vtn_undef_ssa_value(b, elem_type);
} else {
for (unsigned i = 0; i < elems; i++) {
const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
val->elems[i] = vtn_undef_ssa_value(b, elem_type);
}
}
}
return val;
}
static struct vtn_ssa_value *
vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
const struct glsl_type *type)
{
struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
if (entry)
return entry->data;
struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
val->type = type;
switch (glsl_get_base_type(type)) {
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_INT64:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE: {
int bit_size = glsl_get_bit_size(type);
if (glsl_type_is_vector_or_scalar(type)) {
unsigned num_components = glsl_get_vector_elements(val->type);
nir_load_const_instr *load =
nir_load_const_instr_create(b->shader, num_components, bit_size);
memcpy(load->value, constant->values[0],
sizeof(nir_const_value) * load->def.num_components);
nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
val->def = &load->def;
} else {
assert(glsl_type_is_matrix(type));
unsigned rows = glsl_get_vector_elements(val->type);
unsigned columns = glsl_get_matrix_columns(val->type);
val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
for (unsigned i = 0; i < columns; i++) {
struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
col_val->type = glsl_get_column_type(val->type);
nir_load_const_instr *load =
nir_load_const_instr_create(b->shader, rows, bit_size);
memcpy(load->value, constant->values[i],
sizeof(nir_const_value) * load->def.num_components);
nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
col_val->def = &load->def;
val->elems[i] = col_val;
}
}
break;
}
case GLSL_TYPE_ARRAY: {
unsigned elems = glsl_get_length(val->type);
val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
const struct glsl_type *elem_type = glsl_get_array_element(val->type);
for (unsigned i = 0; i < elems; i++)
val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
elem_type);
break;
}
case GLSL_TYPE_STRUCT: {
unsigned elems = glsl_get_length(val->type);
val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
for (unsigned i = 0; i < elems; i++) {
const struct glsl_type *elem_type =
glsl_get_struct_field(val->type, i);
val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
elem_type);
}
break;
}
default:
vtn_fail("bad constant type");
}
return val;
}
struct vtn_ssa_value *
vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
{
struct vtn_value *val = vtn_untyped_value(b, value_id);
switch (val->value_type) {
case vtn_value_type_undef:
return vtn_undef_ssa_value(b, val->type->type);
case vtn_value_type_constant:
return vtn_const_ssa_value(b, val->constant, val->type->type);
case vtn_value_type_ssa:
return val->ssa;
case vtn_value_type_pointer:
vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
struct vtn_ssa_value *ssa =
vtn_create_ssa_value(b, val->pointer->ptr_type->type);
ssa->def = vtn_pointer_to_ssa(b, val->pointer);
return ssa;
default:
vtn_fail("Invalid type for an SSA value");
}
}
static char *
vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
unsigned word_count, unsigned *words_used)
{
char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
if (words_used) {
/* Ammount of space taken by the string (including the null) */
unsigned len = strlen(dup) + 1;
*words_used = DIV_ROUND_UP(len, sizeof(*words));
}
return dup;
}
const uint32_t *
vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
const uint32_t *end, vtn_instruction_handler handler)
{
b->file = NULL;
b->line = -1;
b->col = -1;
const uint32_t *w = start;
while (w < end) {
SpvOp opcode = w[0] & SpvOpCodeMask;
unsigned count = w[0] >> SpvWordCountShift;
vtn_assert(count >= 1 && w + count <= end);
b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
switch (opcode) {
case SpvOpNop:
break; /* Do nothing */
case SpvOpLine:
b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
b->line = w[2];
b->col = w[3];
break;
case SpvOpNoLine:
b->file = NULL;
b->line = -1;
b->col = -1;
break;
default:
if (!handler(b, opcode, w, count))
return w;
break;
}
w += count;
}
b->spirv_offset = 0;
b->file = NULL;
b->line = -1;
b->col = -1;
assert(w == end);
return w;
}
static void
vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
const char *ext = (const char *)&w[2];
switch (opcode) {
case SpvOpExtInstImport: {
struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
if (strcmp(ext, "GLSL.std.450") == 0) {
val->ext_handler = vtn_handle_glsl450_instruction;
} else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
&& (b->options && b->options->caps.gcn_shader)) {
val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
} else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
&& (b->options && b->options->caps.trinary_minmax)) {
val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
} else if (strcmp(ext, "OpenCL.std") == 0) {
val->ext_handler = vtn_handle_opencl_instruction;
} else {
vtn_fail("Unsupported extension: %s", ext);
}
break;
}
case SpvOpExtInst: {
struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
bool handled = val->ext_handler(b, w[4], w, count);
vtn_assert(handled);
break;
}
default:
vtn_fail_with_opcode("Unhandled opcode", opcode);
}
}
static void
_foreach_decoration_helper(struct vtn_builder *b,
struct vtn_value *base_value,
int parent_member,
struct vtn_value *value,
vtn_decoration_foreach_cb cb, void *data)
{
for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
int member;
if (dec->scope == VTN_DEC_DECORATION) {
member = parent_member;
} else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
vtn_fail_if(value->value_type != vtn_value_type_type ||
value->type->base_type != vtn_base_type_struct,
"OpMemberDecorate and OpGroupMemberDecorate are only "
"allowed on OpTypeStruct");
/* This means we haven't recursed yet */
assert(value == base_value);
member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
vtn_fail_if(member >= base_value->type->length,
"OpMemberDecorate specifies member %d but the "
"OpTypeStruct has only %u members",
member, base_value->type->length);
} else {
/* Not a decoration */
assert(dec->scope == VTN_DEC_EXECUTION_MODE);
continue;
}
if (dec->group) {
assert(dec->group->value_type == vtn_value_type_decoration_group);
_foreach_decoration_helper(b, base_value, member, dec->group,
cb, data);
} else {
cb(b, base_value, member, dec, data);
}
}
}
/** Iterates (recursively if needed) over all of the decorations on a value
*
* This function iterates over all of the decorations applied to a given
* value. If it encounters a decoration group, it recurses into the group
* and iterates over all of those decorations as well.
*/
void
vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
vtn_decoration_foreach_cb cb, void *data)
{
_foreach_decoration_helper(b, value, -1, value, cb, data);
}
void
vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
vtn_execution_mode_foreach_cb cb, void *data)
{
for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
if (dec->scope != VTN_DEC_EXECUTION_MODE)
continue;
assert(dec->group == NULL);
cb(b, value, dec, data);
}
}
void
vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
const uint32_t *w_end = w + count;
const uint32_t target = w[1];
w += 2;
switch (opcode) {
case SpvOpDecorationGroup:
vtn_push_value(b, target, vtn_value_type_decoration_group);
break;
case SpvOpDecorate:
case SpvOpDecorateId:
case SpvOpMemberDecorate:
case SpvOpDecorateStringGOOGLE:
case SpvOpMemberDecorateStringGOOGLE:
case SpvOpExecutionMode:
case SpvOpExecutionModeId: {
struct vtn_value *val = vtn_untyped_value(b, target);
struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
switch (opcode) {
case SpvOpDecorate:
case SpvOpDecorateId:
case SpvOpDecorateStringGOOGLE:
dec->scope = VTN_DEC_DECORATION;
break;
case SpvOpMemberDecorate:
case SpvOpMemberDecorateStringGOOGLE:
dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
"Member argument of OpMemberDecorate too large");
break;
case SpvOpExecutionMode:
case SpvOpExecutionModeId:
dec->scope = VTN_DEC_EXECUTION_MODE;
break;
default:
unreachable("Invalid decoration opcode");
}
dec->decoration = *(w++);
dec->operands = w;
/* Link into the list */
dec->next = val->decoration;
val->decoration = dec;
break;
}
case SpvOpGroupMemberDecorate:
case SpvOpGroupDecorate: {
struct vtn_value *group =
vtn_value(b, target, vtn_value_type_decoration_group);
for (; w < w_end; w++) {
struct vtn_value *val = vtn_untyped_value(b, *w);
struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
dec->group = group;
if (opcode == SpvOpGroupDecorate) {
dec->scope = VTN_DEC_DECORATION;
} else {
dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
vtn_fail_if(dec->scope < 0, /* Check for overflow */
"Member argument of OpGroupMemberDecorate too large");
}
/* Link into the list */
dec->next = val->decoration;
val->decoration = dec;
}
break;
}
default:
unreachable("Unhandled opcode");
}
}
struct member_decoration_ctx {
unsigned num_fields;
struct glsl_struct_field *fields;
struct vtn_type *type;
};
/**
* Returns true if the given type contains a struct decorated Block or
* BufferBlock
*/
bool
vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type)
{
switch (type->base_type) {
case vtn_base_type_array:
return vtn_type_contains_block(b, type->array_element);
case vtn_base_type_struct:
if (type->block || type->buffer_block)
return true;
for (unsigned i = 0; i < type->length; i++) {
if (vtn_type_contains_block(b, type->members[i]))
return true;
}
return false;
default:
return false;
}
}
/** Returns true if two types are "compatible", i.e. you can do an OpLoad,
* OpStore, or OpCopyMemory between them without breaking anything.
* Technically, the SPIR-V rules require the exact same type ID but this lets
* us internally be a bit looser.
*/
bool
vtn_types_compatible(struct vtn_builder *b,
struct vtn_type *t1, struct vtn_type *t2)
{
if (t1->id == t2->id)
return true;
if (t1->base_type != t2->base_type)
return false;
switch (t1->base_type) {
case vtn_base_type_void:
case vtn_base_type_scalar:
case vtn_base_type_vector:
case vtn_base_type_matrix:
case vtn_base_type_image:
case vtn_base_type_sampler:
case vtn_base_type_sampled_image:
return t1->type == t2->type;
case vtn_base_type_array:
return t1->length == t2->length &&
vtn_types_compatible(b, t1->array_element, t2->array_element);
case vtn_base_type_pointer:
return vtn_types_compatible(b, t1->deref, t2->deref);
case vtn_base_type_struct:
if (t1->length != t2->length)
return false;
for (unsigned i = 0; i < t1->length; i++) {
if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
return false;
}
return true;
case vtn_base_type_function:
/* This case shouldn't get hit since you can't copy around function
* types. Just require them to be identical.
*/
return false;
}
vtn_fail("Invalid base type");
}
/* does a shallow copy of a vtn_type */
static struct vtn_type *
vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
{
struct vtn_type *dest = ralloc(b, struct vtn_type);
*dest = *src;
switch (src->base_type) {
case vtn_base_type_void:
case vtn_base_type_scalar:
case vtn_base_type_vector:
case vtn_base_type_matrix:
case vtn_base_type_array:
case vtn_base_type_pointer:
case vtn_base_type_image:
case vtn_base_type_sampler:
case vtn_base_type_sampled_image:
/* Nothing more to do */
break;
case vtn_base_type_struct:
dest->members = ralloc_array(b, struct vtn_type *, src->length);
memcpy(dest->members, src->members,
src->length * sizeof(src->members[0]));
dest->offsets = ralloc_array(b, unsigned, src->length);
memcpy(dest->offsets, src->offsets,
src->length * sizeof(src->offsets[0]));
break;
case vtn_base_type_function:
dest->params = ralloc_array(b, struct vtn_type *, src->length);
memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
break;
}
return dest;
}
static struct vtn_type *
mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
{
type->members[member] = vtn_type_copy(b, type->members[member]);
type = type->members[member];
/* We may have an array of matrices.... Oh, joy! */
while (glsl_type_is_array(type->type)) {
type->array_element = vtn_type_copy(b, type->array_element);
type = type->array_element;
}
vtn_assert(glsl_type_is_matrix(type->type));
return type;
}
static void
vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
int member, enum gl_access_qualifier access)
{
type->members[member] = vtn_type_copy(b, type->members[member]);
type = type->members[member];
type->access |= access;
}
static void
array_stride_decoration_cb(struct vtn_builder *b,
struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *void_ctx)
{
struct vtn_type *type = val->type;
if (dec->decoration == SpvDecorationArrayStride) {
vtn_fail_if(dec->operands[0] == 0, "ArrayStride must be non-zero");
type->stride = dec->operands[0];
}
}
static void
struct_member_decoration_cb(struct vtn_builder *b,
struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *void_ctx)
{
struct member_decoration_ctx *ctx = void_ctx;
if (member < 0)
return;
assert(member < ctx->num_fields);
switch (dec->decoration) {
case SpvDecorationRelaxedPrecision:
case SpvDecorationUniform:
break; /* FIXME: Do nothing with this for now. */
case SpvDecorationNonWritable:
vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
break;
case SpvDecorationNonReadable:
vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
break;
case SpvDecorationVolatile:
vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
break;
case SpvDecorationCoherent:
vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
break;
case SpvDecorationNoPerspective:
ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
break;
case SpvDecorationFlat:
ctx->fields[member].interpolation = INTERP_MODE_FLAT;
break;
case SpvDecorationCentroid:
ctx->fields[member].centroid = true;
break;
case SpvDecorationSample:
ctx->fields[member].sample = true;
break;
case SpvDecorationStream:
/* Vulkan only allows one GS stream */
vtn_assert(dec->operands[0] == 0);
break;
case SpvDecorationLocation:
ctx->fields[member].location = dec->operands[0];
break;
case SpvDecorationComponent:
break; /* FIXME: What should we do with these? */
case SpvDecorationBuiltIn:
ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
ctx->type->members[member]->is_builtin = true;
ctx->type->members[member]->builtin = dec->operands[0];
ctx->type->builtin_block = true;
break;
case SpvDecorationOffset:
ctx->type->offsets[member] = dec->operands[0];
ctx->fields[member].offset = dec->operands[0];
break;
case SpvDecorationMatrixStride:
/* Handled as a second pass */
break;
case SpvDecorationColMajor:
break; /* Nothing to do here. Column-major is the default. */
case SpvDecorationRowMajor:
mutable_matrix_member(b, ctx->type, member)->row_major = true;
break;
case SpvDecorationPatch:
break;
case SpvDecorationSpecId:
case SpvDecorationBlock:
case SpvDecorationBufferBlock:
case SpvDecorationArrayStride:
case SpvDecorationGLSLShared:
case SpvDecorationGLSLPacked:
case SpvDecorationInvariant:
case SpvDecorationRestrict:
case SpvDecorationAliased:
case SpvDecorationConstant:
case SpvDecorationIndex:
case SpvDecorationBinding:
case SpvDecorationDescriptorSet:
case SpvDecorationLinkageAttributes:
case SpvDecorationNoContraction:
case SpvDecorationInputAttachmentIndex:
vtn_warn("Decoration not allowed on struct members: %s",
spirv_decoration_to_string(dec->decoration));
break;
case SpvDecorationXfbBuffer:
case SpvDecorationXfbStride:
vtn_warn("Vulkan does not have transform feedback");
break;
case SpvDecorationCPacked:
if (b->shader->info.stage != MESA_SHADER_KERNEL)
vtn_warn("Decoration only allowed for CL-style kernels: %s",
spirv_decoration_to_string(dec->decoration));
else
ctx->type->packed = true;
break;
case SpvDecorationSaturatedConversion:
case SpvDecorationFuncParamAttr:
case SpvDecorationFPRoundingMode:
case SpvDecorationFPFastMathMode:
case SpvDecorationAlignment:
if (b->shader->info.stage != MESA_SHADER_KERNEL) {
vtn_warn("Decoration only allowed for CL-style kernels: %s",
spirv_decoration_to_string(dec->decoration));
}
break;
case SpvDecorationHlslSemanticGOOGLE:
/* HLSL semantic decorations can safely be ignored by the driver. */
break;
default:
vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
}
}
/** Chases the array type all the way down to the tail and rewrites the
* glsl_types to be based off the tail's glsl_type.
*/
static void
vtn_array_type_rewrite_glsl_type(struct vtn_type *type)
{
if (type->base_type != vtn_base_type_array)
return;
vtn_array_type_rewrite_glsl_type(type->array_element);
type->type = glsl_array_type(type->array_element->type,
type->length, type->stride);
}
/* Matrix strides are handled as a separate pass because we need to know
* whether the matrix is row-major or not first.
*/
static void
struct_member_matrix_stride_cb(struct vtn_builder *b,
struct vtn_value *val, int member,
const struct vtn_decoration *dec,
void *void_ctx)
{
if (dec->decoration != SpvDecorationMatrixStride)
return;
vtn_fail_if(member < 0,
"The MatrixStride decoration is only allowed on members "
"of OpTypeStruct");
vtn_fail_if(dec->operands[0] == 0, "MatrixStride must be non-zero");
struct member_decoration_ctx *ctx = void_ctx;
struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
if (mat_type->row_major) {
mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
mat_type->stride = mat_type->array_element->stride;
mat_type->array_element->stride = dec->operands[0];
mat_type->type = glsl_explicit_matrix_type(mat_type->type,
dec->operands[0], true);
mat_type->array_element->type = glsl_get_column_type(mat_type->type);
} else {
vtn_assert(mat_type->array_element->stride > 0);
mat_type->stride = dec->operands[0];
mat_type->type = glsl_explicit_matrix_type(mat_type->type,
dec->operands[0], false);
}
/* Now that we've replaced the glsl_type with a properly strided matrix
* type, rewrite the member type so that it's an array of the proper kind
* of glsl_type.
*/
vtn_array_type_rewrite_glsl_type(ctx->type->members[member]);
ctx->fields[member].type = ctx->type->members[member]->type;
}
static void
struct_block_decoration_cb(struct vtn_builder *b,
struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *ctx)
{
if (member != -1)
return;
struct vtn_type *type = val->type;
if (dec->decoration == SpvDecorationBlock)
type->block = true;
else if (dec->decoration == SpvDecorationBufferBlock)
type->buffer_block = true;
}
static void
type_decoration_cb(struct vtn_builder *b,
struct vtn_value *val, int member,
const struct vtn_decoration *dec, void *ctx)
{
struct vtn_type *type = val->type;
if (member != -1) {
/* This should have been handled by OpTypeStruct */
assert(val->type->base_type == vtn_base_type_struct);
assert(member >= 0 && member < val->type->length);
return;
}
switch (dec->decoration) {
case SpvDecorationArrayStride:
vtn_assert(type->base_type == vtn_base_type_array ||
type->base_type == vtn_base_type_pointer);
break;
case SpvDecorationBlock:
vtn_assert(type->base_type == vtn_base_type_struct);
vtn_assert(type->block);
break;
case SpvDecorationBufferBlock:
vtn_assert(type->base_type == vtn_base_type_struct);
vtn_assert(type->buffer_block);
break;
case SpvDecorationGLSLShared:
case SpvDecorationGLSLPacked:
/* Ignore these, since we get explicit offsets anyways */
break;
case SpvDecorationRowMajor:
case SpvDecorationColMajor:
case SpvDecorationMatrixStride:
case SpvDecorationBuiltIn:
case SpvDecorationNoPerspective:
case SpvDecorationFlat:
case SpvDecorationPatch:
case SpvDecorationCentroid:
case SpvDecorationSample:
case SpvDecorationVolatile:
case SpvDecorationCoherent:
case SpvDecorationNonWritable:
case SpvDecorationNonReadable:
case SpvDecorationUniform:
case SpvDecorationLocation:
case SpvDecorationComponent:
case SpvDecorationOffset:
case SpvDecorationXfbBuffer:
case SpvDecorationXfbStride:
case SpvDecorationHlslSemanticGOOGLE:
vtn_warn("Decoration only allowed for struct members: %s",
spirv_decoration_to_string(dec->decoration));
break;
case SpvDecorationStream:
/* We don't need to do anything here, as stream is filled up when
* aplying the decoration to a variable, just check that if it is not a
* struct member, it should be a struct.
*/
vtn_assert(type->base_type == vtn_base_type_struct);
break;
case SpvDecorationRelaxedPrecision:
case SpvDecorationSpecId:
case SpvDecorationInvariant:
case SpvDecorationRestrict:
case SpvDecorationAliased:
case SpvDecorationConstant:
case SpvDecorationIndex:
case SpvDecorationBinding:
case SpvDecorationDescriptorSet:
case SpvDecorationLinkageAttributes:
case SpvDecorationNoContraction:
case SpvDecorationInputAttachmentIndex:
vtn_warn("Decoration not allowed on types: %s",
spirv_decoration_to_string(dec->decoration));
break;
case SpvDecorationCPacked:
if (b->shader->info.stage != MESA_SHADER_KERNEL)
vtn_warn("Decoration only allowed for CL-style kernels: %s",
spirv_decoration_to_string(dec->decoration));
else
type->packed = true;
break;
case SpvDecorationSaturatedConversion:
case SpvDecorationFuncParamAttr:
case SpvDecorationFPRoundingMode:
case SpvDecorationFPFastMathMode:
case SpvDecorationAlignment:
vtn_warn("Decoration only allowed for CL-style kernels: %s",
spirv_decoration_to_string(dec->decoration));
break;
default:
vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
}
}
static unsigned
translate_image_format(struct vtn_builder *b, SpvImageFormat format)
{
switch (format) {
case SpvImageFormatUnknown: return 0; /* GL_NONE */
case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
case SpvImageFormatR16: return 0x822A; /* GL_R16 */
case SpvImageFormatR8: return 0x8229; /* GL_R8 */
case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
default:
vtn_fail("Invalid image format: %s (%u)",
spirv_imageformat_to_string(format), format);
}
}
static struct vtn_type *
vtn_type_layout_std430(struct vtn_builder *b, struct vtn_type *type,
uint32_t *size_out, uint32_t *align_out)
{
switch (type->base_type) {
case vtn_base_type_scalar: {
uint32_t comp_size = glsl_type_is_boolean(type->type)
? 4 : glsl_get_bit_size(type->type) / 8;
*size_out = comp_size;
*align_out = comp_size;
return type;
}
case vtn_base_type_vector: {
uint32_t comp_size = glsl_type_is_boolean(type->type)
? 4 : glsl_get_bit_size(type->type) / 8;
unsigned align_comps = type->length == 3 ? 4 : type->length;
*size_out = comp_size * type->length,
*align_out = comp_size * align_comps;
return type;
}
case vtn_base_type_matrix:
case vtn_base_type_array: {
/* We're going to add an array stride */
type = vtn_type_copy(b, type);
uint32_t elem_size, elem_align;
type->array_element = vtn_type_layout_std430(b, type->array_element,
&elem_size, &elem_align);
type->stride = vtn_align_u32(elem_size, elem_align);
*size_out = type->stride * type->length;
*align_out = elem_align;
return type;
}
case vtn_base_type_struct: {
/* We're going to add member offsets */
type = vtn_type_copy(b, type);
uint32_t offset = 0;
uint32_t align = 0;
for (unsigned i = 0; i < type->length; i++) {
uint32_t mem_size, mem_align;
type->members[i] = vtn_type_layout_std430(b, type->members[i],
&mem_size, &mem_align);
offset = vtn_align_u32(offset, mem_align);
type->offsets[i] = offset;
offset += mem_size;
align = MAX2(align, mem_align);
}
*size_out = offset;
*align_out = align;
return type;
}
default:
unreachable("Invalid SPIR-V type for std430");
}
}
static void
vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
struct vtn_value *val = NULL;
/* In order to properly handle forward declarations, we have to defer
* allocation for pointer types.
*/
if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) {
val = vtn_push_value(b, w[1], vtn_value_type_type);
vtn_fail_if(val->type != NULL,
"Only pointers can have forward declarations");
val->type = rzalloc(b, struct vtn_type);
val->type->id = w[1];
}
switch (opcode) {
case SpvOpTypeVoid:
val->type->base_type = vtn_base_type_void;
val->type->type = glsl_void_type();
break;
case SpvOpTypeBool:
val->type->base_type = vtn_base_type_scalar;
val->type->type = glsl_bool_type();
val->type->length = 1;
break;
case SpvOpTypeInt: {
int bit_size = w[2];
const bool signedness = w[3];
val->type->base_type = vtn_base_type_scalar;
switch (bit_size) {
case 64:
val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
break;
case 32:
val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
break;
case 16:
val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
break;
case 8:
val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
break;
default:
vtn_fail("Invalid int bit size: %u", bit_size);
}
val->type->length = 1;
break;
}
case SpvOpTypeFloat: {
int bit_size = w[2];
val->type->base_type = vtn_base_type_scalar;
switch (bit_size) {
case 16:
val->type->type = glsl_float16_t_type();
break;
case 32:
val->type->type = glsl_float_type();
break;
case 64:
val->type->type = glsl_double_type();
break;
default:
vtn_fail("Invalid float bit size: %u", bit_size);
}
val->type->length = 1;
break;
}
case SpvOpTypeVector: {
struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
unsigned elems = w[3];
vtn_fail_if(base->base_type != vtn_base_type_scalar,
"Base type for OpTypeVector must be a scalar");
vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
"Invalid component count for OpTypeVector");
val->type->base_type = vtn_base_type_vector;
val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
val->type->length = elems;
val->type->stride = glsl_type_is_boolean(val->type->type)
? 4 : glsl_get_bit_size(base->type) / 8;
val->type->array_element = base;
break;
}
case SpvOpTypeMatrix: {
struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
unsigned columns = w[3];
vtn_fail_if(base->base_type != vtn_base_type_vector,
"Base type for OpTypeMatrix must be a vector");
vtn_fail_if(columns < 2 || columns > 4,
"Invalid column count for OpTypeMatrix");
val->type->base_type = vtn_base_type_matrix;
val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
glsl_get_vector_elements(base->type),
columns);
vtn_fail_if(glsl_type_is_error(val->type->type),
"Unsupported base type for OpTypeMatrix");
assert(!glsl_type_is_error(val->type->type));
val->type->length = columns;
val->type->array_element = base;
val->type->row_major = false;
val->type->stride = 0;
break;
}
case SpvOpTypeRuntimeArray:
case SpvOpTypeArray: {
struct vtn_type *array_element =
vtn_value(b, w[2], vtn_value_type_type)->type;
if (opcode == SpvOpTypeRuntimeArray) {
/* A length of 0 is used to denote unsized arrays */
val->type->length = 0;
} else {
val->type->length =
vtn_value(b, w[3], vtn_value_type_constant)->constant->values[0][0].u32;
}
val->type->base_type = vtn_base_type_array;
val->type->array_element = array_element;
if (b->shader->info.stage == MESA_SHADER_KERNEL)
val->type->stride = glsl_get_cl_size(array_element->type);
vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
val->type->type = glsl_array_type(array_element->type, val->type->length,
val->type->stride);
break;
}
case SpvOpTypeStruct: {
unsigned num_fields = count - 2;
val->type->base_type = vtn_base_type_struct;
val->type->length = num_fields;
val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
val->type->offsets = ralloc_array(b, unsigned, num_fields);
val->type->packed = false;
NIR_VLA(struct glsl_struct_field, fields, count);
for (unsigned i = 0; i < num_fields; i++) {
val->type->members[i] =
vtn_value(b, w[i + 2], vtn_value_type_type)->type;
fields[i] = (struct glsl_struct_field) {
.type = val->type->members[i]->type,
.name = ralloc_asprintf(b, "field%d", i),
.location = -1,
.offset = -1,
};
}
if (b->shader->info.stage == MESA_SHADER_KERNEL) {
unsigned offset = 0;
for (unsigned i = 0; i < num_fields; i++) {
offset = align(offset, glsl_get_cl_alignment(fields[i].type));
fields[i].offset = offset;
offset += glsl_get_cl_size(fields[i].type);
}
}
struct member_decoration_ctx ctx = {
.num_fields = num_fields,
.fields = fields,
.type = val->type
};
vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
vtn_foreach_decoration(b, val, struct_block_decoration_cb, NULL);
const char *name = val->name;
if (val->type->block || val->type->buffer_block) {
/* Packing will be ignored since types coming from SPIR-V are
* explicitly laid out.
*/
val->type->type = glsl_interface_type(fields, num_fields,
/* packing */ 0, false,
name ? name : "block");
} else {
val->type->type = glsl_struct_type(fields, num_fields,
name ? name : "struct", false);
}
break;
}
case SpvOpTypeFunction: {
val->type->base_type = vtn_base_type_function;
val->type->type = NULL;
val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
const unsigned num_params = count - 3;
val->type->length = num_params;
val->type->params = ralloc_array(b, struct vtn_type *, num_params);
for (unsigned i = 0; i < count - 3; i++) {
val->type->params[i] =
vtn_value(b, w[i + 3], vtn_value_type_type)->type;
}
break;
}
case SpvOpTypePointer:
case SpvOpTypeForwardPointer: {
/* We can't blindly push the value because it might be a forward
* declaration.
*/
val = vtn_untyped_value(b, w[1]);
SpvStorageClass storage_class = w[2];
if (val->value_type == vtn_value_type_invalid) {
val->value_type = vtn_value_type_type;
val->type = rzalloc(b, struct vtn_type);
val->type->id = w[1];
val->type->base_type = vtn_base_type_pointer;
val->type->storage_class = storage_class;
/* These can actually be stored to nir_variables and used as SSA
* values so they need a real glsl_type.
*/
switch (storage_class) {
case SpvStorageClassUniform:
val->type->type = b->options->ubo_ptr_type;
break;
case SpvStorageClassStorageBuffer:
val->type->type = b->options->ssbo_ptr_type;
break;
case SpvStorageClassPhysicalStorageBufferEXT:
val->type->type = b->options->phys_ssbo_ptr_type;
break;
case SpvStorageClassPushConstant:
val->type->type = b->options->push_const_ptr_type;
break;
case SpvStorageClassWorkgroup:
val->type->type = b->options->shared_ptr_type;
break;
case SpvStorageClassCrossWorkgroup:
val->type->type = b->options->global_ptr_type;
break;
case SpvStorageClassFunction:
if (b->physical_ptrs)
val->type->type = b->options->temp_ptr_type;
break;
default:
/* In this case, no variable pointers are allowed so all deref
* chains are complete back to the variable and it doesn't matter
* what type gets used so we leave it NULL.
*/
break;
}
} else {
vtn_fail_if(val->type->storage_class != storage_class,
"The storage classes of an OpTypePointer and any "
"OpTypeForwardPointers that provide forward "
"declarations of it must match.");
}
if (opcode == SpvOpTypePointer) {
vtn_fail_if(val->type->deref != NULL,
"While OpTypeForwardPointer can be used to provide a "
"forward declaration of a pointer, OpTypePointer can "
"only be used once for a given id.");
val->type->deref = vtn_value(b, w[3], vtn_value_type_type)->type;
vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
if (b->physical_ptrs) {
switch (storage_class) {
case SpvStorageClassFunction:
case SpvStorageClassWorkgroup:
case SpvStorageClassCrossWorkgroup:
val->type->stride = align(glsl_get_cl_size(val->type->deref->type),
glsl_get_cl_alignment(val->type->deref->type));
break;
default:
break;
}
} else if (storage_class == SpvStorageClassWorkgroup &&
b->options->lower_workgroup_access_to_offsets) {
/* Workgroup is laid out by the implementation. */
uint32_t size, align;
val->type->deref = vtn_type_layout_std430(b, val->type->deref,
&size, &align);
val->type->length = size;
val->type->align = align;
/* Override any ArrayStride previously set. */
val->type->stride = vtn_align_u32(size, align);
}
}
break;
}
case SpvOpTypeImage: {
val->type->base_type = vtn_base_type_image;
const struct vtn_type *sampled_type =
vtn_value(b, w[2], vtn_value_type_type)->type;
vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
glsl_get_bit_size(sampled_type->type) != 32,
"Sampled type of OpTypeImage must be a 32-bit scalar");
enum glsl_sampler_dim dim;
switch ((SpvDim)w[3]) {
case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
default:
vtn_fail("Invalid SPIR-V image dimensionality: %s (%u)",
spirv_dim_to_string((SpvDim)w[3]), w[3]);
}
/* w[4]: as per Vulkan spec "Validation Rules within a Module",
* The “Depth” operand of OpTypeImage is ignored.
*/
bool is_array = w[5];
bool multisampled = w[6];
unsigned sampled = w[7];
SpvImageFormat format = w[8];
if (count > 9)
val->type->access_qualifier = w[9];
else
val->type->access_qualifier = SpvAccessQualifierReadWrite;
if (multisampled) {
if (dim == GLSL_SAMPLER_DIM_2D)
dim = GLSL_SAMPLER_DIM_MS;
else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
else
vtn_fail("Unsupported multisampled image type");
}
val->type->image_format = translate_image_format(b, format);
enum glsl_base_type sampled_base_type =
glsl_get_base_type(sampled_type->type);
if (sampled == 1) {
val->type->sampled = true;
val->type->type = glsl_sampler_type(dim, false, is_array,
sampled_base_type);
} else if (sampled == 2) {
val->type->sampled = false;
val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
} else {
vtn_fail("We need to know if the image will be sampled");
}
break;
}
case SpvOpTypeSampledImage:
val->type->base_type = vtn_base_type_sampled_image;
val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
val->type->type = val->type->image->type;
break;
case SpvOpTypeSampler:
/* The actual sampler type here doesn't really matter. It gets
* thrown away the moment you combine it with an image. What really
* matters is that it's a sampler type as opposed to an integer type
* so the backend knows what to do.
*/
val->type->base_type = vtn_base_type_sampler;
val->type->type = glsl_bare_sampler_type();
break;
case SpvOpTypeOpaque:
case SpvOpTypeEvent:
case SpvOpTypeDeviceEvent:
case SpvOpTypeReserveId:
case SpvOpTypeQueue:
case SpvOpTypePipe:
default:
vtn_fail_with_opcode("Unhandled opcode", opcode);
}
vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
if (val->type->base_type == vtn_base_type_struct &&
(val->type->block || val->type->buffer_block)) {
for (unsigned i = 0; i < val->type->length; i++) {
vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]),
"Block and BufferBlock decorations cannot decorate a "
"structure type that is nested at any level inside "
"another structure type decorated with Block or "
"BufferBlock.");
}
}
}
static nir_constant *
vtn_null_constant(struct vtn_builder *b, const struct glsl_type *type)
{
nir_constant *c = rzalloc(b, nir_constant);
/* For pointers and other typeless things, we have to return something but
* it doesn't matter what.
*/
if (!type)
return c;
switch (glsl_get_base_type(type)) {
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_INT64:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
/* Nothing to do here. It's already initialized to zero */
break;
case GLSL_TYPE_ARRAY:
vtn_assert(glsl_get_length(type) > 0);
c->num_elements = glsl_get_length(type);
c->elements = ralloc_array(b, nir_constant *, c->num_elements);
c->elements[0] = vtn_null_constant(b, glsl_get_array_element(type));
for (unsigned i = 1; i < c->num_elements; i++)
c->elements[i] = c->elements[0];
break;
case GLSL_TYPE_STRUCT:
c->num_elements = glsl_get_length(type);
c->elements = ralloc_array(b, nir_constant *, c->num_elements);
for (unsigned i = 0; i < c->num_elements; i++) {
c->elements[i] = vtn_null_constant(b, glsl_get_struct_field(type, i));
}
break;
default:
vtn_fail("Invalid type for null constant");
}
return c;
}
static void
spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
int member, const struct vtn_decoration *dec,
void *data)
{
vtn_assert(member == -1);
if (dec->decoration != SpvDecorationSpecId)
return;
struct spec_constant_value *const_value = data;
for (unsigned i = 0; i < b->num_specializations; i++) {
if (b->specializations[i].id == dec->operands[0]) {
if (const_value->is_double)
const_value->data64 = b->specializations[i].data64;
else
const_value->data32 = b->specializations[i].data32;
return;
}
}
}
static uint32_t
get_specialization(struct vtn_builder *b, struct vtn_value *val,
uint32_t const_value)
{
struct spec_constant_value data;
data.is_double = false;
data.data32 = const_value;
vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
return data.data32;
}
static uint64_t
get_specialization64(struct vtn_builder *b, struct vtn_value *val,
uint64_t const_value)
{
struct spec_constant_value data;
data.is_double = true;
data.data64 = const_value;
vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
return data.data64;
}
static void
handle_workgroup_size_decoration_cb(struct vtn_builder *b,
struct vtn_value *val,
int member,
const struct vtn_decoration *dec,
void *data)
{
vtn_assert(member == -1);
if (dec->decoration != SpvDecorationBuiltIn ||
dec->operands[0] != SpvBuiltInWorkgroupSize)
return;
vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
b->workgroup_size_builtin = val;
}
static void
vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
val->constant = rzalloc(b, nir_constant);
switch (opcode) {
case SpvOpConstantTrue:
case SpvOpConstantFalse:
case SpvOpSpecConstantTrue:
case SpvOpSpecConstantFalse: {
vtn_fail_if(val->type->type != glsl_bool_type(),
"Result type of %s must be OpTypeBool",
spirv_op_to_string(opcode));
uint32_t int_val = (opcode == SpvOpConstantTrue ||
opcode == SpvOpSpecConstantTrue);
if (opcode == SpvOpSpecConstantTrue ||
opcode == SpvOpSpecConstantFalse)
int_val = get_specialization(b, val, int_val);
val->constant->values[0][0].b = int_val != 0;
break;
}
case SpvOpConstant: {
vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
"Result type of %s must be a scalar",
spirv_op_to_string(opcode));
int bit_size = glsl_get_bit_size(val->type->type);
switch (bit_size) {
case 64:
val->constant->values[0][0].u64 = vtn_u64_literal(&w[3]);
break;
case 32:
val->constant->values[0][0].u32 = w[3];
break;
case 16:
val->constant->values[0][0].u16 = w[3];
break;
case 8:
val->constant->values[0][0].u8 = w[3];
break;
default:
vtn_fail("Unsupported SpvOpConstant bit size: %u", bit_size);
}
break;
}
case SpvOpSpecConstant: {
vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
"Result type of %s must be a scalar",
spirv_op_to_string(opcode));
int bit_size = glsl_get_bit_size(val->type->type);
switch (bit_size) {
case 64:
val->constant->values[0][0].u64 =
get_specialization64(b, val, vtn_u64_literal(&w[3]));
break;
case 32:
val->constant->values[0][0].u32 = get_specialization(b, val, w[3]);
break;
case 16:
val->constant->values[0][0].u16 = get_specialization(b, val, w[3]);
break;
case 8:
val->constant->values[0][0].u8 = get_specialization(b, val, w[3]);
break;
default:
vtn_fail("Unsupported SpvOpSpecConstant bit size");
}
break;
}
case SpvOpSpecConstantComposite:
case SpvOpConstantComposite: {
unsigned elem_count = count - 3;
vtn_fail_if(elem_count != val->type->length,
"%s has %u constituents, expected %u",
spirv_op_to_string(opcode), elem_count, val->type->length);
nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
for (unsigned i = 0; i < elem_count; i++) {
struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
if (val->value_type == vtn_value_type_constant) {
elems[i] = val->constant;
} else {
vtn_fail_if(val->value_type != vtn_value_type_undef,
"only constants or undefs allowed for "
"SpvOpConstantComposite");
/* to make it easier, just insert a NULL constant for now */
elems[i] = vtn_null_constant(b, val->type->type);
}
}
switch (val->type->base_type) {
case vtn_base_type_vector: {
assert(glsl_type_is_vector(val->type->type));
for (unsigned i = 0; i < elem_count; i++)
val->constant->values[0][i] = elems[i]->values[0][0];
break;
}
case vtn_base_type_matrix:
assert(glsl_type_is_matrix(val->type->type));
for (unsigned i = 0; i < elem_count; i++) {
unsigned components =
glsl_get_components(glsl_get_column_type(val->type->type));
memcpy(val->constant->values[i], elems[i]->values,
sizeof(nir_const_value) * components);
}
break;
case vtn_base_type_struct:
case vtn_base_type_array:
ralloc_steal(val->constant, elems);
val->constant->num_elements = elem_count;
val->constant->elements = elems;
break;
default:
vtn_fail("Result type of %s must be a composite type",
spirv_op_to_string(opcode));
}
break;
}
case SpvOpSpecConstantOp: {
SpvOp opcode = get_specialization(b, val, w[3]);
switch (opcode) {
case SpvOpVectorShuffle: {
struct vtn_value *v0 = &b->values[w[4]];
struct vtn_value *v1 = &b->values[w[5]];
vtn_assert(v0->value_type == vtn_value_type_constant ||
v0->value_type == vtn_value_type_undef);
vtn_assert(v1->value_type == vtn_value_type_constant ||
v1->value_type == vtn_value_type_undef);
unsigned len0 = glsl_get_vector_elements(v0->type->type);
unsigned len1 = glsl_get_vector_elements(v1->type->type);
vtn_assert(len0 + len1 < 16);
unsigned bit_size = glsl_get_bit_size(val->type->type);
unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
(void)bit_size0; (void)bit_size1;
if (bit_size == 64) {
uint64_t u64[8];
if (v0->value_type == vtn_value_type_constant) {
for (unsigned i = 0; i < len0; i++)
u64[i] = v0->constant->values[0][i].u64;
}
if (v1->value_type == vtn_value_type_constant) {
for (unsigned i = 0; i < len1; i++)
u64[len0 + i] = v1->constant->values[0][i].u64;
}
for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
uint32_t comp = w[i + 6];
/* If component is not used, set the value to a known constant
* to detect if it is wrongly used.
*/
if (comp == (uint32_t)-1)
val->constant->values[0][j].u64 = 0xdeadbeefdeadbeef;
else
val->constant->values[0][j].u64 = u64[comp];
}
} else {
/* This is for both 32-bit and 16-bit values */
uint32_t u32[8];
if (v0->value_type == vtn_value_type_constant) {
for (unsigned i = 0; i < len0; i++)
u32[i] = v0->constant->values[0][i].u32;
}
if (v1->value_type == vtn_value_type_constant) {
for (unsigned i = 0; i < len1; i++)
u32[len0 + i] = v1->constant->values[0][i].u32;
}
for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
uint32_t comp = w[i + 6];
/* If component is not used, set the value to a known constant
* to detect if it is wrongly used.
*/
if (comp == (uint32_t)-1)
val->constant->values[0][j].u32 = 0xdeadbeef;
else
val->constant->values[0][j].u32 = u32[comp];
}
}
break;
}
case SpvOpCompositeExtract:
case SpvOpCompositeInsert: {
struct vtn_value *comp;
unsigned deref_start;
struct nir_constant **c;
if (opcode == SpvOpCompositeExtract) {
comp = vtn_value(b, w[4], vtn_value_type_constant);
deref_start = 5;
c = &comp->constant;
} else {
comp = vtn_value(b, w[5], vtn_value_type_constant);
deref_start = 6;
val->constant = nir_constant_clone(comp->constant,
(nir_variable *)b);
c = &val->constant;
}
int elem = -1;
int col = 0;
const struct vtn_type *type = comp->type;
for (unsigned i = deref_start; i < count; i++) {
vtn_fail_if(w[i] > type->length,
"%uth index of %s is %u but the type has only "
"%u elements", i - deref_start,
spirv_op_to_string(opcode), w[i], type->length);
switch (type->base_type) {
case vtn_base_type_vector:
elem = w[i];
type = type->array_element;
break;
case vtn_base_type_matrix:
assert(col == 0 && elem == -1);
col = w[i];
elem = 0;
type = type->array_element;
break;
case vtn_base_type_array:
c = &(*c)->elements[w[i]];
type = type->array_element;
break;
case vtn_base_type_struct:
c = &(*c)->elements[w[i]];
type = type->members[w[i]];
break;
default:
vtn_fail("%s must only index into composite types",
spirv_op_to_string(opcode));
}
}
if (opcode == SpvOpCompositeExtract) {
if (elem == -1) {
val->constant = *c;
} else {
unsigned num_components = type->length;
for (unsigned i = 0; i < num_components; i++)
val->constant->values[0][i] = (*c)->values[col][elem + i];
}
} else {
struct vtn_value *insert =
vtn_value(b, w[4], vtn_value_type_constant);
vtn_assert(insert->type == type);
if (elem == -1) {
*c = insert->constant;
} else {
unsigned num_components = type->length;
for (unsigned i = 0; i < num_components; i++)
(*c)->values[col][elem + i] = insert->constant->values[0][i];
}
}
break;
}
default: {
bool swap;
nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
nir_alu_type src_alu_type = dst_alu_type;
unsigned num_components = glsl_get_vector_elements(val->type->type);
unsigned bit_size;
vtn_assert(count <= 7);
switch (opcode) {
case SpvOpSConvert:
case SpvOpFConvert:
/* We have a source in a conversion */
src_alu_type =
nir_get_nir_type_for_glsl_type(
vtn_value(b, w[4], vtn_value_type_constant)->type->type);
/* We use the bitsize of the conversion source to evaluate the opcode later */
bit_size = glsl_get_bit_size(
vtn_value(b, w[4], vtn_value_type_constant)->type->type);
break;
default:
bit_size = glsl_get_bit_size(val->type->type);
};
nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
nir_alu_type_get_type_size(src_alu_type),
nir_alu_type_get_type_size(dst_alu_type));
nir_const_value src[3][NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < count - 4; i++) {
struct vtn_value *src_val =
vtn_value(b, w[4 + i], vtn_value_type_constant);
/* If this is an unsized source, pull the bit size from the
* source; otherwise, we'll use the bit size from the destination.
*/
if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
bit_size = glsl_get_bit_size(src_val->type->type);
unsigned j = swap ? 1 - i : i;
memcpy(src[j], src_val->constant->values[0], sizeof(src[j]));
}
/* fix up fixed size sources */
switch (op) {
case nir_op_ishl:
case nir_op_ishr:
case nir_op_ushr: {
if (bit_size == 32)
break;
for (unsigned i = 0; i < num_components; ++i) {
switch (bit_size) {
case 64: src[1][i].u32 = src[1][i].u64; break;
case 16: src[1][i].u32 = src[1][i].u16; break;
case 8: src[1][i].u32 = src[1][i].u8; break;
}
}
break;
}
default:
break;
}
nir_const_value *srcs[3] = {
src[0], src[1], src[2],
};
nir_eval_const_opcode(op, val->constant->values[0], num_components, bit_size, srcs);
break;
} /* default */
}
break;
}
case SpvOpConstantNull:
val->constant = vtn_null_constant(b, val->type->type);
break;
case SpvOpConstantSampler:
vtn_fail("OpConstantSampler requires Kernel Capability");
break;
default:
vtn_fail_with_opcode("Unhandled opcode", opcode);
}
/* Now that we have the value, update the workgroup size if needed */
vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
}
struct vtn_ssa_value *
vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
{
struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
val->type = type;
if (!glsl_type_is_vector_or_scalar(type)) {
unsigned elems = glsl_get_length(type);
val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
for (unsigned i = 0; i < elems; i++) {
const struct glsl_type *child_type;
switch (glsl_get_base_type(type)) {
case GLSL_TYPE_INT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT16:
case GLSL_TYPE_UINT16:
case GLSL_TYPE_UINT8:
case GLSL_TYPE_INT8:
case GLSL_TYPE_INT64:
case GLSL_TYPE_UINT64:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_FLOAT16:
case GLSL_TYPE_DOUBLE:
child_type = glsl_get_column_type(type);
break;
case GLSL_TYPE_ARRAY:
child_type = glsl_get_array_element(type);
break;
case GLSL_TYPE_STRUCT:
case GLSL_TYPE_INTERFACE:
child_type = glsl_get_struct_field(type, i);
break;
default:
vtn_fail("unkown base type");
}
val->elems[i] = vtn_create_ssa_value(b, child_type);
}
}
return val;
}
static nir_tex_src
vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
{
nir_tex_src src;
src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
src.src_type = type;
return src;
}
static void
vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
if (opcode == SpvOpSampledImage) {
struct vtn_value *val =
vtn_push_value(b, w[2], vtn_value_type_sampled_image);
val->sampled_image = ralloc(b, struct vtn_sampled_image);
val->sampled_image->type =
vtn_value(b, w[1], vtn_value_type_type)->type;
val->sampled_image->image =
vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
val->sampled_image->sampler =
vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
return;
} else if (opcode == SpvOpImage) {
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
if (src_val->value_type == vtn_value_type_sampled_image) {
val->pointer = src_val->sampled_image->image;
} else {
vtn_assert(src_val->value_type == vtn_value_type_pointer);
val->pointer = src_val->pointer;
}
return;
}
struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
struct vtn_sampled_image sampled;
struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
if (sampled_val->value_type == vtn_value_type_sampled_image) {
sampled = *sampled_val->sampled_image;
} else {
vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
sampled.type = sampled_val->pointer->type;
sampled.image = NULL;
sampled.sampler = sampled_val->pointer;
}
const struct glsl_type *image_type = sampled.type->type;
const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
const bool is_array = glsl_sampler_type_is_array(image_type);
/* Figure out the base texture operation */
nir_texop texop;
switch (opcode) {
case SpvOpImageSampleImplicitLod:
case SpvOpImageSampleDrefImplicitLod:
case SpvOpImageSampleProjImplicitLod:
case SpvOpImageSampleProjDrefImplicitLod:
texop = nir_texop_tex;
break;
case SpvOpImageSampleExplicitLod:
case SpvOpImageSampleDrefExplicitLod:
case SpvOpImageSampleProjExplicitLod:
case SpvOpImageSampleProjDrefExplicitLod:
texop = nir_texop_txl;
break;
case SpvOpImageFetch:
if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
texop = nir_texop_txf_ms;
} else {
texop = nir_texop_txf;
}
break;
case SpvOpImageGather:
case SpvOpImageDrefGather:
texop = nir_texop_tg4;
break;
case SpvOpImageQuerySizeLod:
case SpvOpImageQuerySize:
texop = nir_texop_txs;
break;
case SpvOpImageQueryLod:
texop = nir_texop_lod;
break;
case SpvOpImageQueryLevels:
texop = nir_texop_query_levels;
break;
case SpvOpImageQuerySamples:
texop = nir_texop_texture_samples;
break;
default:
vtn_fail_with_opcode("Unhandled opcode", opcode);
}
nir_tex_src srcs[10]; /* 10 should be enough */
nir_tex_src *p = srcs;
nir_deref_instr *sampler = vtn_pointer_to_deref(b, sampled.sampler);
nir_deref_instr *texture =
sampled.image ? vtn_pointer_to_deref(b, sampled.image) : sampler;
p->src = nir_src_for_ssa(&texture->dest.ssa);
p->src_type = nir_tex_src_texture_deref;
p++;
switch (texop) {
case nir_texop_tex:
case nir_texop_txb:
case nir_texop_txl:
case nir_texop_txd:
case nir_texop_tg4:
case nir_texop_lod:
/* These operations require a sampler */
p->src = nir_src_for_ssa(&sampler->dest.ssa);
p->src_type = nir_tex_src_sampler_deref;
p++;
break;
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_txs:
case nir_texop_query_levels:
case nir_texop_texture_samples:
case nir_texop_samples_identical:
/* These don't */
break;
case nir_texop_txf_ms_fb:
vtn_fail("unexpected nir_texop_txf_ms_fb");
break;
case nir_texop_txf_ms_mcs:
vtn_fail("unexpected nir_texop_txf_ms_mcs");
}
unsigned idx = 4;
struct nir_ssa_def *coord;
unsigned coord_components;
switch (opcode) {
case SpvOpImageSampleImplicitLod:
case SpvOpImageSampleExplicitLod:
case SpvOpImageSampleDrefImplicitLod:
case SpvOpImageSampleDrefExplicitLod:
case SpvOpImageSampleProjImplicitLod:
case SpvOpImageSampleProjExplicitLod:
case SpvOpImageSampleProjDrefImplicitLod:
case SpvOpImageSampleProjDrefExplicitLod:
case SpvOpImageFetch:
case SpvOpImageGather:
case SpvOpImageDrefGather:
case SpvOpImageQueryLod: {
/* All these types have the coordinate as their first real argument */
switch (sampler_dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_BUF:
coord_components = 1;
break;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_RECT:
case GLSL_SAMPLER_DIM_MS:
coord_components = 2;
break;
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
coord_components = 3;
break;
default:
vtn_fail("Invalid sampler type");
}
if (is_array && texop != nir_texop_lod)
coord_components++;
coord = vtn_ssa_value(b, w[idx++])->def;
p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
(1 << coord_components) - 1));
p->src_type = nir_tex_src_coord;
p++;
break;
}
default:
coord = NULL;
coord_components = 0;
break;
}
switch (opcode) {
case SpvOpImageSampleProjImplicitLod:
case SpvOpImageSampleProjExplicitLod:
case SpvOpImageSampleProjDrefImplicitLod:
case SpvOpImageSampleProjDrefExplicitLod:
/* These have the projector as the last coordinate component */
p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
p->src_type = nir_tex_src_projector;
p++;
break;
default:
break;
}
bool is_shadow = false;
unsigned gather_component = 0;
switch (opcode) {
case SpvOpImageSampleDrefImplicitLod:
case SpvOpImageSampleDrefExplicitLod:
case SpvOpImageSampleProjDrefImplicitLod:
case SpvOpImageSampleProjDrefExplicitLod:
case SpvOpImageDrefGather:
/* These all have an explicit depth value as their next source */
is_shadow = true;
(*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
break;
case SpvOpImageGather:
/* This has a component as its next source */
gather_component =
vtn_value(b, w[idx++], vtn_value_type_constant)->constant->values[0][0].u32;
break;
default:
break;
}
/* For OpImageQuerySizeLod, we always have an LOD */
if (opcode == SpvOpImageQuerySizeLod)
(*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
/* Now we need to handle some number of optional arguments */
struct vtn_value *gather_offsets = NULL;
if (idx < count) {
uint32_t operands = w[idx++];
if (operands & SpvImageOperandsBiasMask) {
vtn_assert(texop == nir_texop_tex);
texop = nir_texop_txb;
(*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
}
if (operands & SpvImageOperandsLodMask) {
vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
texop == nir_texop_txs);
(*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
}
if (operands & SpvImageOperandsGradMask) {
vtn_assert(texop == nir_texop_txl);
texop = nir_texop_txd;
(*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
(*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
}
if (operands & SpvImageOperandsOffsetMask ||
operands & SpvImageOperandsConstOffsetMask)
(*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
if (operands & SpvImageOperandsConstOffsetsMask) {
vtn_assert(texop == nir_texop_tg4);
gather_offsets = vtn_value(b, w[idx++], vtn_value_type_constant);
}
if (operands & SpvImageOperandsSampleMask) {
vtn_assert(texop == nir_texop_txf_ms);
texop = nir_texop_txf_ms;
(*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
}
if (operands & SpvImageOperandsMinLodMask) {
vtn_assert(texop == nir_texop_tex ||
texop == nir_texop_txb ||
texop == nir_texop_txd);
(*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_min_lod);
}
}
/* We should have now consumed exactly all of the arguments */
vtn_assert(idx == count);
nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
instr->op = texop;
memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
instr->coord_components = coord_components;
instr->sampler_dim = sampler_dim;
instr->is_array = is_array;
instr->is_shadow = is_shadow;
instr->is_new_style_shadow =
is_shadow && glsl_get_components(ret_type->type) == 1;
instr->component = gather_component;
if (sampled.image && (sampled.image->access & ACCESS_NON_UNIFORM))
instr->texture_non_uniform = true;
if (sampled.sampler && (sampled.sampler->access & ACCESS_NON_UNIFORM))
instr->sampler_non_uniform = true;
switch (glsl_get_sampler_result_type(image_type)) {
case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
default:
vtn_fail("Invalid base type for sampler result");
}
nir_ssa_dest_init(&instr->instr, &instr->dest,
nir_tex_instr_dest_size(instr), 32, NULL);
vtn_assert(glsl_get_vector_elements(ret_type->type) ==
nir_tex_instr_dest_size(instr));
if (gather_offsets) {
vtn_fail_if(gather_offsets->type->base_type != vtn_base_type_array ||
gather_offsets->type->length != 4,
"ConstOffsets must be an array of size four of vectors "
"of two integer components");
struct vtn_type *vec_type = gather_offsets->type->array_element;
vtn_fail_if(vec_type->base_type != vtn_base_type_vector ||
vec_type->length != 2 ||
!glsl_type_is_integer(vec_type->type),
"ConstOffsets must be an array of size four of vectors "
"of two integer components");
unsigned bit_size = glsl_get_bit_size(vec_type->type);
for (uint32_t i = 0; i < 4; i++) {
const nir_const_value *cvec =
gather_offsets->constant->elements[i]->values[0];
for (uint32_t j = 0; j < 2; j++) {
switch (bit_size) {
case 8: instr->tg4_offsets[i][j] = cvec[j].i8; break;
case 16: instr->tg4_offsets[i][j] = cvec[j].i16; break;
case 32: instr->tg4_offsets[i][j] = cvec[j].i32; break;
case 64: instr->tg4_offsets[i][j] = cvec[j].i64; break;
default:
vtn_fail("Unsupported bit size: %u", bit_size);
}
}
}
}
val->ssa = vtn_create_ssa_value(b, ret_type->type);
val->ssa->def = &instr->dest.ssa;
nir_builder_instr_insert(&b->nb, &instr->instr);
}
static void
fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, nir_src *src)
{
switch (opcode) {
case SpvOpAtomicIIncrement:
src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
break;
case SpvOpAtomicIDecrement:
src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
break;
case SpvOpAtomicISub:
src[0] =
nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
break;
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
break;
case SpvOpAtomicExchange:
case SpvOpAtomicIAdd:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
break;
default:
vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
}
}
static nir_ssa_def *
get_image_coord(struct vtn_builder *b, uint32_t value)
{
struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
/* The image_load_store intrinsics assume a 4-dim coordinate */
unsigned dim = glsl_get_vector_elements(coord->type);
unsigned swizzle[4];
for (unsigned i = 0; i < 4; i++)
swizzle[i] = MIN2(i, dim - 1);
return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
}
static nir_ssa_def *
expand_to_vec4(nir_builder *b, nir_ssa_def *value)
{
if (value->num_components == 4)
return value;
unsigned swiz[4];
for (unsigned i = 0; i < 4; i++)
swiz[i] = i < value->num_components ? i : 0;
return nir_swizzle(b, value, swiz, 4, false);
}
static void
vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
/* Just get this one out of the way */
if (opcode == SpvOpImageTexelPointer) {
struct vtn_value *val =
vtn_push_value(b, w[2], vtn_value_type_image_pointer);
val->image = ralloc(b, struct vtn_image_pointer);
val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
val->image->coord = get_image_coord(b, w[4]);
val->image->sample = vtn_ssa_value(b, w[5])->def;
return;
}
struct vtn_image_pointer image;
switch (opcode) {
case SpvOpAtomicExchange:
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicLoad:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
break;
case SpvOpAtomicStore:
image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
break;
case SpvOpImageQuerySize:
image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
image.coord = NULL;
image.sample = NULL;
break;
case SpvOpImageRead:
image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
image.coord = get_image_coord(b, w[4]);
if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
vtn_assert(w[5] == SpvImageOperandsSampleMask);
image.sample = vtn_ssa_value(b, w[6])->def;
} else {
image.sample = nir_ssa_undef(&b->nb, 1, 32);
}
break;
case SpvOpImageWrite:
image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
image.coord = get_image_coord(b, w[2]);
/* texel = w[3] */
if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
vtn_assert(w[4] == SpvImageOperandsSampleMask);
image.sample = vtn_ssa_value(b, w[5])->def;
} else {
image.sample = nir_ssa_undef(&b->nb, 1, 32);
}
break;
default:
vtn_fail_with_opcode("Invalid image opcode", opcode);
}
nir_intrinsic_op op;
switch (opcode) {
#define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
OP(ImageQuerySize, size)
OP(ImageRead, load)
OP(ImageWrite, store)
OP(AtomicLoad, load)
OP(AtomicStore, store)
OP(AtomicExchange, atomic_exchange)
OP(AtomicCompareExchange, atomic_comp_swap)
OP(AtomicCompareExchangeWeak, atomic_comp_swap)
OP(AtomicIIncrement, atomic_add)
OP(AtomicIDecrement, atomic_add)
OP(AtomicIAdd, atomic_add)
OP(AtomicISub, atomic_add)
OP(AtomicSMin, atomic_min)
OP(AtomicUMin, atomic_min)
OP(AtomicSMax, atomic_max)
OP(AtomicUMax, atomic_max)
OP(AtomicAnd, atomic_and)
OP(AtomicOr, atomic_or)
OP(AtomicXor, atomic_xor)
#undef OP
default:
vtn_fail_with_opcode("Invalid image opcode", opcode);
}
nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image);
intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa);
/* ImageQuerySize doesn't take any extra parameters */
if (opcode != SpvOpImageQuerySize) {
/* The image coordinate is always 4 components but we may not have that
* many. Swizzle to compensate.
*/
intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
intrin->src[2] = nir_src_for_ssa(image.sample);
}
switch (opcode) {
case SpvOpAtomicLoad:
case SpvOpImageQuerySize:
case SpvOpImageRead:
break;
case SpvOpAtomicStore:
case SpvOpImageWrite: {
const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
nir_ssa_def *value = vtn_ssa_value(b, value_id)->def;
/* nir_intrinsic_image_deref_store always takes a vec4 value */
assert(op == nir_intrinsic_image_deref_store);
intrin->num_components = 4;
intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
break;
}
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicExchange:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
break;
default:
vtn_fail_with_opcode("Invalid image opcode", opcode);
}
if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
unsigned dest_components = glsl_get_vector_elements(type->type);
intrin->num_components = nir_intrinsic_infos[op].dest_components;
if (intrin->num_components == 0)
intrin->num_components = dest_components;
nir_ssa_dest_init(&intrin->instr, &intrin->dest,
intrin->num_components, 32, NULL);
nir_builder_instr_insert(&b->nb, &intrin->instr);
nir_ssa_def *result = &intrin->dest.ssa;
if (intrin->num_components != dest_components)
result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
val->ssa = vtn_create_ssa_value(b, type->type);
val->ssa->def = result;
} else {
nir_builder_instr_insert(&b->nb, &intrin->instr);
}
}
static nir_intrinsic_op
get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
{
switch (opcode) {
case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
#define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
OP(AtomicExchange, atomic_exchange)
OP(AtomicCompareExchange, atomic_comp_swap)
OP(AtomicCompareExchangeWeak, atomic_comp_swap)
OP(AtomicIIncrement, atomic_add)
OP(AtomicIDecrement, atomic_add)
OP(AtomicIAdd, atomic_add)
OP(AtomicISub, atomic_add)
OP(AtomicSMin, atomic_imin)
OP(AtomicUMin, atomic_umin)
OP(AtomicSMax, atomic_imax)
OP(AtomicUMax, atomic_umax)
OP(AtomicAnd, atomic_and)
OP(AtomicOr, atomic_or)
OP(AtomicXor, atomic_xor)
#undef OP
default:
vtn_fail_with_opcode("Invalid SSBO atomic", opcode);
}
}
static nir_intrinsic_op
get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
{
switch (opcode) {
#define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
OP(AtomicLoad, read_deref)
OP(AtomicExchange, exchange)
OP(AtomicCompareExchange, comp_swap)
OP(AtomicCompareExchangeWeak, comp_swap)
OP(AtomicIIncrement, inc_deref)
OP(AtomicIDecrement, post_dec_deref)
OP(AtomicIAdd, add_deref)
OP(AtomicISub, add_deref)
OP(AtomicUMin, min_deref)
OP(AtomicUMax, max_deref)
OP(AtomicAnd, and_deref)
OP(AtomicOr, or_deref)
OP(AtomicXor, xor_deref)
#undef OP
default:
/* We left the following out: AtomicStore, AtomicSMin and
* AtomicSmax. Right now there are not nir intrinsics for them. At this
* moment Atomic Counter support is needed for ARB_spirv support, so is
* only need to support GLSL Atomic Counters that are uints and don't
* allow direct storage.
*/
unreachable("Invalid uniform atomic");
}
}
static nir_intrinsic_op
get_shared_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
{
switch (opcode) {
case SpvOpAtomicLoad: return nir_intrinsic_load_shared;
case SpvOpAtomicStore: return nir_intrinsic_store_shared;
#define OP(S, N) case SpvOp##S: return nir_intrinsic_shared_##N;
OP(AtomicExchange, atomic_exchange)
OP(AtomicCompareExchange, atomic_comp_swap)
OP(AtomicCompareExchangeWeak, atomic_comp_swap)
OP(AtomicIIncrement, atomic_add)
OP(AtomicIDecrement, atomic_add)
OP(AtomicIAdd, atomic_add)
OP(AtomicISub, atomic_add)
OP(AtomicSMin, atomic_imin)
OP(AtomicUMin, atomic_umin)
OP(AtomicSMax, atomic_imax)
OP(AtomicUMax, atomic_umax)
OP(AtomicAnd, atomic_and)
OP(AtomicOr, atomic_or)
OP(AtomicXor, atomic_xor)
#undef OP
default:
vtn_fail_with_opcode("Invalid shared atomic", opcode);
}
}
static nir_intrinsic_op
get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
{
switch (opcode) {
case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
case SpvOpAtomicStore: return nir_intrinsic_store_deref;
#define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
OP(AtomicExchange, atomic_exchange)
OP(AtomicCompareExchange, atomic_comp_swap)
OP(AtomicCompareExchangeWeak, atomic_comp_swap)
OP(AtomicIIncrement, atomic_add)
OP(AtomicIDecrement, atomic_add)
OP(AtomicIAdd, atomic_add)
OP(AtomicISub, atomic_add)
OP(AtomicSMin, atomic_imin)
OP(AtomicUMin, atomic_umin)
OP(AtomicSMax, atomic_imax)
OP(AtomicUMax, atomic_umax)
OP(AtomicAnd, atomic_and)
OP(AtomicOr, atomic_or)
OP(AtomicXor, atomic_xor)
#undef OP
default:
vtn_fail_with_opcode("Invalid shared atomic", opcode);
}
}
/*
* Handles shared atomics, ssbo atomics and atomic counters.
*/
static void
vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
struct vtn_pointer *ptr;
nir_intrinsic_instr *atomic;
switch (opcode) {
case SpvOpAtomicLoad:
case SpvOpAtomicExchange:
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
break;
case SpvOpAtomicStore:
ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
break;
default:
vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
}
/*
SpvScope scope = w[4];
SpvMemorySemanticsMask semantics = w[5];
*/
/* uniform as "atomic counter uniform" */
if (ptr->mode == vtn_variable_mode_uniform) {
nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
const struct glsl_type *deref_type = deref->type;
nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
atomic = nir_intrinsic_instr_create(b->nb.shader, op);
atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
/* SSBO needs to initialize index/offset. In this case we don't need to,
* as that info is already stored on the ptr->var->var nir_variable (see
* vtn_create_variable)
*/
switch (opcode) {
case SpvOpAtomicLoad:
atomic->num_components = glsl_get_vector_elements(deref_type);
break;
case SpvOpAtomicStore:
atomic->num_components = glsl_get_vector_elements(deref_type);
nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
break;
case SpvOpAtomicExchange:
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
/* Nothing: we don't need to call fill_common_atomic_sources here, as
* atomic counter uniforms doesn't have sources
*/
break;
default:
unreachable("Invalid SPIR-V atomic");
}
} else if (vtn_pointer_uses_ssa_offset(b, ptr)) {
nir_ssa_def *offset, *index;
offset = vtn_pointer_to_offset(b, ptr, &index);
nir_intrinsic_op op;
if (ptr->mode == vtn_variable_mode_ssbo) {
op = get_ssbo_nir_atomic_op(b, opcode);
} else {
vtn_assert(ptr->mode == vtn_variable_mode_workgroup &&
b->options->lower_workgroup_access_to_offsets);
op = get_shared_nir_atomic_op(b, opcode);
}
atomic = nir_intrinsic_instr_create(b->nb.shader, op);
int src = 0;
switch (opcode) {
case SpvOpAtomicLoad:
atomic->num_components = glsl_get_vector_elements(ptr->type->type);
nir_intrinsic_set_align(atomic, 4, 0);
if (ptr->mode == vtn_variable_mode_ssbo)
atomic->src[src++] = nir_src_for_ssa(index);
atomic->src[src++] = nir_src_for_ssa(offset);
break;
case SpvOpAtomicStore:
atomic->num_components = glsl_get_vector_elements(ptr->type->type);
nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
nir_intrinsic_set_align(atomic, 4, 0);
atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
if (ptr->mode == vtn_variable_mode_ssbo)
atomic->src[src++] = nir_src_for_ssa(index);
atomic->src[src++] = nir_src_for_ssa(offset);
break;
case SpvOpAtomicExchange:
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
if (ptr->mode == vtn_variable_mode_ssbo)
atomic->src[src++] = nir_src_for_ssa(index);
atomic->src[src++] = nir_src_for_ssa(offset);
fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
break;
default:
vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
}
} else {
nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
const struct glsl_type *deref_type = deref->type;
nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
atomic = nir_intrinsic_instr_create(b->nb.shader, op);
atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
switch (opcode) {
case SpvOpAtomicLoad:
atomic->num_components = glsl_get_vector_elements(deref_type);
break;
case SpvOpAtomicStore:
atomic->num_components = glsl_get_vector_elements(deref_type);
nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
break;
case SpvOpAtomicExchange:
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor:
fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
break;
default:
vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
}
}
if (opcode != SpvOpAtomicStore) {
struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
nir_ssa_dest_init(&atomic->instr, &atomic->dest,
glsl_get_vector_elements(type->type),
glsl_get_bit_size(type->type), NULL);
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
val->ssa = rzalloc(b, struct vtn_ssa_value);
val->ssa->def = &atomic->dest.ssa;
val->ssa->type = type->type;
}
nir_builder_instr_insert(&b->nb, &atomic->instr);
}
static nir_alu_instr *
create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
{
nir_op op = nir_op_vec(num_components);
nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
bit_size, NULL);
vec->dest.write_mask = (1 << num_components) - 1;
return vec;
}
struct vtn_ssa_value *
vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
{
if (src->transposed)
return src->transposed;
struct vtn_ssa_value *dest =
vtn_create_ssa_value(b, glsl_transposed_type(src->type));
for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
glsl_get_bit_size(src->type));
if (glsl_type_is_vector_or_scalar(src->type)) {
vec->src[0].src = nir_src_for_ssa(src->def);
vec->src[0].swizzle[0] = i;
} else {
for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
vec->src[j].swizzle[0] = i;
}
}
nir_builder_instr_insert(&b->nb, &vec->instr);
dest->elems[i]->def = &vec->dest.dest.ssa;
}
dest->transposed = src;
return dest;
}
nir_ssa_def *
vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
{
return nir_channel(&b->nb, src, index);
}
nir_ssa_def *
vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
unsigned index)
{
nir_alu_instr *vec = create_vec(b, src->num_components,
src->bit_size);
for (unsigned i = 0; i < src->num_components; i++) {
if (i == index) {
vec->src[i].src = nir_src_for_ssa(insert);
} else {
vec->src[i].src = nir_src_for_ssa(src);
vec->src[i].swizzle[0] = i;
}
}
nir_builder_instr_insert(&b->nb, &vec->instr);
return &vec->dest.dest.ssa;
}
static nir_ssa_def *
nir_ieq_imm(nir_builder *b, nir_ssa_def *x, uint64_t i)
{
return nir_ieq(b, x, nir_imm_intN_t(b, i, x->bit_size));
}
nir_ssa_def *
vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
nir_ssa_def *index)
{
return nir_vector_extract(&b->nb, src, nir_i2i(&b->nb, index, 32));
}
nir_ssa_def *
vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
nir_ssa_def *insert, nir_ssa_def *index)
{
nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
for (unsigned i = 1; i < src->num_components; i++)
dest = nir_bcsel(&b->nb, nir_ieq_imm(&b->nb, index, i),
vtn_vector_insert(b, src, insert, i), dest);
return dest;
}
static nir_ssa_def *
vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
nir_ssa_def *src0, nir_ssa_def *src1,
const uint32_t *indices)
{
nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
for (unsigned i = 0; i < num_components; i++) {
uint32_t index = indices[i];
if (index == 0xffffffff) {
vec->src[i].src =
nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
} else if (index < src0->num_components) {
vec->src[i].src = nir_src_for_ssa(src0);
vec->src[i].swizzle[0] = index;
} else {
vec->src[i].src = nir_src_for_ssa(src1);
vec->src[i].swizzle[0] = index - src0->num_components;
}
}
nir_builder_instr_insert(&b->nb, &vec->instr);
return &vec->dest.dest.ssa;
}
/*
* Concatentates a number of vectors/scalars together to produce a vector
*/
static nir_ssa_def *
vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
unsigned num_srcs, nir_ssa_def **srcs)
{
nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
/* From the SPIR-V 1.1 spec for OpCompositeConstruct:
*
* "When constructing a vector, there must be at least two Constituent
* operands."
*/
vtn_assert(num_srcs >= 2);
unsigned dest_idx = 0;
for (unsigned i = 0; i < num_srcs; i++) {
nir_ssa_def *src = srcs[i];
vtn_assert(dest_idx + src->num_components <= num_components);
for (unsigned j = 0; j < src->num_components; j++) {
vec->src[dest_idx].src = nir_src_for_ssa(src);
vec->src[dest_idx].swizzle[0] = j;
dest_idx++;
}
}
/* From the SPIR-V 1.1 spec for OpCompositeConstruct:
*
* "When constructing a vector, the total number of components in all
* the operands must equal the number of components in Result Type."
*/
vtn_assert(dest_idx == num_components);
nir_builder_instr_insert(&b->nb, &vec->instr);
return &vec->dest.dest.ssa;
}
static struct vtn_ssa_value *
vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
{
struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
dest->type = src->type;
if (glsl_type_is_vector_or_scalar(src->type)) {
dest->def = src->def;
} else {
unsigned elems = glsl_get_length(src->type);
dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
for (unsigned i = 0; i < elems; i++)
dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
}
return dest;
}
static struct vtn_ssa_value *
vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
struct vtn_ssa_value *insert, const uint32_t *indices,
unsigned num_indices)
{
struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
struct vtn_ssa_value *cur = dest;
unsigned i;
for (i = 0; i < num_indices - 1; i++) {
cur = cur->elems[indices[i]];
}
if (glsl_type_is_vector_or_scalar(cur->type)) {
/* According to the SPIR-V spec, OpCompositeInsert may work down to
* the component granularity. In that case, the last index will be
* the index to insert the scalar into the vector.
*/
cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
} else {
cur->elems[indices[i]] = insert;
}
return dest;
}
static struct vtn_ssa_value *
vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
const uint32_t *indices, unsigned num_indices)
{
struct vtn_ssa_value *cur = src;
for (unsigned i = 0; i < num_indices; i++) {
if (glsl_type_is_vector_or_scalar(cur->type)) {
vtn_assert(i == num_indices - 1);
/* According to the SPIR-V spec, OpCompositeExtract may work down to
* the component granularity. The last index will be the index of the
* vector to extract.
*/
struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
ret->def = vtn_vector_extract(b, cur->def, indices[i]);
return ret;
} else {
cur = cur->elems[indices[i]];
}
}
return cur;
}
static void
vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
const struct glsl_type *type =
vtn_value(b, w[1], vtn_value_type_type)->type->type;
val->ssa = vtn_create_ssa_value(b, type);
switch (opcode) {
case SpvOpVectorExtractDynamic:
val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
vtn_ssa_value(b, w[4])->def);
break;
case SpvOpVectorInsertDynamic:
val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
vtn_ssa_value(b, w[4])->def,
vtn_ssa_value(b, w[5])->def);
break;
case SpvOpVectorShuffle:
val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
vtn_ssa_value(b, w[3])->def,
vtn_ssa_value(b, w[4])->def,
w + 5);
break;
case SpvOpCompositeConstruct: {
unsigned elems = count - 3;
assume(elems >= 1);
if (glsl_type_is_vector_or_scalar(type)) {
nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < elems; i++)
srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
val->ssa->def =
vtn_vector_construct(b, glsl_get_vector_elements(type),
elems, srcs);
} else {
val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
for (unsigned i = 0; i < elems; i++)
val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
}
break;
}
case SpvOpCompositeExtract:
val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
w + 4, count - 4);
break;
case SpvOpCompositeInsert:
val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
vtn_ssa_value(b, w[3]),
w + 5, count - 5);
break;
case SpvOpCopyObject:
val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
break;
default:
vtn_fail_with_opcode("unknown composite operation", opcode);
}
}
static void
vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
{
nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
nir_builder_instr_insert(&b->nb, &intrin->instr);
}
static void
vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
SpvMemorySemanticsMask semantics)
{
static const SpvMemorySemanticsMask all_memory_semantics =
SpvMemorySemanticsUniformMemoryMask |
SpvMemorySemanticsWorkgroupMemoryMask |
SpvMemorySemanticsAtomicCounterMemoryMask |
SpvMemorySemanticsImageMemoryMask;
/* If we're not actually doing a memory barrier, bail */
if (!(semantics & all_memory_semantics))
return;
/* GL and Vulkan don't have these */
vtn_assert(scope != SpvScopeCrossDevice);
if (scope == SpvScopeSubgroup)
return; /* Nothing to do here */
if (scope == SpvScopeWorkgroup) {
vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
return;
}
/* There's only two scopes thing left */
vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
if ((semantics & all_memory_semantics) == all_memory_semantics) {
vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
return;
}
/* Issue a bunch of more specific barriers */
uint32_t bits = semantics;
while (bits) {
SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
switch (semantic) {
case SpvMemorySemanticsUniformMemoryMask:
vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
break;
case SpvMemorySemanticsWorkgroupMemoryMask:
vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
break;
case SpvMemorySemanticsAtomicCounterMemoryMask:
vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
break;
case SpvMemorySemanticsImageMemoryMask:
vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
break;
default:
break;;
}
}
}
static void
vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
switch (opcode) {
case SpvOpEmitVertex:
case SpvOpEmitStreamVertex:
case SpvOpEndPrimitive:
case SpvOpEndStreamPrimitive: {
nir_intrinsic_op intrinsic_op;
switch (opcode) {
case SpvOpEmitVertex:
case SpvOpEmitStreamVertex:
intrinsic_op = nir_intrinsic_emit_vertex;
break;
case SpvOpEndPrimitive:
case SpvOpEndStreamPrimitive:
intrinsic_op = nir_intrinsic_end_primitive;
break;
default:
unreachable("Invalid opcode");
}
nir_intrinsic_instr *intrin =
nir_intrinsic_instr_create(b->shader, intrinsic_op);
switch (opcode) {
case SpvOpEmitStreamVertex:
case SpvOpEndStreamPrimitive: {
unsigned stream = vtn_constant_uint(b, w[1]);
nir_intrinsic_set_stream_id(intrin, stream);
break;
}
default:
break;
}
nir_builder_instr_insert(&b->nb, &intrin->instr);
break;
}
case SpvOpMemoryBarrier: {
SpvScope scope = vtn_constant_uint(b, w[1]);
SpvMemorySemanticsMask semantics = vtn_constant_uint(b, w[2]);
vtn_emit_memory_barrier(b, scope, semantics);
return;
}
case SpvOpControlBarrier: {
SpvScope execution_scope = vtn_constant_uint(b, w[1]);
if (execution_scope == SpvScopeWorkgroup)
vtn_emit_barrier(b, nir_intrinsic_barrier);
SpvScope memory_scope = vtn_constant_uint(b, w[2]);
SpvMemorySemanticsMask memory_semantics = vtn_constant_uint(b, w[3]);
vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
break;
}
default:
unreachable("unknown barrier instruction");
}
}
static unsigned
gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
SpvExecutionMode mode)
{
switch (mode) {
case SpvExecutionModeInputPoints:
case SpvExecutionModeOutputPoints:
return 0; /* GL_POINTS */
case SpvExecutionModeInputLines:
return 1; /* GL_LINES */
case SpvExecutionModeInputLinesAdjacency:
return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
case SpvExecutionModeTriangles:
return 4; /* GL_TRIANGLES */
case SpvExecutionModeInputTrianglesAdjacency:
return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
case SpvExecutionModeQuads:
return 7; /* GL_QUADS */
case SpvExecutionModeIsolines:
return 0x8E7A; /* GL_ISOLINES */
case SpvExecutionModeOutputLineStrip:
return 3; /* GL_LINE_STRIP */
case SpvExecutionModeOutputTriangleStrip:
return 5; /* GL_TRIANGLE_STRIP */
default:
vtn_fail("Invalid primitive type: %s (%u)",
spirv_executionmode_to_string(mode), mode);
}
}
static unsigned
vertices_in_from_spv_execution_mode(struct vtn_builder *b,
SpvExecutionMode mode)
{
switch (mode) {
case SpvExecutionModeInputPoints:
return 1;
case SpvExecutionModeInputLines:
return 2;
case SpvExecutionModeInputLinesAdjacency:
return 4;
case SpvExecutionModeTriangles:
return 3;
case SpvExecutionModeInputTrianglesAdjacency:
return 6;
default:
vtn_fail("Invalid GS input mode: %s (%u)",
spirv_executionmode_to_string(mode), mode);
}
}
static gl_shader_stage
stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
{
switch (model) {
case SpvExecutionModelVertex:
return MESA_SHADER_VERTEX;
case SpvExecutionModelTessellationControl:
return MESA_SHADER_TESS_CTRL;
case SpvExecutionModelTessellationEvaluation:
return MESA_SHADER_TESS_EVAL;
case SpvExecutionModelGeometry:
return MESA_SHADER_GEOMETRY;
case SpvExecutionModelFragment:
return MESA_SHADER_FRAGMENT;
case SpvExecutionModelGLCompute:
return MESA_SHADER_COMPUTE;
case SpvExecutionModelKernel:
return MESA_SHADER_KERNEL;
default:
vtn_fail("Unsupported execution model: %s (%u)",
spirv_executionmodel_to_string(model), model);
}
}
#define spv_check_supported(name, cap) do { \
if (!(b->options && b->options->caps.name)) \
vtn_warn("Unsupported SPIR-V capability: %s (%u)", \
spirv_capability_to_string(cap), cap); \
} while(0)
void
vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
unsigned count)
{
struct vtn_value *entry_point = &b->values[w[2]];
/* Let this be a name label regardless */
unsigned name_words;
entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
stage_for_execution_model(b, w[1]) != b->entry_point_stage)
return;
vtn_assert(b->entry_point == NULL);
b->entry_point = entry_point;
}
static bool
vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
switch (opcode) {
case SpvOpSource: {
const char *lang;
switch (w[1]) {
default:
case SpvSourceLanguageUnknown: lang = "unknown"; break;
case SpvSourceLanguageESSL: lang = "ESSL"; break;
case SpvSourceLanguageGLSL: lang = "GLSL"; break;
case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
case SpvSourceLanguageHLSL: lang = "HLSL"; break;
}
uint32_t version = w[2];
const char *file =
(count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
break;
}
case SpvOpSourceExtension:
case SpvOpSourceContinued:
case SpvOpExtension:
case SpvOpModuleProcessed:
/* Unhandled, but these are for debug so that's ok. */
break;
case SpvOpCapability: {
SpvCapability cap = w[1];
switch (cap) {
case SpvCapabilityMatrix:
case SpvCapabilityShader:
case SpvCapabilityGeometry:
case SpvCapabilityGeometryPointSize:
case SpvCapabilityUniformBufferArrayDynamicIndexing:
case SpvCapabilitySampledImageArrayDynamicIndexing:
case SpvCapabilityStorageBufferArrayDynamicIndexing:
case SpvCapabilityStorageImageArrayDynamicIndexing:
case SpvCapabilityImageRect:
case SpvCapabilitySampledRect:
case SpvCapabilitySampled1D:
case SpvCapabilityImage1D:
case SpvCapabilitySampledCubeArray:
case SpvCapabilityImageCubeArray:
case SpvCapabilitySampledBuffer:
case SpvCapabilityImageBuffer:
case SpvCapabilityImageQuery:
case SpvCapabilityDerivativeControl:
case SpvCapabilityInterpolationFunction:
case SpvCapabilityMultiViewport:
case SpvCapabilitySampleRateShading:
case SpvCapabilityClipDistance:
case SpvCapabilityCullDistance:
case SpvCapabilityInputAttachment:
case SpvCapabilityImageGatherExtended:
case SpvCapabilityStorageImageExtendedFormats:
break;
case SpvCapabilityLinkage:
case SpvCapabilityVector16:
case SpvCapabilityFloat16Buffer:
case SpvCapabilitySparseResidency:
vtn_warn("Unsupported SPIR-V capability: %s",
spirv_capability_to_string(cap));
break;
case SpvCapabilityMinLod:
spv_check_supported(min_lod, cap);
break;
case SpvCapabilityAtomicStorage:
spv_check_supported(atomic_storage, cap);
break;
case SpvCapabilityFloat64:
spv_check_supported(float64, cap);
break;
case SpvCapabilityInt64:
spv_check_supported(int64, cap);
break;
case SpvCapabilityInt16:
spv_check_supported(int16, cap);
break;
case SpvCapabilityInt8:
spv_check_supported(int8, cap);
break;
case SpvCapabilityTransformFeedback:
spv_check_supported(transform_feedback, cap);
break;
case SpvCapabilityGeometryStreams:
spv_check_supported(geometry_streams, cap);
break;
case SpvCapabilityInt64Atomics:
spv_check_supported(int64_atomics, cap);
break;
case SpvCapabilityStorageImageMultisample:
spv_check_supported(storage_image_ms, cap);
break;
case SpvCapabilityAddresses:
spv_check_supported(address, cap);
break;
case SpvCapabilityKernel:
spv_check_supported(kernel, cap);
break;
case SpvCapabilityImageBasic:
case SpvCapabilityImageReadWrite:
case SpvCapabilityImageMipmap:
case SpvCapabilityPipes:
case SpvCapabilityGroups:
case SpvCapabilityDeviceEnqueue:
case SpvCapabilityLiteralSampler:
case SpvCapabilityGenericPointer:
vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
spirv_capability_to_string(cap));
break;
case SpvCapabilityImageMSArray:
spv_check_supported(image_ms_array, cap);
break;
case SpvCapabilityTessellation:
case SpvCapabilityTessellationPointSize:
spv_check_supported(tessellation, cap);
break;
case SpvCapabilityDrawParameters:
spv_check_supported(draw_parameters, cap);
break;
case SpvCapabilityStorageImageReadWithoutFormat:
spv_check_supported(image_read_without_format, cap);
break;
case SpvCapabilityStorageImageWriteWithoutFormat:
spv_check_supported(image_write_without_format, cap);
break;
case SpvCapabilityDeviceGroup:
spv_check_supported(device_group, cap);
break;
case SpvCapabilityMultiView:
spv_check_supported(multiview, cap);
break;
case SpvCapabilityGroupNonUniform:
spv_check_supported(subgroup_basic, cap);
break;
case SpvCapabilityGroupNonUniformVote:
spv_check_supported(subgroup_vote, cap);
break;
case SpvCapabilitySubgroupBallotKHR:
case SpvCapabilityGroupNonUniformBallot:
spv_check_supported(subgroup_ballot, cap);
break;
case SpvCapabilityGroupNonUniformShuffle:
case SpvCapabilityGroupNonUniformShuffleRelative:
spv_check_supported(subgroup_shuffle, cap);
break;
case SpvCapabilityGroupNonUniformQuad:
spv_check_supported(subgroup_quad, cap);
break;
case SpvCapabilityGroupNonUniformArithmetic:
case SpvCapabilityGroupNonUniformClustered:
spv_check_supported(subgroup_arithmetic, cap);
break;
case SpvCapabilityVariablePointersStorageBuffer:
case SpvCapabilityVariablePointers:
spv_check_supported(variable_pointers, cap);
b->variable_pointers = true;
break;
case SpvCapabilityStorageUniformBufferBlock16:
case SpvCapabilityStorageUniform16:
case SpvCapabilityStoragePushConstant16:
case SpvCapabilityStorageInputOutput16:
spv_check_supported(storage_16bit, cap);
break;
case SpvCapabilityShaderViewportIndexLayerEXT:
spv_check_supported(shader_viewport_index_layer, cap);
break;
case SpvCapabilityStorageBuffer8BitAccess:
case SpvCapabilityUniformAndStorageBuffer8BitAccess:
case SpvCapabilityStoragePushConstant8:
spv_check_supported(storage_8bit, cap);
break;
case SpvCapabilityShaderNonUniformEXT:
spv_check_supported(descriptor_indexing, cap);
break;
case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
spv_check_supported(descriptor_array_dynamic_indexing, cap);
break;
case SpvCapabilityUniformBufferArrayNonUniformIndexingEXT:
case SpvCapabilitySampledImageArrayNonUniformIndexingEXT:
case SpvCapabilityStorageBufferArrayNonUniformIndexingEXT:
case SpvCapabilityStorageImageArrayNonUniformIndexingEXT:
case SpvCapabilityInputAttachmentArrayNonUniformIndexingEXT:
case SpvCapabilityUniformTexelBufferArrayNonUniformIndexingEXT:
case SpvCapabilityStorageTexelBufferArrayNonUniformIndexingEXT:
spv_check_supported(descriptor_array_non_uniform_indexing, cap);
break;
case SpvCapabilityRuntimeDescriptorArrayEXT:
spv_check_supported(runtime_descriptor_array, cap);
break;
case SpvCapabilityStencilExportEXT:
spv_check_supported(stencil_export, cap);
break;
case SpvCapabilitySampleMaskPostDepthCoverage:
spv_check_supported(post_depth_coverage, cap);
break;
case SpvCapabilityPhysicalStorageBufferAddressesEXT:
spv_check_supported(physical_storage_buffer_address, cap);
break;
case SpvCapabilityComputeDerivativeGroupQuadsNV:
case SpvCapabilityComputeDerivativeGroupLinearNV:
spv_check_supported(derivative_group, cap);
break;
case SpvCapabilityFloat16:
spv_check_supported(float16, cap);
break;
default:
vtn_fail("Unhandled capability: %s (%u)",
spirv_capability_to_string(cap), cap);
}
break;
}
case SpvOpExtInstImport:
vtn_handle_extension(b, opcode, w, count);
break;
case SpvOpMemoryModel:
switch (w[1]) {
case SpvAddressingModelPhysical32:
vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
"AddressingModelPhysical32 only supported for kernels");
b->shader->info.cs.ptr_size = 32;
b->physical_ptrs = true;
b->options->shared_ptr_type = glsl_uint_type();
b->options->global_ptr_type = glsl_uint_type();
b->options->temp_ptr_type = glsl_uint_type();
break;
case SpvAddressingModelPhysical64:
vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
"AddressingModelPhysical64 only supported for kernels");
b->shader->info.cs.ptr_size = 64;
b->physical_ptrs = true;
b->options->shared_ptr_type = glsl_uint64_t_type();
b->options->global_ptr_type = glsl_uint64_t_type();
b->options->temp_ptr_type = glsl_uint64_t_type();
break;
case SpvAddressingModelLogical:
vtn_fail_if(b->shader->info.stage >= MESA_SHADER_STAGES,
"AddressingModelLogical only supported for shaders");
b->shader->info.cs.ptr_size = 0;
b->physical_ptrs = false;
break;
case SpvAddressingModelPhysicalStorageBuffer64EXT:
vtn_fail_if(!b->options ||
!b->options->caps.physical_storage_buffer_address,
"AddressingModelPhysicalStorageBuffer64EXT not supported");
break;
default:
vtn_fail("Unknown addressing model: %s (%u)",
spirv_addressingmodel_to_string(w[1]), w[1]);
break;
}
vtn_assert(w[2] == SpvMemoryModelSimple ||
w[2] == SpvMemoryModelGLSL450 ||
w[2] == SpvMemoryModelOpenCL);
break;
case SpvOpEntryPoint:
vtn_handle_entry_point(b, w, count);
break;
case SpvOpString:
vtn_push_value(b, w[1], vtn_value_type_string)->str =
vtn_string_literal(b, &w[2], count - 2, NULL);
break;
case SpvOpName:
b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
break;
case SpvOpMemberName:
/* TODO */
break;
case SpvOpExecutionMode:
case SpvOpExecutionModeId:
case SpvOpDecorationGroup:
case SpvOpDecorate:
case SpvOpDecorateId:
case SpvOpMemberDecorate:
case SpvOpGroupDecorate:
case SpvOpGroupMemberDecorate:
case SpvOpDecorateStringGOOGLE:
case SpvOpMemberDecorateStringGOOGLE:
vtn_handle_decoration(b, opcode, w, count);
break;
default:
return false; /* End of preamble */
}
return true;
}
static void
vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
const struct vtn_decoration *mode, void *data)
{
vtn_assert(b->entry_point == entry_point);
switch(mode->exec_mode) {
case SpvExecutionModeOriginUpperLeft:
case SpvExecutionModeOriginLowerLeft:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.origin_upper_left =
(mode->exec_mode == SpvExecutionModeOriginUpperLeft);
break;
case SpvExecutionModeEarlyFragmentTests:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.early_fragment_tests = true;
break;
case SpvExecutionModePostDepthCoverage:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.post_depth_coverage = true;
break;
case SpvExecutionModeInvocations:
vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
b->shader->info.gs.invocations = MAX2(1, mode->operands[0]);
break;
case SpvExecutionModeDepthReplacing:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
break;
case SpvExecutionModeDepthGreater:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
break;
case SpvExecutionModeDepthLess:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
break;
case SpvExecutionModeDepthUnchanged:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
break;
case SpvExecutionModeLocalSize:
vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage));
b->shader->info.cs.local_size[0] = mode->operands[0];
b->shader->info.cs.local_size[1] = mode->operands[1];
b->shader->info.cs.local_size[2] = mode->operands[2];
break;
case SpvExecutionModeLocalSizeId:
b->shader->info.cs.local_size[0] = vtn_constant_uint(b, mode->operands[0]);
b->shader->info.cs.local_size[1] = vtn_constant_uint(b, mode->operands[1]);
b->shader->info.cs.local_size[2] = vtn_constant_uint(b, mode->operands[2]);
break;
case SpvExecutionModeLocalSizeHint:
case SpvExecutionModeLocalSizeHintId:
break; /* Nothing to do with this */
case SpvExecutionModeOutputVertices:
if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
b->shader->info.tess.tcs_vertices_out = mode->operands[0];
} else {
vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
b->shader->info.gs.vertices_out = mode->operands[0];
}
break;
case SpvExecutionModeInputPoints:
case SpvExecutionModeInputLines:
case SpvExecutionModeInputLinesAdjacency:
case SpvExecutionModeTriangles:
case SpvExecutionModeInputTrianglesAdjacency:
case SpvExecutionModeQuads:
case SpvExecutionModeIsolines:
if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
b->shader->info.tess.primitive_mode =
gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
} else {
vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
b->shader->info.gs.vertices_in =
vertices_in_from_spv_execution_mode(b, mode->exec_mode);
b->shader->info.gs.input_primitive =
gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
}
break;
case SpvExecutionModeOutputPoints:
case SpvExecutionModeOutputLineStrip:
case SpvExecutionModeOutputTriangleStrip:
vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
b->shader->info.gs.output_primitive =
gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
break;
case SpvExecutionModeSpacingEqual:
vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL);
b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
break;
case SpvExecutionModeSpacingFractionalEven:
vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL);
b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
break;
case SpvExecutionModeSpacingFractionalOdd:
vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL);
b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
break;
case SpvExecutionModeVertexOrderCw:
vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL);
b->shader->info.tess.ccw = false;
break;
case SpvExecutionModeVertexOrderCcw:
vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL);
b->shader->info.tess.ccw = true;
break;
case SpvExecutionModePointMode:
vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
b->shader->info.stage == MESA_SHADER_TESS_EVAL);
b->shader->info.tess.point_mode = true;
break;
case SpvExecutionModePixelCenterInteger:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
b->shader->info.fs.pixel_center_integer = true;
break;
case SpvExecutionModeXfb:
b->shader->info.has_transform_feedback_varyings = true;
break;
case SpvExecutionModeVecTypeHint:
break; /* OpenCL */
case SpvExecutionModeContractionOff:
if (b->shader->info.stage != MESA_SHADER_KERNEL)
vtn_warn("ExectionMode only allowed for CL-style kernels: %s",
spirv_executionmode_to_string(mode->exec_mode));
else
b->exact = true;
break;
case SpvExecutionModeStencilRefReplacingEXT:
vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
break;
case SpvExecutionModeDerivativeGroupQuadsNV:
vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_QUADS;
break;
case SpvExecutionModeDerivativeGroupLinearNV:
vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_LINEAR;
break;
default:
vtn_fail("Unhandled execution mode: %s (%u)",
spirv_executionmode_to_string(mode->exec_mode),
mode->exec_mode);
}
}
static bool
vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
vtn_set_instruction_result_type(b, opcode, w, count);
switch (opcode) {
case SpvOpSource:
case SpvOpSourceContinued:
case SpvOpSourceExtension:
case SpvOpExtension:
case SpvOpCapability:
case SpvOpExtInstImport:
case SpvOpMemoryModel:
case SpvOpEntryPoint:
case SpvOpExecutionMode:
case SpvOpString:
case SpvOpName:
case SpvOpMemberName:
case SpvOpDecorationGroup:
case SpvOpDecorate:
case SpvOpDecorateId:
case SpvOpMemberDecorate:
case SpvOpGroupDecorate:
case SpvOpGroupMemberDecorate:
case SpvOpDecorateStringGOOGLE:
case SpvOpMemberDecorateStringGOOGLE:
vtn_fail("Invalid opcode types and variables section");
break;
case SpvOpTypeVoid:
case SpvOpTypeBool:
case SpvOpTypeInt:
case SpvOpTypeFloat:
case SpvOpTypeVector:
case SpvOpTypeMatrix:
case SpvOpTypeImage:
case SpvOpTypeSampler:
case SpvOpTypeSampledImage:
case SpvOpTypeArray:
case SpvOpTypeRuntimeArray:
case SpvOpTypeStruct:
case SpvOpTypeOpaque:
case SpvOpTypePointer:
case SpvOpTypeForwardPointer:
case SpvOpTypeFunction:
case SpvOpTypeEvent:
case SpvOpTypeDeviceEvent:
case SpvOpTypeReserveId:
case SpvOpTypeQueue:
case SpvOpTypePipe:
vtn_handle_type(b, opcode, w, count);
break;
case SpvOpConstantTrue:
case SpvOpConstantFalse:
case SpvOpConstant:
case SpvOpConstantComposite:
case SpvOpConstantSampler:
case SpvOpConstantNull:
case SpvOpSpecConstantTrue:
case SpvOpSpecConstantFalse:
case SpvOpSpecConstant:
case SpvOpSpecConstantComposite:
case SpvOpSpecConstantOp:
vtn_handle_constant(b, opcode, w, count);
break;
case SpvOpUndef:
case SpvOpVariable:
vtn_handle_variables(b, opcode, w, count);
break;
default:
return false; /* End of preamble */
}
return true;
}
static bool
vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
const uint32_t *w, unsigned count)
{
switch (opcode) {
case SpvOpLabel:
break;
case SpvOpLoopMerge:
case SpvOpSelectionMerge:
/* This is handled by cfg pre-pass and walk_blocks */
break;
case SpvOpUndef: {
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
break;
}
case SpvOpExtInst:
vtn_handle_extension(b, opcode, w, count);
break;
case SpvOpVariable:
case SpvOpLoad:
case SpvOpStore:
case SpvOpCopyMemory:
case SpvOpCopyMemorySized:
case SpvOpAccessChain:
case SpvOpPtrAccessChain:
case SpvOpInBoundsAccessChain:
case SpvOpInBoundsPtrAccessChain:
case SpvOpArrayLength:
case SpvOpConvertPtrToU:
case SpvOpConvertUToPtr:
vtn_handle_variables(b, opcode, w, count);
break;
case SpvOpFunctionCall:
vtn_handle_function_call(b, opcode, w, count);
break;
case SpvOpSampledImage:
case SpvOpImage:
case SpvOpImageSampleImplicitLod:
case SpvOpImageSampleExplicitLod:
case SpvOpImageSampleDrefImplicitLod:
case SpvOpImageSampleDrefExplicitLod:
case SpvOpImageSampleProjImplicitLod:
case SpvOpImageSampleProjExplicitLod:
case SpvOpImageSampleProjDrefImplicitLod:
case SpvOpImageSampleProjDrefExplicitLod:
case SpvOpImageFetch:
case SpvOpImageGather:
case SpvOpImageDrefGather:
case SpvOpImageQuerySizeLod:
case SpvOpImageQueryLod:
case SpvOpImageQueryLevels:
case SpvOpImageQuerySamples:
vtn_handle_texture(b, opcode, w, count);
break;
case SpvOpImageRead:
case SpvOpImageWrite:
case SpvOpImageTexelPointer:
vtn_handle_image(b, opcode, w, count);
break;
case SpvOpImageQuerySize: {
struct vtn_pointer *image =
vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
if (glsl_type_is_image(image->type->type)) {
vtn_handle_image(b, opcode, w, count);
} else {
vtn_assert(glsl_type_is_sampler(image->type->type));
vtn_handle_texture(b, opcode, w, count);
}
break;
}
case SpvOpAtomicLoad:
case SpvOpAtomicExchange:
case SpvOpAtomicCompareExchange:
case SpvOpAtomicCompareExchangeWeak:
case SpvOpAtomicIIncrement:
case SpvOpAtomicIDecrement:
case SpvOpAtomicIAdd:
case SpvOpAtomicISub:
case SpvOpAtomicSMin:
case SpvOpAtomicUMin:
case SpvOpAtomicSMax:
case SpvOpAtomicUMax:
case SpvOpAtomicAnd:
case SpvOpAtomicOr:
case SpvOpAtomicXor: {
struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
if (pointer->value_type == vtn_value_type_image_pointer) {
vtn_handle_image(b, opcode, w, count);
} else {
vtn_assert(pointer->value_type == vtn_value_type_pointer);
vtn_handle_atomics(b, opcode, w, count);
}
break;
}
case SpvOpAtomicStore: {
struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
if (pointer->value_type == vtn_value_type_image_pointer) {
vtn_handle_image(b, opcode, w, count);
} else {
vtn_assert(pointer->value_type == vtn_value_type_pointer);
vtn_handle_atomics(b, opcode, w, count);
}
break;
}
case SpvOpSelect: {
/* Handle OpSelect up-front here because it needs to be able to handle
* pointers and not just regular vectors and scalars.
*/
struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
struct vtn_value *sel_val = vtn_untyped_value(b, w[3]);
struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
const struct glsl_type *sel_type;
switch (res_val->type->base_type) {
case vtn_base_type_scalar:
sel_type = glsl_bool_type();
break;
case vtn_base_type_vector:
sel_type = glsl_vector_type(GLSL_TYPE_BOOL, res_val->type->length);
break;
case vtn_base_type_pointer:
/* We need to have actual storage for pointer types */
vtn_fail_if(res_val->type->type == NULL,
"Invalid pointer result type for OpSelect");
sel_type = glsl_bool_type();
break;
default:
vtn_fail("Result type of OpSelect must be a scalar, vector, or pointer");
}
if (unlikely(sel_val->type->type != sel_type)) {
if (sel_val->type->type == glsl_bool_type()) {
/* This case is illegal but some older versions of GLSLang produce
* it. The GLSLang issue was fixed on March 30, 2017:
*
* https://github.com/KhronosGroup/glslang/issues/809
*
* Unfortunately, there are applications in the wild which are
* shipping with this bug so it isn't nice to fail on them so we
* throw a warning instead. It's not actually a problem for us as
* nir_builder will just splat the condition out which is most
* likely what the client wanted anyway.
*/
vtn_warn("Condition type of OpSelect must have the same number "
"of components as Result Type");
} else {
vtn_fail("Condition type of OpSelect must be a scalar or vector "
"of Boolean type. It must have the same number of "
"components as Result Type");
}
}
vtn_fail_if(obj1_val->type != res_val->type ||
obj2_val->type != res_val->type,
"Object types must match the result type in OpSelect");
struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, res_type->type);
ssa->def = nir_bcsel(&b->nb, vtn_ssa_value(b, w[3])->def,
vtn_ssa_value(b, w[4])->def,
vtn_ssa_value(b, w[5])->def);
vtn_push_ssa(b, w[2], res_type, ssa);
break;
}
case SpvOpSNegate:
case SpvOpFNegate:
case SpvOpNot:
case SpvOpAny:
case SpvOpAll:
case SpvOpConvertFToU:
case SpvOpConvertFToS:
case SpvOpConvertSToF:
case SpvOpConvertUToF:
case SpvOpUConvert:
case SpvOpSConvert:
case SpvOpFConvert:
case SpvOpQuantizeToF16:
case SpvOpPtrCastToGeneric:
case SpvOpGenericCastToPtr:
case SpvOpIsNan:
case SpvOpIsInf:
case SpvOpIsFinite:
case SpvOpIsNormal:
case SpvOpSignBitSet:
case SpvOpLessOrGreater:
case SpvOpOrdered:
case SpvOpUnordered:
case SpvOpIAdd:
case SpvOpFAdd:
case SpvOpISub:
case SpvOpFSub:
case SpvOpIMul:
case SpvOpFMul:
case SpvOpUDiv:
case SpvOpSDiv:
case SpvOpFDiv:
case SpvOpUMod:
case SpvOpSRem:
case SpvOpSMod:
case SpvOpFRem:
case SpvOpFMod:
case SpvOpVectorTimesScalar:
case SpvOpDot:
case SpvOpIAddCarry:
case SpvOpISubBorrow:
case SpvOpUMulExtended:
case SpvOpSMulExtended:
case SpvOpShiftRightLogical:
case SpvOpShiftRightArithmetic:
case SpvOpShiftLeftLogical:
case SpvOpLogicalEqual:
case SpvOpLogicalNotEqual:
case SpvOpLogicalOr:
case SpvOpLogicalAnd:
case SpvOpLogicalNot:
case SpvOpBitwiseOr:
case SpvOpBitwiseXor:
case SpvOpBitwiseAnd:
case SpvOpIEqual:
case SpvOpFOrdEqual:
case SpvOpFUnordEqual:
case SpvOpINotEqual:
case SpvOpFOrdNotEqual:
case SpvOpFUnordNotEqual:
case SpvOpULessThan:
case SpvOpSLessThan:
case SpvOpFOrdLessThan:
case SpvOpFUnordLessThan:
case SpvOpUGreaterThan:
case SpvOpSGreaterThan:
case SpvOpFOrdGreaterThan:
case SpvOpFUnordGreaterThan:
case SpvOpULessThanEqual:
case SpvOpSLessThanEqual:
case SpvOpFOrdLessThanEqual:
case SpvOpFUnordLessThanEqual:
case SpvOpUGreaterThanEqual:
case SpvOpSGreaterThanEqual:
case SpvOpFOrdGreaterThanEqual:
case SpvOpFUnordGreaterThanEqual:
case SpvOpDPdx:
case SpvOpDPdy:
case SpvOpFwidth:
case SpvOpDPdxFine:
case SpvOpDPdyFine:
case SpvOpFwidthFine:
case SpvOpDPdxCoarse:
case SpvOpDPdyCoarse:
case SpvOpFwidthCoarse:
case SpvOpBitFieldInsert:
case SpvOpBitFieldSExtract:
case SpvOpBitFieldUExtract:
case SpvOpBitReverse:
case SpvOpBitCount:
case SpvOpTranspose:
case SpvOpOuterProduct:
case SpvOpMatrixTimesScalar:
case SpvOpVectorTimesMatrix:
case SpvOpMatrixTimesVector:
case SpvOpMatrixTimesMatrix:
vtn_handle_alu(b, opcode, w, count);
break;
case SpvOpBitcast:
vtn_handle_bitcast(b, w, count);
break;
case SpvOpVectorExtractDynamic:
case SpvOpVectorInsertDynamic:
case SpvOpVectorShuffle:
case SpvOpCompositeConstruct:
case SpvOpCompositeExtract:
case SpvOpCompositeInsert:
case SpvOpCopyObject:
vtn_handle_composite(b, opcode, w, count);
break;
case SpvOpEmitVertex:
case SpvOpEndPrimitive:
case SpvOpEmitStreamVertex:
case SpvOpEndStreamPrimitive:
case SpvOpControlBarrier:
case SpvOpMemoryBarrier:
vtn_handle_barrier(b, opcode, w, count);
break;
case SpvOpGroupNonUniformElect:
case SpvOpGroupNonUniformAll:
case SpvOpGroupNonUniformAny:
case SpvOpGroupNonUniformAllEqual:
case SpvOpGroupNonUniformBroadcast:
case SpvOpGroupNonUniformBroadcastFirst:
case SpvOpGroupNonUniformBallot:
case SpvOpGroupNonUniformInverseBallot:
case SpvOpGroupNonUniformBallotBitExtract:
case SpvOpGroupNonUniformBallotBitCount:
case SpvOpGroupNonUniformBallotFindLSB:
case SpvOpGroupNonUniformBallotFindMSB:
case SpvOpGroupNonUniformShuffle:
case SpvOpGroupNonUniformShuffleXor:
case SpvOpGroupNonUniformShuffleUp:
case SpvOpGroupNonUniformShuffleDown:
case SpvOpGroupNonUniformIAdd:
case SpvOpGroupNonUniformFAdd:
case SpvOpGroupNonUniformIMul:
case SpvOpGroupNonUniformFMul:
case SpvOpGroupNonUniformSMin:
case SpvOpGroupNonUniformUMin:
case SpvOpGroupNonUniformFMin:
case SpvOpGroupNonUniformSMax:
case SpvOpGroupNonUniformUMax:
case SpvOpGroupNonUniformFMax:
case SpvOpGroupNonUniformBitwiseAnd:
case SpvOpGroupNonUniformBitwiseOr:
case SpvOpGroupNonUniformBitwiseXor:
case SpvOpGroupNonUniformLogicalAnd:
case SpvOpGroupNonUniformLogicalOr:
case SpvOpGroupNonUniformLogicalXor:
case SpvOpGroupNonUniformQuadBroadcast:
case SpvOpGroupNonUniformQuadSwap:
vtn_handle_subgroup(b, opcode, w, count);
break;
default:
vtn_fail_with_opcode("Unhandled opcode", opcode);
}
return true;
}
struct vtn_builder*
vtn_create_builder(const uint32_t *words, size_t word_count,
gl_shader_stage stage, const char *entry_point_name,
const struct spirv_to_nir_options *options)
{
/* Initialize the vtn_builder object */
struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
struct spirv_to_nir_options *dup_options =
ralloc(b, struct spirv_to_nir_options);
*dup_options = *options;
b->spirv = words;
b->spirv_word_count = word_count;
b->file = NULL;
b->line = -1;
b->col = -1;
exec_list_make_empty(&b->functions);
b->entry_point_stage = stage;
b->entry_point_name = entry_point_name;
b->options = dup_options;
/*
* Handle the SPIR-V header (first 5 dwords).
* Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
*/
if (word_count <= 5)
goto fail;
if (words[0] != SpvMagicNumber) {
vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
goto fail;
}
if (words[1] < 0x10000) {
vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
goto fail;
}
uint16_t generator_id = words[2] >> 16;
uint16_t generator_version = words[2];
/* The first GLSLang version bump actually 1.5 years after #179 was fixed
* but this should at least let us shut the workaround off for modern
* versions of GLSLang.
*/
b->wa_glslang_179 = (generator_id == 8 && generator_version == 1);
/* words[2] == generator magic */
unsigned value_id_bound = words[3];
if (words[4] != 0) {
vtn_err("words[4] was %u, want 0", words[4]);
goto fail;
}
b->value_id_bound = value_id_bound;
b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
return b;
fail:
ralloc_free(b);
return NULL;
}
static nir_function *
vtn_emit_kernel_entry_point_wrapper(struct vtn_builder *b,
nir_function *entry_point)
{
vtn_assert(entry_point == b->entry_point->func->impl->function);
vtn_fail_if(!entry_point->name, "entry points are required to have a name");
const char *func_name =
ralloc_asprintf(b->shader, "__wrapped_%s", entry_point->name);
/* we shouldn't have any inputs yet */
vtn_assert(!entry_point->shader->num_inputs);
vtn_assert(b->shader->info.stage == MESA_SHADER_KERNEL);
nir_function *main_entry_point = nir_function_create(b->shader, func_name);
main_entry_point->impl = nir_function_impl_create(main_entry_point);
nir_builder_init(&b->nb, main_entry_point->impl);
b->nb.cursor = nir_after_cf_list(&main_entry_point->impl->body);
b->func_param_idx = 0;
nir_call_instr *call = nir_call_instr_create(b->nb.shader, entry_point);
for (unsigned i = 0; i < entry_point->num_params; ++i) {
struct vtn_type *param_type = b->entry_point->func->type->params[i];
/* consider all pointers to function memory to be parameters passed
* by value
*/
bool is_by_val = param_type->base_type == vtn_base_type_pointer &&
param_type->storage_class == SpvStorageClassFunction;
/* input variable */
nir_variable *in_var = rzalloc(b->nb.shader, nir_variable);
in_var->data.mode = nir_var_shader_in;
in_var->data.read_only = true;
in_var->data.location = i;
if (is_by_val)
in_var->type = param_type->deref->type;
else
in_var->type = param_type->type;
nir_shader_add_variable(b->nb.shader, in_var);
b->nb.shader->num_inputs++;
/* we have to copy the entire variable into function memory */
if (is_by_val) {
nir_variable *copy_var =
nir_local_variable_create(main_entry_point->impl, in_var->type,
"copy_in");
nir_copy_var(&b->nb, copy_var, in_var);
call->params[i] =
nir_src_for_ssa(&nir_build_deref_var(&b->nb, copy_var)->dest.ssa);
} else {
call->params[i] = nir_src_for_ssa(nir_load_var(&b->nb, in_var));
}
}
nir_builder_instr_insert(&b->nb, &call->instr);
return main_entry_point;
}
nir_function *
spirv_to_nir(const uint32_t *words, size_t word_count,
struct nir_spirv_specialization *spec, unsigned num_spec,
gl_shader_stage stage, const char *entry_point_name,
const struct spirv_to_nir_options *options,
const nir_shader_compiler_options *nir_options)
{
const uint32_t *word_end = words + word_count;
struct vtn_builder *b = vtn_create_builder(words, word_count,
stage, entry_point_name,
options);
if (b == NULL)
return NULL;
/* See also _vtn_fail() */
if (setjmp(b->fail_jump)) {
ralloc_free(b);
return NULL;
}
/* Skip the SPIR-V header, handled at vtn_create_builder */
words+= 5;
b->shader = nir_shader_create(b, stage, nir_options, NULL);
/* Handle all the preamble instructions */
words = vtn_foreach_instruction(b, words, word_end,
vtn_handle_preamble_instruction);
if (b->entry_point == NULL) {
vtn_fail("Entry point not found");
ralloc_free(b);
return NULL;
}
/* Set shader info defaults */
b->shader->info.gs.invocations = 1;
b->specializations = spec;
b->num_specializations = num_spec;
/* Handle all variable, type, and constant instructions */
words = vtn_foreach_instruction(b, words, word_end,
vtn_handle_variable_or_type_instruction);
/* Parse execution modes */
vtn_foreach_execution_mode(b, b->entry_point,
vtn_handle_execution_mode, NULL);
if (b->workgroup_size_builtin) {
vtn_assert(b->workgroup_size_builtin->type->type ==
glsl_vector_type(GLSL_TYPE_UINT, 3));
nir_const_value *const_size =
b->workgroup_size_builtin->constant->values[0];
b->shader->info.cs.local_size[0] = const_size[0].u32;
b->shader->info.cs.local_size[1] = const_size[1].u32;
b->shader->info.cs.local_size[2] = const_size[2].u32;
}
/* Set types on all vtn_values */
vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
vtn_build_cfg(b, words, word_end);
assert(b->entry_point->value_type == vtn_value_type_function);
b->entry_point->func->referenced = true;
bool progress;
do {
progress = false;
foreach_list_typed(struct vtn_function, func, node, &b->functions) {
if (func->referenced && !func->emitted) {
b->const_table = _mesa_pointer_hash_table_create(b);
vtn_function_emit(b, func, vtn_handle_body_instruction);
progress = true;
}
}
} while (progress);
vtn_assert(b->entry_point->value_type == vtn_value_type_function);
nir_function *entry_point = b->entry_point->func->impl->function;
vtn_assert(entry_point);
/* post process entry_points with input params */
if (entry_point->num_params && b->shader->info.stage == MESA_SHADER_KERNEL)
entry_point = vtn_emit_kernel_entry_point_wrapper(b, entry_point);
entry_point->is_entrypoint = true;
/* When multiple shader stages exist in the same SPIR-V module, we
* generate input and output variables for every stage, in the same
* NIR program. These dead variables can be invalid NIR. For example,
* TCS outputs must be per-vertex arrays (or decorated 'patch'), while
* VS output variables wouldn't be.
*
* To ensure we have valid NIR, we eliminate any dead inputs and outputs
* right away. In order to do so, we must lower any constant initializers
* on outputs so nir_remove_dead_variables sees that they're written to.
*/
nir_lower_constant_initializers(b->shader, nir_var_shader_out);
nir_remove_dead_variables(b->shader,
nir_var_shader_in | nir_var_shader_out);
/* We sometimes generate bogus derefs that, while never used, give the
* validator a bit of heartburn. Run dead code to get rid of them.
*/
nir_opt_dce(b->shader);
/* Unparent the shader from the vtn_builder before we delete the builder */
ralloc_steal(NULL, b->shader);
ralloc_free(b);
return entry_point;
}