blob: ea3a9609c6b23cc9a3d49ef45d83f299576aeb4a [file] [log] [blame]
/*
* Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include <util/u_debug.h>
#include "disasm.h"
#include "instr-a3xx.h"
#include "regmask.h"
static enum debug_t debug;
#define printf debug_printf
static const char *levels[] = {
"",
"\t",
"\t\t",
"\t\t\t",
"\t\t\t\t",
"\t\t\t\t\t",
"\t\t\t\t\t\t",
"\t\t\t\t\t\t\t",
"\t\t\t\t\t\t\t\t",
"\t\t\t\t\t\t\t\t\t",
"x",
"x",
"x",
"x",
"x",
"x",
};
static const char *component = "xyzw";
static const char *type[] = {
[TYPE_F16] = "f16",
[TYPE_F32] = "f32",
[TYPE_U16] = "u16",
[TYPE_U32] = "u32",
[TYPE_S16] = "s16",
[TYPE_S32] = "s32",
[TYPE_U8] = "u8",
[TYPE_S8] = "s8",
};
struct disasm_ctx {
FILE *out;
int level;
unsigned gpu_id;
struct shader_stats *stats;
/* we have to process the dst register after src to avoid tripping up
* the read-before-write detection
*/
unsigned last_dst;
bool last_dst_full;
bool last_dst_valid;
/* current instruction repeat flag: */
unsigned repeat;
/* current instruction repeat indx/offset (for --expand): */
unsigned repeatidx;
/* tracking for register usage */
struct {
regmask_t used;
regmask_t used_merged;
regmask_t rbw; /* read before write */
regmask_t war; /* write after read */
unsigned max_const;
} regs;
};
static const char *float_imms[] = {
"0.0",
"0.5",
"1.0",
"2.0",
"e",
"pi",
"1/pi",
"1/log2(e)",
"log2(e)",
"1/log2(10)",
"log2(10)",
"4.0",
};
static void print_reg(struct disasm_ctx *ctx, reg_t reg, bool full,
bool is_float, bool r,
bool c, bool im, bool neg, bool abs, bool addr_rel)
{
const char type = c ? 'c' : 'r';
// XXX I prefer - and || for neg/abs, but preserving format used
// by libllvm-a3xx for easy diffing..
if (abs && neg)
fprintf(ctx->out, "(absneg)");
else if (neg)
fprintf(ctx->out, "(neg)");
else if (abs)
fprintf(ctx->out, "(abs)");
if (r)
fprintf(ctx->out, "(r)");
if (im) {
if (is_float && full && reg.iim_val < ARRAY_SIZE(float_imms)) {
fprintf(ctx->out, "(%s)", float_imms[reg.iim_val]);
} else {
fprintf(ctx->out, "%d", reg.iim_val);
}
} else if (addr_rel) {
/* I would just use %+d but trying to make it diff'able with
* libllvm-a3xx...
*/
if (reg.iim_val < 0)
fprintf(ctx->out, "%s%c<a0.x - %d>", full ? "" : "h", type, -reg.iim_val);
else if (reg.iim_val > 0)
fprintf(ctx->out, "%s%c<a0.x + %d>", full ? "" : "h", type, reg.iim_val);
else
fprintf(ctx->out, "%s%c<a0.x>", full ? "" : "h", type);
} else if ((reg.num == REG_A0) && !c) {
/* This matches libllvm output, the second (scalar) address register
* seems to be called a1.x instead of a0.y.
*/
fprintf(ctx->out, "a%d.x", reg.comp);
} else if ((reg.num == REG_P0) && !c) {
fprintf(ctx->out, "p0.%c", component[reg.comp]);
} else {
fprintf(ctx->out, "%s%c%d.%c", full ? "" : "h", type, reg.num, component[reg.comp]);
if (0 && full && !c) {
reg_t hr0 = reg;
hr0.iim_val *= 2;
reg_t hr1 = hr0;
hr1.iim_val += 1;
fprintf(ctx->out, " (hr%d.%c,hr%d.%c)", hr0.num, component[hr0.comp], hr1.num, component[hr1.comp]);
}
}
}
static void regmask_set(regmask_t *regmask, unsigned num, bool full)
{
ir3_assert(num < MAX_REG);
__regmask_set(regmask, !full, num);
}
static void regmask_clear(regmask_t *regmask, unsigned num, bool full)
{
ir3_assert(num < MAX_REG);
__regmask_clear(regmask, !full, num);
}
static unsigned regmask_get(regmask_t *regmask, unsigned num, bool full)
{
ir3_assert(num < MAX_REG);
return __regmask_get(regmask, !full, num);
}
static unsigned regidx(reg_t reg)
{
return (4 * reg.num) + reg.comp;
}
static reg_t idxreg(unsigned idx)
{
return (reg_t){
.comp = idx & 0x3,
.num = idx >> 2,
};
}
static void print_sequence(struct disasm_ctx *ctx, int first, int last)
{
if (first != MAX_REG) {
if (first == last) {
fprintf(ctx->out, " %d", first);
} else {
fprintf(ctx->out, " %d-%d", first, last);
}
}
}
static int print_regs(struct disasm_ctx *ctx, regmask_t *regmask, bool full)
{
int num, max = 0, cnt = 0;
int first, last;
first = last = MAX_REG;
for (num = 0; num < MAX_REG; num++) {
if (regmask_get(regmask, num, full)) {
if (num != (last + 1)) {
print_sequence(ctx, first, last);
first = num;
}
last = num;
if (num < (48*4))
max = num;
cnt++;
}
}
print_sequence(ctx, first, last);
fprintf(ctx->out, " (cnt=%d, max=%d)", cnt, max);
return max;
}
static void print_reg_stats(struct disasm_ctx *ctx)
{
int fullreg, halfreg;
fprintf(ctx->out, "%sRegister Stats:\n", levels[ctx->level]);
fprintf(ctx->out, "%s- used (half):", levels[ctx->level]);
halfreg = print_regs(ctx, &ctx->regs.used, false);
fprintf(ctx->out, "\n");
fprintf(ctx->out, "%s- used (full):", levels[ctx->level]);
fullreg = print_regs(ctx, &ctx->regs.used, true);
fprintf(ctx->out, "\n");
if (ctx->gpu_id >= 600) {
fprintf(ctx->out, "%s- used (merged):", levels[ctx->level]);
print_regs(ctx, &ctx->regs.used_merged, false);
fprintf(ctx->out, "\n");
}
fprintf(ctx->out, "%s- input (half):", levels[ctx->level]);
print_regs(ctx, &ctx->regs.rbw, false);
fprintf(ctx->out, "\n");
fprintf(ctx->out, "%s- input (full):", levels[ctx->level]);
print_regs(ctx, &ctx->regs.rbw, true);
fprintf(ctx->out, "\n");
fprintf(ctx->out, "%s- max const: %u\n", levels[ctx->level], ctx->regs.max_const);
fprintf(ctx->out, "\n");
fprintf(ctx->out, "%s- output (half):", levels[ctx->level]);
print_regs(ctx, &ctx->regs.war, false);
fprintf(ctx->out, " (estimated)\n");
fprintf(ctx->out, "%s- output (full):", levels[ctx->level]);
print_regs(ctx, &ctx->regs.war, true);
fprintf(ctx->out, " (estimated)\n");
/* convert to vec4, which is the granularity that registers are
* assigned to shader:
*/
fullreg = (fullreg + 3) / 4;
halfreg = ctx->regs.used.mergedregs ? 0 : (halfreg + 3) / 4;
// Note this count of instructions includes rptN, which matches
// up to how mesa prints this:
fprintf(ctx->out, "%s- shaderdb: %d instructions, %d nops, %d non-nops, "
"(%d instlen), %u last-baryf, %d half, %d full\n",
levels[ctx->level], ctx->stats->instructions, ctx->stats->nops,
ctx->stats->instructions - ctx->stats->nops, ctx->stats->instlen,
ctx->stats->last_baryf, halfreg, fullreg);
fprintf(ctx->out, "%s- shaderdb: %u cat0, %u cat1, %u cat2, %u cat3, "
"%u cat4, %u cat5, %u cat6, %u cat7\n",
levels[ctx->level],
ctx->stats->instrs_per_cat[0],
ctx->stats->instrs_per_cat[1],
ctx->stats->instrs_per_cat[2],
ctx->stats->instrs_per_cat[3],
ctx->stats->instrs_per_cat[4],
ctx->stats->instrs_per_cat[5],
ctx->stats->instrs_per_cat[6],
ctx->stats->instrs_per_cat[7]);
fprintf(ctx->out, "%s- shaderdb: %d (ss), %d (sy)\n", levels[ctx->level],
ctx->stats->ss, ctx->stats->sy);
}
static void process_reg_dst(struct disasm_ctx *ctx)
{
if (!ctx->last_dst_valid)
return;
/* ignore dummy writes (ie. r63.x): */
if (!VALIDREG(ctx->last_dst))
return;
for (unsigned i = 0; i <= ctx->repeat; i++) {
unsigned dst = ctx->last_dst + i;
regmask_set(&ctx->regs.war, dst, ctx->last_dst_full);
regmask_set(&ctx->regs.used, dst, ctx->last_dst_full);
if (ctx->gpu_id >= 600) {
if (ctx->last_dst_full) {
regmask_set(&ctx->regs.used_merged, (dst*2)+0, false);
regmask_set(&ctx->regs.used_merged, (dst*2)+1, false);
} else {
regmask_set(&ctx->regs.used_merged, dst, false);
}
}
}
ctx->last_dst_valid = false;
}
static void print_reg_dst(struct disasm_ctx *ctx, reg_t reg, bool full, bool addr_rel)
{
/* presumably the special registers a0.c and p0.c don't count.. */
if (!(addr_rel || (reg.num == REG_A0) || (reg.num == REG_P0))) {
ctx->last_dst = regidx(reg);
ctx->last_dst_full = full;
ctx->last_dst_valid = true;
}
reg = idxreg(regidx(reg) + ctx->repeatidx);
print_reg(ctx, reg, full, false, false, false, false, false, false, addr_rel);
}
/* TODO switch to using reginfo struct everywhere, since more readable
* than passing a bunch of bools to print_reg_src
*/
struct reginfo {
reg_t reg;
bool full;
bool r;
bool c;
bool f; /* src reg is interpreted as float, used for printing immediates */
bool im;
bool neg;
bool abs;
bool addr_rel;
};
static void print_src(struct disasm_ctx *ctx, struct reginfo *info)
{
reg_t reg = info->reg;
/* presumably the special registers a0.c and p0.c don't count.. */
if (!(info->addr_rel || info->c || info->im ||
(reg.num == REG_A0) || (reg.num == REG_P0))) {
int i, num = regidx(reg);
for (i = 0; i <= ctx->repeat; i++) {
unsigned src = num + i;
if (!regmask_get(&ctx->regs.used, src, info->full))
regmask_set(&ctx->regs.rbw, src, info->full);
regmask_clear(&ctx->regs.war, src, info->full);
regmask_set(&ctx->regs.used, src, info->full);
if (info->full) {
regmask_set(&ctx->regs.used_merged, (src*2)+0, false);
regmask_set(&ctx->regs.used_merged, (src*2)+1, false);
} else {
regmask_set(&ctx->regs.used_merged, src, false);
}
if (!info->r)
break;
}
} else if (info->c) {
int i, num = regidx(reg);
for (i = 0; i <= ctx->repeat; i++) {
unsigned src = num + i;
ctx->regs.max_const = MAX2(ctx->regs.max_const, src);
if (!info->r)
break;
}
unsigned max = (num + ctx->repeat + 1 + 3) / 4;
if (max > ctx->stats->constlen)
ctx->stats->constlen = max;
}
if (info->r)
reg = idxreg(regidx(info->reg) + ctx->repeatidx);
print_reg(ctx, reg, info->full, info->f, info->r, info->c, info->im,
info->neg, info->abs, info->addr_rel);
}
//static void print_dst(struct disasm_ctx *ctx, struct reginfo *info)
//{
// print_reg_dst(ctx, info->reg, info->full, info->addr_rel);
//}
static void print_instr_cat0(struct disasm_ctx *ctx, instr_t *instr)
{
static const struct {
const char *suffix;
int nsrc;
bool idx;
} brinfo[7] = {
[BRANCH_PLAIN] = { "r", 1, false },
[BRANCH_OR] = { "rao", 2, false },
[BRANCH_AND] = { "raa", 2, false },
[BRANCH_CONST] = { "rac", 0, true },
[BRANCH_ANY] = { "any", 1, false },
[BRANCH_ALL] = { "all", 1, false },
[BRANCH_X] = { "rax", 0, false },
};
instr_cat0_t *cat0 = &instr->cat0;
switch (instr_opc(instr, ctx->gpu_id)) {
case OPC_KILL:
case OPC_PREDT:
case OPC_PREDF:
fprintf(ctx->out, " %sp0.%c", cat0->inv0 ? "!" : "",
component[cat0->comp0]);
break;
case OPC_B:
fprintf(ctx->out, "%s", brinfo[cat0->brtype].suffix);
if (brinfo[cat0->brtype].idx) {
fprintf(ctx->out, ".%u", cat0->idx);
}
if (brinfo[cat0->brtype].nsrc >= 1) {
fprintf(ctx->out, " %sp0.%c,", cat0->inv0 ? "!" : "",
component[cat0->comp0]);
}
if (brinfo[cat0->brtype].nsrc >= 2) {
fprintf(ctx->out, " %sp0.%c,", cat0->inv1 ? "!" : "",
component[cat0->comp1]);
}
fprintf(ctx->out, " #%d", cat0->a3xx.immed);
break;
case OPC_JUMP:
case OPC_CALL:
case OPC_BKT:
case OPC_GETONE:
case OPC_SHPS:
fprintf(ctx->out, " #%d", cat0->a3xx.immed);
break;
}
if ((debug & PRINT_VERBOSE) && (cat0->dummy3|cat0->dummy4))
fprintf(ctx->out, "\t{0: %x,%x}", cat0->dummy3, cat0->dummy4);
}
static void print_instr_cat1(struct disasm_ctx *ctx, instr_t *instr)
{
instr_cat1_t *cat1 = &instr->cat1;
if (cat1->ul)
fprintf(ctx->out, "(ul)");
if (cat1->src_type == cat1->dst_type) {
if ((cat1->src_type == TYPE_S16) && (((reg_t)cat1->dst).num == REG_A0)) {
/* special case (nmemonic?): */
fprintf(ctx->out, "mova");
} else {
fprintf(ctx->out, "mov.%s%s", type[cat1->src_type], type[cat1->dst_type]);
}
} else {
fprintf(ctx->out, "cov.%s%s", type[cat1->src_type], type[cat1->dst_type]);
}
fprintf(ctx->out, " ");
if (cat1->even)
fprintf(ctx->out, "(even)");
if (cat1->pos_inf)
fprintf(ctx->out, "(pos_infinity)");
print_reg_dst(ctx, (reg_t)(cat1->dst), type_size(cat1->dst_type) == 32,
cat1->dst_rel);
fprintf(ctx->out, ", ");
/* ugg, have to special case this.. vs print_reg().. */
if (cat1->src_im) {
if (type_float(cat1->src_type))
fprintf(ctx->out, "(%f)", cat1->fim_val);
else if (type_uint(cat1->src_type))
fprintf(ctx->out, "0x%08x", cat1->uim_val);
else
fprintf(ctx->out, "%d", cat1->iim_val);
} else if (cat1->src_rel && !cat1->src_c) {
/* I would just use %+d but trying to make it diff'able with
* libllvm-a3xx...
*/
char type = cat1->src_rel_c ? 'c' : 'r';
const char *full = (type_size(cat1->src_type) == 32) ? "" : "h";
if (cat1->off < 0)
fprintf(ctx->out, "%s%c<a0.x - %d>", full, type, -cat1->off);
else if (cat1->off > 0)
fprintf(ctx->out, "%s%c<a0.x + %d>", full, type, cat1->off);
else
fprintf(ctx->out, "%s%c<a0.x>", full, type);
} else {
struct reginfo src = {
.reg = (reg_t)cat1->src,
.full = type_size(cat1->src_type) == 32,
.r = cat1->src_r,
.c = cat1->src_c,
.im = cat1->src_im,
};
print_src(ctx, &src);
}
if ((debug & PRINT_VERBOSE) && (cat1->must_be_0))
fprintf(ctx->out, "\t{1: %x}", cat1->must_be_0);
}
static void print_instr_cat2(struct disasm_ctx *ctx, instr_t *instr)
{
instr_cat2_t *cat2 = &instr->cat2;
int opc = _OPC(2, cat2->opc);
static const char *cond[] = {
"lt",
"le",
"gt",
"ge",
"eq",
"ne",
"?6?",
};
switch (opc) {
case OPC_CMPS_F:
case OPC_CMPS_U:
case OPC_CMPS_S:
case OPC_CMPV_F:
case OPC_CMPV_U:
case OPC_CMPV_S:
fprintf(ctx->out, ".%s", cond[cat2->cond]);
break;
}
fprintf(ctx->out, " ");
if (cat2->ei)
fprintf(ctx->out, "(ei)");
print_reg_dst(ctx, (reg_t)(cat2->dst), cat2->full ^ cat2->dst_half, false);
fprintf(ctx->out, ", ");
struct reginfo src1 = {
.full = cat2->full,
.r = cat2->repeat ? cat2->src1_r : 0,
.f = is_cat2_float(opc),
.im = cat2->src1_im,
.abs = cat2->src1_abs,
.neg = cat2->src1_neg,
};
if (cat2->c1.src1_c) {
src1.reg = (reg_t)(cat2->c1.src1);
src1.c = true;
} else if (cat2->rel1.src1_rel) {
src1.reg = (reg_t)(cat2->rel1.src1);
src1.c = cat2->rel1.src1_c;
src1.addr_rel = true;
} else {
src1.reg = (reg_t)(cat2->src1);
}
print_src(ctx, &src1);
struct reginfo src2 = {
.r = cat2->repeat ? cat2->src2_r : 0,
.full = cat2->full,
.f = is_cat2_float(opc),
.abs = cat2->src2_abs,
.neg = cat2->src2_neg,
.im = cat2->src2_im,
};
switch (opc) {
case OPC_ABSNEG_F:
case OPC_ABSNEG_S:
case OPC_CLZ_B:
case OPC_CLZ_S:
case OPC_SIGN_F:
case OPC_FLOOR_F:
case OPC_CEIL_F:
case OPC_RNDNE_F:
case OPC_RNDAZ_F:
case OPC_TRUNC_F:
case OPC_NOT_B:
case OPC_BFREV_B:
case OPC_SETRM:
case OPC_CBITS_B:
/* these only have one src reg */
break;
default:
fprintf(ctx->out, ", ");
if (cat2->c2.src2_c) {
src2.reg = (reg_t)(cat2->c2.src2);
src2.c = true;
} else if (cat2->rel2.src2_rel) {
src2.reg = (reg_t)(cat2->rel2.src2);
src2.c = cat2->rel2.src2_c;
src2.addr_rel = true;
} else {
src2.reg = (reg_t)(cat2->src2);
}
print_src(ctx, &src2);
break;
}
}
static void print_instr_cat3(struct disasm_ctx *ctx, instr_t *instr)
{
instr_cat3_t *cat3 = &instr->cat3;
bool full = instr_cat3_full(cat3);
fprintf(ctx->out, " ");
print_reg_dst(ctx, (reg_t)(cat3->dst), full ^ cat3->dst_half, false);
fprintf(ctx->out, ", ");
struct reginfo src1 = {
.r = cat3->repeat ? cat3->src1_r : 0,
.full = full,
.neg = cat3->src1_neg,
};
if (cat3->c1.src1_c) {
src1.reg = (reg_t)(cat3->c1.src1);
src1.c = true;
} else if (cat3->rel1.src1_rel) {
src1.reg = (reg_t)(cat3->rel1.src1);
src1.c = cat3->rel1.src1_c;
src1.addr_rel = true;
} else {
src1.reg = (reg_t)(cat3->src1);
}
print_src(ctx, &src1);
fprintf(ctx->out, ", ");
struct reginfo src2 = {
.reg = (reg_t)cat3->src2,
.full = full,
.r = cat3->repeat ? cat3->src2_r : 0,
.c = cat3->src2_c,
.neg = cat3->src2_neg,
};
print_src(ctx, &src2);
fprintf(ctx->out, ", ");
struct reginfo src3 = {
.r = cat3->src3_r,
.full = full,
.neg = cat3->src3_neg,
};
if (cat3->c2.src3_c) {
src3.reg = (reg_t)(cat3->c2.src3);
src3.c = true;
} else if (cat3->rel2.src3_rel) {
src3.reg = (reg_t)(cat3->rel2.src3);
src3.c = cat3->rel2.src3_c;
src3.addr_rel = true;
} else {
src3.reg = (reg_t)(cat3->src3);
}
print_src(ctx, &src3);
}
static void print_instr_cat4(struct disasm_ctx *ctx, instr_t *instr)
{
instr_cat4_t *cat4 = &instr->cat4;
fprintf(ctx->out, " ");
print_reg_dst(ctx, (reg_t)(cat4->dst), cat4->full ^ cat4->dst_half, false);
fprintf(ctx->out, ", ");
struct reginfo src = {
.r = cat4->src_r,
.im = cat4->src_im,
.full = cat4->full,
.neg = cat4->src_neg,
.abs = cat4->src_abs,
};
if (cat4->c.src_c) {
src.reg = (reg_t)(cat4->c.src);
src.c = true;
} else if (cat4->rel.src_rel) {
src.reg = (reg_t)(cat4->rel.src);
src.c = cat4->rel.src_c;
src.addr_rel = true;
} else {
src.reg = (reg_t)(cat4->src);
}
print_src(ctx, &src);
if ((debug & PRINT_VERBOSE) && (cat4->dummy1|cat4->dummy2))
fprintf(ctx->out, "\t{4: %x,%x}", cat4->dummy1, cat4->dummy2);
}
static void print_instr_cat5(struct disasm_ctx *ctx, instr_t *instr)
{
static const struct {
bool src1, src2, samp, tex;
} info[0x1f] = {
[opc_op(OPC_ISAM)] = { true, false, true, true, },
[opc_op(OPC_ISAML)] = { true, true, true, true, },
[opc_op(OPC_ISAMM)] = { true, false, true, true, },
[opc_op(OPC_SAM)] = { true, false, true, true, },
[opc_op(OPC_SAMB)] = { true, true, true, true, },
[opc_op(OPC_SAML)] = { true, true, true, true, },
[opc_op(OPC_SAMGQ)] = { true, false, true, true, },
[opc_op(OPC_GETLOD)] = { true, false, true, true, },
[opc_op(OPC_CONV)] = { true, true, true, true, },
[opc_op(OPC_CONVM)] = { true, true, true, true, },
[opc_op(OPC_GETSIZE)] = { true, false, false, true, },
[opc_op(OPC_GETBUF)] = { false, false, false, true, },
[opc_op(OPC_GETPOS)] = { true, false, false, true, },
[opc_op(OPC_GETINFO)] = { false, false, false, true, },
[opc_op(OPC_DSX)] = { true, false, false, false, },
[opc_op(OPC_DSY)] = { true, false, false, false, },
[opc_op(OPC_GATHER4R)] = { true, false, true, true, },
[opc_op(OPC_GATHER4G)] = { true, false, true, true, },
[opc_op(OPC_GATHER4B)] = { true, false, true, true, },
[opc_op(OPC_GATHER4A)] = { true, false, true, true, },
[opc_op(OPC_SAMGP0)] = { true, false, true, true, },
[opc_op(OPC_SAMGP1)] = { true, false, true, true, },
[opc_op(OPC_SAMGP2)] = { true, false, true, true, },
[opc_op(OPC_SAMGP3)] = { true, false, true, true, },
[opc_op(OPC_DSXPP_1)] = { true, false, false, false, },
[opc_op(OPC_DSYPP_1)] = { true, false, false, false, },
[opc_op(OPC_RGETPOS)] = { true, false, false, false, },
[opc_op(OPC_RGETINFO)] = { false, false, false, false, },
};
static const struct {
bool indirect;
bool bindless;
bool use_a1;
bool uniform;
} desc_features[8] = {
[CAT5_NONUNIFORM] = { .indirect = true, },
[CAT5_UNIFORM] = { .indirect = true, .uniform = true, },
[CAT5_BINDLESS_IMM] = { .bindless = true, },
[CAT5_BINDLESS_UNIFORM] = {
.bindless = true,
.indirect = true,
.uniform = true,
},
[CAT5_BINDLESS_NONUNIFORM] = {
.bindless = true,
.indirect = true,
},
[CAT5_BINDLESS_A1_IMM] = {
.bindless = true,
.use_a1 = true,
},
[CAT5_BINDLESS_A1_UNIFORM] = {
.bindless = true,
.indirect = true,
.uniform = true,
.use_a1 = true,
},
[CAT5_BINDLESS_A1_NONUNIFORM] = {
.bindless = true,
.indirect = true,
.use_a1 = true,
},
};
instr_cat5_t *cat5 = &instr->cat5;
int i;
bool desc_indirect =
cat5->is_s2en_bindless &&
desc_features[cat5->s2en_bindless.desc_mode].indirect;
bool bindless =
cat5->is_s2en_bindless &&
desc_features[cat5->s2en_bindless.desc_mode].bindless;
bool use_a1 =
cat5->is_s2en_bindless &&
desc_features[cat5->s2en_bindless.desc_mode].use_a1;
bool uniform =
cat5->is_s2en_bindless &&
desc_features[cat5->s2en_bindless.desc_mode].uniform;
if (cat5->is_3d) fprintf(ctx->out, ".3d");
if (cat5->is_a) fprintf(ctx->out, ".a");
if (cat5->is_o) fprintf(ctx->out, ".o");
if (cat5->is_p) fprintf(ctx->out, ".p");
if (cat5->is_s) fprintf(ctx->out, ".s");
if (desc_indirect) fprintf(ctx->out, ".s2en");
if (uniform) fprintf(ctx->out, ".uniform");
if (bindless) {
unsigned base = (cat5->s2en_bindless.base_hi << 1) | cat5->base_lo;
fprintf(ctx->out, ".base%d", base);
}
fprintf(ctx->out, " ");
switch (_OPC(5, cat5->opc)) {
case OPC_DSXPP_1:
case OPC_DSYPP_1:
break;
default:
fprintf(ctx->out, "(%s)", type[cat5->type]);
break;
}
fprintf(ctx->out, "(");
for (i = 0; i < 4; i++)
if (cat5->wrmask & (1 << i))
fprintf(ctx->out, "%c", "xyzw"[i]);
fprintf(ctx->out, ")");
print_reg_dst(ctx, (reg_t)(cat5->dst), type_size(cat5->type) == 32, false);
if (info[cat5->opc].src1) {
fprintf(ctx->out, ", ");
struct reginfo src = { .reg = (reg_t)(cat5->src1), .full = cat5->full };
print_src(ctx, &src);
}
if (cat5->is_o || info[cat5->opc].src2) {
fprintf(ctx->out, ", ");
struct reginfo src = { .reg = (reg_t)(cat5->src2), .full = cat5->full };
print_src(ctx, &src);
}
if (cat5->is_s2en_bindless) {
if (!desc_indirect) {
if (info[cat5->opc].samp) {
if (use_a1)
fprintf(ctx->out, ", s#%d", cat5->s2en_bindless.src3);
else
fprintf(ctx->out, ", s#%d", cat5->s2en_bindless.src3 & 0xf);
}
if (info[cat5->opc].tex && !use_a1) {
fprintf(ctx->out, ", t#%d", cat5->s2en_bindless.src3 >> 4);
}
}
} else {
if (info[cat5->opc].samp)
fprintf(ctx->out, ", s#%d", cat5->norm.samp);
if (info[cat5->opc].tex)
fprintf(ctx->out, ", t#%d", cat5->norm.tex);
}
if (desc_indirect) {
fprintf(ctx->out, ", ");
struct reginfo src = { .reg = (reg_t)(cat5->s2en_bindless.src3), .full = bindless };
print_src(ctx, &src);
}
if (use_a1)
fprintf(ctx->out, ", a1.x");
if (debug & PRINT_VERBOSE) {
if (cat5->is_s2en_bindless) {
if ((debug & PRINT_VERBOSE) && cat5->s2en_bindless.dummy1)
fprintf(ctx->out, "\t{5: %x}", cat5->s2en_bindless.dummy1);
} else {
if ((debug & PRINT_VERBOSE) && cat5->norm.dummy1)
fprintf(ctx->out, "\t{5: %x}", cat5->norm.dummy1);
}
}
}
static void print_instr_cat6_a3xx(struct disasm_ctx *ctx, instr_t *instr)
{
instr_cat6_t *cat6 = &instr->cat6;
char sd = 0, ss = 0; /* dst/src address space */
bool nodst = false;
struct reginfo dst, src1, src2, ssbo;
int src1off = 0;
memset(&dst, 0, sizeof(dst));
memset(&src1, 0, sizeof(src1));
memset(&src2, 0, sizeof(src2));
memset(&ssbo, 0, sizeof(ssbo));
switch (_OPC(6, cat6->opc)) {
case OPC_RESINFO:
case OPC_RESFMT:
dst.full = type_size(cat6->type) == 32;
src1.full = type_size(cat6->type) == 32;
src2.full = type_size(cat6->type) == 32;
break;
case OPC_L2G:
case OPC_G2L:
dst.full = true;
src1.full = true;
src2.full = true;
break;
case OPC_STG:
case OPC_STL:
case OPC_STP:
case OPC_STLW:
case OPC_STIB:
dst.full = type_size(cat6->type) == 32;
src1.full = type_size(cat6->type) == 32;
src2.full = type_size(cat6->type) == 32;
break;
default:
dst.full = type_size(cat6->type) == 32;
src1.full = true;
src2.full = true;
break;
}
switch (_OPC(6, cat6->opc)) {
case OPC_PREFETCH:
break;
case OPC_RESINFO:
fprintf(ctx->out, ".%dd", cat6->ldgb.d + 1);
break;
case OPC_LDGB:
fprintf(ctx->out, ".%s", cat6->ldgb.typed ? "typed" : "untyped");
fprintf(ctx->out, ".%dd", cat6->ldgb.d + 1);
fprintf(ctx->out, ".%s", type[cat6->type]);
fprintf(ctx->out, ".%d", cat6->ldgb.type_size + 1);
break;
case OPC_STGB:
case OPC_STIB:
fprintf(ctx->out, ".%s", cat6->stgb.typed ? "typed" : "untyped");
fprintf(ctx->out, ".%dd", cat6->stgb.d + 1);
fprintf(ctx->out, ".%s", type[cat6->type]);
fprintf(ctx->out, ".%d", cat6->stgb.type_size + 1);
break;
case OPC_ATOMIC_ADD:
case OPC_ATOMIC_SUB:
case OPC_ATOMIC_XCHG:
case OPC_ATOMIC_INC:
case OPC_ATOMIC_DEC:
case OPC_ATOMIC_CMPXCHG:
case OPC_ATOMIC_MIN:
case OPC_ATOMIC_MAX:
case OPC_ATOMIC_AND:
case OPC_ATOMIC_OR:
case OPC_ATOMIC_XOR:
ss = cat6->g ? 'g' : 'l';
fprintf(ctx->out, ".%s", cat6->ldgb.typed ? "typed" : "untyped");
fprintf(ctx->out, ".%dd", cat6->ldgb.d + 1);
fprintf(ctx->out, ".%s", type[cat6->type]);
fprintf(ctx->out, ".%d", cat6->ldgb.type_size + 1);
fprintf(ctx->out, ".%c", ss);
break;
default:
dst.im = cat6->g && !cat6->dst_off;
fprintf(ctx->out, ".%s", type[cat6->type]);
break;
}
fprintf(ctx->out, " ");
switch (_OPC(6, cat6->opc)) {
case OPC_STG:
sd = 'g';
break;
case OPC_STP:
sd = 'p';
break;
case OPC_STL:
case OPC_STLW:
sd = 'l';
break;
case OPC_LDG:
case OPC_LDC:
ss = 'g';
break;
case OPC_LDP:
ss = 'p';
break;
case OPC_LDL:
case OPC_LDLW:
case OPC_LDLV:
ss = 'l';
break;
case OPC_L2G:
ss = 'l';
sd = 'g';
break;
case OPC_G2L:
ss = 'g';
sd = 'l';
break;
case OPC_PREFETCH:
ss = 'g';
nodst = true;
break;
}
if ((_OPC(6, cat6->opc) == OPC_STGB) || (_OPC(6, cat6->opc) == OPC_STIB)) {
struct reginfo src3;
memset(&src3, 0, sizeof(src3));
src1.reg = (reg_t)(cat6->stgb.src1);
src2.reg = (reg_t)(cat6->stgb.src2);
src2.im = cat6->stgb.src2_im;
src3.reg = (reg_t)(cat6->stgb.src3);
src3.im = cat6->stgb.src3_im;
src3.full = true;
fprintf(ctx->out, "g[%u], ", cat6->stgb.dst_ssbo);
print_src(ctx, &src1);
fprintf(ctx->out, ", ");
print_src(ctx, &src2);
fprintf(ctx->out, ", ");
print_src(ctx, &src3);
if (debug & PRINT_VERBOSE)
fprintf(ctx->out, " (pad0=%x, pad3=%x)", cat6->stgb.pad0, cat6->stgb.pad3);
return;
}
if (is_atomic(_OPC(6, cat6->opc))) {
src1.reg = (reg_t)(cat6->ldgb.src1);
src1.im = cat6->ldgb.src1_im;
src2.reg = (reg_t)(cat6->ldgb.src2);
src2.im = cat6->ldgb.src2_im;
dst.reg = (reg_t)(cat6->ldgb.dst);
print_src(ctx, &dst);
fprintf(ctx->out, ", ");
if (ss == 'g') {
struct reginfo src3;
memset(&src3, 0, sizeof(src3));
src3.reg = (reg_t)(cat6->ldgb.src3);
src3.full = true;
/* For images, the ".typed" variant is used and src2 is
* the ivecN coordinates, ie ivec2 for 2d.
*
* For SSBOs, the ".untyped" variant is used and src2 is
* a simple dword offset.. src3 appears to be
* uvec2(offset * 4, 0). Not sure the point of that.
*/
fprintf(ctx->out, "g[%u], ", cat6->ldgb.src_ssbo);
print_src(ctx, &src1); /* value */
fprintf(ctx->out, ", ");
print_src(ctx, &src2); /* offset/coords */
fprintf(ctx->out, ", ");
print_src(ctx, &src3); /* 64b byte offset.. */
if (debug & PRINT_VERBOSE) {
fprintf(ctx->out, " (pad0=%x, mustbe0=%x)", cat6->ldgb.pad0,
cat6->ldgb.mustbe0);
}
} else { /* ss == 'l' */
fprintf(ctx->out, "l[");
print_src(ctx, &src1); /* simple byte offset */
fprintf(ctx->out, "], ");
print_src(ctx, &src2); /* value */
if (debug & PRINT_VERBOSE) {
fprintf(ctx->out, " (src3=%x, pad0=%x, src_ssbo_im=%x, mustbe0=%x)",
cat6->ldgb.src3, cat6->ldgb.pad0,
cat6->ldgb.src_ssbo_im, cat6->ldgb.mustbe0);
}
}
return;
} else if (_OPC(6, cat6->opc) == OPC_RESINFO) {
dst.reg = (reg_t)(cat6->ldgb.dst);
ssbo.reg = (reg_t)(cat6->ldgb.src_ssbo);
ssbo.im = cat6->ldgb.src_ssbo_im;
print_src(ctx, &dst);
fprintf(ctx->out, ", ");
fprintf(ctx->out, "g[");
print_src(ctx, &ssbo);
fprintf(ctx->out, "]");
return;
} else if (_OPC(6, cat6->opc) == OPC_LDGB) {
src1.reg = (reg_t)(cat6->ldgb.src1);
src1.im = cat6->ldgb.src1_im;
src2.reg = (reg_t)(cat6->ldgb.src2);
src2.im = cat6->ldgb.src2_im;
ssbo.reg = (reg_t)(cat6->ldgb.src_ssbo);
ssbo.im = cat6->ldgb.src_ssbo_im;
dst.reg = (reg_t)(cat6->ldgb.dst);
print_src(ctx, &dst);
fprintf(ctx->out, ", ");
fprintf(ctx->out, "g[");
print_src(ctx, &ssbo);
fprintf(ctx->out, "], ");
print_src(ctx, &src1);
fprintf(ctx->out, ", ");
print_src(ctx, &src2);
if (debug & PRINT_VERBOSE)
fprintf(ctx->out, " (pad0=%x, ssbo_im=%x, mustbe0=%x)", cat6->ldgb.pad0, cat6->ldgb.src_ssbo_im, cat6->ldgb.mustbe0);
return;
} else if (_OPC(6, cat6->opc) == OPC_LDG && cat6->a.src1_im && cat6->a.src2_im) {
struct reginfo src3;
memset(&src3, 0, sizeof(src3));
src1.reg = (reg_t)(cat6->a.src1);
src2.reg = (reg_t)(cat6->a.src2);
src2.im = cat6->a.src2_im;
src3.reg = (reg_t)(cat6->a.off);
src3.full = true;
dst.reg = (reg_t)(cat6->d.dst);
print_src(ctx, &dst);
fprintf(ctx->out, ", g[");
print_src(ctx, &src1);
fprintf(ctx->out, "+");
print_src(ctx, &src3);
fprintf(ctx->out, "], ");
print_src(ctx, &src2);
return;
}
if (cat6->src_off) {
src1.reg = (reg_t)(cat6->a.src1);
src1.im = cat6->a.src1_im;
src2.reg = (reg_t)(cat6->a.src2);
src2.im = cat6->a.src2_im;
src1off = cat6->a.off;
} else {
src1.reg = (reg_t)(cat6->b.src1);
src1.im = cat6->b.src1_im;
src2.reg = (reg_t)(cat6->b.src2);
src2.im = cat6->b.src2_im;
}
if (!nodst) {
if (sd)
fprintf(ctx->out, "%c[", sd);
/* note: dst might actually be a src (ie. address to store to) */
if (cat6->dst_off) {
dst.reg = (reg_t)(cat6->c.dst);
print_src(ctx, &dst);
if (cat6->g) {
struct reginfo dstoff_reg = {
.reg = (reg_t) cat6->c.off,
.full = true
};
fprintf(ctx->out, "+");
print_src(ctx, &dstoff_reg);
} else if (cat6->c.off || cat6->c.off_high) {
fprintf(ctx->out, "%+d", ((uint32_t)cat6->c.off_high << 8) | cat6->c.off);
}
} else {
dst.reg = (reg_t)(cat6->d.dst);
print_src(ctx, &dst);
}
if (sd)
fprintf(ctx->out, "]");
fprintf(ctx->out, ", ");
}
if (ss)
fprintf(ctx->out, "%c[", ss);
/* can have a larger than normal immed, so hack: */
if (src1.im) {
fprintf(ctx->out, "%u", src1.reg.dummy13);
} else {
print_src(ctx, &src1);
}
if (cat6->src_off && cat6->g)
print_src(ctx, &src2);
else if (src1off)
fprintf(ctx->out, "%+d", src1off);
if (ss)
fprintf(ctx->out, "]");
switch (_OPC(6, cat6->opc)) {
case OPC_RESINFO:
case OPC_RESFMT:
break;
default:
fprintf(ctx->out, ", ");
print_src(ctx, &src2);
break;
}
}
static void print_instr_cat6_a6xx(struct disasm_ctx *ctx, instr_t *instr)
{
instr_cat6_a6xx_t *cat6 = &instr->cat6_a6xx;
struct reginfo src1, src2, ssbo;
uint32_t opc = _OPC(6, cat6->opc);
bool uses_type = opc != OPC_LDC;
static const struct {
bool indirect;
bool bindless;
const char *name;
} desc_features[8] = {
[CAT6_IMM] = {
.name = "imm"
},
[CAT6_UNIFORM] = {
.indirect = true,
.name = "uniform"
},
[CAT6_NONUNIFORM] = {
.indirect = true,
.name = "nonuniform"
},
[CAT6_BINDLESS_IMM] = {
.bindless = true,
.name = "imm"
},
[CAT6_BINDLESS_UNIFORM] = {
.bindless = true,
.indirect = true,
.name = "uniform"
},
[CAT6_BINDLESS_NONUNIFORM] = {
.bindless = true,
.indirect = true,
.name = "nonuniform"
},
};
bool indirect_ssbo = desc_features[cat6->desc_mode].indirect;
bool bindless = desc_features[cat6->desc_mode].bindless;
bool type_full = cat6->type != TYPE_U16;
memset(&src1, 0, sizeof(src1));
memset(&src2, 0, sizeof(src2));
memset(&ssbo, 0, sizeof(ssbo));
if (uses_type) {
fprintf(ctx->out, ".%s", cat6->typed ? "typed" : "untyped");
fprintf(ctx->out, ".%dd", cat6->d + 1);
fprintf(ctx->out, ".%s", type[cat6->type]);
} else {
fprintf(ctx->out, ".offset%d", cat6->d);
}
fprintf(ctx->out, ".%u", cat6->type_size + 1);
fprintf(ctx->out, ".%s", desc_features[cat6->desc_mode].name);
if (bindless)
fprintf(ctx->out, ".base%d", cat6->base);
fprintf(ctx->out, " ");
src2.reg = (reg_t)(cat6->src2);
src2.full = type_full;
print_src(ctx, &src2);
fprintf(ctx->out, ", ");
if (opc != OPC_RESINFO) {
src1.reg = (reg_t)(cat6->src1);
src1.full = true; // XXX
print_src(ctx, &src1);
fprintf(ctx->out, ", ");
}
ssbo.reg = (reg_t)(cat6->ssbo);
ssbo.im = !indirect_ssbo;
ssbo.full = true;
print_src(ctx, &ssbo);
if (debug & PRINT_VERBOSE) {
fprintf(ctx->out, " (pad1=%x, pad2=%x, pad3=%x, pad4=%x, pad5=%x)",
cat6->pad1, cat6->pad2, cat6->pad3, cat6->pad4, cat6->pad5);
}
}
static void print_instr_cat6(struct disasm_ctx *ctx, instr_t *instr)
{
if (!is_cat6_legacy(instr, ctx->gpu_id)) {
print_instr_cat6_a6xx(ctx, instr);
if (debug & PRINT_VERBOSE)
fprintf(ctx->out, " NEW");
} else {
print_instr_cat6_a3xx(ctx, instr);
if (debug & PRINT_VERBOSE)
fprintf(ctx->out, " LEGACY");
}
}
static void print_instr_cat7(struct disasm_ctx *ctx, instr_t *instr)
{
instr_cat7_t *cat7 = &instr->cat7;
if (cat7->g)
fprintf(ctx->out, ".g");
if (cat7->l)
fprintf(ctx->out, ".l");
if (_OPC(7, cat7->opc) == OPC_FENCE) {
if (cat7->r)
fprintf(ctx->out, ".r");
if (cat7->w)
fprintf(ctx->out, ".w");
}
}
/* size of largest OPC field of all the instruction categories: */
#define NOPC_BITS 6
static const struct opc_info {
uint16_t cat;
uint16_t opc;
const char *name;
void (*print)(struct disasm_ctx *ctx, instr_t *instr);
} opcs[1 << (3+NOPC_BITS)] = {
#define OPC(cat, opc, name) [(opc)] = { (cat), (opc), #name, print_instr_cat##cat }
/* category 0: */
OPC(0, OPC_NOP, nop),
OPC(0, OPC_B, b),
OPC(0, OPC_JUMP, jump),
OPC(0, OPC_CALL, call),
OPC(0, OPC_RET, ret),
OPC(0, OPC_KILL, kill),
OPC(0, OPC_END, end),
OPC(0, OPC_EMIT, emit),
OPC(0, OPC_CUT, cut),
OPC(0, OPC_CHMASK, chmask),
OPC(0, OPC_CHSH, chsh),
OPC(0, OPC_FLOW_REV, flow_rev),
OPC(0, OPC_PREDT, predt),
OPC(0, OPC_PREDF, predf),
OPC(0, OPC_PREDE, prede),
OPC(0, OPC_BKT, bkt),
OPC(0, OPC_STKS, stks),
OPC(0, OPC_STKR, stkr),
OPC(0, OPC_XSET, xset),
OPC(0, OPC_XCLR, xclr),
OPC(0, OPC_GETONE, getone),
OPC(0, OPC_DBG, dbg),
OPC(0, OPC_SHPS, shps),
OPC(0, OPC_SHPE, shpe),
/* category 1: */
OPC(1, OPC_MOV, ),
/* category 2: */
OPC(2, OPC_ADD_F, add.f),
OPC(2, OPC_MIN_F, min.f),
OPC(2, OPC_MAX_F, max.f),
OPC(2, OPC_MUL_F, mul.f),
OPC(2, OPC_SIGN_F, sign.f),
OPC(2, OPC_CMPS_F, cmps.f),
OPC(2, OPC_ABSNEG_F, absneg.f),
OPC(2, OPC_CMPV_F, cmpv.f),
OPC(2, OPC_FLOOR_F, floor.f),
OPC(2, OPC_CEIL_F, ceil.f),
OPC(2, OPC_RNDNE_F, rndne.f),
OPC(2, OPC_RNDAZ_F, rndaz.f),
OPC(2, OPC_TRUNC_F, trunc.f),
OPC(2, OPC_ADD_U, add.u),
OPC(2, OPC_ADD_S, add.s),
OPC(2, OPC_SUB_U, sub.u),
OPC(2, OPC_SUB_S, sub.s),
OPC(2, OPC_CMPS_U, cmps.u),
OPC(2, OPC_CMPS_S, cmps.s),
OPC(2, OPC_MIN_U, min.u),
OPC(2, OPC_MIN_S, min.s),
OPC(2, OPC_MAX_U, max.u),
OPC(2, OPC_MAX_S, max.s),
OPC(2, OPC_ABSNEG_S, absneg.s),
OPC(2, OPC_AND_B, and.b),
OPC(2, OPC_OR_B, or.b),
OPC(2, OPC_NOT_B, not.b),
OPC(2, OPC_XOR_B, xor.b),
OPC(2, OPC_CMPV_U, cmpv.u),
OPC(2, OPC_CMPV_S, cmpv.s),
OPC(2, OPC_MUL_U24, mul.u24),
OPC(2, OPC_MUL_S24, mul.s24),
OPC(2, OPC_MULL_U, mull.u),
OPC(2, OPC_BFREV_B, bfrev.b),
OPC(2, OPC_CLZ_S, clz.s),
OPC(2, OPC_CLZ_B, clz.b),
OPC(2, OPC_SHL_B, shl.b),
OPC(2, OPC_SHR_B, shr.b),
OPC(2, OPC_ASHR_B, ashr.b),
OPC(2, OPC_BARY_F, bary.f),
OPC(2, OPC_MGEN_B, mgen.b),
OPC(2, OPC_GETBIT_B, getbit.b),
OPC(2, OPC_SETRM, setrm),
OPC(2, OPC_CBITS_B, cbits.b),
OPC(2, OPC_SHB, shb),
OPC(2, OPC_MSAD, msad),
/* category 3: */
OPC(3, OPC_MAD_U16, mad.u16),
OPC(3, OPC_MADSH_U16, madsh.u16),
OPC(3, OPC_MAD_S16, mad.s16),
OPC(3, OPC_MADSH_M16, madsh.m16),
OPC(3, OPC_MAD_U24, mad.u24),
OPC(3, OPC_MAD_S24, mad.s24),
OPC(3, OPC_MAD_F16, mad.f16),
OPC(3, OPC_MAD_F32, mad.f32),
OPC(3, OPC_SEL_B16, sel.b16),
OPC(3, OPC_SEL_B32, sel.b32),
OPC(3, OPC_SEL_S16, sel.s16),
OPC(3, OPC_SEL_S32, sel.s32),
OPC(3, OPC_SEL_F16, sel.f16),
OPC(3, OPC_SEL_F32, sel.f32),
OPC(3, OPC_SAD_S16, sad.s16),
OPC(3, OPC_SAD_S32, sad.s32),
/* category 4: */
OPC(4, OPC_RCP, rcp),
OPC(4, OPC_RSQ, rsq),
OPC(4, OPC_LOG2, log2),
OPC(4, OPC_EXP2, exp2),
OPC(4, OPC_SIN, sin),
OPC(4, OPC_COS, cos),
OPC(4, OPC_SQRT, sqrt),
OPC(4, OPC_HRSQ, hrsq),
OPC(4, OPC_HLOG2, hlog2),
OPC(4, OPC_HEXP2, hexp2),
/* category 5: */
OPC(5, OPC_ISAM, isam),
OPC(5, OPC_ISAML, isaml),
OPC(5, OPC_ISAMM, isamm),
OPC(5, OPC_SAM, sam),
OPC(5, OPC_SAMB, samb),
OPC(5, OPC_SAML, saml),
OPC(5, OPC_SAMGQ, samgq),
OPC(5, OPC_GETLOD, getlod),
OPC(5, OPC_CONV, conv),
OPC(5, OPC_CONVM, convm),
OPC(5, OPC_GETSIZE, getsize),
OPC(5, OPC_GETBUF, getbuf),
OPC(5, OPC_GETPOS, getpos),
OPC(5, OPC_GETINFO, getinfo),
OPC(5, OPC_DSX, dsx),
OPC(5, OPC_DSY, dsy),
OPC(5, OPC_GATHER4R, gather4r),
OPC(5, OPC_GATHER4G, gather4g),
OPC(5, OPC_GATHER4B, gather4b),
OPC(5, OPC_GATHER4A, gather4a),
OPC(5, OPC_SAMGP0, samgp0),
OPC(5, OPC_SAMGP1, samgp1),
OPC(5, OPC_SAMGP2, samgp2),
OPC(5, OPC_SAMGP3, samgp3),
OPC(5, OPC_DSXPP_1, dsxpp.1),
OPC(5, OPC_DSYPP_1, dsypp.1),
OPC(5, OPC_RGETPOS, rgetpos),
OPC(5, OPC_RGETINFO, rgetinfo),
/* macros are needed here for ir3_print */
OPC(5, OPC_DSXPP_MACRO, dsxpp.macro),
OPC(5, OPC_DSYPP_MACRO, dsypp.macro),
/* category 6: */
OPC(6, OPC_LDG, ldg),
OPC(6, OPC_LDL, ldl),
OPC(6, OPC_LDP, ldp),
OPC(6, OPC_STG, stg),
OPC(6, OPC_STL, stl),
OPC(6, OPC_STP, stp),
OPC(6, OPC_LDIB, ldib),
OPC(6, OPC_G2L, g2l),
OPC(6, OPC_L2G, l2g),
OPC(6, OPC_PREFETCH, prefetch),
OPC(6, OPC_LDLW, ldlw),
OPC(6, OPC_STLW, stlw),
OPC(6, OPC_RESFMT, resfmt),
OPC(6, OPC_RESINFO, resinfo),
OPC(6, OPC_ATOMIC_ADD, atomic.add),
OPC(6, OPC_ATOMIC_SUB, atomic.sub),
OPC(6, OPC_ATOMIC_XCHG, atomic.xchg),
OPC(6, OPC_ATOMIC_INC, atomic.inc),
OPC(6, OPC_ATOMIC_DEC, atomic.dec),
OPC(6, OPC_ATOMIC_CMPXCHG, atomic.cmpxchg),
OPC(6, OPC_ATOMIC_MIN, atomic.min),
OPC(6, OPC_ATOMIC_MAX, atomic.max),
OPC(6, OPC_ATOMIC_AND, atomic.and),
OPC(6, OPC_ATOMIC_OR, atomic.or),
OPC(6, OPC_ATOMIC_XOR, atomic.xor),
OPC(6, OPC_LDGB, ldgb),
OPC(6, OPC_STGB, stgb),
OPC(6, OPC_STIB, stib),
OPC(6, OPC_LDC, ldc),
OPC(6, OPC_LDLV, ldlv),
OPC(7, OPC_BAR, bar),
OPC(7, OPC_FENCE, fence),
#undef OPC
};
#define GETINFO(instr) (&(opcs[((instr)->opc_cat << NOPC_BITS) | instr_opc(instr, ctx->gpu_id)]))
const char *disasm_a3xx_instr_name(opc_t opc)
{
if (opc_cat(opc) == -1) return "??meta??";
return opcs[opc].name;
}
static void print_single_instr(struct disasm_ctx *ctx, instr_t *instr)
{
const char *name = GETINFO(instr)->name;
uint32_t opc = instr_opc(instr, ctx->gpu_id);
if (name) {
fprintf(ctx->out, "%s", name);
GETINFO(instr)->print(ctx, instr);
} else {
fprintf(ctx->out, "unknown(%d,%d)", instr->opc_cat, opc);
switch (instr->opc_cat) {
case 0: print_instr_cat0(ctx, instr); break;
case 1: print_instr_cat1(ctx, instr); break;
case 2: print_instr_cat2(ctx, instr); break;
case 3: print_instr_cat3(ctx, instr); break;
case 4: print_instr_cat4(ctx, instr); break;
case 5: print_instr_cat5(ctx, instr); break;
case 6: print_instr_cat6(ctx, instr); break;
case 7: print_instr_cat7(ctx, instr); break;
}
}
}
static bool print_instr(struct disasm_ctx *ctx, uint32_t *dwords, int n)
{
instr_t *instr = (instr_t *)dwords;
opc_t opc = _OPC(instr->opc_cat, instr_opc(instr, ctx->gpu_id));
unsigned nop = 0;
unsigned cycles = ctx->stats->instructions;
if (debug & PRINT_RAW) {
fprintf(ctx->out, "%s:%d:%04d:%04d[%08xx_%08xx] ", levels[ctx->level],
instr->opc_cat, n, cycles++, dwords[1], dwords[0]);
}
if (opc == OPC_BARY_F)
ctx->stats->last_baryf = ctx->stats->instructions;
ctx->repeat = instr_repeat(instr);
ctx->stats->instructions += 1 + ctx->repeat;
ctx->stats->instlen++;
/* NOTE: order flags are printed is a bit fugly.. but for now I
* try to match the order in llvm-a3xx disassembler for easy
* diff'ing..
*/
if (instr->sync) {
fprintf(ctx->out, "(sy)");
ctx->stats->sy++;
}
if (instr->ss && ((instr->opc_cat <= 4) || (instr->opc_cat == 7))) {
fprintf(ctx->out, "(ss)");
ctx->stats->ss++;
}
if (instr->jmp_tgt)
fprintf(ctx->out, "(jp)");
if ((instr->opc_cat == 0) && instr->cat0.eq)
fprintf(ctx->out, "(eq)");
if (instr_sat(instr))
fprintf(ctx->out, "(sat)");
if (ctx->repeat)
fprintf(ctx->out, "(rpt%d)", ctx->repeat);
else if ((instr->opc_cat == 2) && (instr->cat2.src1_r || instr->cat2.src2_r))
nop = (instr->cat2.src2_r * 2) + instr->cat2.src1_r;
else if ((instr->opc_cat == 3) && (instr->cat3.src1_r || instr->cat3.src2_r))
nop = (instr->cat3.src2_r * 2) + instr->cat3.src1_r;
if (nop)
fprintf(ctx->out, "(nop%d) ", nop);
if (instr->ul && ((2 <= instr->opc_cat) && (instr->opc_cat <= 4)))
fprintf(ctx->out, "(ul)");
ctx->stats->instructions += nop;
ctx->stats->nops += nop;
if (opc == OPC_NOP) {
ctx->stats->nops += 1 + ctx->repeat;
ctx->stats->instrs_per_cat[0] += 1 + ctx->repeat;
} else {
ctx->stats->instrs_per_cat[instr->opc_cat] += 1 + ctx->repeat;
ctx->stats->instrs_per_cat[0] += nop;
}
if (opc == OPC_MOV) {
if (instr->cat1.src_type == instr->cat1.dst_type) {
ctx->stats->mov_count += 1 + ctx->repeat;
} else {
ctx->stats->cov_count += 1 + ctx->repeat;
}
}
print_single_instr(ctx, instr);
fprintf(ctx->out, "\n");
process_reg_dst(ctx);
if ((instr->opc_cat <= 4) && (debug & EXPAND_REPEAT)) {
int i;
for (i = 0; i < nop; i++) {
if (debug & PRINT_VERBOSE) {
fprintf(ctx->out, "%s:%d:%04d:%04d[ ] ",
levels[ctx->level], instr->opc_cat, n, cycles++);
}
fprintf(ctx->out, "nop\n");
}
for (i = 0; i < ctx->repeat; i++) {
ctx->repeatidx = i + 1;
if (debug & PRINT_VERBOSE) {
fprintf(ctx->out, "%s:%d:%04d:%04d[ ] ",
levels[ctx->level], instr->opc_cat, n, cycles++);
}
print_single_instr(ctx, instr);
fprintf(ctx->out, "\n");
}
ctx->repeatidx = 0;
}
return (instr->opc_cat == 0) &&
((opc == OPC_END) || (opc == OPC_CHSH));
}
int disasm_a3xx_stat(uint32_t *dwords, int sizedwords, int level, FILE *out,
unsigned gpu_id, struct shader_stats *stats)
{
struct disasm_ctx ctx;
int i;
int nop_count = 0;
bool has_end = false;
ir3_assert((sizedwords % 2) == 0);
memset(&ctx, 0, sizeof(ctx));
ctx.out = out;
ctx.level = level;
ctx.gpu_id = gpu_id;
ctx.stats = stats;
memset(ctx.stats, 0, sizeof(*ctx.stats));
for (i = 0; i < sizedwords; i += 2) {
has_end |= print_instr(&ctx, &dwords[i], i/2);
if (!has_end)
continue;
if (dwords[i] == 0 && dwords[i + 1] == 0)
nop_count++;
else
nop_count = 0;
if (nop_count > 3)
break;
}
if (debug & PRINT_STATS)
print_reg_stats(&ctx);
return 0;
}
void disasm_a3xx_set_debug(enum debug_t d)
{
debug = d;
}
#include <setjmp.h>
static bool jmp_env_valid;
static jmp_buf jmp_env;
void
ir3_assert_handler(const char *expr, const char *file, int line,
const char *func)
{
fprintf(stdout, "\n%s:%u: %s: Assertion `%s' failed.\n", file, line, func, expr);
if (jmp_env_valid)
longjmp(jmp_env, 1);
abort();
}
#define TRY(x) do { \
assert(!jmp_env_valid); \
if (setjmp(jmp_env) == 0) { \
jmp_env_valid = true; \
x; \
} \
jmp_env_valid = false; \
} while (0)
int disasm_a3xx(uint32_t *dwords, int sizedwords, int level, FILE *out, unsigned gpu_id)
{
struct shader_stats stats;
return disasm_a3xx_stat(dwords, sizedwords, level, out, gpu_id, &stats);
}
int try_disasm_a3xx(uint32_t *dwords, int sizedwords, int level, FILE *out, unsigned gpu_id)
{
struct shader_stats stats;
int ret = -1;
TRY(ret = disasm_a3xx_stat(dwords, sizedwords, level, out, gpu_id, &stats));
return ret;
}