blob: ab7d3d0ac3788cf5144ea084fd6eb2756aacc3ad [file] [log] [blame]
/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* @file iris_state.c
*
* ============================= GENXML CODE =============================
* [This file is compiled once per generation.]
* =======================================================================
*
* This is the main state upload code.
*
* Gallium uses Constant State Objects, or CSOs, for most state. Large,
* complex, or highly reusable state can be created once, and bound and
* rebound multiple times. This is modeled with the pipe->create_*_state()
* and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
* streamed out on the fly, via pipe->set_*_state() hooks.
*
* OpenGL involves frequently mutating context state, which is mirrored in
* core Mesa by highly mutable data structures. However, most applications
* typically draw the same things over and over - from frame to frame, most
* of the same objects are still visible and need to be redrawn. So, rather
* than inventing new state all the time, applications usually mutate to swap
* between known states that we've seen before.
*
* Gallium isolates us from this mutation by tracking API state, and
* distilling it into a set of Constant State Objects, or CSOs. Large,
* complex, or typically reusable state can be created once, then reused
* multiple times. Drivers can create and store their own associated data.
* This create/bind model corresponds to the pipe->create_*_state() and
* pipe->bind_*_state() driver hooks.
*
* Some state is cheap to create, or expected to be highly dynamic. Rather
* than creating and caching piles of CSOs for these, Gallium simply streams
* them out, via the pipe->set_*_state() driver hooks.
*
* To reduce draw time overhead, we try to compute as much state at create
* time as possible. Wherever possible, we translate the Gallium pipe state
* to 3DSTATE commands, and store those commands in the CSO. At draw time,
* we can simply memcpy them into a batch buffer.
*
* No hardware matches the abstraction perfectly, so some commands require
* information from multiple CSOs. In this case, we can store two copies
* of the packet (one in each CSO), and simply | together their DWords at
* draw time. Sometimes the second set is trivial (one or two fields), so
* we simply pack it at draw time.
*
* There are two main components in the file below. First, the CSO hooks
* create/bind/track state. The second are the draw-time upload functions,
* iris_upload_render_state() and iris_upload_compute_state(), which read
* the context state and emit the commands into the actual batch.
*/
#include <stdio.h>
#include <errno.h>
#if HAVE_VALGRIND
#include <valgrind.h>
#include <memcheck.h>
#define VG(x) x
#ifdef DEBUG
#define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
#endif
#else
#define VG(x)
#endif
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "util/u_dual_blend.h"
#include "util/u_inlines.h"
#include "util/format/u_format.h"
#include "util/u_framebuffer.h"
#include "util/u_transfer.h"
#include "util/u_upload_mgr.h"
#include "util/u_viewport.h"
#include "util/u_memory.h"
#include "drm-uapi/i915_drm.h"
#include "nir.h"
#include "intel/compiler/brw_compiler.h"
#include "intel/common/gen_aux_map.h"
#include "intel/common/gen_l3_config.h"
#include "intel/common/gen_sample_positions.h"
#include "iris_batch.h"
#include "iris_context.h"
#include "iris_defines.h"
#include "iris_pipe.h"
#include "iris_resource.h"
#include "iris_genx_macros.h"
#include "intel/common/gen_guardband.h"
/**
* Statically assert that PIPE_* enums match the hardware packets.
* (As long as they match, we don't need to translate them.)
*/
UNUSED static void pipe_asserts()
{
#define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
/* pipe_logicop happens to match the hardware. */
PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
/* pipe_blend_func happens to match the hardware. */
PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
/* pipe_blend_func happens to match the hardware. */
PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
/* pipe_stencil_op happens to match the hardware. */
PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
/* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
#undef PIPE_ASSERT
}
static unsigned
translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
{
static const unsigned map[] = {
[PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
[PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
[PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
[PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
[PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
[PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
[PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
[PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
[PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
[PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
};
return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
}
static unsigned
translate_compare_func(enum pipe_compare_func pipe_func)
{
static const unsigned map[] = {
[PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
[PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
[PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
[PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
[PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
[PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
[PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
[PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
};
return map[pipe_func];
}
static unsigned
translate_shadow_func(enum pipe_compare_func pipe_func)
{
/* Gallium specifies the result of shadow comparisons as:
*
* 1 if ref <op> texel,
* 0 otherwise.
*
* The hardware does:
*
* 0 if texel <op> ref,
* 1 otherwise.
*
* So we need to flip the operator and also negate.
*/
static const unsigned map[] = {
[PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
[PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
[PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
[PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
[PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
[PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
[PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
[PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
};
return map[pipe_func];
}
static unsigned
translate_cull_mode(unsigned pipe_face)
{
static const unsigned map[4] = {
[PIPE_FACE_NONE] = CULLMODE_NONE,
[PIPE_FACE_FRONT] = CULLMODE_FRONT,
[PIPE_FACE_BACK] = CULLMODE_BACK,
[PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
};
return map[pipe_face];
}
static unsigned
translate_fill_mode(unsigned pipe_polymode)
{
static const unsigned map[4] = {
[PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
[PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
[PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
[PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
};
return map[pipe_polymode];
}
static unsigned
translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
{
static const unsigned map[] = {
[PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
[PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
[PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
};
return map[pipe_mip];
}
static uint32_t
translate_wrap(unsigned pipe_wrap)
{
static const unsigned map[] = {
[PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
[PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
[PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
[PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
[PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
[PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
/* These are unsupported. */
[PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
[PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
};
return map[pipe_wrap];
}
/**
* Allocate space for some indirect state.
*
* Return a pointer to the map (to fill it out) and a state ref (for
* referring to the state in GPU commands).
*/
static void *
upload_state(struct u_upload_mgr *uploader,
struct iris_state_ref *ref,
unsigned size,
unsigned alignment)
{
void *p = NULL;
u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
return p;
}
/**
* Stream out temporary/short-lived state.
*
* This allocates space, pins the BO, and includes the BO address in the
* returned offset (which works because all state lives in 32-bit memory
* zones).
*/
static uint32_t *
stream_state(struct iris_batch *batch,
struct u_upload_mgr *uploader,
struct pipe_resource **out_res,
unsigned size,
unsigned alignment,
uint32_t *out_offset)
{
void *ptr = NULL;
u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
struct iris_bo *bo = iris_resource_bo(*out_res);
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
iris_record_state_size(batch->state_sizes,
bo->gtt_offset + *out_offset, size);
*out_offset += iris_bo_offset_from_base_address(bo);
return ptr;
}
/**
* stream_state() + memcpy.
*/
static uint32_t
emit_state(struct iris_batch *batch,
struct u_upload_mgr *uploader,
struct pipe_resource **out_res,
const void *data,
unsigned size,
unsigned alignment)
{
unsigned offset = 0;
uint32_t *map =
stream_state(batch, uploader, out_res, size, alignment, &offset);
if (map)
memcpy(map, data, size);
return offset;
}
/**
* Did field 'x' change between 'old_cso' and 'new_cso'?
*
* (If so, we may want to set some dirty flags.)
*/
#define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
#define cso_changed_memcmp(x) \
(!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
static void
flush_before_state_base_change(struct iris_batch *batch)
{
const struct gen_device_info *devinfo = &batch->screen->devinfo;
/* Flush before emitting STATE_BASE_ADDRESS.
*
* This isn't documented anywhere in the PRM. However, it seems to be
* necessary prior to changing the surface state base adress. We've
* seen issues in Vulkan where we get GPU hangs when using multi-level
* command buffers which clear depth, reset state base address, and then
* go render stuff.
*
* Normally, in GL, we would trust the kernel to do sufficient stalls
* and flushes prior to executing our batch. However, it doesn't seem
* as if the kernel's flushing is always sufficient and we don't want to
* rely on it.
*
* We make this an end-of-pipe sync instead of a normal flush because we
* do not know the current status of the GPU. On Haswell at least,
* having a fast-clear operation in flight at the same time as a normal
* rendering operation can cause hangs. Since the kernel's flushing is
* insufficient, we need to ensure that any rendering operations from
* other processes are definitely complete before we try to do our own
* rendering. It's a bit of a big hammer but it appears to work.
*/
iris_emit_end_of_pipe_sync(batch,
"change STATE_BASE_ADDRESS (flushes)",
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DATA_CACHE_FLUSH |
/* GEN:BUG:1606662791:
*
* Software must program PIPE_CONTROL command
* with "HDC Pipeline Flush" prior to
* programming of the below two non-pipeline
* state :
* * STATE_BASE_ADDRESS
* * 3DSTATE_BINDING_TABLE_POOL_ALLOC
*/
((GEN_GEN == 12 && devinfo->revision == 0 /* A0 */ ?
PIPE_CONTROL_FLUSH_HDC : 0)));
}
static void
flush_after_state_base_change(struct iris_batch *batch)
{
/* After re-setting the surface state base address, we have to do some
* cache flusing so that the sampler engine will pick up the new
* SURFACE_STATE objects and binding tables. From the Broadwell PRM,
* Shared Function > 3D Sampler > State > State Caching (page 96):
*
* Coherency with system memory in the state cache, like the texture
* cache is handled partially by software. It is expected that the
* command stream or shader will issue Cache Flush operation or
* Cache_Flush sampler message to ensure that the L1 cache remains
* coherent with system memory.
*
* [...]
*
* Whenever the value of the Dynamic_State_Base_Addr,
* Surface_State_Base_Addr are altered, the L1 state cache must be
* invalidated to ensure the new surface or sampler state is fetched
* from system memory.
*
* The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
* which, according the PIPE_CONTROL instruction documentation in the
* Broadwell PRM:
*
* Setting this bit is independent of any other bit in this packet.
* This bit controls the invalidation of the L1 and L2 state caches
* at the top of the pipe i.e. at the parsing time.
*
* Unfortunately, experimentation seems to indicate that state cache
* invalidation through a PIPE_CONTROL does nothing whatsoever in
* regards to surface state and binding tables. In stead, it seems that
* invalidating the texture cache is what is actually needed.
*
* XXX: As far as we have been able to determine through
* experimentation, shows that flush the texture cache appears to be
* sufficient. The theory here is that all of the sampling/rendering
* units cache the binding table in the texture cache. However, we have
* yet to be able to actually confirm this.
*/
iris_emit_end_of_pipe_sync(batch,
"change STATE_BASE_ADDRESS (invalidates)",
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
PIPE_CONTROL_CONST_CACHE_INVALIDATE |
PIPE_CONTROL_STATE_CACHE_INVALIDATE);
}
static void
_iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
{
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = reg;
lri.DataDWord = val;
}
}
#define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
static void
_iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
{
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
lrr.SourceRegisterAddress = src;
lrr.DestinationRegisterAddress = dst;
}
}
static void
iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
uint32_t src)
{
_iris_emit_lrr(batch, dst, src);
}
static void
iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
uint32_t src)
{
_iris_emit_lrr(batch, dst, src);
_iris_emit_lrr(batch, dst + 4, src + 4);
}
static void
iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
uint32_t val)
{
_iris_emit_lri(batch, reg, val);
}
static void
iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
uint64_t val)
{
_iris_emit_lri(batch, reg + 0, val & 0xffffffff);
_iris_emit_lri(batch, reg + 4, val >> 32);
}
/**
* Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
*/
static void
iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
struct iris_bo *bo, uint32_t offset)
{
iris_batch_sync_region_start(batch);
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = reg;
lrm.MemoryAddress = ro_bo(bo, offset);
}
iris_batch_sync_region_end(batch);
}
/**
* Load a 64-bit value from a buffer into a MMIO register via
* two MI_LOAD_REGISTER_MEM commands.
*/
static void
iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
struct iris_bo *bo, uint32_t offset)
{
iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
}
static void
iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
struct iris_bo *bo, uint32_t offset,
bool predicated)
{
iris_batch_sync_region_start(batch);
iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.RegisterAddress = reg;
srm.MemoryAddress = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
srm.PredicateEnable = predicated;
}
iris_batch_sync_region_end(batch);
}
static void
iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
struct iris_bo *bo, uint32_t offset,
bool predicated)
{
iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
}
static void
iris_store_data_imm32(struct iris_batch *batch,
struct iris_bo *bo, uint32_t offset,
uint32_t imm)
{
iris_batch_sync_region_start(batch);
iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
sdi.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
sdi.ImmediateData = imm;
}
iris_batch_sync_region_end(batch);
}
static void
iris_store_data_imm64(struct iris_batch *batch,
struct iris_bo *bo, uint32_t offset,
uint64_t imm)
{
/* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
* 2 in genxml but it's actually variable length and we need 5 DWords.
*/
void *map = iris_get_command_space(batch, 4 * 5);
iris_batch_sync_region_start(batch);
_iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
sdi.DWordLength = 5 - 2;
sdi.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
sdi.ImmediateData = imm;
}
iris_batch_sync_region_end(batch);
}
static void
iris_copy_mem_mem(struct iris_batch *batch,
struct iris_bo *dst_bo, uint32_t dst_offset,
struct iris_bo *src_bo, uint32_t src_offset,
unsigned bytes)
{
/* MI_COPY_MEM_MEM operates on DWords. */
assert(bytes % 4 == 0);
assert(dst_offset % 4 == 0);
assert(src_offset % 4 == 0);
iris_batch_sync_region_start(batch);
for (unsigned i = 0; i < bytes; i += 4) {
iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i,
IRIS_DOMAIN_OTHER_WRITE);
cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
}
}
iris_batch_sync_region_end(batch);
}
static void
emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
{
#if GEN_GEN >= 8 && GEN_GEN < 10
/* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
*
* Software must clear the COLOR_CALC_STATE Valid field in
* 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
* with Pipeline Select set to GPGPU.
*
* The internal hardware docs recommend the same workaround for Gen9
* hardware too.
*/
if (pipeline == GPGPU)
iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
#endif
/* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
* PIPELINE_SELECT [DevBWR+]":
*
* "Project: DEVSNB+
*
* Software must ensure all the write caches are flushed through a
* stalling PIPE_CONTROL command followed by another PIPE_CONTROL
* command to invalidate read only caches prior to programming
* MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
*/
iris_emit_pipe_control_flush(batch,
"workaround: PIPELINE_SELECT flushes (1/2)",
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DATA_CACHE_FLUSH |
PIPE_CONTROL_CS_STALL);
iris_emit_pipe_control_flush(batch,
"workaround: PIPELINE_SELECT flushes (2/2)",
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
PIPE_CONTROL_CONST_CACHE_INVALIDATE |
PIPE_CONTROL_STATE_CACHE_INVALIDATE |
PIPE_CONTROL_INSTRUCTION_INVALIDATE);
iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
#if GEN_GEN >= 9
sel.MaskBits = GEN_GEN >= 12 ? 0x13 : 3;
sel.MediaSamplerDOPClockGateEnable = GEN_GEN >= 12;
#endif
sel.PipelineSelection = pipeline;
}
}
UNUSED static void
init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
{
#if GEN_GEN == 9
/* Project: DevGLK
*
* "This chicken bit works around a hardware issue with barrier
* logic encountered when switching between GPGPU and 3D pipelines.
* To workaround the issue, this mode bit should be set after a
* pipeline is selected."
*/
uint32_t reg_val;
iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
reg.GLKBarrierMode = value;
reg.GLKBarrierModeMask = 1;
}
iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
#endif
}
static void
init_state_base_address(struct iris_batch *batch)
{
struct isl_device *isl_dev = &batch->screen->isl_dev;
uint32_t mocs = isl_mocs(isl_dev, 0);
flush_before_state_base_change(batch);
/* We program most base addresses once at context initialization time.
* Each base address points at a 4GB memory zone, and never needs to
* change. See iris_bufmgr.h for a description of the memory zones.
*
* The one exception is Surface State Base Address, which needs to be
* updated occasionally. See iris_binder.c for the details there.
*/
iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
sba.GeneralStateMOCS = mocs;
sba.StatelessDataPortAccessMOCS = mocs;
sba.DynamicStateMOCS = mocs;
sba.IndirectObjectMOCS = mocs;
sba.InstructionMOCS = mocs;
sba.SurfaceStateMOCS = mocs;
sba.GeneralStateBaseAddressModifyEnable = true;
sba.DynamicStateBaseAddressModifyEnable = true;
sba.IndirectObjectBaseAddressModifyEnable = true;
sba.InstructionBaseAddressModifyEnable = true;
sba.GeneralStateBufferSizeModifyEnable = true;
sba.DynamicStateBufferSizeModifyEnable = true;
#if (GEN_GEN >= 9)
sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
sba.BindlessSurfaceStateMOCS = mocs;
#endif
sba.IndirectObjectBufferSizeModifyEnable = true;
sba.InstructionBuffersizeModifyEnable = true;
sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
sba.GeneralStateBufferSize = 0xfffff;
sba.IndirectObjectBufferSize = 0xfffff;
sba.InstructionBufferSize = 0xfffff;
sba.DynamicStateBufferSize = 0xfffff;
}
flush_after_state_base_change(batch);
}
static void
iris_emit_l3_config(struct iris_batch *batch,
const struct gen_l3_config *cfg)
{
uint32_t reg_val;
assert(cfg || GEN_GEN >= 12);
#if GEN_GEN >= 12
#define L3_ALLOCATION_REG GENX(L3ALLOC)
#define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
#else
#define L3_ALLOCATION_REG GENX(L3CNTLREG)
#define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
#endif
iris_pack_state(L3_ALLOCATION_REG, &reg_val, reg) {
#if GEN_GEN < 11
reg.SLMEnable = cfg->n[GEN_L3P_SLM] > 0;
#endif
#if GEN_GEN == 11
/* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
* in L3CNTLREG register. The default setting of the bit is not the
* desirable behavior.
*/
reg.ErrorDetectionBehaviorControl = true;
reg.UseFullWays = true;
#endif
if (GEN_GEN < 12 || cfg) {
reg.URBAllocation = cfg->n[GEN_L3P_URB];
reg.ROAllocation = cfg->n[GEN_L3P_RO];
reg.DCAllocation = cfg->n[GEN_L3P_DC];
reg.AllAllocation = cfg->n[GEN_L3P_ALL];
} else {
#if GEN_GEN >= 12
reg.L3FullWayAllocationEnable = true;
#endif
}
}
_iris_emit_lri(batch, L3_ALLOCATION_REG_num, reg_val);
}
#if GEN_GEN == 9
static void
iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
{
uint32_t reg_val;
/* A fixed function pipe flush is required before modifying this field */
iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
: "disable preemption",
PIPE_CONTROL_RENDER_TARGET_FLUSH);
/* enable object level preemption */
iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
reg.ReplayMode = enable;
reg.ReplayModeMask = true;
}
iris_emit_lri(batch, CS_CHICKEN1, reg_val);
}
#endif
#if GEN_GEN == 11
static void
iris_upload_slice_hashing_state(struct iris_batch *batch)
{
const struct gen_device_info *devinfo = &batch->screen->devinfo;
int subslices_delta =
devinfo->ppipe_subslices[0] - devinfo->ppipe_subslices[1];
if (subslices_delta == 0)
return;
struct iris_context *ice = NULL;
ice = container_of(batch, ice, batches[IRIS_BATCH_RENDER]);
assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
uint32_t hash_address;
struct pipe_resource *tmp = NULL;
uint32_t *map =
stream_state(batch, ice->state.dynamic_uploader, &tmp,
size, 64, &hash_address);
pipe_resource_reference(&tmp, NULL);
struct GENX(SLICE_HASH_TABLE) table0 = {
.Entry = {
{ 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
{ 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
{ 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
{ 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
{ 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
{ 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
{ 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
{ 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
{ 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
{ 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
{ 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
{ 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
{ 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
{ 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
{ 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
{ 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 }
}
};
struct GENX(SLICE_HASH_TABLE) table1 = {
.Entry = {
{ 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
{ 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
{ 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
{ 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
{ 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
{ 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
{ 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
{ 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
{ 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
{ 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
{ 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
{ 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
{ 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
{ 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
{ 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
{ 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 }
}
};
const struct GENX(SLICE_HASH_TABLE) *table =
subslices_delta < 0 ? &table0 : &table1;
GENX(SLICE_HASH_TABLE_pack)(NULL, map, table);
iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
ptr.SliceHashStatePointerValid = true;
ptr.SliceHashTableStatePointer = hash_address;
}
iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
mode.SliceHashingTableEnable = true;
}
}
#endif
static void
iris_alloc_push_constants(struct iris_batch *batch)
{
/* For now, we set a static partitioning of the push constant area,
* assuming that all stages could be in use.
*
* TODO: Try lazily allocating the HS/DS/GS sections as needed, and
* see if that improves performance by offering more space to
* the VS/FS when those aren't in use. Also, try dynamically
* enabling/disabling it like i965 does. This would be more
* stalls and may not actually help; we don't know yet.
*/
for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
alloc._3DCommandSubOpcode = 18 + i;
alloc.ConstantBufferOffset = 6 * i;
alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
}
}
}
#if GEN_GEN >= 12
static void
init_aux_map_state(struct iris_batch *batch);
#endif
/**
* Upload initial GPU state for any kind of context.
*
* These need to happen for both render and compute.
*/
static void
iris_init_common_context(struct iris_batch *batch)
{
#if GEN_GEN == 11
uint32_t reg_val;
iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
reg.HeaderlessMessageforPreemptableContexts = 1;
reg.HeaderlessMessageforPreemptableContextsMask = 1;
}
iris_emit_lri(batch, SAMPLER_MODE, reg_val);
/* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
reg.EnabledTexelOffsetPrecisionFix = 1;
reg.EnabledTexelOffsetPrecisionFixMask = 1;
}
iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
#endif
}
/**
* Upload the initial GPU state for a render context.
*
* This sets some invariant state that needs to be programmed a particular
* way, but we never actually change.
*/
static void
iris_init_render_context(struct iris_batch *batch)
{
UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
uint32_t reg_val;
iris_batch_sync_region_start(batch);
emit_pipeline_select(batch, _3D);
iris_emit_l3_config(batch, batch->screen->l3_config_3d);
init_state_base_address(batch);
iris_init_common_context(batch);
#if GEN_GEN >= 9
iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
reg.CONSTANT_BUFFERAddressOffsetDisable = true;
reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
}
iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
#else
iris_pack_state(GENX(INSTPM), &reg_val, reg) {
reg.CONSTANT_BUFFERAddressOffsetDisable = true;
reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
}
iris_emit_lri(batch, INSTPM, reg_val);
#endif
#if GEN_GEN == 9
iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
reg.FloatBlendOptimizationEnable = true;
reg.FloatBlendOptimizationEnableMask = true;
reg.MSCRAWHazardAvoidanceBit = true;
reg.MSCRAWHazardAvoidanceBitMask = true;
reg.PartialResolveDisableInVC = true;
reg.PartialResolveDisableInVCMask = true;
}
iris_emit_lri(batch, CACHE_MODE_1, reg_val);
if (devinfo->is_geminilake)
init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
#endif
#if GEN_GEN == 11
iris_pack_state(GENX(TCCNTLREG), &reg_val, reg) {
reg.L3DataPartialWriteMergingEnable = true;
reg.ColorZPartialWriteMergingEnable = true;
reg.URBPartialWriteMergingEnable = true;
reg.TCDisable = true;
}
iris_emit_lri(batch, TCCNTLREG, reg_val);
/* Hardware specification recommends disabling repacking for the
* compatibility with decompression mechanism in display controller.
*/
if (devinfo->disable_ccs_repack) {
iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
reg.DisableRepackingforCompression = true;
reg.DisableRepackingforCompressionMask = true;
}
iris_emit_lri(batch, CACHE_MODE_0, reg_val);
}
iris_upload_slice_hashing_state(batch);
#endif
/* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
* changing it dynamically. We set it to the maximum size here, and
* instead include the render target dimensions in the viewport, so
* viewport extents clipping takes care of pruning stray geometry.
*/
iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
rect.ClippedDrawingRectangleXMax = UINT16_MAX;
rect.ClippedDrawingRectangleYMax = UINT16_MAX;
}
/* Set the initial MSAA sample positions. */
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
GEN_SAMPLE_POS_1X(pat._1xSample);
GEN_SAMPLE_POS_2X(pat._2xSample);
GEN_SAMPLE_POS_4X(pat._4xSample);
GEN_SAMPLE_POS_8X(pat._8xSample);
#if GEN_GEN >= 9
GEN_SAMPLE_POS_16X(pat._16xSample);
#endif
}
/* Use the legacy AA line coverage computation. */
iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
/* Disable chromakeying (it's for media) */
iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
/* We want regular rendering, not special HiZ operations. */
iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
/* No polygon stippling offsets are necessary. */
/* TODO: may need to set an offset for origin-UL framebuffers */
iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
iris_alloc_push_constants(batch);
#if GEN_GEN >= 12
init_aux_map_state(batch);
#endif
iris_batch_sync_region_end(batch);
}
static void
iris_init_compute_context(struct iris_batch *batch)
{
UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
iris_batch_sync_region_start(batch);
/* GEN:BUG:1607854226:
*
* Start with pipeline in 3D mode to set the STATE_BASE_ADDRESS.
*/
#if GEN_GEN == 12
emit_pipeline_select(batch, _3D);
#else
emit_pipeline_select(batch, GPGPU);
#endif
iris_emit_l3_config(batch, batch->screen->l3_config_cs);
init_state_base_address(batch);
iris_init_common_context(batch);
#if GEN_GEN == 12
emit_pipeline_select(batch, GPGPU);
#endif
#if GEN_GEN == 9
if (devinfo->is_geminilake)
init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
#endif
#if GEN_GEN >= 12
init_aux_map_state(batch);
#endif
iris_batch_sync_region_end(batch);
}
struct iris_vertex_buffer_state {
/** The VERTEX_BUFFER_STATE hardware structure. */
uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
/** The resource to source vertex data from. */
struct pipe_resource *resource;
int offset;
};
struct iris_depth_buffer_state {
/* Depth/HiZ/Stencil related hardware packets. */
uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
GENX(3DSTATE_STENCIL_BUFFER_length) +
GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
GENX(3DSTATE_CLEAR_PARAMS_length) +
GENX(MI_LOAD_REGISTER_IMM_length) * 2];
};
/**
* Generation-specific context state (ice->state.genx->...).
*
* Most state can go in iris_context directly, but these encode hardware
* packets which vary by generation.
*/
struct iris_genx_state {
struct iris_vertex_buffer_state vertex_buffers[33];
uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
struct iris_depth_buffer_state depth_buffer;
uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
#if GEN_GEN == 8
bool pma_fix_enabled;
#endif
#if GEN_GEN == 9
/* Is object level preemption enabled? */
bool object_preemption;
#endif
struct {
#if GEN_GEN == 8
struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
#endif
} shaders[MESA_SHADER_STAGES];
};
/**
* The pipe->set_blend_color() driver hook.
*
* This corresponds to our COLOR_CALC_STATE.
*/
static void
iris_set_blend_color(struct pipe_context *ctx,
const struct pipe_blend_color *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
/* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
}
/**
* Gallium CSO for blend state (see pipe_blend_state).
*/
struct iris_blend_state {
/** Partial 3DSTATE_PS_BLEND */
uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
/** Partial BLEND_STATE */
uint32_t blend_state[GENX(BLEND_STATE_length) +
BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
bool alpha_to_coverage; /* for shader key */
/** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
uint8_t blend_enables;
/** Bitfield of whether color writes are enabled for RT[i] */
uint8_t color_write_enables;
/** Does RT[0] use dual color blending? */
bool dual_color_blending;
};
static enum pipe_blendfactor
fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
{
if (alpha_to_one) {
if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
return PIPE_BLENDFACTOR_ONE;
if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
return PIPE_BLENDFACTOR_ZERO;
}
return f;
}
/**
* The pipe->create_blend_state() driver hook.
*
* Translates a pipe_blend_state into iris_blend_state.
*/
static void *
iris_create_blend_state(struct pipe_context *ctx,
const struct pipe_blend_state *state)
{
struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
cso->blend_enables = 0;
cso->color_write_enables = 0;
STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
cso->alpha_to_coverage = state->alpha_to_coverage;
bool indep_alpha_blend = false;
for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
const struct pipe_rt_blend_state *rt =
&state->rt[state->independent_blend_enable ? i : 0];
enum pipe_blendfactor src_rgb =
fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
enum pipe_blendfactor src_alpha =
fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
enum pipe_blendfactor dst_rgb =
fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
enum pipe_blendfactor dst_alpha =
fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
if (rt->rgb_func != rt->alpha_func ||
src_rgb != src_alpha || dst_rgb != dst_alpha)
indep_alpha_blend = true;
if (rt->blend_enable)
cso->blend_enables |= 1u << i;
if (rt->colormask)
cso->color_write_enables |= 1u << i;
iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
be.LogicOpEnable = state->logicop_enable;
be.LogicOpFunction = state->logicop_func;
be.PreBlendSourceOnlyClampEnable = false;
be.ColorClampRange = COLORCLAMP_RTFORMAT;
be.PreBlendColorClampEnable = true;
be.PostBlendColorClampEnable = true;
be.ColorBufferBlendEnable = rt->blend_enable;
be.ColorBlendFunction = rt->rgb_func;
be.AlphaBlendFunction = rt->alpha_func;
be.SourceBlendFactor = src_rgb;
be.SourceAlphaBlendFactor = src_alpha;
be.DestinationBlendFactor = dst_rgb;
be.DestinationAlphaBlendFactor = dst_alpha;
be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
}
blend_entry += GENX(BLEND_STATE_ENTRY_length);
}
iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
/* pb.HasWriteableRT is filled in at draw time.
* pb.AlphaTestEnable is filled in at draw time.
*
* pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
* setting it when dual color blending without an appropriate shader.
*/
pb.AlphaToCoverageEnable = state->alpha_to_coverage;
pb.IndependentAlphaBlendEnable = indep_alpha_blend;
pb.SourceBlendFactor =
fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
pb.SourceAlphaBlendFactor =
fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
pb.DestinationBlendFactor =
fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
pb.DestinationAlphaBlendFactor =
fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
}
iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
bs.AlphaToCoverageEnable = state->alpha_to_coverage;
bs.IndependentAlphaBlendEnable = indep_alpha_blend;
bs.AlphaToOneEnable = state->alpha_to_one;
bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
bs.ColorDitherEnable = state->dither;
/* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
}
cso->dual_color_blending = util_blend_state_is_dual(state, 0);
return cso;
}
/**
* The pipe->bind_blend_state() driver hook.
*
* Bind a blending CSO and flag related dirty bits.
*/
static void
iris_bind_blend_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_blend_state *cso = state;
ice->state.cso_blend = cso;
ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
ice->state.stage_dirty |= ice->state.stage_dirty_for_nos[IRIS_NOS_BLEND];
if (GEN_GEN == 8)
ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
}
/**
* Return true if the FS writes to any color outputs which are not disabled
* via color masking.
*/
static bool
has_writeable_rt(const struct iris_blend_state *cso_blend,
const struct shader_info *fs_info)
{
if (!fs_info)
return false;
unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
return cso_blend->color_write_enables & rt_outputs;
}
/**
* Gallium CSO for depth, stencil, and alpha testing state.
*/
struct iris_depth_stencil_alpha_state {
/** Partial 3DSTATE_WM_DEPTH_STENCIL. */
uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
#if GEN_GEN >= 12
uint32_t depth_bounds[GENX(3DSTATE_DEPTH_BOUNDS_length)];
#endif
/** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
struct pipe_alpha_state alpha;
/** Outbound to resolve and cache set tracking. */
bool depth_writes_enabled;
bool stencil_writes_enabled;
/** Outbound to Gen8-9 PMA stall equations */
bool depth_test_enabled;
};
/**
* The pipe->create_depth_stencil_alpha_state() driver hook.
*
* We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
* testing state since we need pieces of it in a variety of places.
*/
static void *
iris_create_zsa_state(struct pipe_context *ctx,
const struct pipe_depth_stencil_alpha_state *state)
{
struct iris_depth_stencil_alpha_state *cso =
malloc(sizeof(struct iris_depth_stencil_alpha_state));
bool two_sided_stencil = state->stencil[1].enabled;
cso->alpha = state->alpha;
cso->depth_writes_enabled = state->depth.writemask;
cso->depth_test_enabled = state->depth.enabled;
cso->stencil_writes_enabled =
state->stencil[0].writemask != 0 ||
(two_sided_stencil && state->stencil[1].writemask != 0);
/* gallium frontends need to optimize away EQUAL writes for us. */
assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
wmds.StencilFailOp = state->stencil[0].fail_op;
wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
wmds.StencilTestFunction =
translate_compare_func(state->stencil[0].func);
wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
wmds.BackfaceStencilTestFunction =
translate_compare_func(state->stencil[1].func);
wmds.DepthTestFunction = translate_compare_func(state->depth.func);
wmds.DoubleSidedStencilEnable = two_sided_stencil;
wmds.StencilTestEnable = state->stencil[0].enabled;
wmds.StencilBufferWriteEnable =
state->stencil[0].writemask != 0 ||
(two_sided_stencil && state->stencil[1].writemask != 0);
wmds.DepthTestEnable = state->depth.enabled;
wmds.DepthBufferWriteEnable = state->depth.writemask;
wmds.StencilTestMask = state->stencil[0].valuemask;
wmds.StencilWriteMask = state->stencil[0].writemask;
wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
/* wmds.[Backface]StencilReferenceValue are merged later */
#if GEN_GEN >= 12
wmds.StencilReferenceValueModifyDisable = true;
#endif
}
#if GEN_GEN >= 12
iris_pack_command(GENX(3DSTATE_DEPTH_BOUNDS), cso->depth_bounds, depth_bounds) {
depth_bounds.DepthBoundsTestValueModifyDisable = false;
depth_bounds.DepthBoundsTestEnableModifyDisable = false;
depth_bounds.DepthBoundsTestEnable = state->depth.bounds_test;
depth_bounds.DepthBoundsTestMinValue = state->depth.bounds_min;
depth_bounds.DepthBoundsTestMaxValue = state->depth.bounds_max;
}
#endif
return cso;
}
/**
* The pipe->bind_depth_stencil_alpha_state() driver hook.
*
* Bind a depth/stencil/alpha CSO and flag related dirty bits.
*/
static void
iris_bind_zsa_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
struct iris_depth_stencil_alpha_state *new_cso = state;
if (new_cso) {
if (cso_changed(alpha.ref_value))
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
if (cso_changed(alpha.enabled))
ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
if (cso_changed(alpha.func))
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
if (cso_changed(depth_writes_enabled))
ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
#if GEN_GEN >= 12
if (cso_changed(depth_bounds))
ice->state.dirty |= IRIS_DIRTY_DEPTH_BOUNDS;
#endif
}
ice->state.cso_zsa = new_cso;
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
ice->state.stage_dirty |=
ice->state.stage_dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
if (GEN_GEN == 8)
ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
}
#if GEN_GEN == 8
static bool
want_pma_fix(struct iris_context *ice)
{
UNUSED struct iris_screen *screen = (void *) ice->ctx.screen;
UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
const struct brw_wm_prog_data *wm_prog_data = (void *)
ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
const struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
const struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
const struct iris_blend_state *cso_blend = ice->state.cso_blend;
/* In very specific combinations of state, we can instruct Gen8-9 hardware
* to avoid stalling at the pixel mask array. The state equations are
* documented in these places:
*
* - Gen8 Depth PMA Fix: CACHE_MODE_1::NP_PMA_FIX_ENABLE
* - Gen9 Stencil PMA Fix: CACHE_MODE_0::STC PMA Optimization Enable
*
* Both equations share some common elements:
*
* no_hiz_op =
* !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
* 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
* 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
* 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
*
* killpixels =
* 3DSTATE_WM::ForceKillPix != ForceOff &&
* (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
* 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
* 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
* 3DSTATE_PS_BLEND::AlphaTestEnable ||
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
*
* (Technically the stencil PMA treats ForceKillPix differently,
* but I think this is a documentation oversight, and we don't
* ever use it in this way, so it doesn't matter).
*
* common_pma_fix =
* 3DSTATE_WM::ForceThreadDispatch != 1 &&
* 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 &&
* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
* 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS &&
* 3DSTATE_PS_EXTRA::PixelShaderValid &&
* no_hiz_op
*
* These are always true:
*
* 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0
* 3DSTATE_PS_EXTRA::PixelShaderValid
*
* Also, we never use the normal drawing path for HiZ ops; these are true:
*
* !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
* 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
* 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
* 3DSTATE_WM_HZ_OP::StencilBufferClear)
*
* This happens sometimes:
*
* 3DSTATE_WM::ForceThreadDispatch != 1
*
* However, we choose to ignore it as it either agrees with the signal
* (dispatch was already enabled, so nothing out of the ordinary), or
* there are no framebuffer attachments (so no depth or HiZ anyway,
* meaning the PMA signal will already be disabled).
*/
if (!cso_fb->zsbuf)
return false;
struct iris_resource *zres, *sres;
iris_get_depth_stencil_resources(cso_fb->zsbuf->texture, &zres, &sres);
/* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
* 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
*/
if (!zres || !iris_resource_level_has_hiz(zres, cso_fb->zsbuf->u.tex.level))
return false;
/* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS */
if (wm_prog_data->early_fragment_tests)
return false;
/* 3DSTATE_WM::ForceKillPix != ForceOff &&
* (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
* 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
* 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
* 3DSTATE_PS_BLEND::AlphaTestEnable ||
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
*/
bool killpixels = wm_prog_data->uses_kill || wm_prog_data->uses_omask ||
cso_blend->alpha_to_coverage || cso_zsa->alpha.enabled;
/* The Gen8 depth PMA equation becomes:
*
* depth_writes =
* 3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable &&
* 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE
*
* stencil_writes =
* 3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
* 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&
* 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE
*
* Z_PMA_OPT =
* common_pma_fix &&
* 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&
* ((killpixels && (depth_writes || stencil_writes)) ||
* 3DSTATE_PS_EXTRA::PixelShaderComputedDepthMode != PSCDEPTH_OFF)
*
*/
if (!cso_zsa->depth_test_enabled)
return false;
return wm_prog_data->computed_depth_mode != PSCDEPTH_OFF ||
(killpixels && (cso_zsa->depth_writes_enabled ||
(sres && cso_zsa->stencil_writes_enabled)));
}
#endif
void
genX(update_pma_fix)(struct iris_context *ice,
struct iris_batch *batch,
bool enable)
{
#if GEN_GEN == 8
struct iris_genx_state *genx = ice->state.genx;
if (genx->pma_fix_enabled == enable)
return;
genx->pma_fix_enabled = enable;
/* According to the Broadwell PIPE_CONTROL documentation, software should
* emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
* prior to the LRI. If stencil buffer writes are enabled, then a Render * Cache Flush is also necessary.
*
* The Gen9 docs say to use a depth stall rather than a command streamer
* stall. However, the hardware seems to violently disagree. A full
* command streamer stall seems to be needed in both cases.
*/
iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_RENDER_TARGET_FLUSH);
uint32_t reg_val;
iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
reg.NPPMAFixEnable = enable;
reg.NPEarlyZFailsDisable = enable;
reg.NPPMAFixEnableMask = true;
reg.NPEarlyZFailsDisableMask = true;
}
iris_emit_lri(batch, CACHE_MODE_1, reg_val);
/* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
* Flush bits is often necessary. We do it regardless because it's easier.
* The render cache flush is also necessary if stencil writes are enabled.
*
* Again, the Gen9 docs give a different set of flushes but the Broadwell
* flushes seem to work just as well.
*/
iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_RENDER_TARGET_FLUSH);
#endif
}
/**
* Gallium CSO for rasterizer state.
*/
struct iris_rasterizer_state {
uint32_t sf[GENX(3DSTATE_SF_length)];
uint32_t clip[GENX(3DSTATE_CLIP_length)];
uint32_t raster[GENX(3DSTATE_RASTER_length)];
uint32_t wm[GENX(3DSTATE_WM_length)];
uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
uint8_t num_clip_plane_consts;
bool clip_halfz; /* for CC_VIEWPORT */
bool depth_clip_near; /* for CC_VIEWPORT */
bool depth_clip_far; /* for CC_VIEWPORT */
bool flatshade; /* for shader state */
bool flatshade_first; /* for stream output */
bool clamp_fragment_color; /* for shader state */
bool light_twoside; /* for shader state */
bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
bool line_stipple_enable;
bool poly_stipple_enable;
bool multisample;
bool force_persample_interp;
bool conservative_rasterization;
bool fill_mode_point_or_line;
enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
uint16_t sprite_coord_enable;
};
static float
get_line_width(const struct pipe_rasterizer_state *state)
{
float line_width = state->line_width;
/* From the OpenGL 4.4 spec:
*
* "The actual width of non-antialiased lines is determined by rounding
* the supplied width to the nearest integer, then clamping it to the
* implementation-dependent maximum non-antialiased line width."
*/
if (!state->multisample && !state->line_smooth)
line_width = roundf(state->line_width);
if (!state->multisample && state->line_smooth && line_width < 1.5f) {
/* For 1 pixel line thickness or less, the general anti-aliasing
* algorithm gives up, and a garbage line is generated. Setting a
* Line Width of 0.0 specifies the rasterization of the "thinnest"
* (one-pixel-wide), non-antialiased lines.
*
* Lines rendered with zero Line Width are rasterized using the
* "Grid Intersection Quantization" rules as specified by the
* "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
*/
line_width = 0.0f;
}
return line_width;
}
/**
* The pipe->create_rasterizer_state() driver hook.
*/
static void *
iris_create_rasterizer_state(struct pipe_context *ctx,
const struct pipe_rasterizer_state *state)
{
struct iris_rasterizer_state *cso =
malloc(sizeof(struct iris_rasterizer_state));
cso->multisample = state->multisample;
cso->force_persample_interp = state->force_persample_interp;
cso->clip_halfz = state->clip_halfz;
cso->depth_clip_near = state->depth_clip_near;
cso->depth_clip_far = state->depth_clip_far;
cso->flatshade = state->flatshade;
cso->flatshade_first = state->flatshade_first;
cso->clamp_fragment_color = state->clamp_fragment_color;
cso->light_twoside = state->light_twoside;
cso->rasterizer_discard = state->rasterizer_discard;
cso->half_pixel_center = state->half_pixel_center;
cso->sprite_coord_mode = state->sprite_coord_mode;
cso->sprite_coord_enable = state->sprite_coord_enable;
cso->line_stipple_enable = state->line_stipple_enable;
cso->poly_stipple_enable = state->poly_stipple_enable;
cso->conservative_rasterization =
state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
cso->fill_mode_point_or_line =
state->fill_front == PIPE_POLYGON_MODE_LINE ||
state->fill_front == PIPE_POLYGON_MODE_POINT ||
state->fill_back == PIPE_POLYGON_MODE_LINE ||
state->fill_back == PIPE_POLYGON_MODE_POINT;
if (state->clip_plane_enable != 0)
cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
else
cso->num_clip_plane_consts = 0;
float line_width = get_line_width(state);
iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
sf.StatisticsEnable = true;
sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
sf.LineEndCapAntialiasingRegionWidth =
state->line_smooth ? _10pixels : _05pixels;
sf.LastPixelEnable = state->line_last_pixel;
sf.LineWidth = line_width;
sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
!state->point_quad_rasterization;
sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
sf.PointWidth = state->point_size;
if (state->flatshade_first) {
sf.TriangleFanProvokingVertexSelect = 1;
} else {
sf.TriangleStripListProvokingVertexSelect = 2;
sf.TriangleFanProvokingVertexSelect = 2;
sf.LineStripListProvokingVertexSelect = 1;
}
}
iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
rr.CullMode = translate_cull_mode(state->cull_face);
rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
rr.DXMultisampleRasterizationEnable = state->multisample;
rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
rr.GlobalDepthOffsetEnablePoint = state->offset_point;
rr.GlobalDepthOffsetConstant = state->offset_units * 2;
rr.GlobalDepthOffsetScale = state->offset_scale;
rr.GlobalDepthOffsetClamp = state->offset_clamp;
rr.SmoothPointEnable = state->point_smooth;
rr.AntialiasingEnable = state->line_smooth;
rr.ScissorRectangleEnable = state->scissor;
#if GEN_GEN >= 9
rr.ViewportZNearClipTestEnable = state->depth_clip_near;
rr.ViewportZFarClipTestEnable = state->depth_clip_far;
rr.ConservativeRasterizationEnable =
cso->conservative_rasterization;
#else
rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
#endif
}
iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
/* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
* the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
*/
cl.EarlyCullEnable = true;
cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
cl.ForceUserClipDistanceClipTestEnableBitmask = true;
cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
cl.GuardbandClipTestEnable = true;
cl.ClipEnable = true;
cl.MinimumPointWidth = 0.125;
cl.MaximumPointWidth = 255.875;
if (state->flatshade_first) {
cl.TriangleFanProvokingVertexSelect = 1;
} else {
cl.TriangleStripListProvokingVertexSelect = 2;
cl.TriangleFanProvokingVertexSelect = 2;
cl.LineStripListProvokingVertexSelect = 1;
}
}
iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
/* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
* filled in at draw time from the FS program.
*/
wm.LineAntialiasingRegionWidth = _10pixels;
wm.LineEndCapAntialiasingRegionWidth = _05pixels;
wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
wm.LineStippleEnable = state->line_stipple_enable;
wm.PolygonStippleEnable = state->poly_stipple_enable;
}
/* Remap from 0..255 back to 1..256 */
const unsigned line_stipple_factor = state->line_stipple_factor + 1;
iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
if (state->line_stipple_enable) {
line.LineStipplePattern = state->line_stipple_pattern;
line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
line.LineStippleRepeatCount = line_stipple_factor;
}
}
return cso;
}
/**
* The pipe->bind_rasterizer_state() driver hook.
*
* Bind a rasterizer CSO and flag related dirty bits.
*/
static void
iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
struct iris_rasterizer_state *new_cso = state;
if (new_cso) {
/* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
if (cso_changed_memcmp(line_stipple))
ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
if (cso_changed(half_pixel_center))
ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
ice->state.dirty |= IRIS_DIRTY_WM;
if (cso_changed(rasterizer_discard))
ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
if (cso_changed(flatshade_first))
ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
cso_changed(clip_halfz))
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
if (cso_changed(sprite_coord_enable) ||
cso_changed(sprite_coord_mode) ||
cso_changed(light_twoside))
ice->state.dirty |= IRIS_DIRTY_SBE;
if (cso_changed(conservative_rasterization))
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
}
ice->state.cso_rast = new_cso;
ice->state.dirty |= IRIS_DIRTY_RASTER;
ice->state.dirty |= IRIS_DIRTY_CLIP;
ice->state.stage_dirty |=
ice->state.stage_dirty_for_nos[IRIS_NOS_RASTERIZER];
}
/**
* Return true if the given wrap mode requires the border color to exist.
*
* (We can skip uploading it if the sampler isn't going to use it.)
*/
static bool
wrap_mode_needs_border_color(unsigned wrap_mode)
{
return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
}
/**
* Gallium CSO for sampler state.
*/
struct iris_sampler_state {
union pipe_color_union border_color;
bool needs_border_color;
uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
};
/**
* The pipe->create_sampler_state() driver hook.
*
* We fill out SAMPLER_STATE (except for the border color pointer), and
* store that on the CPU. It doesn't make sense to upload it to a GPU
* buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
* all bound sampler states to be in contiguous memor.
*/
static void *
iris_create_sampler_state(struct pipe_context *ctx,
const struct pipe_sampler_state *state)
{
struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
if (!cso)
return NULL;
STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
unsigned wrap_s = translate_wrap(state->wrap_s);
unsigned wrap_t = translate_wrap(state->wrap_t);
unsigned wrap_r = translate_wrap(state->wrap_r);
memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
wrap_mode_needs_border_color(wrap_t) ||
wrap_mode_needs_border_color(wrap_r);
float min_lod = state->min_lod;
unsigned mag_img_filter = state->mag_img_filter;
// XXX: explain this code ported from ilo...I don't get it at all...
if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
state->min_lod > 0.0f) {
min_lod = 0.0f;
mag_img_filter = state->min_img_filter;
}
iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
samp.TCXAddressControlMode = wrap_s;
samp.TCYAddressControlMode = wrap_t;
samp.TCZAddressControlMode = wrap_r;
samp.CubeSurfaceControlMode = state->seamless_cube_map;
samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
samp.MinModeFilter = state->min_img_filter;
samp.MagModeFilter = mag_img_filter;
samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
samp.MaximumAnisotropy = RATIO21;
if (state->max_anisotropy >= 2) {
if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
samp.AnisotropicAlgorithm = EWAApproximation;
}
if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
samp.MaximumAnisotropy =
MIN2((state->max_anisotropy - 2) / 2, RATIO161);
}
/* Set address rounding bits if not using nearest filtering. */
if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
samp.UAddressMinFilterRoundingEnable = true;
samp.VAddressMinFilterRoundingEnable = true;
samp.RAddressMinFilterRoundingEnable = true;
}
if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
samp.UAddressMagFilterRoundingEnable = true;
samp.VAddressMagFilterRoundingEnable = true;
samp.RAddressMagFilterRoundingEnable = true;
}
if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
samp.ShadowFunction = translate_shadow_func(state->compare_func);
const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
samp.LODPreClampMode = CLAMP_MODE_OGL;
samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
/* .BorderColorPointer is filled in by iris_bind_sampler_states. */
}
return cso;
}
/**
* The pipe->bind_sampler_states() driver hook.
*/
static void
iris_bind_sampler_states(struct pipe_context *ctx,
enum pipe_shader_type p_stage,
unsigned start, unsigned count,
void **states)
{
struct iris_context *ice = (struct iris_context *) ctx;
gl_shader_stage stage = stage_from_pipe(p_stage);
struct iris_shader_state *shs = &ice->state.shaders[stage];
assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
bool dirty = false;
for (int i = 0; i < count; i++) {
if (shs->samplers[start + i] != states[i]) {
shs->samplers[start + i] = states[i];
dirty = true;
}
}
if (dirty)
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage;
}
/**
* Upload the sampler states into a contiguous area of GPU memory, for
* for 3DSTATE_SAMPLER_STATE_POINTERS_*.
*
* Also fill out the border color state pointers.
*/
static void
iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
{
struct iris_shader_state *shs = &ice->state.shaders[stage];
const struct shader_info *info = iris_get_shader_info(ice, stage);
/* We assume gallium frontends will call pipe->bind_sampler_states()
* if the program's number of textures changes.
*/
unsigned count = info ? util_last_bit(info->textures_used) : 0;
if (!count)
return;
/* Assemble the SAMPLER_STATEs into a contiguous table that lives
* in the dynamic state memory zone, so we can point to it via the
* 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
*/
unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
uint32_t *map =
upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
if (unlikely(!map))
return;
struct pipe_resource *res = shs->sampler_table.res;
struct iris_bo *bo = iris_resource_bo(res);
iris_record_state_size(ice->state.sizes,
bo->gtt_offset + shs->sampler_table.offset, size);
shs->sampler_table.offset += iris_bo_offset_from_base_address(bo);
/* Make sure all land in the same BO */
iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
ice->state.need_border_colors &= ~(1 << stage);
for (int i = 0; i < count; i++) {
struct iris_sampler_state *state = shs->samplers[i];
struct iris_sampler_view *tex = shs->textures[i];
if (!state) {
memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
} else if (!state->needs_border_color) {
memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
} else {
ice->state.need_border_colors |= 1 << stage;
/* We may need to swizzle the border color for format faking.
* A/LA formats are faked as R/RG with 000R or R00G swizzles.
* This means we need to move the border color's A channel into
* the R or G channels so that those read swizzles will move it
* back into A.
*/
union pipe_color_union *color = &state->border_color;
union pipe_color_union tmp;
if (tex) {
enum pipe_format internal_format = tex->res->internal_format;
if (util_format_is_alpha(internal_format)) {
unsigned char swz[4] = {
PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
};
util_format_apply_color_swizzle(&tmp, color, swz, true);
color = &tmp;
} else if (util_format_is_luminance_alpha(internal_format) &&
internal_format != PIPE_FORMAT_L8A8_SRGB) {
unsigned char swz[4] = {
PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
};
util_format_apply_color_swizzle(&tmp, color, swz, true);
color = &tmp;
}
}
/* Stream out the border color and merge the pointer. */
uint32_t offset = iris_upload_border_color(ice, color);
uint32_t dynamic[GENX(SAMPLER_STATE_length)];
iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
dyns.BorderColorPointer = offset;
}
for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
map[j] = state->sampler_state[j] | dynamic[j];
}
map += GENX(SAMPLER_STATE_length);
}
}
static enum isl_channel_select
fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
{
switch (swz) {
case PIPE_SWIZZLE_X: return fmt->swizzle.r;
case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
case PIPE_SWIZZLE_W: return fmt->swizzle.a;
case PIPE_SWIZZLE_1: return SCS_ONE;
case PIPE_SWIZZLE_0: return SCS_ZERO;
default: unreachable("invalid swizzle");
}
}
static void
fill_buffer_surface_state(struct isl_device *isl_dev,
struct iris_resource *res,
void *map,
enum isl_format format,
struct isl_swizzle swizzle,
unsigned offset,
unsigned size,
isl_surf_usage_flags_t usage)
{
const struct isl_format_layout *fmtl = isl_format_get_layout(format);
const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
/* The ARB_texture_buffer_specification says:
*
* "The number of texels in the buffer texture's texel array is given by
*
* floor(<buffer_size> / (<components> * sizeof(<base_type>)),
*
* where <buffer_size> is the size of the buffer object, in basic
* machine units and <components> and <base_type> are the element count
* and base data type for elements, as specified in Table X.1. The
* number of texels in the texel array is then clamped to the
* implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
*
* We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
* so that when ISL divides by stride to obtain the number of texels, that
* texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
*/
unsigned final_size =
MIN3(size, res->bo->size - res->offset - offset,
IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
isl_buffer_fill_state(isl_dev, map,
.address = res->bo->gtt_offset + res->offset + offset,
.size_B = final_size,
.format = format,
.swizzle = swizzle,
.stride_B = cpp,
.mocs = iris_mocs(res->bo, isl_dev, usage));
}
#define SURFACE_STATE_ALIGNMENT 64
/**
* Allocate several contiguous SURFACE_STATE structures, one for each
* supported auxiliary surface mode. This only allocates the CPU-side
* copy, they will need to be uploaded later after they're filled in.
*/
static void
alloc_surface_states(struct iris_surface_state *surf_state,
unsigned aux_usages)
{
const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
/* If this changes, update this to explicitly align pointers */
STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
assert(aux_usages != 0);
/* In case we're re-allocating them... */
free(surf_state->cpu);
surf_state->num_states = util_bitcount(aux_usages);
surf_state->cpu = calloc(surf_state->num_states, surf_size);
surf_state->ref.offset = 0;
pipe_resource_reference(&surf_state->ref.res, NULL);
assert(surf_state->cpu);
}
/**
* Upload the CPU side SURFACE_STATEs into a GPU buffer.
*/
static void
upload_surface_states(struct u_upload_mgr *mgr,
struct iris_surface_state *surf_state)
{
const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
const unsigned bytes = surf_state->num_states * surf_size;
void *map =
upload_state(mgr, &surf_state->ref, bytes, SURFACE_STATE_ALIGNMENT);
surf_state->ref.offset +=
iris_bo_offset_from_base_address(iris_resource_bo(surf_state->ref.res));
if (map)
memcpy(map, surf_state->cpu, bytes);
}
/**
* Update resource addresses in a set of SURFACE_STATE descriptors,
* and re-upload them if necessary.
*/
static bool
update_surface_state_addrs(struct u_upload_mgr *mgr,
struct iris_surface_state *surf_state,
struct iris_bo *bo)
{
if (surf_state->bo_address == bo->gtt_offset)
return false;
STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) % 64 == 0);
STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_bits) == 64);
uint64_t *ss_addr = (uint64_t *) &surf_state->cpu[GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) / 32];
/* First, update the CPU copies. We assume no other fields exist in
* the QWord containing Surface Base Address.
*/
for (unsigned i = 0; i < surf_state->num_states; i++) {
*ss_addr = *ss_addr - surf_state->bo_address + bo->gtt_offset;
ss_addr = ((void *) ss_addr) + SURFACE_STATE_ALIGNMENT;
}
/* Next, upload the updated copies to a GPU buffer. */
upload_surface_states(mgr, surf_state);
surf_state->bo_address = bo->gtt_offset;
return true;
}
#if GEN_GEN == 8
/**
* Return an ISL surface for use with non-coherent render target reads.
*
* In a few complex cases, we can't use the SURFACE_STATE for normal render
* target writes. We need to make a separate one for sampling which refers
* to the single slice of the texture being read.
*/
static void
get_rt_read_isl_surf(const struct gen_device_info *devinfo,
struct iris_resource *res,
enum pipe_texture_target target,
struct isl_view *view,
uint32_t *offset_to_tile,
uint32_t *tile_x_sa,
uint32_t *tile_y_sa,
struct isl_surf *surf)
{
*surf = res->surf;
const enum isl_dim_layout dim_layout =
iris_get_isl_dim_layout(devinfo, res->surf.tiling, target);
surf->dim = target_to_isl_surf_dim(target);
if (surf->dim_layout == dim_layout)
return;
/* The layout of the specified texture target is not compatible with the
* actual layout of the miptree structure in memory -- You're entering
* dangerous territory, this can only possibly work if you only intended
* to access a single level and slice of the texture, and the hardware
* supports the tile offset feature in order to allow non-tile-aligned
* base offsets, since we'll have to point the hardware to the first
* texel of the level instead of relying on the usual base level/layer
* controls.
*/
assert(view->levels == 1 && view->array_len == 1);
assert(*tile_x_sa == 0 && *tile_y_sa == 0);
*offset_to_tile = iris_resource_get_tile_offsets(res, view->base_level,
view->base_array_layer,
tile_x_sa, tile_y_sa);
const unsigned l = view->base_level;
surf->logical_level0_px.width = minify(surf->logical_level0_px.width, l);
surf->logical_level0_px.height = surf->dim <= ISL_SURF_DIM_1D ? 1 :
minify(surf->logical_level0_px.height, l);
surf->logical_level0_px.depth = surf->dim <= ISL_SURF_DIM_2D ? 1 :
minify(surf->logical_level0_px.depth, l);
surf->logical_level0_px.array_len = 1;
surf->levels = 1;
surf->dim_layout = dim_layout;
view->base_level = 0;
view->base_array_layer = 0;
}
#endif
static void
fill_surface_state(struct isl_device *isl_dev,
void *map,
struct iris_resource *res,
struct isl_surf *surf,
struct isl_view *view,
unsigned aux_usage,
uint32_t extra_main_offset,
uint32_t tile_x_sa,
uint32_t tile_y_sa)
{
struct isl_surf_fill_state_info f = {
.surf = surf,
.view = view,
.mocs = iris_mocs(res->bo, isl_dev, view->usage),
.address = res->bo->gtt_offset + res->offset + extra_main_offset,
.x_offset_sa = tile_x_sa,
.y_offset_sa = tile_y_sa,
};
assert(!iris_resource_unfinished_aux_import(res));
if (aux_usage != ISL_AUX_USAGE_NONE) {
f.aux_surf = &res->aux.surf;
f.aux_usage = aux_usage;
f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
struct iris_bo *clear_bo = NULL;
uint64_t clear_offset = 0;
f.clear_color =
iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
if (clear_bo) {
f.clear_address = clear_bo->gtt_offset + clear_offset;
f.use_clear_address = isl_dev->info->gen > 9;
}
}
isl_surf_fill_state_s(isl_dev, map, &f);
}
/**
* The pipe->create_sampler_view() driver hook.
*/
static struct pipe_sampler_view *
iris_create_sampler_view(struct pipe_context *ctx,
struct pipe_resource *tex,
const struct pipe_sampler_view *tmpl)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
const struct gen_device_info *devinfo = &screen->devinfo;
struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
if (!isv)
return NULL;
/* initialize base object */
isv->base = *tmpl;
isv->base.context = ctx;
isv->base.texture = NULL;
pipe_reference_init(&isv->base.reference, 1);
pipe_resource_reference(&isv->base.texture, tex);
if (util_format_is_depth_or_stencil(tmpl->format)) {
struct iris_resource *zres, *sres;
const struct util_format_description *desc =
util_format_description(tmpl->format);
iris_get_depth_stencil_resources(tex, &zres, &sres);
tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
}
isv->res = (struct iris_resource *) tex;
alloc_surface_states(&isv->surface_state, isv->res->aux.sampler_usages);
isv->surface_state.bo_address = isv->res->bo->gtt_offset;
isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
if (isv->base.target == PIPE_TEXTURE_CUBE ||
isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
usage |= ISL_SURF_USAGE_CUBE_BIT;
const struct iris_format_info fmt =
iris_format_for_usage(devinfo, tmpl->format, usage);
isv->clear_color = isv->res->aux.clear_color;
isv->view = (struct isl_view) {
.format = fmt.fmt,
.swizzle = (struct isl_swizzle) {
.r = fmt_swizzle(&fmt, tmpl->swizzle_r),
.g = fmt_swizzle(&fmt, tmpl->swizzle_g),
.b = fmt_swizzle(&fmt, tmpl->swizzle_b),
.a = fmt_swizzle(&fmt, tmpl->swizzle_a),
},
.usage = usage,
};
void *map = isv->surface_state.cpu;
/* Fill out SURFACE_STATE for this view. */
if (tmpl->target != PIPE_BUFFER) {
isv->view.base_level = tmpl->u.tex.first_level;
isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
// XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
isv->view.base_array_layer = tmpl->u.tex.first_layer;
isv->view.array_len =
tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
if (iris_resource_unfinished_aux_import(isv->res))
iris_resource_finish_aux_import(&screen->base, isv->res);
unsigned aux_modes = isv->res->aux.sampler_usages;
while (aux_modes) {
enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
/* If we have a multisampled depth buffer, do not create a sampler
* surface state with HiZ.
*/
fill_surface_state(&screen->isl_dev, map, isv->res, &isv->res->surf,
&isv->view, aux_usage, 0, 0, 0);
map += SURFACE_STATE_ALIGNMENT;
}
} else {
fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
isv->view.format, isv->view.swizzle,
tmpl->u.buf.offset, tmpl->u.buf.size,
ISL_SURF_USAGE_TEXTURE_BIT);
}
upload_surface_states(ice->state.surface_uploader, &isv->surface_state);
return &isv->base;
}
static void
iris_sampler_view_destroy(struct pipe_context *ctx,
struct pipe_sampler_view *state)
{
struct iris_sampler_view *isv = (void *) state;
pipe_resource_reference(&state->texture, NULL);
pipe_resource_reference(&isv->surface_state.ref.res, NULL);
free(isv->surface_state.cpu);
free(isv);
}
/**
* The pipe->create_surface() driver hook.
*
* In Gallium nomenclature, "surfaces" are a view of a resource that
* can be bound as a render target or depth/stencil buffer.
*/
static struct pipe_surface *
iris_create_surface(struct pipe_context *ctx,
struct pipe_resource *tex,
const struct pipe_surface *tmpl)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
const struct gen_device_info *devinfo = &screen->devinfo;
isl_surf_usage_flags_t usage = 0;
if (tmpl->writable)
usage = ISL_SURF_USAGE_STORAGE_BIT;
else if (util_format_is_depth_or_stencil(tmpl->format))
usage = ISL_SURF_USAGE_DEPTH_BIT;
else
usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
const struct iris_format_info fmt =
iris_format_for_usage(devinfo, tmpl->format, usage);
if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
!isl_format_supports_rendering(devinfo, fmt.fmt)) {
/* Framebuffer validation will reject this invalid case, but it
* hasn't had the opportunity yet. In the meantime, we need to
* avoid hitting ISL asserts about unsupported formats below.
*/
return NULL;
}
struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
struct pipe_surface *psurf = &surf->base;
struct iris_resource *res = (struct iris_resource *) tex;
if (!surf)
return NULL;
pipe_reference_init(&psurf->reference, 1);
pipe_resource_reference(&psurf->texture, tex);
psurf->context = ctx;
psurf->format = tmpl->format;
psurf->width = tex->width0;
psurf->height = tex->height0;
psurf->texture = tex;
psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
psurf->u.tex.level = tmpl->u.tex.level;
uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
struct isl_view *view = &surf->view;
*view = (struct isl_view) {
.format = fmt.fmt,
.base_level = tmpl->u.tex.level,
.levels = 1,
.base_array_layer = tmpl->u.tex.first_layer,
.array_len = array_len,
.swizzle = ISL_SWIZZLE_IDENTITY,
.usage = usage,
};
#if GEN_GEN == 8
enum pipe_texture_target target = (tex->target == PIPE_TEXTURE_3D &&
array_len == 1) ? PIPE_TEXTURE_2D :
tex->target == PIPE_TEXTURE_1D_ARRAY ?
PIPE_TEXTURE_2D_ARRAY : tex->target;
struct isl_view *read_view = &surf->read_view;
*read_view = (struct isl_view) {
.format = fmt.fmt,
.base_level = tmpl->u.tex.level,
.levels = 1,
.base_array_layer = tmpl->u.tex.first_layer,
.array_len = array_len,
.swizzle = ISL_SWIZZLE_IDENTITY,
.usage = ISL_SURF_USAGE_TEXTURE_BIT,
};
#endif
surf->clear_color = res->aux.clear_color;
/* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
ISL_SURF_USAGE_STENCIL_BIT))
return psurf;
alloc_surface_states(&surf->surface_state, res->aux.possible_usages);
surf->surface_state.bo_address = res->bo->gtt_offset;
#if GEN_GEN == 8
alloc_surface_states(&surf->surface_state_read, res->aux.possible_usages);
surf->surface_state_read.bo_address = res->bo->gtt_offset;
#endif
if (!isl_format_is_compressed(res->surf.format)) {
if (iris_resource_unfinished_aux_import(res))
iris_resource_finish_aux_import(&screen->base, res);
void *map = surf->surface_state.cpu;
UNUSED void *map_read = surf->surface_state_read.cpu;
/* This is a normal surface. Fill out a SURFACE_STATE for each possible
* auxiliary surface mode and return the pipe_surface.
*/
unsigned aux_modes = res->aux.possible_usages;
while (aux_modes) {
enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
fill_surface_state(&screen->isl_dev, map, res, &res->surf,
view, aux_usage, 0, 0, 0);
map += SURFACE_STATE_ALIGNMENT;
#if GEN_GEN == 8
struct isl_surf surf;
uint32_t offset_to_tile = 0, tile_x_sa = 0, tile_y_sa = 0;
get_rt_read_isl_surf(devinfo, res, target, read_view,
&offset_to_tile, &tile_x_sa, &tile_y_sa, &surf);
fill_surface_state(&screen->isl_dev, map_read, res, &surf, read_view,
aux_usage, offset_to_tile, tile_x_sa, tile_y_sa);
map_read += SURFACE_STATE_ALIGNMENT;
#endif
}
upload_surface_states(ice->state.surface_uploader, &surf->surface_state);
#if GEN_GEN == 8
upload_surface_states(ice->state.surface_uploader,
&surf->surface_state_read);
#endif
return psurf;
}
/* The resource has a compressed format, which is not renderable, but we
* have a renderable view format. We must be attempting to upload blocks
* of compressed data via an uncompressed view.
*
* In this case, we can assume there are no auxiliary buffers, a single
* miplevel, and that the resource is single-sampled. Gallium may try
* and create an uncompressed view with multiple layers, however.
*/
assert(!isl_format_is_compressed(fmt.fmt));
assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
assert(res->surf.samples == 1);
assert(view->levels == 1);
struct isl_surf isl_surf;
uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
if (view->base_level > 0) {
/* We can't rely on the hardware's miplevel selection with such
* a substantial lie about the format, so we select a single image
* using the Tile X/Y Offset fields. In this case, we can't handle
* multiple array slices.
*
* On Broadwell, HALIGN and VALIGN are specified in pixels and are
* hard-coded to align to exactly the block size of the compressed
* texture. This means that, when reinterpreted as a non-compressed
* texture, the tile offsets may be anything and we can't rely on
* X/Y Offset.
*
* Return NULL to force gallium frontends to take fallback paths.
*/
if (view->array_len > 1 || GEN_GEN == 8)
return NULL;
const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
view->base_level,
is_3d ? 0 : view->base_array_layer,
is_3d ? view->base_array_layer : 0,
&isl_surf,
&offset_B, &tile_x_sa, &tile_y_sa);
/* We use address and tile offsets to access a single level/layer
* as a subimage, so reset level/layer so it doesn't offset again.
*/
view->base_array_layer = 0;
view->base_level = 0;
} else {
/* Level 0 doesn't require tile offsets, and the hardware can find
* array slices using QPitch even with the format override, so we
* can allow layers in this case. Copy the original ISL surface.
*/
memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
}
/* Scale down the image dimensions by the block size. */
const struct isl_format_layout *fmtl =
isl_format_get_layout(res->surf.format);
isl_surf.format = fmt.fmt;
isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
tile_x_sa /= fmtl->bw;
tile_y_sa /= fmtl->bh;
psurf->width = isl_surf.logical_level0_px.width;
psurf->height = isl_surf.logical_level0_px.height;
struct isl_surf_fill_state_info f = {
.surf = &isl_surf,
.view = view,
.mocs = iris_mocs(res->bo, &screen->isl_dev,
ISL_SURF_USAGE_RENDER_TARGET_BIT),
.address = res->bo->gtt_offset + offset_B,
.x_offset_sa = tile_x_sa,
.y_offset_sa = tile_y_sa,
};
isl_surf_fill_state_s(&screen->isl_dev, surf->surface_state.cpu, &f);
upload_surface_states(ice->state.surface_uploader, &surf->surface_state);
return psurf;
}
#if GEN_GEN < 9
static void
fill_default_image_param(struct brw_image_param *param)
{
memset(param, 0, sizeof(*param));
/* Set the swizzling shifts to all-ones to effectively disable swizzling --
* See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
* detailed explanation of these parameters.
*/
param->swizzling[0] = 0xff;
param->swizzling[1] = 0xff;
}
static void
fill_buffer_image_param(struct brw_image_param *param,
enum pipe_format pfmt,
unsigned size)
{
const unsigned cpp = util_format_get_blocksize(pfmt);
fill_default_image_param(param);
param->size[0] = size / cpp;
param->stride[0] = cpp;
}
#else
#define isl_surf_fill_image_param(x, ...)
#define fill_default_image_param(x, ...)
#define fill_buffer_image_param(x, ...)
#endif
/**
* The pipe->set_shader_images() driver hook.
*/
static void
iris_set_shader_images(struct pipe_context *ctx,
enum pipe_shader_type p_stage,
unsigned start_slot, unsigned count,
const struct pipe_image_view *p_images)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
gl_shader_stage stage = stage_from_pipe(p_stage);
struct iris_shader_state *shs = &ice->state.shaders[stage];
#if GEN_GEN == 8
struct iris_genx_state *genx = ice->state.genx;
struct brw_image_param *image_params = genx->shaders[stage].image_param;
#endif
shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
for (unsigned i = 0; i < count; i++) {
struct iris_image_view *iv = &shs->image[start_slot + i];
if (p_images && p_images[i].resource) {
const struct pipe_image_view *img = &p_images[i];
struct iris_resource *res = (void *) img->resource;
util_copy_image_view(&iv->base, img);
shs->bound_image_views |= 1 << (start_slot + i);
res->bind_history |= PIPE_BIND_SHADER_IMAGE;
res->bind_stages |= 1 << stage;
enum isl_format isl_fmt = iris_image_view_get_format(ice, img);
/* Render compression with images supported on gen12+ only. */
unsigned aux_usages = GEN_GEN >= 12 ? res->aux.possible_usages :
1 << ISL_AUX_USAGE_NONE;
alloc_surface_states(&iv->surface_state, aux_usages);
iv->surface_state.bo_address = res->bo->gtt_offset;
void *map = iv->surface_state.cpu;
if (res->base.target != PIPE_BUFFER) {
struct isl_view view = {
.format = isl_fmt,
.base_level = img->u.tex.level,
.levels = 1,
.base_array_layer = img->u.tex.first_layer,
.array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
.swizzle = ISL_SWIZZLE_IDENTITY,
.usage = ISL_SURF_USAGE_STORAGE_BIT,
};
/* If using untyped fallback. */
if (isl_fmt == ISL_FORMAT_RAW) {
fill_buffer_surface_state(&screen->isl_dev, res, map,
isl_fmt, ISL_SWIZZLE_IDENTITY,
0, res->bo->size,
ISL_SURF_USAGE_STORAGE_BIT);
} else {
unsigned aux_modes = aux_usages;
while (aux_modes) {
enum isl_aux_usage usage = u_bit_scan(&aux_modes);
fill_surface_state(&screen->isl_dev, map, res, &res->surf,
&view, usage, 0, 0, 0);
map += SURFACE_STATE_ALIGNMENT;
}
}
isl_surf_fill_image_param(&screen->isl_dev,
&image_params[start_slot + i],
&res->surf, &view);
} else {
util_range_add(&res->base, &res->valid_buffer_range, img->u.buf.offset,
img->u.buf.offset + img->u.buf.size);
fill_buffer_surface_state(&screen->isl_dev, res, map,
isl_fmt, ISL_SWIZZLE_IDENTITY,
img->u.buf.offset, img->u.buf.size,
ISL_SURF_USAGE_STORAGE_BIT);
fill_buffer_image_param(&image_params[start_slot + i],
img->format, img->u.buf.size);
}
upload_surface_states(ice->state.surface_uploader, &iv->surface_state);
} else {
pipe_resource_reference(&iv->base.resource, NULL);
pipe_resource_reference(&iv->surface_state.ref.res, NULL);
fill_default_image_param(&image_params[start_slot + i]);
}
}
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
ice->state.dirty |=
stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
: IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
/* Broadwell also needs brw_image_params re-uploaded */
if (GEN_GEN < 9) {
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
shs->sysvals_need_upload = true;
}
}
/**
* The pipe->set_sampler_views() driver hook.
*/
static void
iris_set_sampler_views(struct pipe_context *ctx,
enum pipe_shader_type p_stage,
unsigned start, unsigned count,
struct pipe_sampler_view **views)
{
struct iris_context *ice = (struct iris_context *) ctx;
gl_shader_stage stage = stage_from_pipe(p_stage);
struct iris_shader_state *shs = &ice->state.shaders[stage];
shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
for (unsigned i = 0; i < count; i++) {
struct pipe_sampler_view *pview = views ? views[i] : NULL;
pipe_sampler_view_reference((struct pipe_sampler_view **)
&shs->textures[start + i], pview);
struct iris_sampler_view *view = (void *) pview;
if (view) {
view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
view->res->bind_stages |= 1 << stage;
shs->bound_sampler_views |= 1 << (start + i);
update_surface_state_addrs(ice->state.surface_uploader,
&view->surface_state, view->res->bo);
}
}
ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_BINDINGS_VS << stage);
ice->state.dirty |=
stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
: IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
}
static void
iris_set_compute_resources(struct pipe_context *ctx,
unsigned start, unsigned count,
struct pipe_surface **resources)
{
assert(count == 0);
}
static void
iris_set_global_binding(struct pipe_context *ctx,
unsigned start_slot, unsigned count,
struct pipe_resource **resources,
uint32_t **handles)
{
struct iris_context *ice = (struct iris_context *) ctx;
assert(start_slot + count <= IRIS_MAX_GLOBAL_BINDINGS);
for (unsigned i = 0; i < count; i++) {
if (resources && resources[i]) {
pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
resources[i]);
struct iris_resource *res = (void *) resources[i];
uint64_t addr = res->bo->gtt_offset;
memcpy(handles[i], &addr, sizeof(addr));
} else {
pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
NULL);
}
}
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_CS;
}
/**
* The pipe->set_tess_state() driver hook.
*/
static void
iris_set_tess_state(struct pipe_context *ctx,
const float default_outer_level[4],
const float default_inner_level[2])
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_TCS;
shs->sysvals_need_upload = true;
}
static void
iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
{
struct iris_surface *surf = (void *) p_surf;
pipe_resource_reference(&p_surf->texture, NULL);
pipe_resource_reference(&surf->surface_state.ref.res, NULL);
pipe_resource_reference(&surf->surface_state_read.ref.res, NULL);
free(surf->surface_state.cpu);
free(surf);
}
static void
iris_set_clip_state(struct pipe_context *ctx,
const struct pipe_clip_state *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
memcpy(&ice->state.clip_planes, state, sizeof(*state));
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS |
IRIS_STAGE_DIRTY_CONSTANTS_GS |
IRIS_STAGE_DIRTY_CONSTANTS_TES;
shs->sysvals_need_upload = true;
gshs->sysvals_need_upload = true;
tshs->sysvals_need_upload = true;
}
/**
* The pipe->set_polygon_stipple() driver hook.
*/
static void
iris_set_polygon_stipple(struct pipe_context *ctx,
const struct pipe_poly_stipple *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.poly_stipple, state, sizeof(*state));
ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
}
/**
* The pipe->set_sample_mask() driver hook.
*/
static void
iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
{
struct iris_context *ice = (struct iris_context *) ctx;
/* We only support 16x MSAA, so we have 16 bits of sample maks.
* st/mesa may pass us 0xffffffff though, meaning "enable all samples".
*/
ice->state.sample_mask = sample_mask & 0xffff;
ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
}
/**
* The pipe->set_scissor_states() driver hook.
*
* This corresponds to our SCISSOR_RECT state structures. It's an
* exact match, so we just store them, and memcpy them out later.
*/
static void
iris_set_scissor_states(struct pipe_context *ctx,
unsigned start_slot,
unsigned num_scissors,
const struct pipe_scissor_state *rects)
{
struct iris_context *ice = (struct iris_context *) ctx;
for (unsigned i = 0; i < num_scissors; i++) {
if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
/* If the scissor was out of bounds and got clamped to 0 width/height
* at the bounds, the subtraction of 1 from maximums could produce a
* negative number and thus not clip anything. Instead, just provide
* a min > max scissor inside the bounds, which produces the expected
* no rendering.
*/
ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
.minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
};
} else {
ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
.minx = rects[i].minx, .miny = rects[i].miny,
.maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
};
}
}
ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
}
/**
* The pipe->set_stencil_ref() driver hook.
*
* This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
*/
static void
iris_set_stencil_ref(struct pipe_context *ctx,
const struct pipe_stencil_ref *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.stencil_ref, state, sizeof(*state));
if (GEN_GEN >= 12)
ice->state.dirty |= IRIS_DIRTY_STENCIL_REF;
else if (GEN_GEN >= 9)
ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
else
ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
}
static float
viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
{
return copysignf(state->scale[axis], sign) + state->translate[axis];
}
/**
* The pipe->set_viewport_states() driver hook.
*
* This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
* the guardband yet, as we need the framebuffer dimensions, but we can
* at least fill out the rest.
*/
static void
iris_set_viewport_states(struct pipe_context *ctx,
unsigned start_slot,
unsigned count,
const struct pipe_viewport_state *states)
{
struct iris_context *ice = (struct iris_context *) ctx;
memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
!ice->state.cso_rast->depth_clip_far))
ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
}
/**
* The pipe->set_framebuffer_state() driver hook.
*
* Sets the current draw FBO, including color render targets, depth,
* and stencil buffers.
*/
static void
iris_set_framebuffer_state(struct pipe_context *ctx,
const struct pipe_framebuffer_state *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
struct isl_device *isl_dev = &screen->isl_dev;
struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
struct iris_resource *zres;
struct iris_resource *stencil_res;
unsigned samples = util_framebuffer_get_num_samples(state);
unsigned layers = util_framebuffer_get_num_layers(state);
if (cso->samples != samples) {
ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
/* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
}
if (cso->nr_cbufs != state->nr_cbufs) {
ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
}
if ((cso->layers == 0) != (layers == 0)) {
ice->state.dirty |= IRIS_DIRTY_CLIP;
}
if (cso->width != state->width || cso->height != state->height) {
ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
}
if (cso->zsbuf || state->zsbuf) {
ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
}
util_copy_framebuffer_state(cso, state);
cso->samples = samples;
cso->layers = layers;
struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
struct isl_view view = {
.base_level = 0,
.levels = 1,
.base_array_layer = 0,
.array_len = 1,
.swizzle = ISL_SWIZZLE_IDENTITY,
};
struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
if (cso->zsbuf) {
iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
&stencil_res);
view.base_level = cso->zsbuf->u.tex.level;
view.base_array_layer = cso->zsbuf->u.tex.first_layer;
view.array_len =
cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
if (zres) {
view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
info.depth_surf = &zres->surf;
info.depth_address = zres->bo->gtt_offset + zres->offset;
info.mocs = iris_mocs(zres->bo, isl_dev, view.usage);
view.format = zres->surf.format;
if (iris_resource_level_has_hiz(zres, view.base_level)) {
info.hiz_usage = zres->aux.usage;
info.hiz_surf = &zres->aux.surf;
info.hiz_address = zres->aux.bo->gtt_offset + zres->aux.offset;
}
}
if (stencil_res) {
view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
info.stencil_aux_usage = stencil_res->aux.usage;
info.stencil_surf = &stencil_res->surf;
info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
if (!zres) {
view.format = stencil_res->surf.format;
info.mocs = iris_mocs(stencil_res->bo, isl_dev, view.usage);
}
}
}
isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
/* Make a null surface for unbound buffers */
void *null_surf_map =
upload_state(ice->state.surface_uploader, &ice->state.null_fb,
4 * GENX(RENDER_SURFACE_STATE_length), 64);
isl_null_fill_state(&screen->isl_dev, null_surf_map,
isl_extent3d(MAX2(cso->width, 1),
MAX2(cso->height, 1),
cso->layers ? cso->layers : 1));
ice->state.null_fb.offset +=
iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
/* Render target change */
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_FS;
ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
ice->state.stage_dirty |=
ice->state.stage_dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
if (GEN_GEN == 8)
ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
}
/**
* The pipe->set_constant_buffer() driver hook.
*
* This uploads any constant data in user buffers, and references
* any UBO resources containing constant data.
*/
static void
iris_set_constant_buffer(struct pipe_context *ctx,
enum pipe_shader_type p_stage, unsigned index,
const struct pipe_constant_buffer *input)
{
struct iris_context *ice = (struct iris_context *) ctx;
gl_shader_stage stage = stage_from_pipe(p_stage);
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
/* TODO: Only do this if the buffer changes? */
pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
shs->bound_cbufs |= 1u << index;
if (input->user_buffer) {
void *map = NULL;
pipe_resource_reference(&cbuf->buffer, NULL);
u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
&cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
if (!cbuf->buffer) {
/* Allocation was unsuccessful - just unbind */
iris_set_constant_buffer(ctx, p_stage, index, NULL);
return;
}
assert(map);
memcpy(map, input->user_buffer, input->buffer_size);
} else if (input->buffer) {
pipe_resource_reference(&cbuf->buffer, input->buffer);
cbuf->buffer_offset = input->buffer_offset;
}
cbuf->buffer_size =
MIN2(input->buffer_size,
iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
struct iris_resource *res = (void *) cbuf->buffer;
res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
res->bind_stages |= 1 << stage;
} else {
shs->bound_cbufs &= ~(1u << index);
pipe_resource_reference(&cbuf->buffer, NULL);
}
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
}
static void
upload_sysvals(struct iris_context *ice,
gl_shader_stage stage,
const struct pipe_grid_info *grid)
{
UNUSED struct iris_genx_state *genx = ice->state.genx;
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader || (shader->num_system_values == 0 &&
shader->kernel_input_size == 0))
return;
assert(shader->num_cbufs > 0);
unsigned sysval_cbuf_index = shader->num_cbufs - 1;
struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
unsigned system_values_start =
ALIGN(shader->kernel_input_size, sizeof(uint32_t));
unsigned upload_size = system_values_start +
shader->num_system_values * sizeof(uint32_t);
void *map = NULL;
assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
&cbuf->buffer_offset, &cbuf->buffer, &map);
if (shader->kernel_input_size > 0)
memcpy(map, grid->input, shader->kernel_input_size);
uint32_t *sysval_map = map + system_values_start;
for (int i = 0; i < shader->num_system_values; i++) {
uint32_t sysval = shader->system_values[i];
uint32_t value = 0;
if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
#if GEN_GEN == 8
unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
struct brw_image_param *param =
&genx->shaders[stage].image_param[img];
assert(offset < sizeof(struct brw_image_param));
value = ((uint32_t *) param)[offset];
#endif
} else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
value = 0;
} else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
value = fui(ice->state.clip_planes.ucp[plane][comp]);
} else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
if (stage == MESA_SHADER_TESS_CTRL) {
value = ice->state.vertices_per_patch;
} else {
assert(stage == MESA_SHADER_TESS_EVAL);
const struct shader_info *tcs_info =
iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
if (tcs_info)
value = tcs_info->tess.tcs_vertices_out;
else
value = ice->state.vertices_per_patch;
}
} else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
value = fui(ice->state.default_outer_level[i]);
} else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
value = fui(ice->state.default_inner_level[0]);
} else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
value = fui(ice->state.default_inner_level[1]);
} else if (sysval >= BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X &&
sysval <= BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z) {
unsigned i = sysval - BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X;
value = ice->state.last_block[i];
} else if (sysval == BRW_PARAM_BUILTIN_WORK_DIM) {
value = grid->work_dim;
} else {
assert(!"unhandled system value");
}
*sysval_map++ = value;
}
cbuf->buffer_size = upload_size;
iris_upload_ubo_ssbo_surf_state(ice, cbuf,
&shs->constbuf_surf_state[sysval_cbuf_index],
ISL_SURF_USAGE_CONSTANT_BUFFER_BIT);
shs->sysvals_need_upload = false;
}
/**
* The pipe->set_shader_buffers() driver hook.
*
* This binds SSBOs and ABOs. Unfortunately, we need to stream out
* SURFACE_STATE here, as the buffer offset may change each time.
*/
static void
iris_set_shader_buffers(struct pipe_context *ctx,
enum pipe_shader_type p_stage,
unsigned start_slot, unsigned count,
const struct pipe_shader_buffer *buffers,
unsigned writable_bitmask)
{
struct iris_context *ice = (struct iris_context *) ctx;
gl_shader_stage stage = stage_from_pipe(p_stage);
struct iris_shader_state *shs = &ice->state.shaders[stage];
unsigned modified_bits = u_bit_consecutive(start_slot, count);
shs->bound_ssbos &= ~modified_bits;
shs->writable_ssbos &= ~modified_bits;
shs->writable_ssbos |= writable_bitmask << start_slot;
for (unsigned i = 0; i < count; i++) {
if (buffers && buffers[i].buffer) {
struct iris_resource *res = (void *) buffers[i].buffer;
struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
struct iris_state_ref *surf_state =
&shs->ssbo_surf_state[start_slot + i];
pipe_resource_reference(&ssbo->buffer, &res->base);
ssbo->buffer_offset = buffers[i].buffer_offset;
ssbo->buffer_size =
MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
shs->bound_ssbos |= 1 << (start_slot + i);
isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, usage);
res->bind_history |= PIPE_BIND_SHADER_BUFFER;
res->bind_stages |= 1 << stage;
util_range_add(&res->base, &res->valid_buffer_range, ssbo->buffer_offset,
ssbo->buffer_offset + ssbo->buffer_size);
} else {
pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
NULL);
}
}
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
}
static void
iris_delete_state(struct pipe_context *ctx, void *state)
{
free(state);
}
/**
* The pipe->set_vertex_buffers() driver hook.
*
* This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
*/
static void
iris_set_vertex_buffers(struct pipe_context *ctx,
unsigned start_slot, unsigned count,
const struct pipe_vertex_buffer *buffers)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
struct iris_genx_state *genx = ice->state.genx;
ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
for (unsigned i = 0; i < count; i++) {
const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
struct iris_vertex_buffer_state *state =
&genx->vertex_buffers[start_slot + i];
if (!buffer) {
pipe_resource_reference(&state->resource, NULL);
continue;
}
/* We may see user buffers that are NULL bindings. */
assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
pipe_resource_reference(&state->resource, buffer->buffer.resource);
struct iris_resource *res = (void *) state->resource;
state->offset = (int) buffer->buffer_offset;
if (res) {
ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
}
iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
vb.VertexBufferIndex = start_slot + i;
vb.AddressModifyEnable = true;
vb.BufferPitch = buffer->stride;
if (res) {
vb.BufferSize = res->base.width0 - (int) buffer->buffer_offset;
vb.BufferStartingAddress =
ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
} else {
vb.NullVertexBuffer = true;
}
}
}
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
}
/**
* Gallium CSO for vertex elements.
*/
struct iris_vertex_element_state {
uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
unsigned count;
};
/**
* The pipe->create_vertex_elements() driver hook.
*
* This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
* and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
* arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
* needed. In these cases we will need information available at draw time.
* We setup edgeflag_ve and edgeflag_vfi as alternatives last
* 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
* draw time if we detect that EdgeFlag is needed by the Vertex Shader.
*/
static void *
iris_create_vertex_elements(struct pipe_context *ctx,
unsigned count,
const struct pipe_vertex_element *state)
{
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
const struct gen_device_info *devinfo = &screen->devinfo;
struct iris_vertex_element_state *cso =
malloc(sizeof(struct iris_vertex_element_state));
cso->count = count;
iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
ve.DWordLength =
1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
}
uint32_t *ve_pack_dest = &cso->vertex_elements[1];
uint32_t *vfi_pack_dest = cso->vf_instancing;
if (count == 0) {
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.Valid = true;
ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
ve.Component0Control = VFCOMP_STORE_0;
ve.Component1Control = VFCOMP_STORE_0;
ve.Component2Control = VFCOMP_STORE_0;
ve.Component3Control = VFCOMP_STORE_1_FP;
}
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
}
}
for (int i = 0; i < count; i++) {
const struct iris_format_info fmt =
iris_format_for_usage(devinfo, state[i].src_format, 0);
unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
switch (isl_format_get_num_channels(fmt.fmt)) {
case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
case 3:
comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
: VFCOMP_STORE_1_FP;
break;
}
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.EdgeFlagEnable = false;
ve.VertexBufferIndex = state[i].vertex_buffer_index;
ve.Valid = true;
ve.SourceElementOffset = state[i].src_offset;
ve.SourceElementFormat = fmt.fmt;
ve.Component0Control = comp[0];
ve.Component1Control = comp[1];
ve.Component2Control = comp[2];
ve.Component3Control = comp[3];
}
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
vi.VertexElementIndex = i;
vi.InstancingEnable = state[i].instance_divisor > 0;
vi.InstanceDataStepRate = state[i].instance_divisor;
}
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
}
/* An alternative version of the last VE and VFI is stored so it
* can be used at draw time in case Vertex Shader uses EdgeFlag
*/
if (count) {
const unsigned edgeflag_index = count - 1;
const struct iris_format_info fmt =
iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
ve.EdgeFlagEnable = true ;
ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
ve.Valid = true;
ve.SourceElementOffset = state[edgeflag_index].src_offset;
ve.SourceElementFormat = fmt.fmt;
ve.Component0Control = VFCOMP_STORE_SRC;
ve.Component1Control = VFCOMP_STORE_0;
ve.Component2Control = VFCOMP_STORE_0;
ve.Component3Control = VFCOMP_STORE_0;
}
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
/* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
* at draw time, as it should change if SGVs are emitted.
*/
vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
}
}
return cso;
}
/**
* The pipe->bind_vertex_elements_state() driver hook.
*/
static void
iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
struct iris_vertex_element_state *new_cso = state;
/* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
* we need to re-emit it to ensure we're overriding the right one.
*/
if (new_cso && cso_changed(count))
ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
ice->state.cso_vertex_elements = state;
ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
}
/**
* The pipe->create_stream_output_target() driver hook.
*
* "Target" here refers to a destination buffer. We translate this into
* a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
* know which buffer this represents, or whether we ought to zero the
* write-offsets, or append. Those are handled in the set() hook.
*/
static struct pipe_stream_output_target *
iris_create_stream_output_target(struct pipe_context *ctx,
struct pipe_resource *p_res,
unsigned buffer_offset,
unsigned buffer_size)
{
struct iris_resource *res = (void *) p_res;
struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
if (!cso)
return NULL;
res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
pipe_reference_init(&cso->base.reference, 1);
pipe_resource_reference(&cso->base.buffer, p_res);
cso->base.buffer_offset = buffer_offset;
cso->base.buffer_size = buffer_size;
cso->base.context = ctx;
util_range_add(&res->base, &res->valid_buffer_range, buffer_offset,
buffer_offset + buffer_size);
upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
return &cso->base;
}
static void
iris_stream_output_target_destroy(struct pipe_context *ctx,
struct pipe_stream_output_target *state)
{
struct iris_stream_output_target *cso = (void *) state;
pipe_resource_reference(&cso->base.buffer, NULL);
pipe_resource_reference(&cso->offset.res, NULL);
free(cso);
}
/**
* The pipe->set_stream_output_targets() driver hook.
*
* At this point, we know which targets are bound to a particular index,
* and also whether we want to append or start over. We can finish the
* 3DSTATE_SO_BUFFER packets we started earlier.
*/
static void
iris_set_stream_output_targets(struct pipe_context *ctx,
unsigned num_targets,
struct pipe_stream_output_target **targets,
const unsigned *offsets)
{
struct iris_context *ice = (struct iris_context *) ctx;
struct iris_genx_state *genx = ice->state.genx;
uint32_t *so_buffers = genx->so_buffers;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
const bool active = num_targets > 0;
if (ice->state.streamout_active != active) {
ice->state.streamout_active = active;
ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
/* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
* it's a non-pipelined command. If we're switching streamout on, we
* may have missed emitting it earlier, so do so now. (We're already
* taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
*/
if (active) {
ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
} else {
uint32_t flush = 0;
for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
struct iris_stream_output_target *tgt =
(void *) ice->state.so_target[i];
if (tgt) {
struct iris_resource *res = (void *) tgt->base.buffer;
flush |= iris_flush_bits_for_history(ice, res);
iris_dirty_for_history(ice, res);
}
}
iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
"make streamout results visible", flush);
}
}
for (int i = 0; i < 4; i++) {
pipe_so_target_reference(&ice->state.so_target[i],
i < num_targets ? targets[i] : NULL);
}
/* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
if (!active)
return;
for (unsigned i = 0; i < 4; i++,
so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
unsigned offset = offsets[i];
if (!tgt) {
iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
#if GEN_GEN < 12
sob.SOBufferIndex = i;
#else
sob._3DCommandOpcode = 0;
sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
#endif
}
continue;
}
struct iris_resource *res = (void *) tgt->base.buffer;
/* Note that offsets[i] will either be 0, causing us to zero
* the value in the buffer, or 0xFFFFFFFF, which happens to mean
* "continue appending at the existing offset."
*/
assert(offset == 0 || offset == 0xFFFFFFFF);
/* We might be called by Begin (offset = 0), Pause, then Resume
* (offset = 0xFFFFFFFF) before ever drawing (where these commands
* will actually be sent to the GPU). In this case, we don't want
* to append - we still want to do our initial zeroing.
*/
if (!tgt->zeroed)
offset = 0;
iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
#if GEN_GEN < 12
sob.SOBufferIndex = i;
#else
sob._3DCommandOpcode = 0;
sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
#endif
sob.SurfaceBaseAddress =
rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset,
IRIS_DOMAIN_OTHER_WRITE);
sob.SOBufferEnable = true;
sob.StreamOffsetWriteEnable = true;
sob.StreamOutputBufferOffsetAddressEnable = true;
sob.MOCS = iris_mocs(res->bo, &screen->isl_dev, 0);
sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
sob.StreamOffset = offset;
sob.StreamOutputBufferOffsetAddress =
rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
tgt->offset.offset, IRIS_DOMAIN_OTHER_WRITE);
}
}
ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
}
/**
* An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
* 3DSTATE_STREAMOUT packets.
*
* 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
* hardware to record. We can create it entirely based on the shader, with
* no dynamic state dependencies.
*
* 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
* state-based settings. We capture the shader-related ones here, and merge
* the rest in at draw time.
*/
static uint32_t *
iris_create_so_decl_list(const struct pipe_stream_output_info *info,
const struct brw_vue_map *vue_map)
{
struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
int max_decls = 0;
STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
memset(so_decl, 0, sizeof(so_decl));
/* Construct the list of SO_DECLs to be emitted. The formatting of the
* command feels strange -- each dword pair contains a SO_DECL per stream.
*/
for (unsigned i = 0; i < info->num_outputs; i++) {
const struct pipe_stream_output *output = &info->output[i];
const int buffer = output->output_buffer;
const int varying = output->register_index;
const unsigned stream_id = output->stream;
assert(stream_id < MAX_VERTEX_STREAMS);
buffer_mask[stream_id] |= 1 << buffer;
assert(vue_map->varying_to_slot[varying] >= 0);
/* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
* array. Instead, it simply increments DstOffset for the following
* input by the number of components that should be skipped.
*
* Our hardware is unusual in that it requires us to program SO_DECLs
* for fake "hole" components, rather than simply taking the offset
* for each real varying. Each hole can have size 1, 2, 3, or 4; we
* program as many size = 4 holes as we can, then a final hole to
* accommodate the final 1, 2, or 3 remaining.
*/
int skip_components = output->dst_offset - next_offset[buffer];
while (skip_components > 0) {
so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
.HoleFlag = 1,
.OutputBufferSlot = output->output_buffer,
.ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
};
skip_components -= 4;
}
next_offset[buffer] = output->dst_offset + output->num_components;
so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
.OutputBufferSlot = output->output_buffer,
.RegisterIndex = vue_map->varying_to_slot[varying],
.ComponentMask =
((1 << output->num_components) - 1) << output->start_component,
};
if (decls[stream_id] > max_decls)
max_decls = decls[stream_id];
}
unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
int urb_entry_read_offset = 0;
int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
urb_entry_read_offset;
/* We always read the whole vertex. This could be reduced at some
* point by reading less and offsetting the register index in the
* SO_DECLs.
*/
sol.Stream0VertexReadOffset = urb_entry_read_offset;
sol.Stream0VertexReadLength = urb_entry_read_length - 1;
sol.Stream1VertexReadOffset = urb_entry_read_offset;
sol.Stream1VertexReadLength = urb_entry_read_length - 1;
sol.Stream2VertexReadOffset = urb_entry_read_offset;
sol.Stream2VertexReadLength = urb_entry_read_length - 1;
sol.Stream3VertexReadOffset = urb_entry_read_offset;
sol.Stream3VertexReadLength = urb_entry_read_length - 1;
/* Set buffer pitches; 0 means unbound. */
sol.Buffer0SurfacePitch = 4 * info->stride[0];
sol.Buffer1SurfacePitch = 4 * info->stride[1];
sol.Buffer2SurfacePitch = 4 * info->stride[2];
sol.Buffer3SurfacePitch = 4 * info->stride[3];
}
iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
list.DWordLength = 3 + 2 * max_decls - 2;
list.StreamtoBufferSelects0 = buffer_mask[0];
list.StreamtoBufferSelects1 = buffer_mask[1];
list.StreamtoBufferSelects2 = buffer_mask[2];
list.StreamtoBufferSelects3 = buffer_mask[3];
list.NumEntries0 = decls[0];
list.NumEntries1 = decls[1];
list.NumEntries2 = decls[2];
list.NumEntries3 = decls[3];
}
for (int i = 0; i < max_decls; i++) {
iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
entry.Stream0Decl = so_decl[0][i];
entry.Stream1Decl = so_decl[1][i];
entry.Stream2Decl = so_decl[2][i];
entry.Stream3Decl = so_decl[3][i];
}
}
return map;
}
static void
iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
const struct brw_vue_map *last_vue_map,
bool two_sided_color,
unsigned *out_offset,
unsigned *out_length)
{
/* The compiler computes the first URB slot without considering COL/BFC
* swizzling (because it doesn't know whether it's enabled), so we need
* to do that here too. This may result in a smaller offset, which
* should be safe.
*/
const unsigned first_slot =
brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
/* This becomes the URB read offset (counted in pairs of slots). */
assert(first_slot % 2 == 0);
*out_offset = first_slot / 2;
/* We need to adjust the inputs read to account for front/back color
* swizzling, as it can make the URB length longer.
*/
for (int c = 0; c <= 1; c++) {
if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
/* If two sided color is enabled, the fragment shader's gl_Color
* (COL0) input comes from either the gl_FrontColor (COL0) or
* gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
*/
if (two_sided_color)
fs_input_slots |= (VARYING_BIT_BFC0 << c);
/* If front color isn't written, we opt to give them back color
* instead of an undefined value. Switch from COL to BFC.
*/
if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
fs_input_slots &= ~(VARYING_BIT_COL0 << c);
fs_input_slots |= (VARYING_BIT_BFC0 << c);
}
}
}
/* Compute the minimum URB Read Length necessary for the FS inputs.
*
* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
* 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
*
* "This field should be set to the minimum length required to read the
* maximum source attribute. The maximum source attribute is indicated
* by the maximum value of the enabled Attribute # Source Attribute if
* Attribute Swizzle Enable is set, Number of Output Attributes-1 if
* enable is not set.
* read_length = ceiling((max_source_attr + 1) / 2)
*
* [errata] Corruption/Hang possible if length programmed larger than
* recommended"
*
* Similar text exists for Ivy Bridge.
*
* We find the last URB slot that's actually read by the FS.
*/
unsigned last_read_slot = last_vue_map->num_slots - 1;
while (last_read_slot > first_slot && !(fs_input_slots &
(1ull << last_vue_map->slot_to_varying[last_read_slot])))
--last_read_slot;
/* The URB read length is the difference of the two, counted in pairs. */
*out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
}
static void
iris_emit_sbe_swiz(struct iris_batch *batch,
const struct iris_context *ice,
unsigned urb_read_offset,
unsigned sprite_coord_enables)
{
struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
const struct brw_wm_prog_data *wm_prog_data = (void *)
ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
/* XXX: this should be generated when putting programs in place */
for (uint8_t idx = 0; idx < wm_prog_data->urb_setup_attribs_count; idx++) {
const uint8_t fs_attr = wm_prog_data->urb_setup_attribs[idx];
const int input_index = wm_prog_data->urb_setup[fs_attr];
if (input_index < 0 || input_index >= 16)
continue;
struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
&attr_overrides[input_index];
int slot = vue_map->varying_to_slot[fs_attr];
/* Viewport and Layer are stored in the VUE header. We need to override
* them to zero if earlier stages didn't write them, as GL requires that
* they read back as zero when not explicitly set.
*/
switch (fs_attr) {
case VARYING_SLOT_VIEWPORT:
case VARYING_SLOT_LAYER:
attr->ComponentOverrideX = true;
attr->ComponentOverrideW = true;
attr->ConstantSource = CONST_0000;
if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
attr->ComponentOverrideY = true;
if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
attr->ComponentOverrideZ = true;
continue;
case VARYING_SLOT_PRIMITIVE_ID:
/* Override if the previous shader stage didn't write gl_PrimitiveID. */
if (slot == -1) {
attr->ComponentOverrideX = true;
attr->ComponentOverrideY = true;
attr->ComponentOverrideZ = true;
attr->ComponentOverrideW = true;
attr->ConstantSource = PRIM_ID;
continue;
}
default:
break;
}
if (sprite_coord_enables & (1 << input_index))
continue;
/* If there was only a back color written but not front, use back
* as the color instead of undefined.
*/
if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
/* Not written by the previous stage - undefined. */
if (slot == -1) {
attr->ComponentOverrideX = true;
attr->ComponentOverrideY = true;
attr->ComponentOverrideZ = true;
attr->ComponentOverrideW = true;
attr->ConstantSource = CONST_0001_FLOAT;
continue;
}
/* Compute the location of the attribute relative to the read offset,
* which is counted in 256-bit increments (two 128-bit VUE slots).
*/
const int source_attr = slot - 2 * urb_read_offset;
assert(source_attr >= 0 && source_attr <= 32);
attr->SourceAttribute = source_attr;
/* If we are doing two-sided color, and the VUE slot following this one
* represents a back-facing color, then we need to instruct the SF unit
* to do back-facing swizzling.
*/
if (cso_rast->light_twoside &&
((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
(vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
attr->SwizzleSelect = INPUTATTR_FACING;
}
iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
for (int i = 0; i < 16; i++)
sbes.Attribute[i] = attr_overrides[i];
}
}
static unsigned
iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
const struct iris_rasterizer_state *cso)
{
unsigned overrides = 0;
if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
for (int i = 0; i < 8; i++) {
if ((cso->sprite_coord_enable & (1 << i)) &&
prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
}
return overrides;
}
static void
iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
{
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
const struct brw_wm_prog_data *wm_prog_data = (void *)
ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
const struct shader_info *fs_info =
iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
unsigned urb_read_offset, urb_read_length;
iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
ice->shaders.last_vue_map,
cso_rast->light_twoside,
&urb_read_offset, &urb_read_length);
unsigned sprite_coord_overrides =
iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
sbe.AttributeSwizzleEnable = true;
sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
sbe.VertexURBEntryReadOffset = urb_read_offset;
sbe.VertexURBEntryReadLength = urb_read_length;
sbe.ForceVertexURBEntryReadOffset = true;
sbe.ForceVertexURBEntryReadLength = true;
sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
#if GEN_GEN >= 9
for (int i = 0; i < 32; i++) {
sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
}
#endif
}
iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
}
/* ------------------------------------------------------------------- */
/**
* Populate VS program key fields based on the current state.
*/
static void
iris_populate_vs_key(const struct iris_context *ice,
const struct shader_info *info,
gl_shader_stage last_stage,
struct iris_vs_prog_key *key)
{
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
if (info->clip_distance_array_size == 0 &&
(info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
last_stage == MESA_SHADER_VERTEX)
key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
}
/**
* Populate TCS program key fields based on the current state.
*/
static void
iris_populate_tcs_key(const struct iris_context *ice,
struct iris_tcs_prog_key *key)
{
}
/**
* Populate TES program key fields based on the current state.
*/
static void
iris_populate_tes_key(const struct iris_context *ice,
const struct shader_info *info,
gl_shader_stage last_stage,
struct iris_tes_prog_key *key)
{
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
if (info->clip_distance_array_size == 0 &&
(info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
last_stage == MESA_SHADER_TESS_EVAL)
key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
}
/**
* Populate GS program key fields based on the current state.
*/
static void
iris_populate_gs_key(const struct iris_context *ice,
const struct shader_info *info,
gl_shader_stage last_stage,
struct iris_gs_prog_key *key)
{
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
if (info->clip_distance_array_size == 0 &&
(info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
last_stage == MESA_SHADER_GEOMETRY)
key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
}
/**
* Populate FS program key fields based on the current state.
*/
static void
iris_populate_fs_key(const struct iris_context *ice,
const struct shader_info *info,
struct iris_fs_prog_key *key)
{
struct iris_screen *screen = (void *) ice->ctx.screen;
const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
const struct iris_rasterizer_state *rast = ice->state.cso_rast;
const struct iris_blend_state *blend = ice->state.cso_blend;
key->nr_color_regions = fb->nr_cbufs;
key->clamp_fragment_color = rast->clamp_fragment_color;
key->alpha_to_coverage = blend->alpha_to_coverage;
key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
key->flat_shade = rast->flatshade &&
(info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
key->persample_interp = rast->force_persample_interp;
key->multisample_fbo = rast->multisample && fb->samples > 1;
key->coherent_fb_fetch = GEN_GEN >= 9;
key->force_dual_color_blend =
screen->driconf.dual_color_blend_by_location &&
(blend->blend_enables & 1) && blend->dual_color_blending;
/* TODO: Respect glHint for key->high_quality_derivatives */
}
static void
iris_populate_cs_key(const struct iris_context *ice,
struct iris_cs_prog_key *key)
{
}
static uint64_t
KSP(const struct iris_compiled_shader *shader)
{
struct iris_resource *res = (void *) shader->assembly.res;
return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
}
#define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
pkt.KernelStartPointer = KSP(shader); \
pkt.BindingTableEntryCount = shader->bt.size_bytes / 4; \
pkt.FloatingPointMode = prog_data->use_alt_mode; \
\
pkt.DispatchGRFStartRegisterForURBData = \
prog_data->dispatch_grf_start_reg; \
pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
pkt.prefix##URBEntryReadOffset = 0; \
\
pkt.StatisticsEnable = true; \
pkt.Enable = true; \
\
if (prog_data->total_scratch) { \
struct iris_bo *bo = \
iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
uint32_t scratch_addr = bo->gtt_offset; \
pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr, \
IRIS_DOMAIN_NONE); \
}
/**
* Encode most of 3DSTATE_VS based on the compiled shader.
*/
static void
iris_store_vs_state(struct iris_context *ice,
const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
vs.SIMD8DispatchEnable = true;
vs.UserClipDistanceCullTestEnableBitmask =
vue_prog_data->cull_distance_mask;
}
}
/**
* Encode most of 3DSTATE_HS based on the compiled shader.
*/
static void
iris_store_tcs_state(struct iris_context *ice,
const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
#if GEN_GEN >= 12
/* GEN:BUG:1604578095:
*
* Hang occurs when the number of max threads is less than 2 times
* the number of instance count. The number of max threads must be
* more than 2 times the number of instance count.
*/
assert((devinfo->max_tcs_threads / 2) > tcs_prog_data->instances);
hs.DispatchGRFStartRegisterForURBData = prog_data->dispatch_grf_start_reg & 0x1f;
hs.DispatchGRFStartRegisterForURBData5 = prog_data->dispatch_grf_start_reg >> 5;
#endif
hs.InstanceCount = tcs_prog_data->instances - 1;
hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
hs.IncludeVertexHandles = true;
#if GEN_GEN == 12
/* Patch Count threshold specifies the maximum number of patches that
* will be accumulated before a thread dispatch is forced.
*/
hs.PatchCountThreshold = tcs_prog_data->patch_count_threshold;
#endif
#if GEN_GEN >= 9
hs.DispatchMode = vue_prog_data->dispatch_mode;
hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
#endif
}
}
/**
* Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
*/
static void
iris_store_tes_state(struct iris_context *ice,
const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
uint32_t *te_state = (void *) shader->derived_data;
uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
te.Partitioning = tes_prog_data->partitioning;
te.OutputTopology = tes_prog_data->output_topology;
te.TEDomain = tes_prog_data->domain;
te.TEEnable = true;
te.MaximumTessellationFactorOdd = 63.0;
te.MaximumTessellationFactorNotOdd = 64.0;
}
iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
ds.ComputeWCoordinateEnable =
tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
ds.UserClipDistanceCullTestEnableBitmask =
vue_prog_data->cull_distance_mask;
}
}
/**
* Encode most of 3DSTATE_GS based on the compiled shader.
*/
static void
iris_store_gs_state(struct iris_context *ice,
const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
gs.OutputTopology = gs_prog_data->output_topology;
gs.ControlDataHeaderSize =
gs_prog_data->control_data_header_size_hwords;
gs.InstanceControl = gs_prog_data->invocations - 1;
gs.DispatchMode = DISPATCH_MODE_SIMD8;
gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
gs.ControlDataFormat = gs_prog_data->control_data_format;
gs.ReorderMode = TRAILING;
gs.ExpectedVertexCount = gs_prog_data->vertices_in;
gs.MaximumNumberofThreads =
GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
: (devinfo->max_gs_threads - 1);
if (gs_prog_data->static_vertex_count != -1) {
gs.StaticOutput = true;
gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
}
gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
gs.UserClipDistanceCullTestEnableBitmask =
vue_prog_data->cull_distance_mask;
const int urb_entry_write_offset = 1;
const uint32_t urb_entry_output_length =
DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
urb_entry_write_offset;
gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
}
}
/**
* Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
*/
static void
iris_store_fs_state(struct iris_context *ice,
const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
uint32_t *ps_state = (void *) shader->derived_data;
uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
ps.VectorMaskEnable = true;
ps.BindingTableEntryCount = shader->bt.size_bytes / 4;
ps.FloatingPointMode = prog_data->use_alt_mode;
ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
/* From the documentation for this packet:
* "If the PS kernel does not need the Position XY Offsets to
* compute a Position Value, then this field should be programmed
* to POSOFFSET_NONE."
*
* "SW Recommendation: If the PS kernel needs the Position Offsets
* to compute a Position XY value, this field should match Position
* ZW Interpolation Mode to ensure a consistent position.xyzw
* computation."
*
* We only require XY sample offsets. So, this recommendation doesn't
* look useful at the moment. We might need this in future.
*/
ps.PositionXYOffsetSelect =
wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
if (prog_data->total_scratch) {
struct iris_bo *bo =
iris_get_scratch_space(ice, prog_data->total_scratch,
MESA_SHADER_FRAGMENT);
uint32_t scratch_addr = bo->gtt_offset;
ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr,
IRIS_DOMAIN_NONE);
}
}
iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
psx.PixelShaderValid = true;
psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
#if GEN_GEN >= 9
psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
#endif
}
}
/**
* Compute the size of the derived data (shader command packets).
*
* This must match the data written by the iris_store_xs_state() functions.
*/
static void
iris_store_cs_state(struct iris_context *ice,
const struct gen_device_info *devinfo,
struct iris_compiled_shader *shader)
{
struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
void *map = shader->derived_data;
iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
desc.BarrierEnable = cs_prog_data->uses_barrier;
desc.CrossThreadConstantDataReadLength =
cs_prog_data->push.cross_thread.regs;
#if GEN_GEN >= 12
/* TODO: Check if we are missing workarounds and enable mid-thread
* preemption.
*
* We still have issues with mid-thread preemption (it was already
* disabled by the kernel on gen11, due to missing workarounds). It's
* possible that we are just missing some workarounds, and could enable
* it later, but for now let's disable it to fix a GPU in compute in Car
* Chase (and possibly more).
*/
desc.ThreadPreemptionDisable = true;
#endif
}
}
static unsigned
iris_derived_program_state_size(enum iris_program_cache_id cache_id)
{
assert(cache_id <= IRIS_CACHE_BLORP);
static const unsigned dwords[] = {
[IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
[IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
[IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
[IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
[IRIS_CACHE_FS] =
GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
[IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
[IRIS_CACHE_BLORP] = 0,
};
return sizeof(uint32_t) * dwords[cache_id];
}
/**
* Create any state packets corresponding to the given shader stage
* (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
* This means that we can look up a program in the in-memory cache and
* get most of the state packet without having to reconstruct it.
*/
static void
iris_store_derived_program_state(struct iris_context *ice,
enum iris_program_cache_id cache_id,
struct iris_compiled_shader *shader)
{
struct iris_screen *screen = (void *) ice->ctx.screen;
const struct gen_device_info *devinfo = &screen->devinfo;
switch (cache_id) {
case IRIS_CACHE_VS:
iris_store_vs_state(ice, devinfo, shader);
break;
case IRIS_CACHE_TCS:
iris_store_tcs_state(ice, devinfo, shader);
break;
case IRIS_CACHE_TES:
iris_store_tes_state(ice, devinfo, shader);
break;
case IRIS_CACHE_GS:
iris_store_gs_state(ice, devinfo, shader);
break;
case IRIS_CACHE_FS:
iris_store_fs_state(ice, devinfo, shader);
break;
case IRIS_CACHE_CS:
iris_store_cs_state(ice, devinfo, shader);
case IRIS_CACHE_BLORP:
break;
default:
break;
}
}
/* ------------------------------------------------------------------- */
static const uint32_t push_constant_opcodes[] = {
[MESA_SHADER_VERTEX] = 21,
[MESA_SHADER_TESS_CTRL] = 25, /* HS */
[MESA_SHADER_TESS_EVAL] = 26, /* DS */
[MESA_SHADER_GEOMETRY] = 22,
[MESA_SHADER_FRAGMENT] = 23,
[MESA_SHADER_COMPUTE] = 0,
};
static uint32_t
use_null_surface(struct iris_batch *batch, struct iris_context *ice)
{
struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
return ice->state.unbound_tex.offset;
}
static uint32_t
use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
{
/* If set_framebuffer_state() was never called, fall back to 1x1x1 */
if (!ice->state.null_fb.res)
return use_null_surface(batch, ice);
struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
return ice->state.null_fb.offset;
}
static uint32_t
surf_state_offset_for_aux(struct iris_resource *res,
unsigned aux_modes,
enum isl_aux_usage aux_usage)
{
assert(aux_modes & (1 << aux_usage));
return SURFACE_STATE_ALIGNMENT *
util_bitcount(aux_modes & ((1 << aux_usage) - 1));
}
#if GEN_GEN == 9
static void
surf_state_update_clear_value(struct iris_batch *batch,
struct iris_resource *res,
struct iris_state_ref *state,
unsigned aux_modes,
enum isl_aux_usage aux_usage)
{
struct isl_device *isl_dev = &batch->screen->isl_dev;
struct iris_bo *state_bo = iris_resource_bo(state->res);
uint64_t real_offset = state->offset + IRIS_MEMZONE_BINDER_START;
uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
uint32_t clear_offset = offset_into_bo +
isl_dev->ss.clear_value_offset +
surf_state_offset_for_aux(res, aux_modes, aux_usage);
uint32_t *color = res->aux.clear_color.u32;
assert(isl_dev->ss.clear_value_size == 16);
if (aux_usage == ISL_AUX_USAGE_HIZ) {
iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
PIPE_CONTROL_WRITE_IMMEDIATE,
state_bo, clear_offset, color[0]);
} else {
iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
PIPE_CONTROL_WRITE_IMMEDIATE,
state_bo, clear_offset,
(uint64_t) color[0] |
(uint64_t) color[1] << 32);
iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
PIPE_CONTROL_WRITE_IMMEDIATE,
state_bo, clear_offset + 8,
(uint64_t) color[2] |
(uint64_t) color[3] << 32);
}
iris_emit_pipe_control_flush(batch,
"update fast clear: state cache invalidate",
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_STATE_CACHE_INVALIDATE);
}
#endif
static void
update_clear_value(struct iris_context *ice,
struct iris_batch *batch,
struct iris_resource *res,
struct iris_surface_state *surf_state,
unsigned all_aux_modes,
struct isl_view *view)
{
UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
UNUSED unsigned aux_modes = all_aux_modes;
/* We only need to update the clear color in the surface state for gen8 and
* gen9. Newer gens can read it directly from the clear color state buffer.
*/
#if GEN_GEN == 9
/* Skip updating the ISL_AUX_USAGE_NONE surface state */
aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
while (aux_modes) {
enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
surf_state_update_clear_value(batch, res, &surf_state->ref,
all_aux_modes, aux_usage);
}
#elif GEN_GEN == 8
/* TODO: Could update rather than re-filling */
alloc_surface_states(surf_state, all_aux_modes);
void *map = surf_state->cpu;
while (aux_modes) {
enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
fill_surface_state(isl_dev, map, res, &res->surf, view, aux_usage,
0, 0, 0);
map += SURFACE_STATE_ALIGNMENT;
}
upload_surface_states(ice->state.surface_uploader, surf_state);
#endif
}
/**
* Add a surface to the validation list, as well as the buffer containing
* the corresponding SURFACE_STATE.
*
* Returns the binding table entry (offset to SURFACE_STATE).
*/
static uint32_t
use_surface(struct iris_context *ice,
struct iris_batch *batch,
struct pipe_surface *p_surf,
bool writeable,
enum isl_aux_usage aux_usage,
bool is_read_surface,
enum iris_domain access)
{
struct iris_surface *surf = (void *) p_surf;
struct iris_resource *res = (void *) p_surf->texture;
uint32_t offset = 0;
iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture),
writeable, access);
if (GEN_GEN == 8 && is_read_surface) {
iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state_read.ref.res), false,
IRIS_DOMAIN_NONE);
} else {
iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.ref.res), false,
IRIS_DOMAIN_NONE);
}
if (res->aux.bo) {
iris_use_pinned_bo(batch, res->aux.bo, writeable, access);
if (res->aux.clear_color_bo)
iris_use_pinned_bo(batch, res->aux.clear_color_bo, false, access);
if (memcmp(&res->aux.clear_color, &surf->clear_color,
sizeof(surf->clear_color)) != 0) {
update_clear_value(ice, batch, res, &surf->surface_state,
res->aux.possible_usages, &surf->view);
if (GEN_GEN == 8) {
update_clear_value(ice, batch, res, &surf->surface_state_read,
res->aux.possible_usages, &surf->read_view);
}
surf->clear_color = res->aux.clear_color;
}
}
offset = (GEN_GEN == 8 && is_read_surface)
? surf->surface_state_read.ref.offset
: surf->surface_state.ref.offset;
return offset +
surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
}
static uint32_t
use_sampler_view(struct iris_context *ice,
struct iris_batch *batch,
struct iris_sampler_view *isv)
{
enum isl_aux_usage aux_usage =
iris_resource_texture_aux_usage(ice, isv->res, isv->view.format);
iris_use_pinned_bo(batch, isv->res->bo, false, IRIS_DOMAIN_OTHER_READ);
iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.ref.res), false,
IRIS_DOMAIN_NONE);
if (isv->res->aux.bo) {
iris_use_pinned_bo(batch, isv->res->aux.bo,
false, IRIS_DOMAIN_OTHER_READ);
if (isv->res->aux.clear_color_bo)
iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo,
false, IRIS_DOMAIN_OTHER_READ);
if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
sizeof(isv->clear_color)) != 0) {
update_clear_value(ice, batch, isv->res, &isv->surface_state,
isv->res->aux.sampler_usages, &isv->view);
isv->clear_color = isv->res->aux.clear_color;
}
}
return isv->surface_state.ref.offset +
surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
aux_usage);
}
static uint32_t
use_ubo_ssbo(struct iris_batch *batch,
struct iris_context *ice,
struct pipe_shader_buffer *buf,
struct iris_state_ref *surf_state,
bool writable, enum iris_domain access)
{
if (!buf->buffer || !surf_state->res)
return use_null_surface(batch, ice);
iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable, access);
iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false,
IRIS_DOMAIN_NONE);
return surf_state->offset;
}
static uint32_t
use_image(struct iris_batch *batch, struct iris_context *ice,
struct iris_shader_state *shs, const struct shader_info *info,
int i)
{
struct iris_image_view *iv = &shs->image[i];
struct iris_resource *res = (void *) iv->base.resource;
if (!res)
return use_null_surface(batch, ice);
bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
iris_use_pinned_bo(batch, res->bo, write, IRIS_DOMAIN_NONE);
iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.ref.res),
false, IRIS_DOMAIN_NONE);
if (res->aux.bo)
iris_use_pinned_bo(batch, res->aux.bo, write, IRIS_DOMAIN_NONE);
enum isl_aux_usage aux_usage =
iris_image_view_aux_usage(ice, &iv->base, info);
return iv->surface_state.ref.offset +
surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
}
#define push_bt_entry(addr) \
assert(addr >= binder_addr); \
assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
if (!pin_only) bt_map[s++] = (addr) - binder_addr;
#define bt_assert(section) \
if (!pin_only && shader->bt.used_mask[section] != 0) \
assert(shader->bt.offsets[section] == s);
/**
* Populate the binding table for a given shader stage.
*
* This fills out the table of pointers to surfaces required by the shader,
* and also adds those buffers to the validation list so the kernel can make
* resident before running our batch.
*/
static void
iris_populate_binding_table(struct iris_context *ice,
struct iris_batch *batch,
gl_shader_stage stage,
bool pin_only)
{
const struct iris_binder *binder = &ice->state.binder;
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader)
return;
struct iris_binding_table *bt = &shader->bt;
UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
struct iris_shader_state *shs = &ice->state.shaders[stage];
uint32_t binder_addr = binder->bo->gtt_offset;
uint32_t *bt_map = binder->map + binder->bt_offset[stage];
int s = 0;
const struct shader_info *info = iris_get_shader_info(ice, stage);
if (!info) {
/* TCS passthrough doesn't need a binding table. */
assert(stage == MESA_SHADER_TESS_CTRL);
return;
}
if (stage == MESA_SHADER_COMPUTE &&
shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
/* surface for gl_NumWorkGroups */
struct iris_state_ref *grid_data = &ice->state.grid_size;
struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false,
IRIS_DOMAIN_OTHER_READ);
iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false,
IRIS_DOMAIN_NONE);
push_bt_entry(grid_state->offset);
}
if (stage == MESA_SHADER_FRAGMENT) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
/* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
if (cso_fb->nr_cbufs) {
for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
uint32_t addr;
if (cso_fb->cbufs[i]) {
addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
ice->state.draw_aux_usage[i], false,
IRIS_DOMAIN_RENDER_WRITE);
} else {
addr = use_null_fb_surface(batch, ice);
}
push_bt_entry(addr);
}
} else if (GEN_GEN < 11) {
uint32_t addr = use_null_fb_surface(batch, ice);
push_bt_entry(addr);
}
}
#define foreach_surface_used(index, group) \
bt_assert(group); \
for (int index = 0; index < bt->sizes[group]; index++) \
if (iris_group_index_to_bti(bt, group, index) != \
IRIS_SURFACE_NOT_USED)
foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
uint32_t addr;
if (cso_fb->cbufs[i]) {
addr = use_surface(ice, batch, cso_fb->cbufs[i],
false, ice->state.draw_aux_usage[i], true,
IRIS_DOMAIN_OTHER_READ);
push_bt_entry(addr);
}
}
foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
struct iris_sampler_view *view = shs->textures[i];
uint32_t addr = view ? use_sampler_view(ice, batch, view)
: use_null_surface(batch, ice);
push_bt_entry(addr);
}
foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
uint32_t addr = use_image(batch, ice, shs, info, i);
push_bt_entry(addr);
}
foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
uint32_t addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
&shs->constbuf_surf_state[i], false,
IRIS_DOMAIN_OTHER_READ);
push_bt_entry(addr);
}
foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
uint32_t addr =
use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
shs->writable_ssbos & (1u << i), IRIS_DOMAIN_NONE);
push_bt_entry(addr);
}
#if 0
/* XXX: YUV surfaces not implemented yet */
bt_assert(plane_start[1], ...);
bt_assert(plane_start[2], ...);
#endif
}
static void
iris_use_optional_res(struct iris_batch *batch,
struct pipe_resource *res,
bool writeable,
enum iris_domain access)
{
if (res) {
struct iris_bo *bo = iris_resource_bo(res);
iris_use_pinned_bo(batch, bo, writeable, access);
}
}
static void
pin_depth_and_stencil_buffers(struct iris_batch *batch,
struct pipe_surface *zsbuf,
struct iris_depth_stencil_alpha_state *cso_zsa)
{
if (!zsbuf)
return;
struct iris_resource *zres, *sres;
iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
if (zres) {
const enum iris_domain access = cso_zsa->depth_writes_enabled ?
IRIS_DOMAIN_DEPTH_WRITE : IRIS_DOMAIN_OTHER_READ;
iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled,
access);
if (zres->aux.bo) {
iris_use_pinned_bo(batch, zres->aux.bo,
cso_zsa->depth_writes_enabled, access);
}
}
if (sres) {
const enum iris_domain access = cso_zsa->stencil_writes_enabled ?
IRIS_DOMAIN_DEPTH_WRITE : IRIS_DOMAIN_OTHER_READ;
iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled,
access);
}
}
/* ------------------------------------------------------------------- */
/**
* Pin any BOs which were installed by a previous batch, and restored
* via the hardware logical context mechanism.
*
* We don't need to re-emit all state every batch - the hardware context
* mechanism will save and restore it for us. This includes pointers to
* various BOs...which won't exist unless we ask the kernel to pin them
* by adding them to the validation list.
*
* We can skip buffers if we've re-emitted those packets, as we're
* overwriting those stale pointers with new ones, and don't actually
* refer to the old BOs.
*/
static void
iris_restore_render_saved_bos(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw)
{
struct iris_genx_state *genx = ice->state.genx;
const uint64_t clean = ~ice->state.dirty;
const uint64_t stage_clean = ~ice->state.stage_dirty;
if (clean & IRIS_DIRTY_CC_VIEWPORT) {
iris_use_optional_res(batch, ice->state.last_res.cc_vp, false,
IRIS_DOMAIN_NONE);
}
if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false,
IRIS_DOMAIN_NONE);
}
if (clean & IRIS_DIRTY_BLEND_STATE) {
iris_use_optional_res(batch, ice->state.last_res.blend, false,
IRIS_DOMAIN_NONE);
}
if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
iris_use_optional_res(batch, ice->state.last_res.color_calc, false,
IRIS_DOMAIN_NONE);
}
if (clean & IRIS_DIRTY_SCISSOR_RECT) {
iris_use_optional_res(batch, ice->state.last_res.scissor, false,
IRIS_DOMAIN_NONE);
}
if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
for (int i = 0; i < 4; i++) {
struct iris_stream_output_target *tgt =
(void *) ice->state.so_target[i];
if (tgt) {
iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
true, IRIS_DOMAIN_OTHER_WRITE);
iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
true, IRIS_DOMAIN_OTHER_WRITE);
}
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(stage_clean & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)))
continue;
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader)
continue;
struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
for (int i = 0; i < 4; i++) {
const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
if (range->length == 0)
continue;
/* Range block is a binding table index, map back to UBO index. */
unsigned block_index = iris_bti_to_group_index(
&shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
assert(block_index != IRIS_SURFACE_NOT_USED);
struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
struct iris_resource *res = (void *) cbuf->buffer;
if (res)
iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ);
else
iris_use_pinned_bo(batch, batch->screen->workaround_bo, false,
IRIS_DOMAIN_OTHER_READ);
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (stage_clean & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
/* Re-pin any buffers referred to by the binding table. */
iris_populate_binding_table(ice, batch, stage, true);
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct pipe_resource *res = shs->sampler_table.res;
if (res)
iris_use_pinned_bo(batch, iris_resource_bo(res), false,
IRIS_DOMAIN_NONE);
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (stage_clean & (IRIS_STAGE_DIRTY_VS << stage)) {
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (shader) {
struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
struct brw_stage_prog_data *prog_data = shader->prog_data;
if (prog_data->total_scratch > 0) {
struct iris_bo *bo =
iris_get_scratch_space(ice, prog_data->total_scratch, stage);
iris_use_pinned_bo(batch, bo, true, IRIS_DOMAIN_NONE);
}
}
}
}
if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
(clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
}
iris_use_optional_res(batch, ice->state.last_res.index_buffer, false,
IRIS_DOMAIN_OTHER_READ);
if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
uint64_t bound = ice->state.bound_vertex_buffers;
while (bound) {
const int i = u_bit_scan64(&bound);
struct pipe_resource *res = genx->vertex_buffers[i].resource;
iris_use_pinned_bo(batch, iris_resource_bo(res), false,
IRIS_DOMAIN_OTHER_READ);
}
}
}
static void
iris_restore_compute_saved_bos(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
{
const uint64_t stage_clean = ~ice->state.stage_dirty;
const int stage = MESA_SHADER_COMPUTE;
struct iris_shader_state *shs = &ice->state.shaders[stage];
if (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) {
/* Re-pin any buffers referred to by the binding table. */
iris_populate_binding_table(ice, batch, stage, true);
}
struct pipe_resource *sampler_res = shs->sampler_table.res;
if (sampler_res)
iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false,
IRIS_DOMAIN_NONE);
if ((stage_clean & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS) &&
(stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) &&
(stage_clean & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
(stage_clean & IRIS_STAGE_DIRTY_CS)) {
iris_use_optional_res(batch, ice->state.last_res.cs_desc, false,
IRIS_DOMAIN_NONE);
}
if (stage_clean & IRIS_STAGE_DIRTY_CS) {
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (shader) {
struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
struct iris_bo *curbe_bo =
iris_resource_bo(ice->state.last_res.cs_thread_ids);
iris_use_pinned_bo(batch, curbe_bo, false, IRIS_DOMAIN_NONE);
struct brw_stage_prog_data *prog_data = shader->prog_data;
if (prog_data->total_scratch > 0) {
struct iris_bo *bo =
iris_get_scratch_space(ice, prog_data->total_scratch, stage);
iris_use_pinned_bo(batch, bo, true, IRIS_DOMAIN_NONE);
}
}
}
}
/**
* Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
*/
static void
iris_update_surface_base_address(struct iris_batch *batch,
struct iris_binder *binder)
{
if (batch->last_surface_base_address == binder->bo->gtt_offset)
return;
struct isl_device *isl_dev = &batch->screen->isl_dev;
uint32_t mocs = isl_mocs(isl_dev, 0);
iris_batch_sync_region_start(batch);
flush_before_state_base_change(batch);
#if GEN_GEN == 12
/* GEN:BUG:1607854226:
*
* Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
* mode by putting the pipeline temporarily in 3D mode..
*/
if (batch->name == IRIS_BATCH_COMPUTE)
emit_pipeline_select(batch, _3D);
#endif
iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
sba.SurfaceStateBaseAddressModifyEnable = true;
sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
/* The hardware appears to pay attention to the MOCS fields even
* if you don't set the "Address Modify Enable" bit for the base.
*/
sba.GeneralStateMOCS = mocs;
sba.StatelessDataPortAccessMOCS = mocs;
sba.DynamicStateMOCS = mocs;
sba.IndirectObjectMOCS = mocs;
sba.InstructionMOCS = mocs;
sba.SurfaceStateMOCS = mocs;
#if GEN_GEN >= 9
sba.BindlessSurfaceStateMOCS = mocs;
#endif
}
#if GEN_GEN == 12
/* GEN:BUG:1607854226:
*
* Put the pipeline back into compute mode.
*/
if (batch->name == IRIS_BATCH_COMPUTE)
emit_pipeline_select(batch, GPGPU);
#endif
flush_after_state_base_change(batch);
iris_batch_sync_region_end(batch);
batch->last_surface_base_address = binder->bo->gtt_offset;
}
static inline void
iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
bool window_space_position, float *zmin, float *zmax)
{
if (window_space_position) {
*zmin = 0.f;
*zmax = 1.f;
return;
}
util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
}
#if GEN_GEN >= 12
void
genX(invalidate_aux_map_state)(struct iris_batch *batch)
{
struct iris_screen *screen = batch->screen;
void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
if (!aux_map_ctx)
return;
uint32_t aux_map_state_num = gen_aux_map_get_state_num(aux_map_ctx);
if (batch->last_aux_map_state != aux_map_state_num) {
/* HSD 1209978178: docs say that before programming the aux table:
*
* "Driver must ensure that the engine is IDLE but ensure it doesn't
* add extra flushes in the case it knows that the engine is already
* IDLE."
*
* An end of pipe sync is needed here, otherwise we see GPU hangs in
* dEQP-GLES31.functional.copy_image.* tests.
*/
iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table",
PIPE_CONTROL_CS_STALL);
/* If the aux-map state number increased, then we need to rewrite the
* register. Rewriting the register is used to both set the aux-map
* translation table address, and also to invalidate any previously
* cached translations.
*/
iris_load_register_imm32(batch, GENX(GFX_CCS_AUX_INV_num), 1);
batch->last_aux_map_state = aux_map_state_num;
}
}
static void
init_aux_map_state(struct iris_batch *batch)
{
struct iris_screen *screen = batch->screen;
void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
if (!aux_map_ctx)
return;
uint64_t base_addr = gen_aux_map_get_base(aux_map_ctx);
assert(base_addr != 0 && align64(base_addr, 32 * 1024) == base_addr);
iris_load_register_imm64(batch, GENX(GFX_AUX_TABLE_BASE_ADDR_num),
base_addr);
}
#endif
struct push_bos {
struct {
struct iris_address addr;
uint32_t length;
} buffers[4];
int buffer_count;
uint32_t max_length;
};
static void
setup_constant_buffers(struct iris_context *ice,
struct iris_batch *batch,
int stage,
struct push_bos *push_bos)
{
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
uint32_t push_range_sum = 0;
int n = 0;
for (int i = 0; i < 4; i++) {
const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
if (range->length == 0)
continue;
push_range_sum += range->length;
if (range->length > push_bos->max_length)
push_bos->max_length = range->length;
/* Range block is a binding table index, map back to UBO index. */
unsigned block_index = iris_bti_to_group_index(
&shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
assert(block_index != IRIS_SURFACE_NOT_USED);
struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
struct iris_resource *res = (void *) cbuf->buffer;
assert(cbuf->buffer_offset % 32 == 0);
push_bos->buffers[n].length = range->length;
push_bos->buffers[n].addr =
res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
: batch->screen->workaround_address;
n++;
}
/* From the 3DSTATE_CONSTANT_XS and 3DSTATE_CONSTANT_ALL programming notes:
*
* "The sum of all four read length fields must be less than or
* equal to the size of 64."
*/
assert(push_range_sum <= 64);
push_bos->buffer_count = n;
}
static void
emit_push_constant_packets(struct iris_context *ice,
struct iris_batch *batch,
int stage,
const struct push_bos *push_bos)
{
UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
#if GEN_GEN >= 12
pkt.MOCS = isl_mocs(isl_dev, 0);
#endif
if (prog_data) {
/* The Skylake PRM contains the following restriction:
*
* "The driver must ensure The following case does not occur
* without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
* buffer 3 read length equal to zero committed followed by a
* 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
* zero committed."
*
* To avoid this, we program the buffers in the highest slots.
* This way, slot 0 is only used if slot 3 is also used.
*/
int n = push_bos->buffer_count;
assert(n <= 4);
const unsigned shift = 4 - n;
for (int i = 0; i < n; i++) {
pkt.ConstantBody.ReadLength[i + shift] =
push_bos->buffers[i].length;
pkt.ConstantBody.Buffer[i + shift] = push_bos->buffers[i].addr;
}
}
}
}
#if GEN_GEN >= 12
static void
emit_push_constant_packet_all(struct iris_context *ice,
struct iris_batch *batch,
uint32_t shader_mask,
const struct push_bos *push_bos)
{
struct isl_device *isl_dev = &batch->screen->isl_dev;
if (!push_bos) {
iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), pc) {
pc.ShaderUpdateEnable = shader_mask;
}
return;
}
const uint32_t n = push_bos->buffer_count;
const uint32_t max_pointers = 4;
const uint32_t num_dwords = 2 + 2 * n;
uint32_t const_all[2 + 2 * max_pointers];
uint32_t *dw = &const_all[0];
assert(n <= max_pointers);
iris_pack_command(GENX(3DSTATE_CONSTANT_ALL), dw, all) {
all.DWordLength = num_dwords - 2;
all.MOCS = isl_mocs(isl_dev, 0);
all.ShaderUpdateEnable = shader_mask;
all.PointerBufferMask = (1 << n) - 1;
}
dw += 2;
for (int i = 0; i < n; i++) {
_iris_pack_state(batch, GENX(3DSTATE_CONSTANT_ALL_DATA),
dw + i * 2, data) {
data.PointerToConstantBuffer = push_bos->buffers[i].addr;
data.ConstantBufferReadLength = push_bos->buffers[i].length;
}
}
iris_batch_emit(batch, const_all, sizeof(uint32_t) * num_dwords);
}
#endif
static void
iris_upload_dirty_render_state(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw)
{
const uint64_t dirty = ice->state.dirty;
const uint64_t stage_dirty = ice->state.stage_dirty;
if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER) &&
!(stage_dirty & IRIS_ALL_STAGE_DIRTY_FOR_RENDER))
return;
struct iris_genx_state *genx = ice->state.genx;
struct iris_binder *binder = &ice->state.binder;
struct brw_wm_prog_data *wm_prog_data = (void *)
ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
uint32_t cc_vp_address;
/* XXX: could avoid streaming for depth_clip [0,1] case. */
uint32_t *cc_vp_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.cc_vp,
4 * ice->state.num_viewports *
GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
for (int i = 0; i < ice->state.num_viewports; i++) {
float zmin, zmax;
iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
ice->state.window_space_position,
&zmin, &zmax);
if (cso_rast->depth_clip_near)
zmin = 0.0;
if (cso_rast->depth_clip_far)
zmax = 1.0;
iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
ccv.MinimumDepth = zmin;
ccv.MaximumDepth = zmax;
}
cc_vp_map += GENX(CC_VIEWPORT_length);
}
iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
ptr.CCViewportPointer = cc_vp_address;
}
}
if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
uint32_t sf_cl_vp_address;
uint32_t *vp_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.sf_cl_vp,
4 * ice->state.num_viewports *
GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
for (unsigned i = 0; i < ice->state.num_viewports; i++) {
const struct pipe_viewport_state *state = &ice->state.viewports[i];
float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
float vp_xmin = viewport_extent(state, 0, -1.0f);
float vp_xmax = viewport_extent(state, 0, 1.0f);
float vp_ymin = viewport_extent(state, 1, -1.0f);
float vp_ymax = viewport_extent(state, 1, 1.0f);
gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
state->scale[0], state->scale[1],
state->translate[0], state->translate[1],
&gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
vp.ViewportMatrixElementm00 = state->scale[0];
vp.ViewportMatrixElementm11 = state->scale[1];
vp.ViewportMatrixElementm22 = state->scale[2];
vp.ViewportMatrixElementm30 = state->translate[0];
vp.ViewportMatrixElementm31 = state->translate[1];
vp.ViewportMatrixElementm32 = state->translate[2];
vp.XMinClipGuardband = gb_xmin;
vp.XMaxClipGuardband = gb_xmax;
vp.YMinClipGuardband = gb_ymin;
vp.YMaxClipGuardband = gb_ymax;
vp.XMinViewPort = MAX2(vp_xmin, 0);
vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
vp.YMinViewPort = MAX2(vp_ymin, 0);
vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
}
vp_map += GENX(SF_CLIP_VIEWPORT_length);
}
iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
ptr.SFClipViewportPointer = sf_cl_vp_address;
}
}
if (dirty & IRIS_DIRTY_URB) {
unsigned size[4];
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
if (!ice->shaders.prog[i]) {
size[i] = 1;
} else {
struct brw_vue_prog_data *vue_prog_data =
(void *) ice->shaders.prog[i]->prog_data;
size[i] = vue_prog_data->urb_entry_size;
}
assert(size[i] != 0);
}
unsigned entries[4], start[4];
gen_get_urb_config(&batch->screen->devinfo,
batch->screen->l3_config_3d,
ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
size, entries, start,
&ice->state.urb_deref_block_size);
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
urb._3DCommandSubOpcode += i;
urb.VSURBStartingAddress = start[i];
urb.VSURBEntryAllocationSize = size[i] - 1;
urb.VSNumberofURBEntries = entries[i];
}
}
}
if (dirty & IRIS_DIRTY_BLEND_STATE) {
struct iris_blend_state *cso_blend = ice->state.cso_blend;
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
const int header_dwords = GENX(BLEND_STATE_length);
/* Always write at least one BLEND_STATE - the final RT message will
* reference BLEND_STATE[0] even if there aren't color writes. There
* may still be alpha testing, computed depth, and so on.
*/
const int rt_dwords =
MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
uint32_t blend_offset;
uint32_t *blend_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.blend,
4 * (header_dwords + rt_dwords), 64, &blend_offset);
uint32_t blend_state_header;
iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
bs.AlphaTestEnable = cso_zsa->alpha.enabled;
bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
}
blend_map[0] = blend_state_header | cso_blend->blend_state[0];
memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
ptr.BlendStatePointer = blend_offset;
ptr.BlendStatePointerValid = true;
}
}
if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
#if GEN_GEN == 8
struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
#endif
uint32_t cc_offset;
void *cc_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.color_calc,
sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
64, &cc_offset);
iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
cc.AlphaTestFormat = ALPHATEST_FLOAT32;
cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
cc.BlendConstantColorRed = ice->state.blend_color.color[0];
cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
#if GEN_GEN == 8
cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
#endif
}
iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
ptr.ColorCalcStatePointer = cc_offset;
ptr.ColorCalcStatePointerValid = true;
}
}
/* GEN:BUG:1604061319
*
* 3DSTATE_CONSTANT_* needs to be programmed before BTP_*
*
* Testing shows that all the 3DSTATE_CONSTANT_XS need to be emitted if
* any stage has a dirty binding table.
*/
const bool emit_const_wa = GEN_GEN >= 11 &&
((dirty & IRIS_DIRTY_RENDER_BUFFER) ||
(stage_dirty & IRIS_ALL_STAGE_DIRTY_BINDINGS));
#if GEN_GEN >= 12
uint32_t nobuffer_stages = 0;
#endif
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(stage_dirty & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)) &&
!emit_const_wa)
continue;
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (!shader)
continue;
if (shs->sysvals_need_upload)
upload_sysvals(ice, stage, NULL);
struct push_bos push_bos = {};
setup_constant_buffers(ice, batch, stage, &push_bos);
#if GEN_GEN >= 12
/* If this stage doesn't have any push constants, emit it later in a
* single CONSTANT_ALL packet with all the other stages.
*/
if (push_bos.buffer_count == 0) {
nobuffer_stages |= 1 << stage;
continue;
}
/* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
* contains only 5 bits, so we can only use it for buffers smaller than
* 32.
*/
if (push_bos.max_length < 32) {
emit_push_constant_packet_all(ice, batch, 1 << stage, &push_bos);
continue;
}
#endif
emit_push_constant_packets(ice, batch, stage, &push_bos);
}
#if GEN_GEN >= 12
if (nobuffer_stages)
emit_push_constant_packet_all(ice, batch, nobuffer_stages, NULL);
#endif
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
/* Gen9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
* in order to commit constants. TODO: Investigate "Disable Gather
* at Set Shader" to go back to legacy mode...
*/
if (stage_dirty & ((IRIS_STAGE_DIRTY_BINDINGS_VS |
(GEN_GEN == 9 ? IRIS_STAGE_DIRTY_CONSTANTS_VS : 0))
<< stage)) {
iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
ptr._3DCommandSubOpcode = 38 + stage;
ptr.PointertoVSBindingTable = binder->bt_offset[stage];
}
}
}
if (GEN_GEN >= 11 && (dirty & IRIS_DIRTY_RENDER_BUFFER)) {
// XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
// XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
/* The PIPE_CONTROL command description says:
*
* "Whenever a Binding Table Index (BTI) used by a Render Target
* Message points to a different RENDER_SURFACE_STATE, SW must issue a
* Render Target Cache Flush by enabling this bit. When render target
* flush is set due to new association of BTI, PS Scoreboard Stall bit
* must be set in this packet."
*/
// XXX: does this need to happen at 3DSTATE_BTP_PS time?
iris_emit_pipe_control_flush(batch, "workaround: RT BTI change [draw]",
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_STALL_AT_SCOREBOARD);
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (stage_dirty & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
iris_populate_binding_table(ice, batch, stage, false);
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage)) ||
!ice->shaders.prog[stage])
continue;
iris_upload_sampler_states(ice, stage);
struct iris_shader_state *shs = &ice->state.shaders[stage];
struct pipe_resource *res = shs->sampler_table.res;
if (res)
iris_use_pinned_bo(batch, iris_resource_bo(res), false,
IRIS_DOMAIN_NONE);
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
ptr._3DCommandSubOpcode = 43 + stage;
ptr.PointertoVSSamplerState = shs->sampler_table.offset;
}
}
if (ice->state.need_border_colors)
iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false,
IRIS_DOMAIN_NONE);
if (dirty & IRIS_DIRTY_MULTISAMPLE) {
iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
ms.PixelLocation =
ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
if (ice->state.framebuffer.samples > 0)
ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
}
}
if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
ms.SampleMask = ice->state.sample_mask;
}
}
for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
if (!(stage_dirty & (IRIS_STAGE_DIRTY_VS << stage)))
continue;
struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (shader) {
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct iris_resource *cache = (void *) shader->assembly.res;
iris_use_pinned_bo(batch, cache->bo, false, IRIS_DOMAIN_NONE);
if (prog_data->total_scratch > 0) {
struct iris_bo *bo =
iris_get_scratch_space(ice, prog_data->total_scratch, stage);
iris_use_pinned_bo(batch, bo, true, IRIS_DOMAIN_NONE);
}
if (stage == MESA_SHADER_FRAGMENT) {
UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
/* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
*
* "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
* SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
* mode."
*
* 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
*/
if (GEN_GEN >= 9 && cso_fb->samples == 16 &&
!wm_prog_data->persample_dispatch) {
assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
ps._32PixelDispatchEnable = false;
}
ps.DispatchGRFStartRegisterForConstantSetupData0 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
ps.DispatchGRFStartRegisterForConstantSetupData1 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
ps.DispatchGRFStartRegisterForConstantSetupData2 =
brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
ps.KernelStartPointer0 = KSP(shader) +
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
ps.KernelStartPointer1 = KSP(shader) +
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
ps.KernelStartPointer2 = KSP(shader) +
brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
}
uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
#if GEN_GEN >= 9
if (!wm_prog_data->uses_sample_mask)
psx.InputCoverageMaskState = ICMS_NONE;
else if (wm_prog_data->post_depth_coverage)
psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
else if (wm_prog_data->inner_coverage &&
cso->conservative_rasterization)
psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
else
psx.InputCoverageMaskState = ICMS_NORMAL;
#else
psx.PixelShaderUsesInputCoverageMask =
wm_prog_data->uses_sample_mask;
#endif
}
uint32_t *shader_ps = (uint32_t *) shader->derived_data;
uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
iris_emit_merge(batch, shader_ps, ps_state,
GENX(3DSTATE_PS_length));
iris_emit_merge(batch, shader_psx, psx_state,
GENX(3DSTATE_PS_EXTRA_length));
} else {
iris_batch_emit(batch, shader->derived_data,
iris_derived_program_state_size(stage));
}
} else {
if (stage == MESA_SHADER_TESS_EVAL) {
iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
} else if (stage == MESA_SHADER_GEOMETRY) {
iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
}
}
}
if (ice->state.streamout_active) {
if (dirty & IRIS_DIRTY_SO_BUFFERS) {
iris_batch_emit(batch, genx->so_buffers,
4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
for (int i = 0; i < 4; i++) {
struct iris_stream_output_target *tgt =
(void *) ice->state.so_target[i];
if (tgt) {
tgt->zeroed = true;
iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
true, IRIS_DOMAIN_OTHER_WRITE);
iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
true, IRIS_DOMAIN_OTHER_WRITE);
}
}
}
if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
uint32_t *decl_list =
ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
}
if (dirty & IRIS_DIRTY_STREAMOUT) {
const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
sol.SOFunctionEnable = true;
sol.SOStatisticsEnable = true;
sol.RenderingDisable = cso_rast->rasterizer_discard &&
!ice->state.prims_generated_query_active;
sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
}
assert(ice->state.streamout);
iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
GENX(3DSTATE_STREAMOUT_length));
}
} else {
if (dirty & IRIS_DIRTY_STREAMOUT) {
iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
}
}
if (dirty & IRIS_DIRTY_CLIP) {
struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
ice->shaders.prog[MESA_SHADER_TESS_EVAL];
bool points_or_lines = cso_rast->fill_mode_point_or_line ||
(gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
: ice->state.prim_is_points_or_lines);
uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
cl.StatisticsEnable = ice->state.statistics_counters_enabled;
if (cso_rast->rasterizer_discard)
cl.ClipMode = CLIPMODE_REJECT_ALL;
else if (ice->state.window_space_position)
cl.ClipMode = CLIPMODE_ACCEPT_ALL;
else
cl.ClipMode = CLIPMODE_NORMAL;
cl.PerspectiveDivideDisable = ice->state.window_space_position;
cl.ViewportXYClipTestEnable = !points_or_lines;
if (wm_prog_data->barycentric_interp_modes &
BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
cl.NonPerspectiveBarycentricEnable = true;
cl.ForceZeroRTAIndexEnable = cso_fb->layers <= 1;
cl.MaximumVPIndex = ice->state.num_viewports - 1;
}
iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
ARRAY_SIZE(cso_rast->clip));
}
if (dirty & (IRIS_DIRTY_RASTER | IRIS_DIRTY_URB)) {
struct iris_rasterizer_state *cso = ice->state.cso_rast;
iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
sf.ViewportTransformEnable = !ice->state.window_space_position;
#if GEN_GEN >= 12
sf.DerefBlockSize = ice->state.urb_deref_block_size;
#endif
}
iris_emit_merge(batch, cso->sf, dynamic_sf,
ARRAY_SIZE(dynamic_sf));
}
if (dirty & IRIS_DIRTY_WM) {
struct iris_rasterizer_state *cso = ice->state.cso_rast;
uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
wm.StatisticsEnable = ice->state.statistics_counters_enabled;
wm.BarycentricInterpolationMode =
wm_prog_data->barycentric_interp_modes;
if (wm_prog_data->early_fragment_tests)
wm.EarlyDepthStencilControl = EDSC_PREPS;
else if (wm_prog_data->has_side_effects)
wm.EarlyDepthStencilControl = EDSC_PSEXEC;
/* We could skip this bit if color writes are enabled. */
if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
wm.ForceThreadDispatchEnable = ForceON;
}
iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
}
if (dirty & IRIS_DIRTY_SBE) {
iris_emit_sbe(batch, ice);
}
if (dirty & IRIS_DIRTY_PS_BLEND) {
struct iris_blend_state *cso_blend = ice->state.cso_blend;
struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
const struct shader_info *fs_info =
iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
pb.AlphaTestEnable = cso_zsa->alpha.enabled;
/* The dual source blending docs caution against using SRC1 factors
* when the shader doesn't use a dual source render target write.
* Empirically, this can lead to GPU hangs, and the results are
* undefined anyway, so simply disable blending to avoid the hang.
*/
pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
(!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
}
iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
ARRAY_SIZE(cso_blend->ps_blend));
}
if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
#if GEN_GEN >= 9 && GEN_GEN < 12
struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
}
iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
#else
/* Use modify disable fields which allow us to emit packets
* directly instead of merging them later.
*/
iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
#endif
#if GEN_GEN >= 12
iris_batch_emit(batch, cso->depth_bounds, sizeof(cso->depth_bounds));
#endif
}
if (dirty & IRIS_DIRTY_STENCIL_REF) {
#if GEN_GEN >= 12
/* Use modify disable fields which allow us to emit packets
* directly instead of merging them later.
*/
struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
wmds.StencilTestMaskModifyDisable = true;
wmds.StencilWriteMaskModifyDisable = true;
wmds.StencilStateModifyDisable = true;
wmds.DepthStateModifyDisable = true;
}
iris_batch_emit(batch, stencil_refs, sizeof(stencil_refs));
#endif
}
if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
uint32_t scissor_offset =
emit_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.scissor,
ice->state.scissors,
sizeof(struct pipe_scissor_state) *
ice->state.num_viewports, 32);
iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
ptr.ScissorRectPointer = scissor_offset;
}
}
if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
/* Do not emit the clear params yets. We need to update the clear value
* first.
*/
uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
uint32_t cso_z_size = batch->screen->isl_dev.ds.size - clear_length;;
#if GEN_GEN == 12
/* GEN:BUG:14010455700
*
* ISL will change some CHICKEN registers depending on the depth surface
* format, along with emitting the depth and stencil packets. In that
* case, we want to do a depth flush and stall, so the pipeline is not
* using these settings while we change the registers.
*/
iris_emit_end_of_pipe_sync(batch,
"Workaround: Stop pipeline for 14010455700",
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_DEPTH_CACHE_FLUSH);
#endif
iris_batch_emit(batch, cso_z->packets, cso_z_size);
if (GEN_GEN >= 12) {
/* GEN:BUG:1408224581
*
* Workaround: Gen12LP Astep only An additional pipe control with
* post-sync = store dword operation would be required.( w/a is to
* have an additional pipe control after the stencil state whenever
* the surface state bits of this state is changing).
*/
iris_emit_pipe_control_write(batch, "WA for stencil state",
PIPE_CONTROL_WRITE_IMMEDIATE,
batch->screen->workaround_address.bo,
batch->screen->workaround_address.offset, 0);
}
union isl_color_value clear_value = { .f32 = { 0, } };
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
if (cso_fb->zsbuf) {
struct iris_resource *zres, *sres;
iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
&zres, &sres);
if (zres && zres->aux.bo)
clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
}
uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
clear.DepthClearValueValid = true;
clear.DepthClearValue = clear_value.f32[0];
}
iris_batch_emit(batch, clear_params, clear_length);
}
if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
/* Listen for buffer changes, and also write enable changes. */
struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
}
if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
for (int i = 0; i < 32; i++) {
poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
}
}
}
if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
struct iris_rasterizer_state *cso = ice->state.cso_rast;
iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
}
if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
topo.PrimitiveTopologyType =
translate_prim_type(draw->mode, draw->vertices_per_patch);
}
}
if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
int count = util_bitcount64(ice->state.bound_vertex_buffers);
uint64_t dynamic_bound = ice->state.bound_vertex_buffers;
if (ice->state.vs_uses_draw_params) {
assert(ice->draw.draw_params.res);
struct iris_vertex_buffer_state *state =
&(ice->state.genx->vertex_buffers[count]);
pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
struct iris_resource *res = (void *) state->resource;
iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
vb.VertexBufferIndex = count;
vb.AddressModifyEnable = true;
vb.BufferPitch = 0;
vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
vb.BufferStartingAddress =
ro_bo(NULL, res->bo->gtt_offset +
(int) ice->draw.draw_params.offset);
vb.MOCS = iris_mocs(res->bo, &batch->screen->isl_dev,
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
}
dynamic_bound |= 1ull << count;
count++;
}
if (ice->state.vs_uses_derived_draw_params) {
struct iris_vertex_buffer_state *state =
&(ice->state.genx->vertex_buffers[count]);
pipe_resource_reference(&state->resource,
ice->draw.derived_draw_params.res);
struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
vb.VertexBufferIndex = count;
vb.AddressModifyEnable = true;
vb.BufferPitch = 0;
vb.BufferSize =
res->bo->size - ice->draw.derived_draw_params.offset;
vb.BufferStartingAddress =
ro_bo(NULL, res->bo->gtt_offset +
(int) ice->draw.derived_draw_params.offset);
vb.MOCS = iris_mocs(res->bo, &batch->screen->isl_dev,
ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
}
dynamic_bound |= 1ull << count;
count++;
}
if (count) {
#if GEN_GEN >= 11
/* Gen11+ doesn't need the cache workaround below */
uint64_t bound = dynamic_bound;
while (bound) {
const int i = u_bit_scan64(&bound);
iris_use_optional_res(batch, genx->vertex_buffers[i].resource,
false, IRIS_DOMAIN_OTHER_READ);
}
#else
/* The VF cache designers cut corners, and made the cache key's
* <VertexBufferIndex, Memory Address> tuple only consider the bottom
* 32 bits of the address. If you have two vertex buffers which get
* placed exactly 4 GiB apart and use them in back-to-back draw calls,
* you can get collisions (even within a single batch).
*
* So, we need to do a VF cache invalidate if the buffer for a VB
* slot slot changes [48:32] address bits from the previous time.
*/
unsigned flush_flags = 0;
uint64_t bound = dynamic_bound;
while (bound) {
const int i = u_bit_scan64(&bound);
uint16_t high_bits = 0;
struct iris_resource *res =
(void *) genx->vertex_buffers[i].resource;
if (res) {
iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ);
high_bits = res->bo->gtt_offset >> 32ull;
if (high_bits != ice->state.last_vbo_high_bits[i]) {
flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
PIPE_CONTROL_CS_STALL;
ice->state.last_vbo_high_bits[i] = high_bits;
}
}
}
if (flush_flags) {
iris_emit_pipe_control_flush(batch,
"workaround: VF cache 32-bit key [VB]",
flush_flags);
}
#endif
const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
uint32_t *map =
iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
_iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
vb.DWordLength = (vb_dwords * count + 1) - 2;
}
map += 1;
bound = dynamic_bound;
while (bound) {
const int i = u_bit_scan64(&bound);
memcpy(map, genx->vertex_buffers[i].state,
sizeof(uint32_t) * vb_dwords);
map += vb_dwords;
}
}
}
if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
const unsigned entries = MAX2(cso->count, 1);
if (!(ice->state.vs_needs_sgvs_element ||
ice->state.vs_uses_derived_draw_params ||
ice->state.vs_needs_edge_flag)) {
iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
(1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
} else {
uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
const unsigned dyn_count = cso->count +
ice->state.vs_needs_sgvs_element +
ice->state.vs_uses_derived_draw_params;
iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
&dynamic_ves, ve) {
ve.DWordLength =
1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
}
memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
(cso->count - ice->state.vs_needs_edge_flag) *
GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
uint32_t *ve_pack_dest =
&dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
GENX(VERTEX_ELEMENT_STATE_length)];
if (ice->state.vs_needs_sgvs_element) {
uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
VFCOMP_STORE_SRC : VFCOMP_STORE_0;
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.Valid = true;
ve.VertexBufferIndex =
util_bitcount64(ice->state.bound_vertex_buffers);
ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
ve.Component0Control = base_ctrl;
ve.Component1Control = base_ctrl;
ve.Component2Control = VFCOMP_STORE_0;
ve.Component3Control = VFCOMP_STORE_0;
}
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
}
if (ice->state.vs_uses_derived_draw_params) {
iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
ve.Valid = true;
ve.VertexBufferIndex =
util_bitcount64(ice->state.bound_vertex_buffers) +
ice->state.vs_uses_draw_params;
ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
ve.Component0Control = VFCOMP_STORE_SRC;
ve.Component1Control = VFCOMP_STORE_SRC;
ve.Component2Control = VFCOMP_STORE_0;
ve.Component3Control = VFCOMP_STORE_0;
}
ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
}
if (ice->state.vs_needs_edge_flag) {
for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
ve_pack_dest[i] = cso->edgeflag_ve[i];
}
iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
(1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
}
if (!ice->state.vs_needs_edge_flag) {
iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
entries * GENX(3DSTATE_VF_INSTANCING_length));
} else {
assert(cso->count > 0);
const unsigned edgeflag_index = cso->count - 1;
uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
vi.VertexElementIndex = edgeflag_index +
ice->state.vs_needs_sgvs_element +
ice->state.vs_uses_derived_draw_params;
}
for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
entries * GENX(3DSTATE_VF_INSTANCING_length));
}
}
if (dirty & IRIS_DIRTY_VF_SGVS) {
const struct brw_vs_prog_data *vs_prog_data = (void *)
ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
if (vs_prog_data->uses_vertexid) {
sgv.VertexIDEnable = true;
sgv.VertexIDComponentNumber = 2;
sgv.VertexIDElementOffset =
cso->count - ice->state.vs_needs_edge_flag;
}
if (vs_prog_data->uses_instanceid) {
sgv.InstanceIDEnable = true;
sgv.InstanceIDComponentNumber = 3;
sgv.InstanceIDElementOffset =
cso->count - ice->state.vs_needs_edge_flag;
}
}
}
if (dirty & IRIS_DIRTY_VF) {
iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
if (draw->primitive_restart) {
vf.IndexedDrawCutIndexEnable = true;
vf.CutIndex = draw->restart_index;
}
}
}
if (dirty & IRIS_DIRTY_VF_STATISTICS) {
iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
vf.StatisticsEnable = true;
}
}
#if GEN_GEN == 8
if (dirty & IRIS_DIRTY_PMA_FIX) {
bool enable = want_pma_fix(ice);
genX(update_pma_fix)(ice, batch, enable);
}
#endif
if (ice->state.current_hash_scale != 1)
genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
#if GEN_GEN >= 12
genX(invalidate_aux_map_state)(batch);
#endif
}
static void
iris_upload_render_state(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw)
{
bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
iris_batch_sync_region_start(batch);
/* Always pin the binder. If we're emitting new binding table pointers,
* we need it. If not, we're probably inheriting old tables via the
* context, and need it anyway. Since true zero-bindings cases are
* practically non-existent, just pin it and avoid last_res tracking.
*/
iris_use_pinned_bo(batch, ice->state.binder.bo, false,
IRIS_DOMAIN_NONE);
if (!batch->contains_draw_with_next_seqno) {
iris_restore_render_saved_bos(ice, batch, draw);
batch->contains_draw_with_next_seqno = batch->contains_draw = true;
}
iris_upload_dirty_render_state(ice, batch, draw);
if (draw->index_size > 0) {
unsigned offset;
if (draw->has_user_indices) {
u_upload_data(ice->ctx.stream_uploader, 0,
draw->count * draw->index_size, 4, draw->index.user,
&offset, &ice->state.last_res.index_buffer);
} else {
struct iris_resource *res = (void *) draw->index.resource;
res->bind_history |= PIPE_BIND_INDEX_BUFFER;
pipe_resource_reference(&ice->state.last_res.index_buffer,
draw->index.resource);
offset = 0;
}
struct iris_genx_state *genx = ice->state.genx;
struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
ib.IndexFormat = draw->index_size >> 1;
ib.MOCS = iris_mocs(bo, &batch->screen->isl_dev,
ISL_SURF_USAGE_INDEX_BUFFER_BIT);
ib.BufferSize = bo->size - offset;
ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
}
if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_OTHER_READ);
}
#if GEN_GEN < 11
/* The VF cache key only uses 32-bits, see vertex buffer comment above */
uint16_t high_bits = bo->gtt_offset >> 32ull;
if (high_bits != ice->state.last_index_bo_high_bits) {
iris_emit_pipe_control_flush(batch,
"workaround: VF cache 32-bit key [IB]",
PIPE_CONTROL_VF_CACHE_INVALIDATE |
PIPE_CONTROL_CS_STALL);
ice->state.last_index_bo_high_bits = high_bits;
}
#endif
}
#define _3DPRIM_END_OFFSET 0x2420
#define _3DPRIM_START_VERTEX 0x2430
#define _3DPRIM_VERTEX_COUNT 0x2434
#define _3DPRIM_INSTANCE_COUNT 0x2438
#define _3DPRIM_START_INSTANCE 0x243C
#define _3DPRIM_BASE_VERTEX 0x2440
if (draw->indirect) {
if (draw->indirect->indirect_draw_count) {
use_predicate = true;
struct iris_bo *draw_count_bo =
iris_resource_bo(draw->indirect->indirect_draw_count);
unsigned draw_count_offset =
draw->indirect->indirect_draw_count_offset;
iris_emit_pipe_control_flush(batch,
"ensure indirect draw buffer is flushed",
PIPE_CONTROL_FLUSH_ENABLE);
if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
struct gen_mi_builder b;
gen_mi_builder_init(&b, batch);
/* comparison = draw id < draw count */
struct gen_mi_value comparison =
gen_mi_ult(&b, gen_mi_imm(draw->drawid),
gen_mi_mem32(ro_bo(draw_count_bo,
draw_count_offset)));
/* predicate = comparison & conditional rendering predicate */
gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
gen_mi_iand(&b, comparison,
gen_mi_reg32(CS_GPR(15))));
} else {
uint32_t mi_predicate;
/* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
iris_load_register_imm64(batch, MI_PREDICATE_SRC1, draw->drawid);
/* Upload the current draw count from the draw parameters buffer
* to MI_PREDICATE_SRC0.
*/
iris_load_register_mem32(batch, MI_PREDICATE_SRC0,
draw_count_bo, draw_count_offset);
/* Zero the top 32-bits of MI_PREDICATE_SRC0 */
iris_load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
if (draw->drawid == 0) {
mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
MI_PREDICATE_COMBINEOP_SET |
MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
} else {
/* While draw_index < draw_count the predicate's result will be
* (draw_index == draw_count) ^ TRUE = TRUE
* When draw_index == draw_count the result is
* (TRUE) ^ TRUE = FALSE
* After this all results will be:
* (FALSE) ^ FALSE = FALSE
*/
mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
MI_PREDICATE_COMBINEOP_XOR |
MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
}
iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
}
}
struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
assert(bo);
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
}
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
}
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = _3DPRIM_START_VERTEX;
lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
}
if (draw->index_size) {
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
}
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
}
} else {
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
}
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
lri.DataDWord = 0;
}
}
} else if (draw->count_from_stream_output) {
struct iris_stream_output_target *so =
(void *) draw->count_from_stream_output;
/* XXX: Replace with actual cache tracking */
iris_emit_pipe_control_flush(batch,
"draw count from stream output stall",
PIPE_CONTROL_CS_STALL);
struct gen_mi_builder b;
gen_mi_builder_init(&b, batch);
struct iris_address addr =
ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
struct gen_mi_value offset =
gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
gen_mi_udiv32_imm(&b, offset, so->stride));
_iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
_iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
_iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
_iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
}
iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
prim.PredicateEnable = use_predicate;
if (draw->indirect || draw->count_from_stream_output) {
prim.IndirectParameterEnable = true;
} else {
prim.StartInstanceLocation = draw->start_instance;
prim.InstanceCount = draw->instance_count;
prim.VertexCountPerInstance = draw->count;
prim.StartVertexLocation = draw->start;
if (draw->index_size) {
prim.BaseVertexLocation += draw->index_bias;
} else {
prim.StartVertexLocation += draw->index_bias;
}
}
}
iris_batch_sync_region_end(batch);
}
static void
iris_load_indirect_location(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
{
#define GPGPU_DISPATCHDIMX 0x2500
#define GPGPU_DISPATCHDIMY 0x2504
#define GPGPU_DISPATCHDIMZ 0x2508
assert(grid->indirect);
struct iris_state_ref *grid_size = &ice->state.grid_size;
struct iris_bo *bo = iris_resource_bo(grid_size->res);
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
}
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
}
iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
}
}
static void
iris_upload_gpgpu_walker(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
{
const uint64_t stage_dirty = ice->state.stage_dirty;
struct iris_screen *screen = batch->screen;
const struct gen_device_info *devinfo = &screen->devinfo;
struct iris_binder *binder = &ice->state.binder;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_COMPUTE];
struct iris_compiled_shader *shader =
ice->shaders.prog[MESA_SHADER_COMPUTE];
struct brw_stage_prog_data *prog_data = shader->prog_data;
struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
const uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
const unsigned simd_size =
brw_cs_simd_size_for_group_size(devinfo, cs_prog_data, group_size);
const unsigned threads = DIV_ROUND_UP(group_size, simd_size);
if (stage_dirty & IRIS_STAGE_DIRTY_CS) {
/* The MEDIA_VFE_STATE documentation for Gen8+ says:
*
* "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
* the only bits that are changed are scoreboard related: Scoreboard
* Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
* these scoreboard related states, a MEDIA_STATE_FLUSH is
* sufficient."
*/
iris_emit_pipe_control_flush(batch,
"workaround: stall before MEDIA_VFE_STATE",
PIPE_CONTROL_CS_STALL);
iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
if (prog_data->total_scratch) {
struct iris_bo *bo =
iris_get_scratch_space(ice, prog_data->total_scratch,
MESA_SHADER_COMPUTE);
vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
vfe.ScratchSpaceBasePointer = rw_bo(bo, 0, IRIS_DOMAIN_NONE);
}
vfe.MaximumNumberofThreads =
devinfo->max_cs_threads * screen->subslice_total - 1;
#if GEN_GEN < 11
vfe.ResetGatewayTimer =
Resettingrelativetimerandlatchingtheglobaltimestamp;
#endif
#if GEN_GEN == 8
vfe.BypassGatewayControl = true;
#endif
vfe.NumberofURBEntries = 2;
vfe.URBEntryAllocationSize = 2;
vfe.CURBEAllocationSize =
ALIGN(cs_prog_data->push.per_thread.regs * threads +
cs_prog_data->push.cross_thread.regs, 2);
}
}
/* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
if ((stage_dirty & IRIS_STAGE_DIRTY_CS) ||
cs_prog_data->local_size[0] == 0 /* Variable local group size */) {
uint32_t curbe_data_offset = 0;
assert(cs_prog_data->push.cross_thread.dwords == 0 &&
cs_prog_data->push.per_thread.dwords == 1 &&
cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
const unsigned push_const_size =
brw_cs_push_const_total_size(cs_prog_data, threads);
uint32_t *curbe_data_map =
stream_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.cs_thread_ids,
ALIGN(push_const_size, 64), 64,
&curbe_data_offset);
assert(curbe_data_map);
memset(curbe_data_map, 0x5a, ALIGN(push_const_size, 64));
iris_fill_cs_push_const_buffer(cs_prog_data, threads, curbe_data_map);
iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
curbe.CURBETotalDataLength = ALIGN(push_const_size, 64);
curbe.CURBEDataStartAddress = curbe_data_offset;
}
}
for (unsigned i = 0; i < IRIS_MAX_GLOBAL_BINDINGS; i++) {
struct pipe_resource *res = ice->state.global_bindings[i];
if (!res)
continue;
iris_use_pinned_bo(batch, iris_resource_bo(res),
true, IRIS_DOMAIN_NONE);
}
if (stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_CS |
IRIS_STAGE_DIRTY_BINDINGS_CS |
IRIS_STAGE_DIRTY_CONSTANTS_CS |
IRIS_STAGE_DIRTY_CS)) {
uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
idd.SharedLocalMemorySize =
encode_slm_size(GEN_GEN, ish->kernel_shared_size);
idd.KernelStartPointer =
KSP(shader) + brw_cs_prog_data_prog_offset(cs_prog_data, simd_size);
idd.SamplerStatePointer = shs->sampler_table.offset;
idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
idd.NumberofThreadsinGPGPUThreadGroup = threads;
}
for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
desc[i] |= ((uint32_t *) shader->derived_data)[i];
iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
load.InterfaceDescriptorTotalLength =
GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
load.InterfaceDescriptorDataStartAddress =
emit_state(batch, ice->state.dynamic_uploader,
&ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
}
}
if (grid->indirect)
iris_load_indirect_location(ice, batch, grid);
const uint32_t right_mask = brw_cs_right_mask(group_size, simd_size);
iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
ggw.IndirectParameterEnable = grid->indirect != NULL;
ggw.SIMDSize = simd_size / 16;
ggw.ThreadDepthCounterMaximum = 0;
ggw.ThreadHeightCounterMaximum = 0;
ggw.ThreadWidthCounterMaximum = threads - 1;
ggw.ThreadGroupIDXDimension = grid->grid[0];
ggw.ThreadGroupIDYDimension = grid->grid[1];
ggw.ThreadGroupIDZDimension = grid->grid[2];
ggw.RightExecutionMask = right_mask;
ggw.BottomExecutionMask = 0xffffffff;
}
iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
}
static void
iris_upload_compute_state(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_grid_info *grid)
{
const uint64_t stage_dirty = ice->state.stage_dirty;
struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
struct iris_compiled_shader *shader =
ice->shaders.prog[MESA_SHADER_COMPUTE];
iris_batch_sync_region_start(batch);
/* Always pin the binder. If we're emitting new binding table pointers,
* we need it. If not, we're probably inheriting old tables via the
* context, and need it anyway. Since true zero-bindings cases are
* practically non-existent, just pin it and avoid last_res tracking.
*/
iris_use_pinned_bo(batch, ice->state.binder.bo, false, IRIS_DOMAIN_NONE);
if (((stage_dirty & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
shs->sysvals_need_upload) ||
shader->kernel_input_size > 0)
upload_sysvals(ice, MESA_SHADER_COMPUTE, grid);
if (stage_dirty & IRIS_STAGE_DIRTY_BINDINGS_CS)
iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
if (stage_dirty & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS)
iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
iris_use_optional_res(batch, shs->sampler_table.res, false,
IRIS_DOMAIN_NONE);
iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false,
IRIS_DOMAIN_NONE);
if (ice->state.need_border_colors)
iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false,
IRIS_DOMAIN_NONE);
#if GEN_GEN >= 12
genX(invalidate_aux_map_state)(batch);
#endif
iris_upload_gpgpu_walker(ice, batch, grid);
if (!batch->contains_draw_with_next_seqno) {
iris_restore_compute_saved_bos(ice, batch, grid);
batch->contains_draw_with_next_seqno = batch->contains_draw = true;
}
iris_batch_sync_region_end(batch);
}
/**
* State module teardown.
*/
static void
iris_destroy_state(struct iris_context *ice)
{
struct iris_genx_state *genx = ice->state.genx;
pipe_resource_reference(&ice->draw.draw_params.res, NULL);
pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
/* Loop over all VBOs, including ones for draw parameters */
for (unsigned i = 0; i < ARRAY_SIZE(genx->vertex_buffers); i++) {
pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
}
free(ice->state.genx);
for (int i = 0; i < 4; i++) {
pipe_so_target_reference(&ice->state.so_target[i], NULL);
}
for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
}
pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
struct iris_shader_state *shs = &ice->state.shaders[stage];
pipe_resource_reference(&shs->sampler_table.res, NULL);
for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
}
for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
pipe_resource_reference(&shs->image[i].base.resource, NULL);
pipe_resource_reference(&shs->image[i].surface_state.ref.res, NULL);
free(shs->image[i].surface_state.cpu);
}
for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
}
for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
pipe_sampler_view_reference((struct pipe_sampler_view **)
&shs->textures[i], NULL);
}
}
pipe_resource_reference(&ice->state.grid_size.res, NULL);
pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
pipe_resource_reference(&ice->state.null_fb.res, NULL);
pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
pipe_resource_reference(&ice->state.last_res.scissor, NULL);
pipe_resource_reference(&ice->state.last_res.blend, NULL);
pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
}
/* ------------------------------------------------------------------- */
static void
iris_rebind_buffer(struct iris_context *ice,
struct iris_resource *res)
{
struct pipe_context *ctx = &ice->ctx;
struct iris_genx_state *genx = ice->state.genx;
assert(res->base.target == PIPE_BUFFER);
/* Buffers can't be framebuffer attachments, nor display related,
* and we don't have upstream Clover support.
*/
assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
PIPE_BIND_RENDER_TARGET |
PIPE_BIND_BLENDABLE |
PIPE_BIND_DISPLAY_TARGET |
PIPE_BIND_CURSOR |
PIPE_BIND_COMPUTE_RESOURCE |
PIPE_BIND_GLOBAL)));
if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
uint64_t bound_vbs = ice->state.bound_vertex_buffers;
while (bound_vbs) {
const int i = u_bit_scan64(&bound_vbs);
struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
/* Update the CPU struct */
STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
uint64_t *addr = (uint64_t *) &state->state[1];
struct iris_bo *bo = iris_resource_bo(state->resource);
if (*addr != bo->gtt_offset + state->offset) {
*addr = bo->gtt_offset + state->offset;
ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
}
}
}
/* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
* the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
*
* There is also no need to handle these:
* - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
* - PIPE_BIND_QUERY_BUFFER (no persistent state references)
*/
if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
/* XXX: be careful about resetting vs appending... */
assert(false);
}
for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
struct iris_shader_state *shs = &ice->state.shaders[s];
enum pipe_shader_type p_stage = stage_to_pipe(s);
if (!(res->bind_stages & (1 << s)))
continue;
if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
/* Skip constant buffer 0, it's for regular uniforms, not UBOs */
uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
while (bound_cbufs) {
const int i = u_bit_scan(&bound_cbufs);
struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
if (res->bo == iris_resource_bo(cbuf->buffer)) {
pipe_resource_reference(&surf_state->res, NULL);
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << s;
}
}
}
if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
uint32_t bound_ssbos = shs->bound_ssbos;
while (bound_ssbos) {
const int i = u_bit_scan(&bound_ssbos);
struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
if (res->bo == iris_resource_bo(ssbo->buffer)) {
struct pipe_shader_buffer buf = {
.buffer = &res->base,
.buffer_offset = ssbo->buffer_offset,
.buffer_size = ssbo->buffer_size,
};
iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
(shs->writable_ssbos >> i) & 1);
}
}
}
if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
uint32_t bound_sampler_views = shs->bound_sampler_views;
while (bound_sampler_views) {
const int i = u_bit_scan(&bound_sampler_views);
struct iris_sampler_view *isv = shs->textures[i];
struct iris_bo *bo = isv->res->bo;
if (update_surface_state_addrs(ice->state.surface_uploader,
&isv->surface_state, bo)) {
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
}
}
}
if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
uint32_t bound_image_views = shs->bound_image_views;
while (bound_image_views) {
const int i = u_bit_scan(&bound_image_views);
struct iris_image_view *iv = &shs->image[i];
struct iris_bo *bo = iris_resource_bo(iv->base.resource);
if (update_surface_state_addrs(ice->state.surface_uploader,
&iv->surface_state, bo)) {
ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
}
}
}
}
}
/* ------------------------------------------------------------------- */
/**
* Introduce a batch synchronization boundary, and update its cache coherency
* status to reflect the execution of a PIPE_CONTROL command with the
* specified flags.
*/
static void
batch_mark_sync_for_pipe_control(struct iris_batch *batch, uint32_t flags)
{
iris_batch_sync_boundary(batch);
if ((flags & PIPE_CONTROL_CS_STALL)) {
if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
if ((flags & (PIPE_CONTROL_CACHE_FLUSH_BITS |
PIPE_CONTROL_STALL_AT_SCOREBOARD)))
iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_READ);
}
if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
if ((flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) &&
(flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE))
iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_READ);
}
static unsigned
flags_to_post_sync_op(uint32_t flags)
{
if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
return WriteImmediateData;
if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
return WritePSDepthCount;
if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
return WriteTimestamp;
return 0;
}
/**
* Do the given flags have a Post Sync or LRI Post Sync operation?
*/
static enum pipe_control_flags
get_post_sync_flags(enum pipe_control_flags flags)
{
flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
PIPE_CONTROL_WRITE_DEPTH_COUNT |
PIPE_CONTROL_WRITE_TIMESTAMP |
PIPE_CONTROL_LRI_POST_SYNC_OP;
/* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
* "LRI Post Sync Operation". So more than one bit set would be illegal.
*/
assert(util_bitcount(flags) <= 1);
return flags;
}
#define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
/**
* Emit a series of PIPE_CONTROL commands, taking into account any
* workarounds necessary to actually accomplish the caller's request.
*
* Unless otherwise noted, spec quotations in this function come from:
*
* Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
* Restrictions for PIPE_CONTROL.
*
* You should not use this function directly. Use the helpers in
* iris_pipe_control.c instead, which may split the pipe control further.
*/
static void
iris_emit_raw_pipe_control(struct iris_batch *batch,
const char *reason,
uint32_t flags,
struct iris_bo *bo,
uint32_t offset,
uint64_t imm)
{
UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
enum pipe_control_flags non_lri_post_sync_flags =
post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
/* Recursive PIPE_CONTROL workarounds --------------------------------
* (http://knowyourmeme.com/memes/xzibit-yo-dawg)
*
* We do these first because we want to look at the original operation,
* rather than any workarounds we set.
*/
if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
/* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
* lists several workarounds:
*
* "Project: SKL, KBL, BXT
*
* If the VF Cache Invalidation Enable is set to a 1 in a
* PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
* sets to 0, with the VF Cache Invalidation Enable set to 0
* needs to be sent prior to the PIPE_CONTROL with VF Cache
* Invalidation Enable set to a 1."
*/
iris_emit_raw_pipe_control(batch,
"workaround: recursive VF cache invalidate",
0, NULL, 0, 0);
}
/* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which
* invalidates the instruction cache
*/
if (GEN_GEN == 12 && (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE)) {
iris_emit_raw_pipe_control(batch,
"workaround: CS stall before instruction "
"cache invalidate",
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_STALL_AT_SCOREBOARD, bo, offset,
imm);
}
if ((GEN_GEN == 9 || (GEN_GEN == 12 && devinfo->revision == 0 /* A0*/)) &&
IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
/* Project: SKL / Argument: LRI Post Sync Operation [23]
*
* "PIPECONTROL command with “Command Streamer Stall Enable” must be
* programmed prior to programming a PIPECONTROL command with "LRI
* Post Sync Operation" in GPGPU mode of operation (i.e when
* PIPELINE_SELECT command is set to GPGPU mode of operation)."
*
* The same text exists a few rows below for Post Sync Op.
*
* On Gen12 this is GEN:BUG:1607156449.
*/
iris_emit_raw_pipe_control(batch,
"workaround: CS stall before gpgpu post-sync",
PIPE_CONTROL_CS_STALL, bo, offset, imm);
}
/* "Flush Types" workarounds ---------------------------------------------
* We do these now because they may add post-sync operations or CS stalls.
*/
if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
/* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
*
* "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
* 'Write PS Depth Count' or 'Write Timestamp'."
*/
if (!bo) {
flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
bo = batch->screen->workaround_address.bo;
offset = batch->screen->workaround_address.offset;
}
}
if (flags & PIPE_CONTROL_DEPTH_STALL) {
/* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
*
* "This bit must be DISABLED for operations other than writing
* PS_DEPTH_COUNT."
*
* This seems like nonsense. An Ivybridge workaround requires us to
* emit a PIPE_CONTROL with a depth stall and write immediate post-sync
* operation. Gen8+ requires us to emit depth stalls and depth cache
* flushes together. So, it's hard to imagine this means anything other
* than "we originally intended this to be used for PS_DEPTH_COUNT".
*
* We ignore the supposed restriction and do nothing.
*/
}
if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
/* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
*
* "This bit must be DISABLED for End-of-pipe (Read) fences,
* PS_DEPTH_COUNT or TIMESTAMP queries."
*
* TODO: Implement end-of-pipe checking.
*/
assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
PIPE_CONTROL_WRITE_TIMESTAMP)));
}
if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
/* From the PIPE_CONTROL instruction table, bit 1:
*
* "This bit is ignored if Depth Stall Enable is set.
* Further, the render cache is not flushed even if Write Cache
* Flush Enable bit is set."
*
* We assert that the caller doesn't do this combination, to try and
* prevent mistakes. It shouldn't hurt the GPU, though.
*
* We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
* and "Render Target Flush" combo is explicitly required for BTI
* update workarounds.
*/
assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_RENDER_TARGET_FLUSH)));
}
/* PIPE_CONTROL page workarounds ------------------------------------- */
if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
/* From the PIPE_CONTROL page itself:
*
* "IVB, HSW, BDW
* Restriction: Pipe_control with CS-stall bit set must be issued
* before a pipe-control command that has the State Cache
* Invalidate bit set."
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (flags & PIPE_CONTROL_FLUSH_LLC) {
/* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
*
* "Project: ALL
* SW must always program Post-Sync Operation to "Write Immediate
* Data" when Flush LLC is set."
*
* For now, we just require the caller to do it.
*/
assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
}
/* "Post-Sync Operation" workarounds -------------------------------- */
/* Project: All / Argument: Global Snapshot Count Reset [19]
*
* "This bit must not be exercised on any product.
* Requires stall bit ([20] of DW1) set."
*
* We don't use this, so we just assert that it isn't used. The
* PIPE_CONTROL instruction page indicates that they intended this
* as a debug feature and don't think it is useful in production,
* but it may actually be usable, should we ever want to.
*/
assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
/* Project: All / Arguments:
*
* - Generic Media State Clear [16]
* - Indirect State Pointers Disable [16]
*
* "Requires stall bit ([20] of DW1) set."
*
* Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
* State Clear) says:
*
* "PIPECONTROL command with “Command Streamer Stall Enable” must be
* programmed prior to programming a PIPECONTROL command with "Media
* State Clear" set in GPGPU mode of operation"
*
* This is a subset of the earlier rule, so there's nothing to do.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
/* Project: All / Argument: Store Data Index
*
* "Post-Sync Operation ([15:14] of DW1) must be set to something other
* than '0'."
*
* For now, we just assert that the caller does this. We might want to
* automatically add a write to the workaround BO...
*/
assert(non_lri_post_sync_flags != 0);
}
if (flags & PIPE_CONTROL_SYNC_GFDT) {
/* Project: All / Argument: Sync GFDT
*
* "Post-Sync Operation ([15:14] of DW1) must be set to something other
* than '0' or 0x2520[13] must be set."
*
* For now, we just assert that the caller does this.
*/
assert(non_lri_post_sync_flags != 0);
}
if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
/* Project: IVB+ / Argument: TLB inv
*
* "Requires stall bit ([20] of DW1) set."
*
* Also, from the PIPE_CONTROL instruction table:
*
* "Project: SKL+
* Post Sync Operation or CS stall must be set to ensure a TLB
* invalidation occurs. Otherwise no cycle will occur to the TLB
* cache to invalidate."
*
* This is not a subset of the earlier rule, so there's nothing to do.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (GEN_GEN >= 12 && ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ||
(flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))) {
/* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
* Enable):
*
* Unified Cache (Tile Cache Disabled):
*
* When the Color and Depth (Z) streams are enabled to be cached in
* the DC space of L2, Software must use "Render Target Cache Flush
* Enable" and "Depth Cache Flush Enable" along with "Tile Cache
* Flush" for getting the color and depth (Z) write data to be
* globally observable. In this mode of operation it is not required
* to set "CS Stall" upon setting "Tile Cache Flush" bit.
*/
flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
}
if (GEN_GEN == 9 && devinfo->gt == 4) {
/* TODO: The big Skylake GT4 post sync op workaround */
}
/* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
if (IS_COMPUTE_PIPELINE(batch)) {
if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
/* Project: SKL+ / Argument: Tex Invalidate
* "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (GEN_GEN == 8 && (post_sync_flags ||
(flags & (PIPE_CONTROL_NOTIFY_ENABLE |
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
/* Project: BDW / Arguments:
*
* - LRI Post Sync Operation [23]
* - Post Sync Op [15:14]
* - Notify En [8]
* - Depth Stall [13]
* - Render Target Cache Flush [12]
* - Depth Cache Flush [0]
* - DC Flush Enable [5]
*
* "Requires stall bit ([20] of DW) set for all GPGPU and Media
* Workloads."
*/
flags |= PIPE_CONTROL_CS_STALL;
/* Also, from the PIPE_CONTROL instruction table, bit 20:
*
* "Project: BDW
* This bit must be always set when PIPE_CONTROL command is
* programmed by GPGPU and MEDIA workloads, except for the cases
* when only Read Only Cache Invalidation bits are set (State
* Cache Invalidation Enable, Instruction cache Invalidation
* Enable, Texture Cache Invalidation Enable, Constant Cache
* Invalidation Enable). This is to WA FFDOP CG issue, this WA
* need not implemented when FF_DOP_CG is disable via "Fixed
* Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
*
* It sounds like we could avoid CS stalls in some cases, but we
* don't currently bother. This list isn't exactly the list above,
* either...
*/
}
}
/* "Stall" workarounds ----------------------------------------------
* These have to come after the earlier ones because we may have added
* some additional CS stalls above.
*/
if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
/* Project: PRE-SKL, VLV, CHV
*
* "[All Stepping][All SKUs]:
*
* One of the following must also be set:
*
* - Render Target Cache Flush Enable ([12] of DW1)
* - Depth Cache Flush Enable ([0] of DW1)
* - Stall at Pixel Scoreboard ([1] of DW1)
* - Depth Stall ([13] of DW1)
* - Post-Sync Operation ([13] of DW1)
* - DC Flush Enable ([5] of DW1)"
*
* If we don't already have one of those bits set, we choose to add
* "Stall at Pixel Scoreboard". Some of the other bits require a
* CS stall as a workaround (see above), which would send us into
* an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
* appears to be safe, so we choose that.
*/
const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_WRITE_IMMEDIATE |
PIPE_CONTROL_WRITE_DEPTH_COUNT |
PIPE_CONTROL_WRITE_TIMESTAMP |
PIPE_CONTROL_STALL_AT_SCOREBOARD |
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_DATA_CACHE_FLUSH;
if (!(flags & wa_bits))
flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
}
if (GEN_GEN >= 12 && (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH)) {
/* GEN:BUG:1409600907:
*
* "PIPE_CONTROL with Depth Stall Enable bit must be set
* with any PIPE_CONTROL with Depth Flush Enable bit set.
*/
flags |= PIPE_CONTROL_DEPTH_STALL;
}
/* Emit --------------------------------------------------------------- */
if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
fprintf(stderr,
" PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
(flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
(flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
(flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
(flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
(flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
(flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
(flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
(flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
(flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
(flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
(flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
(flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
(flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
(flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
(flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
(flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
"SnapRes" : "",
(flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
"ISPDis" : "",
(flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
(flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
(flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
(flags & PIPE_CONTROL_FLUSH_HDC) ? "HDC " : "",
imm, reason);
}
batch_mark_sync_for_pipe_control(batch, flags);
iris_batch_sync_region_start(batch);
iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
#if GEN_GEN >= 12
pc.TileCacheFlushEnable = flags & PIPE_CONTROL_TILE_CACHE_FLUSH;
#endif
#if GEN_GEN >= 11
pc.HDCPipelineFlushEnable = flags & PIPE_CONTROL_FLUSH_HDC;
#endif
pc.LRIPostSyncOperation = NoLRIOperation;
pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
pc.StoreDataIndex = 0;
pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
pc.GlobalSnapshotCountReset =
flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
pc.RenderTargetCacheFlushEnable =
flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
pc.StateCacheInvalidationEnable =
flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
pc.ConstantCacheInvalidationEnable =
flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
pc.PostSyncOperation = flags_to_post_sync_op(flags);
pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
pc.InstructionCacheInvalidateEnable =
flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
pc.IndirectStatePointersDisable =
flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
pc.TextureCacheInvalidationEnable =
flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
pc.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
pc.ImmediateData = imm;
}
iris_batch_sync_region_end(batch);
}
#if GEN_GEN == 9
/**
* Preemption on Gen9 has to be enabled or disabled in various cases.
*
* See these workarounds for preemption:
* - WaDisableMidObjectPreemptionForGSLineStripAdj
* - WaDisableMidObjectPreemptionForTrifanOrPolygon
* - WaDisableMidObjectPreemptionForLineLoop
* - WA#0798
*
* We don't put this in the vtable because it's only used on Gen9.
*/
void
gen9_toggle_preemption(struct iris_context *ice,
struct iris_batch *batch,
const struct pipe_draw_info *draw)
{
struct iris_genx_state *genx = ice->state.genx;
bool object_preemption = true;
/* WaDisableMidObjectPreemptionForGSLineStripAdj
*
* "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
* and GS is enabled."
*/
if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
ice->shaders.prog[MESA_SHADER_GEOMETRY])
object_preemption = false;
/* WaDisableMidObjectPreemptionForTrifanOrPolygon
*
* "TriFan miscompare in Execlist Preemption test. Cut index that is
* on a previous context. End the previous, the resume another context
* with a tri-fan or polygon, and the vertex count is corrupted. If we
* prempt again we will cause corruption.
*
* WA: Disable mid-draw preemption when draw-call has a tri-fan."
*/
if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
object_preemption = false;
/* WaDisableMidObjectPreemptionForLineLoop
*
* "VF Stats Counters Missing a vertex when preemption enabled.
*
* WA: Disable mid-draw preemption when the draw uses a lineloop
* topology."
*/
if (draw->mode == PIPE_PRIM_LINE_LOOP)
object_preemption = false;
/* WA#0798
*
* "VF is corrupting GAFS data when preempted on an instance boundary
* and replayed with instancing enabled.
*
* WA: Disable preemption when using instanceing."
*/
if (draw->instance_count > 1)
object_preemption = false;
if (genx->object_preemption != object_preemption) {
iris_enable_obj_preemption(batch, object_preemption);
genx->object_preemption = object_preemption;
}
}
#endif
static void
iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
{
struct iris_genx_state *genx = ice->state.genx;
memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
}
static void
iris_emit_mi_report_perf_count(struct iris_batch *batch,
struct iris_bo *bo,
uint32_t offset_in_bytes,
uint32_t report_id)
{
iris_batch_sync_region_start(batch);
iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes,
IRIS_DOMAIN_OTHER_WRITE);
mi_rpc.ReportID = report_id;
}
iris_batch_sync_region_end(batch);
}
/**
* Update the pixel hashing modes that determine the balancing of PS threads
* across subslices and slices.
*
* \param width Width bound of the rendering area (already scaled down if \p
* scale is greater than 1).
* \param height Height bound of the rendering area (already scaled down if \p
* scale is greater than 1).
* \param scale The number of framebuffer samples that could potentially be
* affected by an individual channel of the PS thread. This is
* typically one for single-sampled rendering, but for operations
* like CCS resolves and fast clears a single PS invocation may
* update a huge number of pixels, in which case a finer
* balancing is desirable in order to maximally utilize the
* bandwidth available. UINT_MAX can be used as shorthand for
* "finest hashing mode available".
*/
void
genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
unsigned width, unsigned height, unsigned scale)
{
#if GEN_GEN == 9
const struct gen_device_info *devinfo = &batch->screen->devinfo;
const unsigned slice_hashing[] = {
/* Because all Gen9 platforms with more than one slice require
* three-way subslice hashing, a single "normal" 16x16 slice hashing
* block is guaranteed to suffer from substantial imbalance, with one
* subslice receiving twice as much work as the other two in the
* slice.
*
* The performance impact of that would be particularly severe when
* three-way hashing is also in use for slice balancing (which is the
* case for all Gen9 GT4 platforms), because one of the slices
* receives one every three 16x16 blocks in either direction, which
* is roughly the periodicity of the underlying subslice imbalance
* pattern ("roughly" because in reality the hardware's
* implementation of three-way hashing doesn't do exact modulo 3
* arithmetic, which somewhat decreases the magnitude of this effect
* in practice). This leads to a systematic subslice imbalance
* within that slice regardless of the size of the primitive. The
* 32x32 hashing mode guarantees that the subslice imbalance within a
* single slice hashing block is minimal, largely eliminating this
* effect.
*/
_32x32,
/* Finest slice hashing mode available. */
NORMAL
};
const unsigned subslice_hashing[] = {
/* 16x16 would provide a slight cache locality benefit especially
* visible in the sampler L1 cache efficiency of low-bandwidth
* non-LLC platforms, but it comes at the cost of greater subslice
* imbalance for primitives of dimensions approximately intermediate
* between 16x4 and 16x16.
*/
_16x4,
/* Finest subslice hashing mode available. */
_8x4
};
/* Dimensions of the smallest hashing block of a given hashing mode. If
* the rendering area is smaller than this there can't possibly be any
* benefit from switching to this mode, so we optimize out the
* transition.
*/
const unsigned min_size[][2] = {
{ 16, 4 },
{ 8, 4 }
};
const unsigned idx = scale > 1;
if (width > min_size[idx][0] || height > min_size[idx][1]) {
uint32_t gt_mode;
iris_pack_state(GENX(GT_MODE), &gt_mode, reg) {
reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
reg.SubsliceHashing = subslice_hashing[idx];
reg.SubsliceHashingMask = -1;
};
iris_emit_raw_pipe_control(batch,
"workaround: CS stall before GT_MODE LRI",
PIPE_CONTROL_STALL_AT_SCOREBOARD |
PIPE_CONTROL_CS_STALL,
NULL, 0, 0);
iris_emit_lri(batch, GT_MODE, gt_mode);
ice->state.current_hash_scale = scale;
}
#endif
}
static void
iris_set_frontend_noop(struct pipe_context *ctx, bool enable)
{
struct iris_context *ice = (struct iris_context *) ctx;
if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_RENDER], enable)) {
ice->state.dirty |= IRIS_ALL_DIRTY_FOR_RENDER;
ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_RENDER;
}
if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_COMPUTE], enable)) {
ice->state.dirty |= IRIS_ALL_DIRTY_FOR_COMPUTE;
ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_COMPUTE;
}
}
void
genX(init_state)(struct iris_context *ice)
{
struct pipe_context *ctx = &ice->ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
ctx->create_blend_state = iris_create_blend_state;
ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
ctx->create_rasterizer_state = iris_create_rasterizer_state;
ctx->create_sampler_state = iris_create_sampler_state;
ctx->create_sampler_view = iris_create_sampler_view;
ctx->create_surface = iris_create_surface;
ctx->create_vertex_elements_state = iris_create_vertex_elements;
ctx->bind_blend_state = iris_bind_blend_state;
ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
ctx->bind_sampler_states = iris_bind_sampler_states;
ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
ctx->delete_blend_state = iris_delete_state;
ctx->delete_depth_stencil_alpha_state = iris_delete_state;
ctx->delete_rasterizer_state = iris_delete_state;
ctx->delete_sampler_state = iris_delete_state;
ctx->delete_vertex_elements_state = iris_delete_state;
ctx->set_blend_color = iris_set_blend_color;
ctx->set_clip_state = iris_set_clip_state;
ctx->set_constant_buffer = iris_set_constant_buffer;
ctx->set_shader_buffers = iris_set_shader_buffers;
ctx->set_shader_images = iris_set_shader_images;
ctx->set_sampler_views = iris_set_sampler_views;
ctx->set_compute_resources = iris_set_compute_resources;
ctx->set_global_binding = iris_set_global_binding;
ctx->set_tess_state = iris_set_tess_state;
ctx->set_framebuffer_state = iris_set_framebuffer_state;
ctx->set_polygon_stipple = iris_set_polygon_stipple;
ctx->set_sample_mask = iris_set_sample_mask;
ctx->set_scissor_states = iris_set_scissor_states;
ctx->set_stencil_ref = iris_set_stencil_ref;
ctx->set_vertex_buffers = iris_set_vertex_buffers;
ctx->set_viewport_states = iris_set_viewport_states;
ctx->sampler_view_destroy = iris_sampler_view_destroy;
ctx->surface_destroy = iris_surface_destroy;
ctx->draw_vbo = iris_draw_vbo;
ctx->launch_grid = iris_launch_grid;
ctx->create_stream_output_target = iris_create_stream_output_target;
ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
ctx->set_stream_output_targets = iris_set_stream_output_targets;
ctx->set_frontend_noop = iris_set_frontend_noop;
screen->vtbl.destroy_state = iris_destroy_state;
screen->vtbl.init_render_context = iris_init_render_context;
screen->vtbl.init_compute_context = iris_init_compute_context;
screen->vtbl.upload_render_state = iris_upload_render_state;
screen->vtbl.update_surface_base_address = iris_update_surface_base_address;
screen->vtbl.upload_compute_state = iris_upload_compute_state;
screen->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
screen->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
screen->vtbl.rebind_buffer = iris_rebind_buffer;
screen->vtbl.load_register_reg32 = iris_load_register_reg32;
screen->vtbl.load_register_reg64 = iris_load_register_reg64;
screen->vtbl.load_register_imm32 = iris_load_register_imm32;
screen->vtbl.load_register_imm64 = iris_load_register_imm64;
screen->vtbl.load_register_mem32 = iris_load_register_mem32;
screen->vtbl.load_register_mem64 = iris_load_register_mem64;
screen->vtbl.store_register_mem32 = iris_store_register_mem32;
screen->vtbl.store_register_mem64 = iris_store_register_mem64;
screen->vtbl.store_data_imm32 = iris_store_data_imm32;
screen->vtbl.store_data_imm64 = iris_store_data_imm64;
screen->vtbl.copy_mem_mem = iris_copy_mem_mem;
screen->vtbl.derived_program_state_size = iris_derived_program_state_size;
screen->vtbl.store_derived_program_state = iris_store_derived_program_state;
screen->vtbl.create_so_decl_list = iris_create_so_decl_list;
screen->vtbl.populate_vs_key = iris_populate_vs_key;
screen->vtbl.populate_tcs_key = iris_populate_tcs_key;
screen->vtbl.populate_tes_key = iris_populate_tes_key;
screen->vtbl.populate_gs_key = iris_populate_gs_key;
screen->vtbl.populate_fs_key = iris_populate_fs_key;
screen->vtbl.populate_cs_key = iris_populate_cs_key;
screen->vtbl.lost_genx_state = iris_lost_genx_state;
ice->state.dirty = ~0ull;
ice->state.stage_dirty = ~0ull;
ice->state.statistics_counters_enabled = true;
ice->state.sample_mask = 0xffff;
ice->state.num_viewports = 1;
ice->state.prim_mode = PIPE_PRIM_MAX;
ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
ice->draw.derived_params.drawid = -1;
/* Make a 1x1x1 null surface for unbound textures */
void *null_surf_map =
upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
4 * GENX(RENDER_SURFACE_STATE_length), 64);
isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
ice->state.unbound_tex.offset +=
iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
/* Default all scissor rectangles to be empty regions. */
for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
ice->state.scissors[i] = (struct pipe_scissor_state) {
.minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
};
}
}