blob: eb5be47a3bcbabbfc6af4b0381bd3d465129d643 [file] [log] [blame]
/*
* Copyright 2013 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Marek Olšák <marek.olsak@amd.com>
*/
/* Resource binding slots and sampler states (each described with 8 or
* 4 dwords) are stored in lists in memory which is accessed by shaders
* using scalar load instructions.
*
* This file is responsible for managing such lists. It keeps a copy of all
* descriptors in CPU memory and re-uploads a whole list if some slots have
* been changed.
*
* This code is also reponsible for updating shader pointers to those lists.
*
* Note that CP DMA can't be used for updating the lists, because a GPU hang
* could leave the list in a mid-IB state and the next IB would get wrong
* descriptors and the whole context would be unusable at that point.
* (Note: The register shadowing can't be used due to the same reason)
*
* Also, uploading descriptors to newly allocated memory doesn't require
* a KCACHE flush.
*
*
* Possible scenarios for one 16 dword image+sampler slot:
*
* | Image | w/ FMASK | Buffer | NULL
* [ 0: 3] Image[0:3] | Image[0:3] | Null[0:3] | Null[0:3]
* [ 4: 7] Image[4:7] | Image[4:7] | Buffer[0:3] | 0
* [ 8:11] Null[0:3] | Fmask[0:3] | Null[0:3] | Null[0:3]
* [12:15] Sampler[0:3] | Fmask[4:7] | Sampler[0:3] | Sampler[0:3]
*
* FMASK implies MSAA, therefore no sampler state.
* Sampler states are never unbound except when FMASK is bound.
*/
#include "radeon/r600_cs.h"
#include "si_pipe.h"
#include "sid.h"
#include "util/u_format.h"
#include "util/u_memory.h"
#include "util/u_upload_mgr.h"
/* NULL image and buffer descriptor for textures (alpha = 1) and images
* (alpha = 0).
*
* For images, all fields must be zero except for the swizzle, which
* supports arbitrary combinations of 0s and 1s. The texture type must be
* any valid type (e.g. 1D). If the texture type isn't set, the hw hangs.
*
* For buffers, all fields must be zero. If they are not, the hw hangs.
*
* This is the only reason why the buffer descriptor must be in words [4:7].
*/
static uint32_t null_texture_descriptor[8] = {
0,
0,
0,
S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_1) |
S_008F1C_TYPE(V_008F1C_SQ_RSRC_IMG_1D)
/* the rest must contain zeros, which is also used by the buffer
* descriptor */
};
static uint32_t null_image_descriptor[8] = {
0,
0,
0,
S_008F1C_TYPE(V_008F1C_SQ_RSRC_IMG_1D)
/* the rest must contain zeros, which is also used by the buffer
* descriptor */
};
static void si_init_descriptors(struct si_descriptors *desc,
unsigned shader_userdata_index,
unsigned element_dw_size,
unsigned num_elements,
const uint32_t *null_descriptor,
unsigned *ce_offset)
{
int i;
assert(num_elements <= sizeof(desc->dirty_mask)*8);
desc->list = CALLOC(num_elements, element_dw_size * 4);
desc->element_dw_size = element_dw_size;
desc->num_elements = num_elements;
desc->dirty_mask = num_elements == 32 ? ~0u : (1u << num_elements) - 1;
desc->shader_userdata_offset = shader_userdata_index * 4;
if (ce_offset) {
desc->ce_offset = *ce_offset;
/* make sure that ce_offset stays 32 byte aligned */
*ce_offset += align(element_dw_size * num_elements * 4, 32);
}
/* Initialize the array to NULL descriptors if the element size is 8. */
if (null_descriptor) {
assert(element_dw_size % 8 == 0);
for (i = 0; i < num_elements * element_dw_size / 8; i++)
memcpy(desc->list + i * 8, null_descriptor,
8 * 4);
}
}
static void si_release_descriptors(struct si_descriptors *desc)
{
r600_resource_reference(&desc->buffer, NULL);
FREE(desc->list);
}
static bool si_ce_upload(struct si_context *sctx, unsigned ce_offset, unsigned size,
unsigned *out_offset, struct r600_resource **out_buf) {
uint64_t va;
u_suballocator_alloc(sctx->ce_suballocator, size, 64, out_offset,
(struct pipe_resource**)out_buf);
if (!out_buf)
return false;
va = (*out_buf)->gpu_address + *out_offset;
radeon_emit(sctx->ce_ib, PKT3(PKT3_DUMP_CONST_RAM, 3, 0));
radeon_emit(sctx->ce_ib, ce_offset);
radeon_emit(sctx->ce_ib, size / 4);
radeon_emit(sctx->ce_ib, va);
radeon_emit(sctx->ce_ib, va >> 32);
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, *out_buf,
RADEON_USAGE_READWRITE, RADEON_PRIO_DESCRIPTORS);
sctx->ce_need_synchronization = true;
return true;
}
static void si_ce_reinitialize_descriptors(struct si_context *sctx,
struct si_descriptors *desc)
{
if (desc->buffer) {
struct r600_resource *buffer = (struct r600_resource*)desc->buffer;
unsigned list_size = desc->num_elements * desc->element_dw_size * 4;
uint64_t va = buffer->gpu_address + desc->buffer_offset;
struct radeon_winsys_cs *ib = sctx->ce_preamble_ib;
if (!ib)
ib = sctx->ce_ib;
list_size = align(list_size, 32);
radeon_emit(ib, PKT3(PKT3_LOAD_CONST_RAM, 3, 0));
radeon_emit(ib, va);
radeon_emit(ib, va >> 32);
radeon_emit(ib, list_size / 4);
radeon_emit(ib, desc->ce_offset);
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer,
RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS);
}
desc->ce_ram_dirty = false;
}
void si_ce_reinitialize_all_descriptors(struct si_context *sctx)
{
int i;
for (i = 0; i < SI_NUM_DESCS; ++i)
si_ce_reinitialize_descriptors(sctx, &sctx->descriptors[i]);
}
void si_ce_enable_loads(struct radeon_winsys_cs *ib)
{
radeon_emit(ib, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
radeon_emit(ib, CONTEXT_CONTROL_LOAD_ENABLE(1) |
CONTEXT_CONTROL_LOAD_CE_RAM(1));
radeon_emit(ib, CONTEXT_CONTROL_SHADOW_ENABLE(1));
}
static bool si_upload_descriptors(struct si_context *sctx,
struct si_descriptors *desc,
struct r600_atom * atom)
{
unsigned list_size = desc->num_elements * desc->element_dw_size * 4;
if (!desc->dirty_mask)
return true;
if (sctx->ce_ib) {
uint32_t const* list = (uint32_t const*)desc->list;
if (desc->ce_ram_dirty)
si_ce_reinitialize_descriptors(sctx, desc);
while(desc->dirty_mask) {
int begin, count;
u_bit_scan_consecutive_range(&desc->dirty_mask, &begin,
&count);
begin *= desc->element_dw_size;
count *= desc->element_dw_size;
radeon_emit(sctx->ce_ib,
PKT3(PKT3_WRITE_CONST_RAM, count, 0));
radeon_emit(sctx->ce_ib, desc->ce_offset + begin * 4);
radeon_emit_array(sctx->ce_ib, list + begin, count);
}
if (!si_ce_upload(sctx, desc->ce_offset, list_size,
&desc->buffer_offset, &desc->buffer))
return false;
} else {
void *ptr;
u_upload_alloc(sctx->b.uploader, 0, list_size, 256,
&desc->buffer_offset,
(struct pipe_resource**)&desc->buffer, &ptr);
if (!desc->buffer)
return false; /* skip the draw call */
util_memcpy_cpu_to_le32(ptr, desc->list, list_size);
desc->gpu_list = ptr;
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer,
RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS);
}
desc->dirty_mask = 0;
if (atom)
si_mark_atom_dirty(sctx, atom);
return true;
}
static void
si_descriptors_begin_new_cs(struct si_context *sctx, struct si_descriptors *desc)
{
desc->ce_ram_dirty = true;
if (!desc->buffer)
return;
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, desc->buffer,
RADEON_USAGE_READ, RADEON_PRIO_DESCRIPTORS);
}
/* SAMPLER VIEWS */
static unsigned
si_sampler_descriptors_idx(unsigned shader)
{
return SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS +
SI_SHADER_DESCS_SAMPLERS;
}
static struct si_descriptors *
si_sampler_descriptors(struct si_context *sctx, unsigned shader)
{
return &sctx->descriptors[si_sampler_descriptors_idx(shader)];
}
static void si_release_sampler_views(struct si_sampler_views *views)
{
int i;
for (i = 0; i < ARRAY_SIZE(views->views); i++) {
pipe_sampler_view_reference(&views->views[i], NULL);
}
}
static void si_sampler_view_add_buffer(struct si_context *sctx,
struct pipe_resource *resource,
enum radeon_bo_usage usage,
bool is_stencil_sampler,
bool check_mem)
{
struct r600_resource *rres;
struct r600_texture *rtex;
enum radeon_bo_priority priority;
if (!resource)
return;
if (resource->target != PIPE_BUFFER) {
struct r600_texture *tex = (struct r600_texture*)resource;
if (tex->is_depth && !r600_can_sample_zs(tex, is_stencil_sampler))
resource = &tex->flushed_depth_texture->resource.b.b;
}
rres = (struct r600_resource*)resource;
priority = r600_get_sampler_view_priority(rres);
radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx,
rres, usage, priority,
check_mem);
if (resource->target == PIPE_BUFFER)
return;
/* Now add separate DCC or HTILE. */
rtex = (struct r600_texture*)resource;
if (rtex->dcc_separate_buffer) {
radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx,
rtex->dcc_separate_buffer, usage,
RADEON_PRIO_DCC, check_mem);
}
if (rtex->htile_buffer &&
rtex->tc_compatible_htile &&
!is_stencil_sampler) {
radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx,
rtex->htile_buffer, usage,
RADEON_PRIO_HTILE, check_mem);
}
}
static void si_sampler_views_begin_new_cs(struct si_context *sctx,
struct si_sampler_views *views)
{
unsigned mask = views->enabled_mask;
/* Add buffers to the CS. */
while (mask) {
int i = u_bit_scan(&mask);
struct si_sampler_view *sview = (struct si_sampler_view *)views->views[i];
si_sampler_view_add_buffer(sctx, sview->base.texture,
RADEON_USAGE_READ,
sview->is_stencil_sampler, false);
}
}
/* Set buffer descriptor fields that can be changed by reallocations. */
static void si_set_buf_desc_address(struct r600_resource *buf,
uint64_t offset, uint32_t *state)
{
uint64_t va = buf->gpu_address + offset;
state[0] = va;
state[1] &= C_008F04_BASE_ADDRESS_HI;
state[1] |= S_008F04_BASE_ADDRESS_HI(va >> 32);
}
/* Set texture descriptor fields that can be changed by reallocations.
*
* \param tex texture
* \param base_level_info information of the level of BASE_ADDRESS
* \param base_level the level of BASE_ADDRESS
* \param first_level pipe_sampler_view.u.tex.first_level
* \param block_width util_format_get_blockwidth()
* \param is_stencil select between separate Z & Stencil
* \param state descriptor to update
*/
void si_set_mutable_tex_desc_fields(struct r600_texture *tex,
const struct radeon_surf_level *base_level_info,
unsigned base_level, unsigned first_level,
unsigned block_width, bool is_stencil,
uint32_t *state)
{
uint64_t va;
unsigned pitch = base_level_info->nblk_x * block_width;
if (tex->is_depth && !r600_can_sample_zs(tex, is_stencil)) {
tex = tex->flushed_depth_texture;
is_stencil = false;
}
va = tex->resource.gpu_address + base_level_info->offset;
state[1] &= C_008F14_BASE_ADDRESS_HI;
state[3] &= C_008F1C_TILING_INDEX;
state[4] &= C_008F20_PITCH;
state[6] &= C_008F28_COMPRESSION_EN;
state[0] = va >> 8;
state[1] |= S_008F14_BASE_ADDRESS_HI(va >> 40);
state[3] |= S_008F1C_TILING_INDEX(si_tile_mode_index(tex, base_level,
is_stencil));
state[4] |= S_008F20_PITCH(pitch - 1);
if (tex->dcc_offset && first_level < tex->surface.num_dcc_levels) {
state[6] |= S_008F28_COMPRESSION_EN(1);
state[7] = ((!tex->dcc_separate_buffer ? tex->resource.gpu_address : 0) +
tex->dcc_offset +
base_level_info->dcc_offset) >> 8;
} else if (tex->tc_compatible_htile) {
state[6] |= S_008F28_COMPRESSION_EN(1);
state[7] = tex->htile_buffer->gpu_address >> 8;
}
}
static void si_set_sampler_view(struct si_context *sctx,
unsigned shader,
unsigned slot, struct pipe_sampler_view *view,
bool disallow_early_out)
{
struct si_sampler_views *views = &sctx->samplers[shader].views;
struct si_sampler_view *rview = (struct si_sampler_view*)view;
struct si_descriptors *descs = si_sampler_descriptors(sctx, shader);
uint32_t *desc = descs->list + slot * 16;
if (views->views[slot] == view && !disallow_early_out)
return;
if (view) {
struct r600_texture *rtex = (struct r600_texture *)view->texture;
assert(rtex); /* views with texture == NULL aren't supported */
pipe_sampler_view_reference(&views->views[slot], view);
memcpy(desc, rview->state, 8*4);
if (rtex->resource.b.b.target == PIPE_BUFFER) {
rtex->resource.bind_history |= PIPE_BIND_SAMPLER_VIEW;
si_set_buf_desc_address(&rtex->resource,
view->u.buf.offset,
desc + 4);
} else {
bool is_separate_stencil =
rtex->db_compatible &&
rview->is_stencil_sampler;
si_set_mutable_tex_desc_fields(rtex,
rview->base_level_info,
rview->base_level,
rview->base.u.tex.first_level,
rview->block_width,
is_separate_stencil,
desc);
}
if (rtex->resource.b.b.target != PIPE_BUFFER &&
rtex->fmask.size) {
memcpy(desc + 8,
rview->fmask_state, 8*4);
} else {
/* Disable FMASK and bind sampler state in [12:15]. */
memcpy(desc + 8,
null_texture_descriptor, 4*4);
if (views->sampler_states[slot])
memcpy(desc + 12,
views->sampler_states[slot]->val, 4*4);
}
views->enabled_mask |= 1u << slot;
/* Since this can flush, it must be done after enabled_mask is
* updated. */
si_sampler_view_add_buffer(sctx, view->texture,
RADEON_USAGE_READ,
rview->is_stencil_sampler, true);
} else {
pipe_sampler_view_reference(&views->views[slot], NULL);
memcpy(desc, null_texture_descriptor, 8*4);
/* Only clear the lower dwords of FMASK. */
memcpy(desc + 8, null_texture_descriptor, 4*4);
/* Re-set the sampler state if we are transitioning from FMASK. */
if (views->sampler_states[slot])
memcpy(desc + 12,
views->sampler_states[slot]->val, 4*4);
views->enabled_mask &= ~(1u << slot);
}
descs->dirty_mask |= 1u << slot;
sctx->descriptors_dirty |= 1u << si_sampler_descriptors_idx(shader);
}
static bool is_compressed_colortex(struct r600_texture *rtex)
{
return rtex->cmask.size || rtex->fmask.size ||
(rtex->dcc_offset && rtex->dirty_level_mask);
}
static void si_update_compressed_tex_shader_mask(struct si_context *sctx,
unsigned shader)
{
struct si_textures_info *samplers = &sctx->samplers[shader];
unsigned shader_bit = 1 << shader;
if (samplers->depth_texture_mask ||
samplers->compressed_colortex_mask ||
sctx->images[shader].compressed_colortex_mask)
sctx->compressed_tex_shader_mask |= shader_bit;
else
sctx->compressed_tex_shader_mask &= ~shader_bit;
}
static void si_set_sampler_views(struct pipe_context *ctx,
enum pipe_shader_type shader, unsigned start,
unsigned count,
struct pipe_sampler_view **views)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_textures_info *samplers = &sctx->samplers[shader];
int i;
if (!count || shader >= SI_NUM_SHADERS)
return;
for (i = 0; i < count; i++) {
unsigned slot = start + i;
if (!views || !views[i]) {
samplers->depth_texture_mask &= ~(1u << slot);
samplers->compressed_colortex_mask &= ~(1u << slot);
si_set_sampler_view(sctx, shader, slot, NULL, false);
continue;
}
si_set_sampler_view(sctx, shader, slot, views[i], false);
if (views[i]->texture && views[i]->texture->target != PIPE_BUFFER) {
struct r600_texture *rtex =
(struct r600_texture*)views[i]->texture;
struct si_sampler_view *rview = (struct si_sampler_view *)views[i];
if (rtex->db_compatible &&
(!rtex->tc_compatible_htile || rview->is_stencil_sampler)) {
samplers->depth_texture_mask |= 1u << slot;
} else {
samplers->depth_texture_mask &= ~(1u << slot);
}
if (is_compressed_colortex(rtex)) {
samplers->compressed_colortex_mask |= 1u << slot;
} else {
samplers->compressed_colortex_mask &= ~(1u << slot);
}
if (rtex->dcc_offset &&
p_atomic_read(&rtex->framebuffers_bound))
sctx->need_check_render_feedback = true;
} else {
samplers->depth_texture_mask &= ~(1u << slot);
samplers->compressed_colortex_mask &= ~(1u << slot);
}
}
si_update_compressed_tex_shader_mask(sctx, shader);
}
static void
si_samplers_update_compressed_colortex_mask(struct si_textures_info *samplers)
{
unsigned mask = samplers->views.enabled_mask;
while (mask) {
int i = u_bit_scan(&mask);
struct pipe_resource *res = samplers->views.views[i]->texture;
if (res && res->target != PIPE_BUFFER) {
struct r600_texture *rtex = (struct r600_texture *)res;
if (is_compressed_colortex(rtex)) {
samplers->compressed_colortex_mask |= 1u << i;
} else {
samplers->compressed_colortex_mask &= ~(1u << i);
}
}
}
}
/* IMAGE VIEWS */
static unsigned
si_image_descriptors_idx(unsigned shader)
{
return SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS +
SI_SHADER_DESCS_IMAGES;
}
static struct si_descriptors*
si_image_descriptors(struct si_context *sctx, unsigned shader)
{
return &sctx->descriptors[si_image_descriptors_idx(shader)];
}
static void
si_release_image_views(struct si_images_info *images)
{
unsigned i;
for (i = 0; i < SI_NUM_IMAGES; ++i) {
struct pipe_image_view *view = &images->views[i];
pipe_resource_reference(&view->resource, NULL);
}
}
static void
si_image_views_begin_new_cs(struct si_context *sctx, struct si_images_info *images)
{
uint mask = images->enabled_mask;
/* Add buffers to the CS. */
while (mask) {
int i = u_bit_scan(&mask);
struct pipe_image_view *view = &images->views[i];
assert(view->resource);
si_sampler_view_add_buffer(sctx, view->resource,
RADEON_USAGE_READWRITE, false, false);
}
}
static void
si_disable_shader_image(struct si_context *ctx, unsigned shader, unsigned slot)
{
struct si_images_info *images = &ctx->images[shader];
if (images->enabled_mask & (1u << slot)) {
struct si_descriptors *descs = si_image_descriptors(ctx, shader);
pipe_resource_reference(&images->views[slot].resource, NULL);
images->compressed_colortex_mask &= ~(1 << slot);
memcpy(descs->list + slot*8, null_image_descriptor, 8*4);
images->enabled_mask &= ~(1u << slot);
descs->dirty_mask |= 1u << slot;
ctx->descriptors_dirty |= 1u << si_image_descriptors_idx(shader);
}
}
static void
si_mark_image_range_valid(const struct pipe_image_view *view)
{
struct r600_resource *res = (struct r600_resource *)view->resource;
assert(res && res->b.b.target == PIPE_BUFFER);
util_range_add(&res->valid_buffer_range,
view->u.buf.offset,
view->u.buf.offset + view->u.buf.size);
}
static void si_set_shader_image(struct si_context *ctx,
unsigned shader,
unsigned slot, const struct pipe_image_view *view,
bool skip_decompress)
{
struct si_screen *screen = ctx->screen;
struct si_images_info *images = &ctx->images[shader];
struct si_descriptors *descs = si_image_descriptors(ctx, shader);
struct r600_resource *res;
uint32_t *desc = descs->list + slot * 8;
if (!view || !view->resource) {
si_disable_shader_image(ctx, shader, slot);
return;
}
res = (struct r600_resource *)view->resource;
if (&images->views[slot] != view)
util_copy_image_view(&images->views[slot], view);
if (res->b.b.target == PIPE_BUFFER) {
if (view->access & PIPE_IMAGE_ACCESS_WRITE)
si_mark_image_range_valid(view);
si_make_buffer_descriptor(screen, res,
view->format,
view->u.buf.offset,
view->u.buf.size,
descs->list + slot * 8);
si_set_buf_desc_address(res, view->u.buf.offset, desc + 4);
images->compressed_colortex_mask &= ~(1 << slot);
res->bind_history |= PIPE_BIND_SHADER_IMAGE;
} else {
static const unsigned char swizzle[4] = { 0, 1, 2, 3 };
struct r600_texture *tex = (struct r600_texture *)res;
unsigned level = view->u.tex.level;
unsigned width, height, depth;
bool uses_dcc = tex->dcc_offset &&
level < tex->surface.num_dcc_levels;
assert(!tex->is_depth);
assert(tex->fmask.size == 0);
if (uses_dcc && !skip_decompress &&
(view->access & PIPE_IMAGE_ACCESS_WRITE ||
!vi_dcc_formats_compatible(res->b.b.format, view->format))) {
/* If DCC can't be disabled, at least decompress it.
* The decompression is relatively cheap if the surface
* has been decompressed already.
*/
if (r600_texture_disable_dcc(&ctx->b, tex))
uses_dcc = false;
else
ctx->b.decompress_dcc(&ctx->b.b, tex);
}
if (is_compressed_colortex(tex)) {
images->compressed_colortex_mask |= 1 << slot;
} else {
images->compressed_colortex_mask &= ~(1 << slot);
}
if (uses_dcc &&
p_atomic_read(&tex->framebuffers_bound))
ctx->need_check_render_feedback = true;
/* Always force the base level to the selected level.
*
* This is required for 3D textures, where otherwise
* selecting a single slice for non-layered bindings
* fails. It doesn't hurt the other targets.
*/
width = u_minify(res->b.b.width0, level);
height = u_minify(res->b.b.height0, level);
depth = u_minify(res->b.b.depth0, level);
si_make_texture_descriptor(screen, tex,
false, res->b.b.target,
view->format, swizzle,
0, 0,
view->u.tex.first_layer,
view->u.tex.last_layer,
width, height, depth,
desc, NULL);
si_set_mutable_tex_desc_fields(tex, &tex->surface.level[level],
level, level,
util_format_get_blockwidth(view->format),
false, desc);
}
images->enabled_mask |= 1u << slot;
descs->dirty_mask |= 1u << slot;
ctx->descriptors_dirty |= 1u << si_image_descriptors_idx(shader);
/* Since this can flush, it must be done after enabled_mask is updated. */
si_sampler_view_add_buffer(ctx, &res->b.b,
RADEON_USAGE_READWRITE, false, true);
}
static void
si_set_shader_images(struct pipe_context *pipe,
enum pipe_shader_type shader,
unsigned start_slot, unsigned count,
const struct pipe_image_view *views)
{
struct si_context *ctx = (struct si_context *)pipe;
unsigned i, slot;
assert(shader < SI_NUM_SHADERS);
if (!count)
return;
assert(start_slot + count <= SI_NUM_IMAGES);
if (views) {
for (i = 0, slot = start_slot; i < count; ++i, ++slot)
si_set_shader_image(ctx, shader, slot, &views[i], false);
} else {
for (i = 0, slot = start_slot; i < count; ++i, ++slot)
si_set_shader_image(ctx, shader, slot, NULL, false);
}
si_update_compressed_tex_shader_mask(ctx, shader);
}
static void
si_images_update_compressed_colortex_mask(struct si_images_info *images)
{
unsigned mask = images->enabled_mask;
while (mask) {
int i = u_bit_scan(&mask);
struct pipe_resource *res = images->views[i].resource;
if (res && res->target != PIPE_BUFFER) {
struct r600_texture *rtex = (struct r600_texture *)res;
if (is_compressed_colortex(rtex)) {
images->compressed_colortex_mask |= 1 << i;
} else {
images->compressed_colortex_mask &= ~(1 << i);
}
}
}
}
/* SAMPLER STATES */
static void si_bind_sampler_states(struct pipe_context *ctx,
enum pipe_shader_type shader,
unsigned start, unsigned count, void **states)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_textures_info *samplers = &sctx->samplers[shader];
struct si_descriptors *desc = si_sampler_descriptors(sctx, shader);
struct si_sampler_state **sstates = (struct si_sampler_state**)states;
int i;
if (!count || shader >= SI_NUM_SHADERS)
return;
for (i = 0; i < count; i++) {
unsigned slot = start + i;
if (!sstates[i] ||
sstates[i] == samplers->views.sampler_states[slot])
continue;
#ifdef DEBUG
assert(sstates[i]->magic == SI_SAMPLER_STATE_MAGIC);
#endif
samplers->views.sampler_states[slot] = sstates[i];
/* If FMASK is bound, don't overwrite it.
* The sampler state will be set after FMASK is unbound.
*/
if (samplers->views.views[slot] &&
samplers->views.views[slot]->texture &&
samplers->views.views[slot]->texture->target != PIPE_BUFFER &&
((struct r600_texture*)samplers->views.views[slot]->texture)->fmask.size)
continue;
memcpy(desc->list + slot * 16 + 12, sstates[i]->val, 4*4);
desc->dirty_mask |= 1u << slot;
sctx->descriptors_dirty |= 1u << si_sampler_descriptors_idx(shader);
}
}
/* BUFFER RESOURCES */
static void si_init_buffer_resources(struct si_buffer_resources *buffers,
struct si_descriptors *descs,
unsigned num_buffers,
unsigned shader_userdata_index,
enum radeon_bo_usage shader_usage,
enum radeon_bo_priority priority,
unsigned *ce_offset)
{
buffers->shader_usage = shader_usage;
buffers->priority = priority;
buffers->buffers = CALLOC(num_buffers, sizeof(struct pipe_resource*));
si_init_descriptors(descs, shader_userdata_index, 4,
num_buffers, NULL, ce_offset);
}
static void si_release_buffer_resources(struct si_buffer_resources *buffers,
struct si_descriptors *descs)
{
int i;
for (i = 0; i < descs->num_elements; i++) {
pipe_resource_reference(&buffers->buffers[i], NULL);
}
FREE(buffers->buffers);
}
static void si_buffer_resources_begin_new_cs(struct si_context *sctx,
struct si_buffer_resources *buffers)
{
unsigned mask = buffers->enabled_mask;
/* Add buffers to the CS. */
while (mask) {
int i = u_bit_scan(&mask);
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
(struct r600_resource*)buffers->buffers[i],
buffers->shader_usage, buffers->priority);
}
}
static void si_get_buffer_from_descriptors(struct si_buffer_resources *buffers,
struct si_descriptors *descs,
unsigned idx, struct pipe_resource **buf,
unsigned *offset, unsigned *size)
{
pipe_resource_reference(buf, buffers->buffers[idx]);
if (*buf) {
struct r600_resource *res = r600_resource(*buf);
const uint32_t *desc = descs->list + idx * 4;
uint64_t va;
*size = desc[2];
assert(G_008F04_STRIDE(desc[1]) == 0);
va = ((uint64_t)desc[1] << 32) | desc[0];
assert(va >= res->gpu_address && va + *size <= res->gpu_address + res->bo_size);
*offset = va - res->gpu_address;
}
}
/* VERTEX BUFFERS */
static void si_vertex_buffers_begin_new_cs(struct si_context *sctx)
{
struct si_descriptors *desc = &sctx->vertex_buffers;
int count = sctx->vertex_elements ? sctx->vertex_elements->count : 0;
int i;
for (i = 0; i < count; i++) {
int vb = sctx->vertex_elements->elements[i].vertex_buffer_index;
if (vb >= ARRAY_SIZE(sctx->vertex_buffer))
continue;
if (!sctx->vertex_buffer[vb].buffer)
continue;
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
(struct r600_resource*)sctx->vertex_buffer[vb].buffer,
RADEON_USAGE_READ, RADEON_PRIO_VERTEX_BUFFER);
}
if (!desc->buffer)
return;
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
desc->buffer, RADEON_USAGE_READ,
RADEON_PRIO_DESCRIPTORS);
}
bool si_upload_vertex_buffer_descriptors(struct si_context *sctx)
{
struct si_vertex_element *velems = sctx->vertex_elements;
struct si_descriptors *desc = &sctx->vertex_buffers;
unsigned i, count = velems->count;
uint64_t va;
uint32_t *ptr;
if (!sctx->vertex_buffers_dirty || !count || !velems)
return true;
unsigned fix_size3 = velems->fix_size3;
unsigned first_vb_use_mask = velems->first_vb_use_mask;
/* Vertex buffer descriptors are the only ones which are uploaded
* directly through a staging buffer and don't go through
* the fine-grained upload path.
*/
u_upload_alloc(sctx->b.uploader, 0, count * 16, 256, &desc->buffer_offset,
(struct pipe_resource**)&desc->buffer, (void**)&ptr);
if (!desc->buffer)
return false;
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
desc->buffer, RADEON_USAGE_READ,
RADEON_PRIO_DESCRIPTORS);
assert(count <= SI_NUM_VERTEX_BUFFERS);
for (i = 0; i < count; i++) {
struct pipe_vertex_element *ve = &velems->elements[i];
struct pipe_vertex_buffer *vb;
struct r600_resource *rbuffer;
unsigned offset;
unsigned vbo_index = ve->vertex_buffer_index;
uint32_t *desc = &ptr[i*4];
vb = &sctx->vertex_buffer[vbo_index];
rbuffer = (struct r600_resource*)vb->buffer;
if (!rbuffer) {
memset(desc, 0, 16);
continue;
}
offset = vb->buffer_offset + ve->src_offset;
va = rbuffer->gpu_address + offset;
/* Fill in T# buffer resource description */
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) |
S_008F04_STRIDE(vb->stride);
if (sctx->b.chip_class <= CIK && vb->stride) {
/* Round up by rounding down and adding 1 */
desc[2] = (vb->buffer->width0 - offset -
velems->format_size[i]) /
vb->stride + 1;
} else {
uint32_t size3;
desc[2] = vb->buffer->width0 - offset;
/* For attributes of size 3 with byte or short
* components, we use a 4-component data format.
*
* As a consequence, we have to round the buffer size
* up so that the hardware sees four components as
* being inside the buffer if and only if the first
* three components are in the buffer.
*
* Since the offset and stride are guaranteed to be
* 4-byte aligned, this alignment will never cross the
* winsys buffer boundary.
*/
size3 = (fix_size3 >> (2 * i)) & 3;
if (vb->stride && size3) {
assert(offset % 4 == 0 && vb->stride % 4 == 0);
assert(size3 <= 2);
desc[2] = align(desc[2], size3 * 2);
}
}
desc[3] = velems->rsrc_word3[i];
if (first_vb_use_mask & (1 << i)) {
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
(struct r600_resource*)vb->buffer,
RADEON_USAGE_READ, RADEON_PRIO_VERTEX_BUFFER);
}
}
/* Don't flush the const cache. It would have a very negative effect
* on performance (confirmed by testing). New descriptors are always
* uploaded to a fresh new buffer, so I don't think flushing the const
* cache is needed. */
si_mark_atom_dirty(sctx, &sctx->shader_userdata.atom);
sctx->vertex_buffers_dirty = false;
sctx->vertex_buffer_pointer_dirty = true;
return true;
}
/* CONSTANT BUFFERS */
static unsigned
si_const_buffer_descriptors_idx(unsigned shader)
{
return SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS +
SI_SHADER_DESCS_CONST_BUFFERS;
}
static struct si_descriptors *
si_const_buffer_descriptors(struct si_context *sctx, unsigned shader)
{
return &sctx->descriptors[si_const_buffer_descriptors_idx(shader)];
}
void si_upload_const_buffer(struct si_context *sctx, struct r600_resource **rbuffer,
const uint8_t *ptr, unsigned size, uint32_t *const_offset)
{
void *tmp;
u_upload_alloc(sctx->b.uploader, 0, size, 256, const_offset,
(struct pipe_resource**)rbuffer, &tmp);
if (*rbuffer)
util_memcpy_cpu_to_le32(tmp, ptr, size);
}
static void si_set_constant_buffer(struct si_context *sctx,
struct si_buffer_resources *buffers,
unsigned descriptors_idx,
uint slot, const struct pipe_constant_buffer *input)
{
struct si_descriptors *descs = &sctx->descriptors[descriptors_idx];
assert(slot < descs->num_elements);
pipe_resource_reference(&buffers->buffers[slot], NULL);
/* CIK cannot unbind a constant buffer (S_BUFFER_LOAD is buggy
* with a NULL buffer). We need to use a dummy buffer instead. */
if (sctx->b.chip_class == CIK &&
(!input || (!input->buffer && !input->user_buffer)))
input = &sctx->null_const_buf;
if (input && (input->buffer || input->user_buffer)) {
struct pipe_resource *buffer = NULL;
uint64_t va;
/* Upload the user buffer if needed. */
if (input->user_buffer) {
unsigned buffer_offset;
si_upload_const_buffer(sctx,
(struct r600_resource**)&buffer, input->user_buffer,
input->buffer_size, &buffer_offset);
if (!buffer) {
/* Just unbind on failure. */
si_set_constant_buffer(sctx, buffers, descriptors_idx, slot, NULL);
return;
}
va = r600_resource(buffer)->gpu_address + buffer_offset;
} else {
pipe_resource_reference(&buffer, input->buffer);
va = r600_resource(buffer)->gpu_address + input->buffer_offset;
/* Only track usage for non-user buffers. */
r600_resource(buffer)->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
}
/* Set the descriptor. */
uint32_t *desc = descs->list + slot*4;
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) |
S_008F04_STRIDE(0);
desc[2] = input->buffer_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
buffers->buffers[slot] = buffer;
radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx,
(struct r600_resource*)buffer,
buffers->shader_usage,
buffers->priority, true);
buffers->enabled_mask |= 1u << slot;
} else {
/* Clear the descriptor. */
memset(descs->list + slot*4, 0, sizeof(uint32_t) * 4);
buffers->enabled_mask &= ~(1u << slot);
}
descs->dirty_mask |= 1u << slot;
sctx->descriptors_dirty |= 1u << descriptors_idx;
}
void si_set_rw_buffer(struct si_context *sctx,
uint slot, const struct pipe_constant_buffer *input)
{
si_set_constant_buffer(sctx, &sctx->rw_buffers,
SI_DESCS_RW_BUFFERS, slot, input);
}
static void si_pipe_set_constant_buffer(struct pipe_context *ctx,
uint shader, uint slot,
const struct pipe_constant_buffer *input)
{
struct si_context *sctx = (struct si_context *)ctx;
if (shader >= SI_NUM_SHADERS)
return;
si_set_constant_buffer(sctx, &sctx->const_buffers[shader],
si_const_buffer_descriptors_idx(shader),
slot, input);
}
void si_get_pipe_constant_buffer(struct si_context *sctx, uint shader,
uint slot, struct pipe_constant_buffer *cbuf)
{
cbuf->user_buffer = NULL;
si_get_buffer_from_descriptors(
&sctx->const_buffers[shader],
si_const_buffer_descriptors(sctx, shader),
slot, &cbuf->buffer, &cbuf->buffer_offset, &cbuf->buffer_size);
}
/* SHADER BUFFERS */
static unsigned
si_shader_buffer_descriptors_idx(enum pipe_shader_type shader)
{
return SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS +
SI_SHADER_DESCS_SHADER_BUFFERS;
}
static struct si_descriptors *
si_shader_buffer_descriptors(struct si_context *sctx,
enum pipe_shader_type shader)
{
return &sctx->descriptors[si_shader_buffer_descriptors_idx(shader)];
}
static void si_set_shader_buffers(struct pipe_context *ctx,
enum pipe_shader_type shader,
unsigned start_slot, unsigned count,
const struct pipe_shader_buffer *sbuffers)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_buffer_resources *buffers = &sctx->shader_buffers[shader];
struct si_descriptors *descs = si_shader_buffer_descriptors(sctx, shader);
unsigned i;
assert(start_slot + count <= SI_NUM_SHADER_BUFFERS);
for (i = 0; i < count; ++i) {
const struct pipe_shader_buffer *sbuffer = sbuffers ? &sbuffers[i] : NULL;
struct r600_resource *buf;
unsigned slot = start_slot + i;
uint32_t *desc = descs->list + slot * 4;
uint64_t va;
if (!sbuffer || !sbuffer->buffer) {
pipe_resource_reference(&buffers->buffers[slot], NULL);
memset(desc, 0, sizeof(uint32_t) * 4);
buffers->enabled_mask &= ~(1u << slot);
descs->dirty_mask |= 1u << slot;
sctx->descriptors_dirty |=
1u << si_shader_buffer_descriptors_idx(shader);
continue;
}
buf = (struct r600_resource *)sbuffer->buffer;
va = buf->gpu_address + sbuffer->buffer_offset;
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) |
S_008F04_STRIDE(0);
desc[2] = sbuffer->buffer_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
pipe_resource_reference(&buffers->buffers[slot], &buf->b.b);
radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx, buf,
buffers->shader_usage,
buffers->priority, true);
buf->bind_history |= PIPE_BIND_SHADER_BUFFER;
buffers->enabled_mask |= 1u << slot;
descs->dirty_mask |= 1u << slot;
sctx->descriptors_dirty |=
1u << si_shader_buffer_descriptors_idx(shader);
util_range_add(&buf->valid_buffer_range, sbuffer->buffer_offset,
sbuffer->buffer_offset + sbuffer->buffer_size);
}
}
void si_get_shader_buffers(struct si_context *sctx, uint shader,
uint start_slot, uint count,
struct pipe_shader_buffer *sbuf)
{
struct si_buffer_resources *buffers = &sctx->shader_buffers[shader];
struct si_descriptors *descs = si_shader_buffer_descriptors(sctx, shader);
for (unsigned i = 0; i < count; ++i) {
si_get_buffer_from_descriptors(
buffers, descs, start_slot + i,
&sbuf[i].buffer, &sbuf[i].buffer_offset,
&sbuf[i].buffer_size);
}
}
/* RING BUFFERS */
void si_set_ring_buffer(struct pipe_context *ctx, uint slot,
struct pipe_resource *buffer,
unsigned stride, unsigned num_records,
bool add_tid, bool swizzle,
unsigned element_size, unsigned index_stride, uint64_t offset)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_buffer_resources *buffers = &sctx->rw_buffers;
struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS];
/* The stride field in the resource descriptor has 14 bits */
assert(stride < (1 << 14));
assert(slot < descs->num_elements);
pipe_resource_reference(&buffers->buffers[slot], NULL);
if (buffer) {
uint64_t va;
va = r600_resource(buffer)->gpu_address + offset;
switch (element_size) {
default:
assert(!"Unsupported ring buffer element size");
case 0:
case 2:
element_size = 0;
break;
case 4:
element_size = 1;
break;
case 8:
element_size = 2;
break;
case 16:
element_size = 3;
break;
}
switch (index_stride) {
default:
assert(!"Unsupported ring buffer index stride");
case 0:
case 8:
index_stride = 0;
break;
case 16:
index_stride = 1;
break;
case 32:
index_stride = 2;
break;
case 64:
index_stride = 3;
break;
}
if (sctx->b.chip_class >= VI && stride)
num_records *= stride;
/* Set the descriptor. */
uint32_t *desc = descs->list + slot*4;
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) |
S_008F04_STRIDE(stride) |
S_008F04_SWIZZLE_ENABLE(swizzle);
desc[2] = num_records;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
S_008F0C_ELEMENT_SIZE(element_size) |
S_008F0C_INDEX_STRIDE(index_stride) |
S_008F0C_ADD_TID_ENABLE(add_tid);
pipe_resource_reference(&buffers->buffers[slot], buffer);
radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
(struct r600_resource*)buffer,
buffers->shader_usage, buffers->priority);
buffers->enabled_mask |= 1u << slot;
} else {
/* Clear the descriptor. */
memset(descs->list + slot*4, 0, sizeof(uint32_t) * 4);
buffers->enabled_mask &= ~(1u << slot);
}
descs->dirty_mask |= 1u << slot;
sctx->descriptors_dirty |= 1u << SI_DESCS_RW_BUFFERS;
}
/* STREAMOUT BUFFERS */
static void si_set_streamout_targets(struct pipe_context *ctx,
unsigned num_targets,
struct pipe_stream_output_target **targets,
const unsigned *offsets)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_buffer_resources *buffers = &sctx->rw_buffers;
struct si_descriptors *descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS];
unsigned old_num_targets = sctx->b.streamout.num_targets;
unsigned i, bufidx;
/* We are going to unbind the buffers. Mark which caches need to be flushed. */
if (sctx->b.streamout.num_targets && sctx->b.streamout.begin_emitted) {
/* Since streamout uses vector writes which go through TC L2
* and most other clients can use TC L2 as well, we don't need
* to flush it.
*
* The only cases which requires flushing it is VGT DMA index
* fetching (on <= CIK) and indirect draw data, which are rare
* cases. Thus, flag the TC L2 dirtiness in the resource and
* handle it at draw call time.
*/
for (i = 0; i < sctx->b.streamout.num_targets; i++)
if (sctx->b.streamout.targets[i])
r600_resource(sctx->b.streamout.targets[i]->b.buffer)->TC_L2_dirty = true;
/* Invalidate the scalar cache in case a streamout buffer is
* going to be used as a constant buffer.
*
* Invalidate TC L1, because streamout bypasses it (done by
* setting GLC=1 in the store instruction), but it can contain
* outdated data of streamout buffers.
*
* VS_PARTIAL_FLUSH is required if the buffers are going to be
* used as an input immediately.
*/
sctx->b.flags |= SI_CONTEXT_INV_SMEM_L1 |
SI_CONTEXT_INV_VMEM_L1 |
SI_CONTEXT_VS_PARTIAL_FLUSH;
}
/* All readers of the streamout targets need to be finished before we can
* start writing to the targets.
*/
if (num_targets)
sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
SI_CONTEXT_CS_PARTIAL_FLUSH;
/* Streamout buffers must be bound in 2 places:
* 1) in VGT by setting the VGT_STRMOUT registers
* 2) as shader resources
*/
/* Set the VGT regs. */
r600_set_streamout_targets(ctx, num_targets, targets, offsets);
/* Set the shader resources.*/
for (i = 0; i < num_targets; i++) {
bufidx = SI_VS_STREAMOUT_BUF0 + i;
if (targets[i]) {
struct pipe_resource *buffer = targets[i]->buffer;
uint64_t va = r600_resource(buffer)->gpu_address;
/* Set the descriptor.
*
* On VI, the format must be non-INVALID, otherwise
* the buffer will be considered not bound and store
* instructions will be no-ops.
*/
uint32_t *desc = descs->list + bufidx*4;
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32);
desc[2] = 0xffffffff;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
/* Set the resource. */
pipe_resource_reference(&buffers->buffers[bufidx],
buffer);
radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx,
(struct r600_resource*)buffer,
buffers->shader_usage,
RADEON_PRIO_SHADER_RW_BUFFER,
true);
r600_resource(buffer)->bind_history |= PIPE_BIND_STREAM_OUTPUT;
buffers->enabled_mask |= 1u << bufidx;
} else {
/* Clear the descriptor and unset the resource. */
memset(descs->list + bufidx*4, 0,
sizeof(uint32_t) * 4);
pipe_resource_reference(&buffers->buffers[bufidx],
NULL);
buffers->enabled_mask &= ~(1u << bufidx);
}
descs->dirty_mask |= 1u << bufidx;
}
for (; i < old_num_targets; i++) {
bufidx = SI_VS_STREAMOUT_BUF0 + i;
/* Clear the descriptor and unset the resource. */
memset(descs->list + bufidx*4, 0, sizeof(uint32_t) * 4);
pipe_resource_reference(&buffers->buffers[bufidx], NULL);
buffers->enabled_mask &= ~(1u << bufidx);
descs->dirty_mask |= 1u << bufidx;
}
sctx->descriptors_dirty |= 1u << SI_DESCS_RW_BUFFERS;
}
static void si_desc_reset_buffer_offset(struct pipe_context *ctx,
uint32_t *desc, uint64_t old_buf_va,
struct pipe_resource *new_buf)
{
/* Retrieve the buffer offset from the descriptor. */
uint64_t old_desc_va =
desc[0] | ((uint64_t)G_008F04_BASE_ADDRESS_HI(desc[1]) << 32);
assert(old_buf_va <= old_desc_va);
uint64_t offset_within_buffer = old_desc_va - old_buf_va;
/* Update the descriptor. */
si_set_buf_desc_address(r600_resource(new_buf), offset_within_buffer,
desc);
}
/* INTERNAL CONST BUFFERS */
static void si_set_polygon_stipple(struct pipe_context *ctx,
const struct pipe_poly_stipple *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct pipe_constant_buffer cb = {};
unsigned stipple[32];
int i;
for (i = 0; i < 32; i++)
stipple[i] = util_bitreverse(state->stipple[i]);
cb.user_buffer = stipple;
cb.buffer_size = sizeof(stipple);
si_set_rw_buffer(sctx, SI_PS_CONST_POLY_STIPPLE, &cb);
}
/* TEXTURE METADATA ENABLE/DISABLE */
/* CMASK can be enabled (for fast clear) and disabled (for texture export)
* while the texture is bound, possibly by a different context. In that case,
* call this function to update compressed_colortex_masks.
*/
void si_update_compressed_colortex_masks(struct si_context *sctx)
{
for (int i = 0; i < SI_NUM_SHADERS; ++i) {
si_samplers_update_compressed_colortex_mask(&sctx->samplers[i]);
si_images_update_compressed_colortex_mask(&sctx->images[i]);
si_update_compressed_tex_shader_mask(sctx, i);
}
}
/* BUFFER DISCARD/INVALIDATION */
/** Reset descriptors of buffer resources after \p buf has been invalidated. */
static void si_reset_buffer_resources(struct si_context *sctx,
struct si_buffer_resources *buffers,
unsigned descriptors_idx,
struct pipe_resource *buf,
uint64_t old_va)
{
struct si_descriptors *descs = &sctx->descriptors[descriptors_idx];
unsigned mask = buffers->enabled_mask;
while (mask) {
unsigned i = u_bit_scan(&mask);
if (buffers->buffers[i] == buf) {
si_desc_reset_buffer_offset(&sctx->b.b,
descs->list + i*4,
old_va, buf);
descs->dirty_mask |= 1u << i;
sctx->descriptors_dirty |= 1u << descriptors_idx;
radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx,
(struct r600_resource *)buf,
buffers->shader_usage,
buffers->priority, true);
}
}
}
/* Reallocate a buffer a update all resource bindings where the buffer is
* bound.
*
* This is used to avoid CPU-GPU synchronizations, because it makes the buffer
* idle by discarding its contents. Apps usually tell us when to do this using
* map_buffer flags, for example.
*/
static void si_invalidate_buffer(struct pipe_context *ctx, struct pipe_resource *buf)
{
struct si_context *sctx = (struct si_context*)ctx;
struct r600_resource *rbuffer = r600_resource(buf);
unsigned i, shader;
uint64_t old_va = rbuffer->gpu_address;
unsigned num_elems = sctx->vertex_elements ?
sctx->vertex_elements->count : 0;
/* Reallocate the buffer in the same pipe_resource. */
r600_alloc_resource(&sctx->screen->b, rbuffer);
/* We changed the buffer, now we need to bind it where the old one
* was bound. This consists of 2 things:
* 1) Updating the resource descriptor and dirtying it.
* 2) Adding a relocation to the CS, so that it's usable.
*/
/* Vertex buffers. */
if (rbuffer->bind_history & PIPE_BIND_VERTEX_BUFFER) {
for (i = 0; i < num_elems; i++) {
int vb = sctx->vertex_elements->elements[i].vertex_buffer_index;
if (vb >= ARRAY_SIZE(sctx->vertex_buffer))
continue;
if (!sctx->vertex_buffer[vb].buffer)
continue;
if (sctx->vertex_buffer[vb].buffer == buf) {
sctx->vertex_buffers_dirty = true;
break;
}
}
}
/* Streamout buffers. (other internal buffers can't be invalidated) */
if (rbuffer->bind_history & PIPE_BIND_STREAM_OUTPUT) {
for (i = SI_VS_STREAMOUT_BUF0; i <= SI_VS_STREAMOUT_BUF3; i++) {
struct si_buffer_resources *buffers = &sctx->rw_buffers;
struct si_descriptors *descs =
&sctx->descriptors[SI_DESCS_RW_BUFFERS];
if (buffers->buffers[i] != buf)
continue;
si_desc_reset_buffer_offset(ctx, descs->list + i*4,
old_va, buf);
descs->dirty_mask |= 1u << i;
sctx->descriptors_dirty |= 1u << SI_DESCS_RW_BUFFERS;
radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx,
rbuffer, buffers->shader_usage,
RADEON_PRIO_SHADER_RW_BUFFER,
true);
/* Update the streamout state. */
if (sctx->b.streamout.begin_emitted)
r600_emit_streamout_end(&sctx->b);
sctx->b.streamout.append_bitmask =
sctx->b.streamout.enabled_mask;
r600_streamout_buffers_dirty(&sctx->b);
}
}
/* Constant and shader buffers. */
if (rbuffer->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
for (shader = 0; shader < SI_NUM_SHADERS; shader++)
si_reset_buffer_resources(sctx, &sctx->const_buffers[shader],
si_const_buffer_descriptors_idx(shader),
buf, old_va);
}
if (rbuffer->bind_history & PIPE_BIND_SHADER_BUFFER) {
for (shader = 0; shader < SI_NUM_SHADERS; shader++)
si_reset_buffer_resources(sctx, &sctx->shader_buffers[shader],
si_shader_buffer_descriptors_idx(shader),
buf, old_va);
}
if (rbuffer->bind_history & PIPE_BIND_SAMPLER_VIEW) {
/* Texture buffers - update bindings. */
for (shader = 0; shader < SI_NUM_SHADERS; shader++) {
struct si_sampler_views *views = &sctx->samplers[shader].views;
struct si_descriptors *descs =
si_sampler_descriptors(sctx, shader);
unsigned mask = views->enabled_mask;
while (mask) {
unsigned i = u_bit_scan(&mask);
if (views->views[i]->texture == buf) {
si_desc_reset_buffer_offset(ctx,
descs->list +
i * 16 + 4,
old_va, buf);
descs->dirty_mask |= 1u << i;
sctx->descriptors_dirty |=
1u << si_sampler_descriptors_idx(shader);
radeon_add_to_buffer_list_check_mem(&sctx->b, &sctx->b.gfx,
rbuffer, RADEON_USAGE_READ,
RADEON_PRIO_SAMPLER_BUFFER,
true);
}
}
}
}
/* Shader images */
if (rbuffer->bind_history & PIPE_BIND_SHADER_IMAGE) {
for (shader = 0; shader < SI_NUM_SHADERS; ++shader) {
struct si_images_info *images = &sctx->images[shader];
struct si_descriptors *descs =
si_image_descriptors(sctx, shader);
unsigned mask = images->enabled_mask;
while (mask) {
unsigned i = u_bit_scan(&mask);
if (images->views[i].resource == buf) {
if (images->views[i].access & PIPE_IMAGE_ACCESS_WRITE)
si_mark_image_range_valid(&images->views[i]);
si_desc_reset_buffer_offset(
ctx, descs->list + i * 8 + 4,
old_va, buf);
descs->dirty_mask |= 1u << i;
sctx->descriptors_dirty |=
1u << si_image_descriptors_idx(shader);
radeon_add_to_buffer_list_check_mem(
&sctx->b, &sctx->b.gfx, rbuffer,
RADEON_USAGE_READWRITE,
RADEON_PRIO_SAMPLER_BUFFER, true);
}
}
}
}
}
/* Update mutable image descriptor fields of all bound textures. */
void si_update_all_texture_descriptors(struct si_context *sctx)
{
unsigned shader;
for (shader = 0; shader < SI_NUM_SHADERS; shader++) {
struct si_sampler_views *samplers = &sctx->samplers[shader].views;
struct si_images_info *images = &sctx->images[shader];
unsigned mask;
/* Images. */
mask = images->enabled_mask;
while (mask) {
unsigned i = u_bit_scan(&mask);
struct pipe_image_view *view = &images->views[i];
if (!view->resource ||
view->resource->target == PIPE_BUFFER)
continue;
si_set_shader_image(sctx, shader, i, view, true);
}
/* Sampler views. */
mask = samplers->enabled_mask;
while (mask) {
unsigned i = u_bit_scan(&mask);
struct pipe_sampler_view *view = samplers->views[i];
if (!view ||
!view->texture ||
view->texture->target == PIPE_BUFFER)
continue;
si_set_sampler_view(sctx, shader, i,
samplers->views[i], true);
}
si_update_compressed_tex_shader_mask(sctx, shader);
}
}
/* SHADER USER DATA */
static void si_mark_shader_pointers_dirty(struct si_context *sctx,
unsigned shader)
{
sctx->shader_pointers_dirty |=
u_bit_consecutive(SI_DESCS_FIRST_SHADER + shader * SI_NUM_SHADER_DESCS,
SI_NUM_SHADER_DESCS);
if (shader == PIPE_SHADER_VERTEX)
sctx->vertex_buffer_pointer_dirty = sctx->vertex_buffers.buffer != NULL;
si_mark_atom_dirty(sctx, &sctx->shader_userdata.atom);
}
static void si_shader_userdata_begin_new_cs(struct si_context *sctx)
{
sctx->shader_pointers_dirty = u_bit_consecutive(0, SI_NUM_DESCS);
sctx->vertex_buffer_pointer_dirty = sctx->vertex_buffers.buffer != NULL;
si_mark_atom_dirty(sctx, &sctx->shader_userdata.atom);
}
/* Set a base register address for user data constants in the given shader.
* This assigns a mapping from PIPE_SHADER_* to SPI_SHADER_USER_DATA_*.
*/
static void si_set_user_data_base(struct si_context *sctx,
unsigned shader, uint32_t new_base)
{
uint32_t *base = &sctx->shader_userdata.sh_base[shader];
if (*base != new_base) {
*base = new_base;
if (new_base)
si_mark_shader_pointers_dirty(sctx, shader);
}
}
/* This must be called when these shaders are changed from non-NULL to NULL
* and vice versa:
* - geometry shader
* - tessellation control shader
* - tessellation evaluation shader
*/
void si_shader_change_notify(struct si_context *sctx)
{
/* VS can be bound as VS, ES, or LS. */
if (sctx->tes_shader.cso)
si_set_user_data_base(sctx, PIPE_SHADER_VERTEX,
R_00B530_SPI_SHADER_USER_DATA_LS_0);
else if (sctx->gs_shader.cso)
si_set_user_data_base(sctx, PIPE_SHADER_VERTEX,
R_00B330_SPI_SHADER_USER_DATA_ES_0);
else
si_set_user_data_base(sctx, PIPE_SHADER_VERTEX,
R_00B130_SPI_SHADER_USER_DATA_VS_0);
/* TES can be bound as ES, VS, or not bound. */
if (sctx->tes_shader.cso) {
if (sctx->gs_shader.cso)
si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL,
R_00B330_SPI_SHADER_USER_DATA_ES_0);
else
si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL,
R_00B130_SPI_SHADER_USER_DATA_VS_0);
} else {
si_set_user_data_base(sctx, PIPE_SHADER_TESS_EVAL, 0);
}
}
static void si_emit_shader_pointer(struct si_context *sctx,
struct si_descriptors *desc,
unsigned sh_base)
{
struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
uint64_t va;
assert(desc->buffer);
va = desc->buffer->gpu_address +
desc->buffer_offset;
radeon_emit(cs, PKT3(PKT3_SET_SH_REG, 2, 0));
radeon_emit(cs, (sh_base + desc->shader_userdata_offset - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
}
void si_emit_graphics_shader_userdata(struct si_context *sctx,
struct r600_atom *atom)
{
unsigned mask;
uint32_t *sh_base = sctx->shader_userdata.sh_base;
struct si_descriptors *descs;
descs = &sctx->descriptors[SI_DESCS_RW_BUFFERS];
if (sctx->shader_pointers_dirty & (1 << SI_DESCS_RW_BUFFERS)) {
si_emit_shader_pointer(sctx, descs,
R_00B030_SPI_SHADER_USER_DATA_PS_0);
si_emit_shader_pointer(sctx, descs,
R_00B130_SPI_SHADER_USER_DATA_VS_0);
si_emit_shader_pointer(sctx, descs,
R_00B230_SPI_SHADER_USER_DATA_GS_0);
si_emit_shader_pointer(sctx, descs,
R_00B330_SPI_SHADER_USER_DATA_ES_0);
si_emit_shader_pointer(sctx, descs,
R_00B430_SPI_SHADER_USER_DATA_HS_0);
}
mask = sctx->shader_pointers_dirty &
u_bit_consecutive(SI_DESCS_FIRST_SHADER,
SI_DESCS_FIRST_COMPUTE - SI_DESCS_FIRST_SHADER);
while (mask) {
unsigned i = u_bit_scan(&mask);
unsigned shader = (i - SI_DESCS_FIRST_SHADER) / SI_NUM_SHADER_DESCS;
unsigned base = sh_base[shader];
if (base)
si_emit_shader_pointer(sctx, descs + i, base);
}
sctx->shader_pointers_dirty &=
~u_bit_consecutive(SI_DESCS_RW_BUFFERS, SI_DESCS_FIRST_COMPUTE);
if (sctx->vertex_buffer_pointer_dirty) {
si_emit_shader_pointer(sctx, &sctx->vertex_buffers,
sh_base[PIPE_SHADER_VERTEX]);
sctx->vertex_buffer_pointer_dirty = false;
}
}
void si_emit_compute_shader_userdata(struct si_context *sctx)
{
unsigned base = R_00B900_COMPUTE_USER_DATA_0;
struct si_descriptors *descs = sctx->descriptors;
unsigned compute_mask =
u_bit_consecutive(SI_DESCS_FIRST_COMPUTE, SI_NUM_SHADER_DESCS);
unsigned mask = sctx->shader_pointers_dirty & compute_mask;
while (mask) {
unsigned i = u_bit_scan(&mask);
si_emit_shader_pointer(sctx, descs + i, base);
}
sctx->shader_pointers_dirty &= ~compute_mask;
}
/* INIT/DEINIT/UPLOAD */
void si_init_all_descriptors(struct si_context *sctx)
{
int i;
unsigned ce_offset = 0;
for (i = 0; i < SI_NUM_SHADERS; i++) {
si_init_buffer_resources(&sctx->const_buffers[i],
si_const_buffer_descriptors(sctx, i),
SI_NUM_CONST_BUFFERS, SI_SGPR_CONST_BUFFERS,
RADEON_USAGE_READ, RADEON_PRIO_CONST_BUFFER,
&ce_offset);
si_init_buffer_resources(&sctx->shader_buffers[i],
si_shader_buffer_descriptors(sctx, i),
SI_NUM_SHADER_BUFFERS, SI_SGPR_SHADER_BUFFERS,
RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RW_BUFFER,
&ce_offset);
si_init_descriptors(si_sampler_descriptors(sctx, i),
SI_SGPR_SAMPLERS, 16, SI_NUM_SAMPLERS,
null_texture_descriptor, &ce_offset);
si_init_descriptors(si_image_descriptors(sctx, i),
SI_SGPR_IMAGES, 8, SI_NUM_IMAGES,
null_image_descriptor, &ce_offset);
}
si_init_buffer_resources(&sctx->rw_buffers,
&sctx->descriptors[SI_DESCS_RW_BUFFERS],
SI_NUM_RW_BUFFERS, SI_SGPR_RW_BUFFERS,
RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RINGS,
&ce_offset);
si_init_descriptors(&sctx->vertex_buffers, SI_SGPR_VERTEX_BUFFERS,
4, SI_NUM_VERTEX_BUFFERS, NULL, NULL);
sctx->descriptors_dirty = u_bit_consecutive(0, SI_NUM_DESCS);
assert(ce_offset <= 32768);
/* Set pipe_context functions. */
sctx->b.b.bind_sampler_states = si_bind_sampler_states;
sctx->b.b.set_shader_images = si_set_shader_images;
sctx->b.b.set_constant_buffer = si_pipe_set_constant_buffer;
sctx->b.b.set_polygon_stipple = si_set_polygon_stipple;
sctx->b.b.set_shader_buffers = si_set_shader_buffers;
sctx->b.b.set_sampler_views = si_set_sampler_views;
sctx->b.b.set_stream_output_targets = si_set_streamout_targets;
sctx->b.invalidate_buffer = si_invalidate_buffer;
/* Shader user data. */
si_init_atom(sctx, &sctx->shader_userdata.atom, &sctx->atoms.s.shader_userdata,
si_emit_graphics_shader_userdata);
/* Set default and immutable mappings. */
si_set_user_data_base(sctx, PIPE_SHADER_VERTEX, R_00B130_SPI_SHADER_USER_DATA_VS_0);
si_set_user_data_base(sctx, PIPE_SHADER_TESS_CTRL, R_00B430_SPI_SHADER_USER_DATA_HS_0);
si_set_user_data_base(sctx, PIPE_SHADER_GEOMETRY, R_00B230_SPI_SHADER_USER_DATA_GS_0);
si_set_user_data_base(sctx, PIPE_SHADER_FRAGMENT, R_00B030_SPI_SHADER_USER_DATA_PS_0);
}
bool si_upload_graphics_shader_descriptors(struct si_context *sctx)
{
const unsigned mask = u_bit_consecutive(0, SI_DESCS_FIRST_COMPUTE);
unsigned dirty = sctx->descriptors_dirty & mask;
/* Assume nothing will go wrong: */
sctx->shader_pointers_dirty |= dirty;
while (dirty) {
unsigned i = u_bit_scan(&dirty);
if (!si_upload_descriptors(sctx, &sctx->descriptors[i],
&sctx->shader_userdata.atom))
return false;
}
sctx->descriptors_dirty &= ~mask;
return true;
}
bool si_upload_compute_shader_descriptors(struct si_context *sctx)
{
/* Does not update rw_buffers as that is not needed for compute shaders
* and the input buffer is using the same SGPR's anyway.
*/
const unsigned mask = u_bit_consecutive(SI_DESCS_FIRST_COMPUTE,
SI_NUM_DESCS - SI_DESCS_FIRST_COMPUTE);
unsigned dirty = sctx->descriptors_dirty & mask;
/* Assume nothing will go wrong: */
sctx->shader_pointers_dirty |= dirty;
while (dirty) {
unsigned i = u_bit_scan(&dirty);
if (!si_upload_descriptors(sctx, &sctx->descriptors[i], NULL))
return false;
}
sctx->descriptors_dirty &= ~mask;
return true;
}
void si_release_all_descriptors(struct si_context *sctx)
{
int i;
for (i = 0; i < SI_NUM_SHADERS; i++) {
si_release_buffer_resources(&sctx->const_buffers[i],
si_const_buffer_descriptors(sctx, i));
si_release_buffer_resources(&sctx->shader_buffers[i],
si_shader_buffer_descriptors(sctx, i));
si_release_sampler_views(&sctx->samplers[i].views);
si_release_image_views(&sctx->images[i]);
}
si_release_buffer_resources(&sctx->rw_buffers,
&sctx->descriptors[SI_DESCS_RW_BUFFERS]);
for (i = 0; i < SI_NUM_DESCS; ++i)
si_release_descriptors(&sctx->descriptors[i]);
si_release_descriptors(&sctx->vertex_buffers);
}
void si_all_descriptors_begin_new_cs(struct si_context *sctx)
{
int i;
for (i = 0; i < SI_NUM_SHADERS; i++) {
si_buffer_resources_begin_new_cs(sctx, &sctx->const_buffers[i]);
si_buffer_resources_begin_new_cs(sctx, &sctx->shader_buffers[i]);
si_sampler_views_begin_new_cs(sctx, &sctx->samplers[i].views);
si_image_views_begin_new_cs(sctx, &sctx->images[i]);
}
si_buffer_resources_begin_new_cs(sctx, &sctx->rw_buffers);
si_vertex_buffers_begin_new_cs(sctx);
for (i = 0; i < SI_NUM_DESCS; ++i)
si_descriptors_begin_new_cs(sctx, &sctx->descriptors[i]);
si_shader_userdata_begin_new_cs(sctx);
}