blob: c449672a519b55fac6987c257a194eae92df699e [file] [log] [blame]
/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_cfg.h"
#include "brw_fs_live_variables.h"
using namespace brw;
#define MAX_INSTRUCTION (1 << 30)
/** @file brw_fs_live_variables.cpp
*
* Support for calculating liveness information about virtual GRFs.
*
* This produces a live interval for each whole virtual GRF. We could
* choose to expose per-component live intervals for VGRFs of size > 1,
* but we currently do not. It is easier for the consumers of this
* information to work with whole VGRFs.
*
* However, we internally track use/def information at the per-GRF level for
* greater accuracy. Large VGRFs may be accessed piecemeal over many
* (possibly non-adjacent) instructions. In this case, examining a single
* instruction is insufficient to decide whether a whole VGRF is ultimately
* used or defined. Tracking individual components allows us to easily
* assemble this information.
*
* See Muchnick's Advanced Compiler Design and Implementation, section
* 14.1 (p444).
*/
void
fs_live_variables::setup_one_read(struct block_data *bd, fs_inst *inst,
int ip, const fs_reg &reg)
{
int var = var_from_reg(reg);
assert(var < num_vars);
start[var] = MIN2(start[var], ip);
end[var] = MAX2(end[var], ip);
/* The use[] bitset marks when the block makes use of a variable (VGRF
* channel) without having completely defined that variable within the
* block.
*/
if (!BITSET_TEST(bd->def, var))
BITSET_SET(bd->use, var);
}
void
fs_live_variables::setup_one_write(struct block_data *bd, fs_inst *inst,
int ip, const fs_reg &reg)
{
int var = var_from_reg(reg);
assert(var < num_vars);
start[var] = MIN2(start[var], ip);
end[var] = MAX2(end[var], ip);
/* The def[] bitset marks when an initialization in a block completely
* screens off previous updates of that variable (VGRF channel).
*/
if (inst->dst.file == VGRF && !inst->is_partial_write()) {
if (!BITSET_TEST(bd->use, var))
BITSET_SET(bd->def, var);
}
}
/**
* Sets up the use[] and def[] bitsets.
*
* The basic-block-level live variable analysis needs to know which
* variables get used before they're completely defined, and which
* variables are completely defined before they're used.
*
* These are tracked at the per-component level, rather than whole VGRFs.
*/
void
fs_live_variables::setup_def_use()
{
int ip = 0;
foreach_block (block, cfg) {
assert(ip == block->start_ip);
if (block->num > 0)
assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
struct block_data *bd = &block_data[block->num];
foreach_inst_in_block(fs_inst, inst, block) {
/* Set use[] for this instruction */
for (unsigned int i = 0; i < inst->sources; i++) {
fs_reg reg = inst->src[i];
if (reg.file != VGRF)
continue;
for (unsigned j = 0; j < regs_read(inst, i); j++) {
setup_one_read(bd, inst, ip, reg);
reg.offset += REG_SIZE;
}
}
bd->flag_use[0] |= inst->flags_read(v->devinfo) & ~bd->flag_def[0];
/* Set def[] for this instruction */
if (inst->dst.file == VGRF) {
fs_reg reg = inst->dst;
for (unsigned j = 0; j < regs_written(inst); j++) {
setup_one_write(bd, inst, ip, reg);
reg.offset += REG_SIZE;
}
}
if (!inst->predicate && inst->exec_size >= 8)
bd->flag_def[0] |= inst->flags_written() & ~bd->flag_use[0];
ip++;
}
}
}
/**
* The algorithm incrementally sets bits in liveout and livein,
* propagating it through control flow. It will eventually terminate
* because it only ever adds bits, and stops when no bits are added in
* a pass.
*/
void
fs_live_variables::compute_live_variables()
{
bool cont = true;
while (cont) {
cont = false;
foreach_block_reverse (block, cfg) {
struct block_data *bd = &block_data[block->num];
/* Update liveout */
foreach_list_typed(bblock_link, child_link, link, &block->children) {
struct block_data *child_bd = &block_data[child_link->block->num];
for (int i = 0; i < bitset_words; i++) {
BITSET_WORD new_liveout = (child_bd->livein[i] &
~bd->liveout[i]);
if (new_liveout) {
bd->liveout[i] |= new_liveout;
cont = true;
}
}
BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
~bd->flag_liveout[0]);
if (new_liveout) {
bd->flag_liveout[0] |= new_liveout;
cont = true;
}
}
/* Update livein */
for (int i = 0; i < bitset_words; i++) {
BITSET_WORD new_livein = (bd->use[i] |
(bd->liveout[i] &
~bd->def[i]));
if (new_livein & ~bd->livein[i]) {
bd->livein[i] |= new_livein;
cont = true;
}
}
BITSET_WORD new_livein = (bd->flag_use[0] |
(bd->flag_liveout[0] &
~bd->flag_def[0]));
if (new_livein & ~bd->flag_livein[0]) {
bd->flag_livein[0] |= new_livein;
cont = true;
}
}
}
}
/**
* Extend the start/end ranges for each variable to account for the
* new information calculated from control flow.
*/
void
fs_live_variables::compute_start_end()
{
foreach_block (block, cfg) {
struct block_data *bd = &block_data[block->num];
for (int i = 0; i < num_vars; i++) {
if (BITSET_TEST(bd->livein, i)) {
start[i] = MIN2(start[i], block->start_ip);
end[i] = MAX2(end[i], block->start_ip);
}
if (BITSET_TEST(bd->liveout, i)) {
start[i] = MIN2(start[i], block->end_ip);
end[i] = MAX2(end[i], block->end_ip);
}
}
}
}
fs_live_variables::fs_live_variables(fs_visitor *v, const cfg_t *cfg)
: v(v), cfg(cfg)
{
mem_ctx = ralloc_context(NULL);
num_vgrfs = v->alloc.count;
num_vars = 0;
var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs);
for (int i = 0; i < num_vgrfs; i++) {
var_from_vgrf[i] = num_vars;
num_vars += v->alloc.sizes[i];
}
vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars);
for (int i = 0; i < num_vgrfs; i++) {
for (unsigned j = 0; j < v->alloc.sizes[i]; j++) {
vgrf_from_var[var_from_vgrf[i] + j] = i;
}
}
start = ralloc_array(mem_ctx, int, num_vars);
end = rzalloc_array(mem_ctx, int, num_vars);
for (int i = 0; i < num_vars; i++) {
start[i] = MAX_INSTRUCTION;
end[i] = -1;
}
block_data= rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
bitset_words = BITSET_WORDS(num_vars);
for (int i = 0; i < cfg->num_blocks; i++) {
block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
block_data[i].flag_def[0] = 0;
block_data[i].flag_use[0] = 0;
block_data[i].flag_livein[0] = 0;
block_data[i].flag_liveout[0] = 0;
}
setup_def_use();
compute_live_variables();
compute_start_end();
}
fs_live_variables::~fs_live_variables()
{
ralloc_free(mem_ctx);
}
void
fs_visitor::invalidate_live_intervals()
{
ralloc_free(live_intervals);
live_intervals = NULL;
}
/**
* Compute the live intervals for each virtual GRF.
*
* This uses the per-component use/def data, but combines it to produce
* information about whole VGRFs.
*/
void
fs_visitor::calculate_live_intervals()
{
if (this->live_intervals)
return;
int num_vgrfs = this->alloc.count;
ralloc_free(this->virtual_grf_start);
ralloc_free(this->virtual_grf_end);
virtual_grf_start = ralloc_array(mem_ctx, int, num_vgrfs);
virtual_grf_end = ralloc_array(mem_ctx, int, num_vgrfs);
for (int i = 0; i < num_vgrfs; i++) {
virtual_grf_start[i] = MAX_INSTRUCTION;
virtual_grf_end[i] = -1;
}
this->live_intervals = new(mem_ctx) fs_live_variables(this, cfg);
/* Merge the per-component live ranges to whole VGRF live ranges. */
for (int i = 0; i < live_intervals->num_vars; i++) {
int vgrf = live_intervals->vgrf_from_var[i];
virtual_grf_start[vgrf] = MIN2(virtual_grf_start[vgrf],
live_intervals->start[i]);
virtual_grf_end[vgrf] = MAX2(virtual_grf_end[vgrf],
live_intervals->end[i]);
}
}
bool
fs_live_variables::vars_interfere(int a, int b)
{
return !(end[b] <= start[a] ||
end[a] <= start[b]);
}
bool
fs_visitor::virtual_grf_interferes(int a, int b)
{
return !(virtual_grf_end[a] <= virtual_grf_start[b] ||
virtual_grf_end[b] <= virtual_grf_start[a]);
}