blob: 3c3d67095e193684d7c441df96ca027f1cb40946 [file] [log] [blame]
/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
*
*/
#include <map>
#include "aco_ir.h"
#include "aco_builder.h"
#include "util/u_math.h"
#include "sid.h"
namespace aco {
struct lower_context {
Program *program;
Block *block;
std::vector<aco_ptr<Instruction>> instructions;
};
/* used by handle_operands() indirectly through Builder::copy */
uint8_t int8_mul_table[512] = {
0, 20, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11,
1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21,
1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31,
1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41,
1, 42, 1, 43, 1, 44, 1, 45, 1, 46, 1, 47, 1, 48, 1, 49, 1, 50, 1, 51,
1, 52, 1, 53, 1, 54, 1, 55, 1, 56, 1, 57, 1, 58, 1, 59, 1, 60, 1, 61,
1, 62, 1, 63, 1, 64, 5, 13, 2, 33, 17, 19, 2, 34, 3, 23, 2, 35, 11, 53,
2, 36, 7, 47, 2, 37, 3, 25, 2, 38, 7, 11, 2, 39, 53, 243, 2, 40, 3, 27,
2, 41, 17, 35, 2, 42, 5, 17, 2, 43, 3, 29, 2, 44, 15, 23, 2, 45, 7, 13,
2, 46, 3, 31, 2, 47, 5, 19, 2, 48, 19, 59, 2, 49, 3, 33, 2, 50, 7, 51,
2, 51, 15, 41, 2, 52, 3, 35, 2, 53, 11, 33, 2, 54, 23, 27, 2, 55, 3, 37,
2, 56, 9, 41, 2, 57, 5, 23, 2, 58, 3, 39, 2, 59, 7, 17, 2, 60, 9, 241,
2, 61, 3, 41, 2, 62, 5, 25, 2, 63, 35, 245, 2, 64, 3, 43, 5, 26, 9, 43,
3, 44, 7, 19, 10, 39, 3, 45, 4, 34, 11, 59, 3, 46, 9, 243, 4, 35, 3, 47,
22, 53, 7, 57, 3, 48, 5, 29, 10, 245, 3, 49, 4, 37, 9, 45, 3, 50, 7, 241,
4, 38, 3, 51, 7, 22, 5, 31, 3, 52, 7, 59, 7, 242, 3, 53, 4, 40, 7, 23,
3, 54, 15, 45, 4, 41, 3, 55, 6, 241, 9, 47, 3, 56, 13, 13, 5, 34, 3, 57,
4, 43, 11, 39, 3, 58, 5, 35, 4, 44, 3, 59, 6, 243, 7, 245, 3, 60, 5, 241,
7, 26, 3, 61, 4, 46, 5, 37, 3, 62, 11, 17, 4, 47, 3, 63, 5, 38, 5, 243,
3, 64, 7, 247, 9, 50, 5, 39, 4, 241, 33, 37, 6, 33, 13, 35, 4, 242, 5, 245,
6, 247, 7, 29, 4, 51, 5, 41, 5, 246, 7, 249, 3, 240, 11, 19, 5, 42, 3, 241,
4, 245, 25, 29, 3, 242, 5, 43, 4, 246, 3, 243, 17, 58, 17, 43, 3, 244,
5, 249, 6, 37, 3, 245, 2, 240, 5, 45, 2, 241, 21, 23, 2, 242, 3, 247,
2, 243, 5, 251, 2, 244, 29, 61, 2, 245, 3, 249, 2, 246, 17, 29, 2, 247,
9, 55, 1, 240, 1, 241, 1, 242, 1, 243, 1, 244, 1, 245, 1, 246, 1, 247,
1, 248, 1, 249, 1, 250, 1, 251, 1, 252, 1, 253, 1, 254, 1, 255
};
aco_opcode get_reduce_opcode(chip_class chip, ReduceOp op) {
/* Because some 16-bit instructions are already VOP3 on GFX10, we use the
* 32-bit opcodes (VOP2) which allows to remove the tempory VGPR and to use
* DPP with the arithmetic instructions. This requires to sign-extend.
*/
switch (op) {
case iadd8:
case iadd16:
if (chip >= GFX10) {
return aco_opcode::v_add_u32;
} else if (chip >= GFX8) {
return aco_opcode::v_add_u16;
} else {
return aco_opcode::v_add_co_u32;
}
break;
case imul8:
case imul16:
if (chip >= GFX10) {
return aco_opcode::v_mul_lo_u16_e64;
} else if (chip >= GFX8) {
return aco_opcode::v_mul_lo_u16;
} else {
return aco_opcode::v_mul_u32_u24;
}
break;
case fadd16: return aco_opcode::v_add_f16;
case fmul16: return aco_opcode::v_mul_f16;
case imax8:
case imax16:
if (chip >= GFX10) {
return aco_opcode::v_max_i32;
} else if (chip >= GFX8) {
return aco_opcode::v_max_i16;
} else {
return aco_opcode::v_max_i32;
}
break;
case imin8:
case imin16:
if (chip >= GFX10) {
return aco_opcode::v_min_i32;
} else if (chip >= GFX8) {
return aco_opcode::v_min_i16;
} else {
return aco_opcode::v_min_i32;
}
break;
case umin8:
case umin16:
if (chip >= GFX10) {
return aco_opcode::v_min_u32;
} else if (chip >= GFX8) {
return aco_opcode::v_min_u16;
} else {
return aco_opcode::v_min_u32;
}
break;
case umax8:
case umax16:
if (chip >= GFX10) {
return aco_opcode::v_max_u32;
} else if (chip >= GFX8) {
return aco_opcode::v_max_u16;
} else {
return aco_opcode::v_max_u32;
}
break;
case fmin16: return aco_opcode::v_min_f16;
case fmax16: return aco_opcode::v_max_f16;
case iadd32: return chip >= GFX9 ? aco_opcode::v_add_u32 : aco_opcode::v_add_co_u32;
case imul32: return aco_opcode::v_mul_lo_u32;
case fadd32: return aco_opcode::v_add_f32;
case fmul32: return aco_opcode::v_mul_f32;
case imax32: return aco_opcode::v_max_i32;
case imin32: return aco_opcode::v_min_i32;
case umin32: return aco_opcode::v_min_u32;
case umax32: return aco_opcode::v_max_u32;
case fmin32: return aco_opcode::v_min_f32;
case fmax32: return aco_opcode::v_max_f32;
case iand8:
case iand16:
case iand32: return aco_opcode::v_and_b32;
case ixor8:
case ixor16:
case ixor32: return aco_opcode::v_xor_b32;
case ior8:
case ior16:
case ior32: return aco_opcode::v_or_b32;
case iadd64: return aco_opcode::num_opcodes;
case imul64: return aco_opcode::num_opcodes;
case fadd64: return aco_opcode::v_add_f64;
case fmul64: return aco_opcode::v_mul_f64;
case imin64: return aco_opcode::num_opcodes;
case imax64: return aco_opcode::num_opcodes;
case umin64: return aco_opcode::num_opcodes;
case umax64: return aco_opcode::num_opcodes;
case fmin64: return aco_opcode::v_min_f64;
case fmax64: return aco_opcode::v_max_f64;
case iand64: return aco_opcode::num_opcodes;
case ior64: return aco_opcode::num_opcodes;
case ixor64: return aco_opcode::num_opcodes;
default: return aco_opcode::num_opcodes;
}
}
bool is_vop3_reduce_opcode(aco_opcode opcode)
{
/* 64-bit reductions are VOP3. */
if (opcode == aco_opcode::num_opcodes)
return true;
return instr_info.format[(int)opcode] == Format::VOP3;
}
void emit_vadd32(Builder& bld, Definition def, Operand src0, Operand src1)
{
Instruction *instr = bld.vadd32(def, src0, src1, false, Operand(s2), true);
if (instr->definitions.size() >= 2) {
assert(instr->definitions[1].regClass() == bld.lm);
instr->definitions[1].setFixed(vcc);
}
}
void emit_int64_dpp_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
PhysReg vtmp_reg, ReduceOp op,
unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl,
Operand *identity=NULL)
{
Builder bld(ctx->program, &ctx->instructions);
Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg+1}, v1)};
Definition vtmp_def[] = {Definition(vtmp_reg, v1), Definition(PhysReg{vtmp_reg+1}, v1)};
Operand src0[] = {Operand(src0_reg, v1), Operand(PhysReg{src0_reg+1}, v1)};
Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg+1}, v1)};
Operand src1_64 = Operand(src1_reg, v2);
Operand vtmp_op[] = {Operand(vtmp_reg, v1), Operand(PhysReg{vtmp_reg+1}, v1)};
Operand vtmp_op64 = Operand(vtmp_reg, v2);
if (op == iadd64) {
if (ctx->program->chip_class >= GFX10) {
if (identity)
bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), vtmp_op[0], src1[0]);
} else {
bld.vop2_dpp(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0],
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
}
bld.vop2_dpp(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], Operand(vcc, bld.lm),
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
} else if (op == iand64) {
bld.vop2_dpp(aco_opcode::v_and_b32, dst[0], src0[0], src1[0],
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
bld.vop2_dpp(aco_opcode::v_and_b32, dst[1], src0[1], src1[1],
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
} else if (op == ior64) {
bld.vop2_dpp(aco_opcode::v_or_b32, dst[0], src0[0], src1[0],
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
bld.vop2_dpp(aco_opcode::v_or_b32, dst[1], src0[1], src1[1],
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
} else if (op == ixor64) {
bld.vop2_dpp(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0],
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
bld.vop2_dpp(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1],
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
} else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) {
aco_opcode cmp = aco_opcode::num_opcodes;
switch (op) {
case umin64:
cmp = aco_opcode::v_cmp_gt_u64;
break;
case umax64:
cmp = aco_opcode::v_cmp_lt_u64;
break;
case imin64:
cmp = aco_opcode::v_cmp_gt_i64;
break;
case imax64:
cmp = aco_opcode::v_cmp_lt_i64;
break;
default:
break;
}
if (identity) {
bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
bld.vop1(aco_opcode::v_mov_b32, vtmp_def[1], identity[1]);
}
bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[1], src0[1],
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
bld.vopc(cmp, bld.def(bld.lm, vcc), vtmp_op64, src1_64);
bld.vop2(aco_opcode::v_cndmask_b32, dst[0], vtmp_op[0], src1[0], Operand(vcc, bld.lm));
bld.vop2(aco_opcode::v_cndmask_b32, dst[1], vtmp_op[1], src1[1], Operand(vcc, bld.lm));
} else if (op == imul64) {
/* t4 = dpp(x_hi)
* t1 = umul_lo(t4, y_lo)
* t3 = dpp(x_lo)
* t0 = umul_lo(t3, y_hi)
* t2 = iadd(t0, t1)
* t5 = umul_hi(t3, y_lo)
* res_hi = iadd(t2, t5)
* res_lo = umul_lo(t3, y_lo)
* Requires that res_hi != src0[0] and res_hi != src1[0]
* and that vtmp[0] != res_hi.
*/
if (identity)
bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[1]);
bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[1],
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[1], vtmp_op[0], src1[0]);
if (identity)
bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[0], vtmp_op[0], src1[1]);
emit_vadd32(bld, vtmp_def[1], vtmp_op[0], vtmp_op[1]);
if (identity)
bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
bld.vop3(aco_opcode::v_mul_hi_u32, vtmp_def[0], vtmp_op[0], src1[0]);
emit_vadd32(bld, dst[1], vtmp_op[1], vtmp_op[0]);
if (identity)
bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], vtmp_op[0], src1[0]);
}
}
void emit_int64_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp, ReduceOp op)
{
Builder bld(ctx->program, &ctx->instructions);
Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg+1}, v1)};
RegClass src0_rc = src0_reg.reg() >= 256 ? v1 : s1;
Operand src0[] = {Operand(src0_reg, src0_rc), Operand(PhysReg{src0_reg+1}, src0_rc)};
Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg+1}, v1)};
Operand src0_64 = Operand(src0_reg, src0_reg.reg() >= 256 ? v2 : s2);
Operand src1_64 = Operand(src1_reg, v2);
if (src0_rc == s1 &&
(op == imul64 || op == umin64 || op == umax64 || op == imin64 || op == imax64)) {
assert(vtmp.reg() != 0);
bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), src0[0]);
bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), src0[1]);
src0_reg = vtmp;
src0[0] = Operand(vtmp, v1);
src0[1] = Operand(PhysReg{vtmp+1}, v1);
src0_64 = Operand(vtmp, v2);
} else if (src0_rc == s1 && op == iadd64) {
assert(vtmp.reg() != 0);
bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), src0[1]);
src0[1] = Operand(PhysReg{vtmp+1}, v1);
}
if (op == iadd64) {
if (ctx->program->chip_class >= GFX10) {
bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]);
} else {
bld.vop2(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]);
}
bld.vop2(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], Operand(vcc, bld.lm));
} else if (op == iand64) {
bld.vop2(aco_opcode::v_and_b32, dst[0], src0[0], src1[0]);
bld.vop2(aco_opcode::v_and_b32, dst[1], src0[1], src1[1]);
} else if (op == ior64) {
bld.vop2(aco_opcode::v_or_b32, dst[0], src0[0], src1[0]);
bld.vop2(aco_opcode::v_or_b32, dst[1], src0[1], src1[1]);
} else if (op == ixor64) {
bld.vop2(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0]);
bld.vop2(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1]);
} else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) {
aco_opcode cmp = aco_opcode::num_opcodes;
switch (op) {
case umin64:
cmp = aco_opcode::v_cmp_gt_u64;
break;
case umax64:
cmp = aco_opcode::v_cmp_lt_u64;
break;
case imin64:
cmp = aco_opcode::v_cmp_gt_i64;
break;
case imax64:
cmp = aco_opcode::v_cmp_lt_i64;
break;
default:
break;
}
bld.vopc(cmp, bld.def(bld.lm, vcc), src0_64, src1_64);
bld.vop2(aco_opcode::v_cndmask_b32, dst[0], src0[0], src1[0], Operand(vcc, bld.lm));
bld.vop2(aco_opcode::v_cndmask_b32, dst[1], src0[1], src1[1], Operand(vcc, bld.lm));
} else if (op == imul64) {
if (src1_reg == dst_reg) {
/* it's fine if src0==dst but not if src1==dst */
std::swap(src0_reg, src1_reg);
std::swap(src0[0], src1[0]);
std::swap(src0[1], src1[1]);
std::swap(src0_64, src1_64);
}
assert(!(src0_reg == src1_reg));
/* t1 = umul_lo(x_hi, y_lo)
* t0 = umul_lo(x_lo, y_hi)
* t2 = iadd(t0, t1)
* t5 = umul_hi(x_lo, y_lo)
* res_hi = iadd(t2, t5)
* res_lo = umul_lo(x_lo, y_lo)
* assumes that it's ok to modify x_hi/y_hi, since we might not have vtmp
*/
Definition tmp0_def(PhysReg{src0_reg+1}, v1);
Definition tmp1_def(PhysReg{src1_reg+1}, v1);
Operand tmp0_op = src0[1];
Operand tmp1_op = src1[1];
bld.vop3(aco_opcode::v_mul_lo_u32, tmp0_def, src0[1], src1[0]);
bld.vop3(aco_opcode::v_mul_lo_u32, tmp1_def, src0[0], src1[1]);
emit_vadd32(bld, tmp0_def, tmp1_op, tmp0_op);
bld.vop3(aco_opcode::v_mul_hi_u32, tmp1_def, src0[0], src1[0]);
emit_vadd32(bld, dst[1], tmp0_op, tmp1_op);
bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], src0[0], src1[0]);
}
}
void emit_dpp_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
PhysReg vtmp, ReduceOp op, unsigned size,
unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl,
Operand *identity=NULL) /* for VOP3 with sparse writes */
{
Builder bld(ctx->program, &ctx->instructions);
RegClass rc = RegClass(RegType::vgpr, size);
Definition dst(dst_reg, rc);
Operand src0(src0_reg, rc);
Operand src1(src1_reg, rc);
aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op);
bool vop3 = is_vop3_reduce_opcode(opcode);
if (!vop3) {
if (opcode == aco_opcode::v_add_co_u32)
bld.vop2_dpp(opcode, dst, bld.def(bld.lm, vcc), src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
else
bld.vop2_dpp(opcode, dst, src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
return;
}
if (opcode == aco_opcode::num_opcodes) {
emit_int64_dpp_op(ctx, dst_reg ,src0_reg, src1_reg, vtmp, op,
dpp_ctrl, row_mask, bank_mask, bound_ctrl, identity);
return;
}
if (identity)
bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), identity[0]);
if (identity && size >= 2)
bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), identity[1]);
for (unsigned i = 0; i < size; i++)
bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{src0_reg+i}, v1),
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
bld.vop3(opcode, dst, Operand(vtmp, rc), src1);
}
void emit_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
PhysReg vtmp, ReduceOp op, unsigned size)
{
Builder bld(ctx->program, &ctx->instructions);
RegClass rc = RegClass(RegType::vgpr, size);
Definition dst(dst_reg, rc);
Operand src0(src0_reg, RegClass(src0_reg.reg() >= 256 ? RegType::vgpr : RegType::sgpr, size));
Operand src1(src1_reg, rc);
aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op);
bool vop3 = is_vop3_reduce_opcode(opcode);
if (opcode == aco_opcode::num_opcodes) {
emit_int64_op(ctx, dst_reg, src0_reg, src1_reg, vtmp, op);
return;
}
if (vop3) {
bld.vop3(opcode, dst, src0, src1);
} else if (opcode == aco_opcode::v_add_co_u32) {
bld.vop2(opcode, dst, bld.def(bld.lm, vcc), src0, src1);
} else {
bld.vop2(opcode, dst, src0, src1);
}
}
void emit_dpp_mov(lower_context *ctx, PhysReg dst, PhysReg src0, unsigned size,
unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl)
{
Builder bld(ctx->program, &ctx->instructions);
for (unsigned i = 0; i < size; i++) {
bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{dst+i}, v1), Operand(PhysReg{src0+i}, v1),
dpp_ctrl, row_mask, bank_mask, bound_ctrl);
}
}
void emit_ds_swizzle(Builder bld, PhysReg dst, PhysReg src, unsigned size, unsigned ds_pattern)
{
for (unsigned i = 0; i < size; i++) {
bld.ds(aco_opcode::ds_swizzle_b32, Definition(PhysReg{dst+i}, v1),
Operand(PhysReg{src+i}, v1), ds_pattern);
}
}
void emit_reduction(lower_context *ctx, aco_opcode op, ReduceOp reduce_op, unsigned cluster_size, PhysReg tmp,
PhysReg stmp, PhysReg vtmp, PhysReg sitmp, Operand src, Definition dst)
{
assert(cluster_size == ctx->program->wave_size || op == aco_opcode::p_reduce);
assert(cluster_size <= ctx->program->wave_size);
Builder bld(ctx->program, &ctx->instructions);
Operand identity[2];
identity[0] = Operand(get_reduction_identity(reduce_op, 0));
identity[1] = Operand(get_reduction_identity(reduce_op, 1));
Operand vcndmask_identity[2] = {identity[0], identity[1]};
/* First, copy the source to tmp and set inactive lanes to the identity */
bld.sop1(Builder::s_or_saveexec, Definition(stmp, bld.lm), Definition(scc, s1), Definition(exec, bld.lm), Operand(UINT64_MAX), Operand(exec, bld.lm));
for (unsigned i = 0; i < src.size(); i++) {
/* p_exclusive_scan needs it to be a sgpr or inline constant for the v_writelane_b32
* except on GFX10, where v_writelane_b32 can take a literal. */
if (identity[i].isLiteral() && op == aco_opcode::p_exclusive_scan && ctx->program->chip_class < GFX10) {
bld.sop1(aco_opcode::s_mov_b32, Definition(PhysReg{sitmp+i}, s1), identity[i]);
identity[i] = Operand(PhysReg{sitmp+i}, s1);
bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]);
vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1);
} else if (identity[i].isLiteral()) {
bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]);
vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1);
}
}
for (unsigned i = 0; i < src.size(); i++) {
bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(PhysReg{tmp + i}, v1),
vcndmask_identity[i], Operand(PhysReg{src.physReg() + i}, v1),
Operand(stmp, bld.lm));
}
if (src.regClass() == v1b) {
if (ctx->program->chip_class >= GFX8) {
aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
sdwa->operands[0] = Operand(PhysReg{tmp}, v1);
sdwa->definitions[0] = Definition(PhysReg{tmp}, v1);
if (reduce_op == imin8 || reduce_op == imax8)
sdwa->sel[0] = sdwa_sbyte;
else
sdwa->sel[0] = sdwa_ubyte;
sdwa->dst_sel = sdwa_udword;
bld.insert(std::move(sdwa));
} else {
aco_opcode opcode;
if (reduce_op == imin8 || reduce_op == imax8)
opcode = aco_opcode::v_bfe_i32;
else
opcode = aco_opcode::v_bfe_u32;
bld.vop3(opcode, Definition(PhysReg{tmp}, v1),
Operand(PhysReg{tmp}, v1), Operand(0u), Operand(8u));
}
} else if (src.regClass() == v2b) {
if (ctx->program->chip_class >= GFX10 &&
(reduce_op == iadd16 || reduce_op == imax16 ||
reduce_op == imin16 || reduce_op == umin16 || reduce_op == umax16)) {
aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
sdwa->operands[0] = Operand(PhysReg{tmp}, v1);
sdwa->definitions[0] = Definition(PhysReg{tmp}, v1);
if (reduce_op == imin16 || reduce_op == imax16 || reduce_op == iadd16)
sdwa->sel[0] = sdwa_sword;
else
sdwa->sel[0] = sdwa_uword;
sdwa->dst_sel = sdwa_udword;
bld.insert(std::move(sdwa));
} else if (ctx->program->chip_class == GFX6 || ctx->program->chip_class == GFX7) {
aco_opcode opcode;
if (reduce_op == imin16 || reduce_op == imax16 || reduce_op == iadd16)
opcode = aco_opcode::v_bfe_i32;
else
opcode = aco_opcode::v_bfe_u32;
bld.vop3(opcode, Definition(PhysReg{tmp}, v1),
Operand(PhysReg{tmp}, v1), Operand(0u), Operand(16u));
}
}
bool reduction_needs_last_op = false;
switch (op) {
case aco_opcode::p_reduce:
if (cluster_size == 1) break;
if (ctx->program->chip_class <= GFX7) {
reduction_needs_last_op = true;
emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(1, 0, 3, 2));
if (cluster_size == 2) break;
emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(2, 3, 0, 1));
if (cluster_size == 4) break;
emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x04));
if (cluster_size == 8) break;
emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x08));
if (cluster_size == 16) break;
emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10));
if (cluster_size == 32) break;
emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
for (unsigned i = 0; i < src.size(); i++)
bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp + i}, v1), Operand(0u));
// TODO: it would be more effective to do the last reduction step on SALU
emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size());
reduction_needs_last_op = false;
break;
}
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(1, 0, 3, 2), 0xf, 0xf, false);
if (cluster_size == 2) break;
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(2, 3, 0, 1), 0xf, 0xf, false);
if (cluster_size == 4) break;
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_half_mirror, 0xf, 0xf, false);
if (cluster_size == 8) break;
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_mirror, 0xf, 0xf, false);
if (cluster_size == 16) break;
if (ctx->program->chip_class >= GFX10) {
/* GFX10+ doesn't support row_bcast15 and row_bcast31 */
for (unsigned i = 0; i < src.size(); i++)
bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1), Operand(0u), Operand(0u));
if (cluster_size == 32) {
reduction_needs_last_op = true;
break;
}
emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
for (unsigned i = 0; i < src.size(); i++)
bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(0u));
// TODO: it would be more effective to do the last reduction step on SALU
emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size());
break;
}
if (cluster_size == 32) {
emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10));
reduction_needs_last_op = true;
break;
}
assert(cluster_size == 64);
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast15, 0xa, 0xf, false);
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast31, 0xc, 0xf, false);
break;
case aco_opcode::p_exclusive_scan:
if (ctx->program->chip_class >= GFX10) { /* gfx10 doesn't support wf_sr1, so emulate it */
/* shift rows right */
emit_dpp_mov(ctx, vtmp, tmp, src.size(), dpp_row_sr(1), 0xf, 0xf, true);
/* fill in the gaps in rows 1 and 3 */
bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x10000u));
bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(0x10000u));
for (unsigned i = 0; i < src.size(); i++) {
Instruction *perm = bld.vop3(aco_opcode::v_permlanex16_b32,
Definition(PhysReg{vtmp+i}, v1),
Operand(PhysReg{tmp+i}, v1),
Operand(0xffffffffu), Operand(0xffffffffu)).instr;
static_cast<VOP3A_instruction*>(perm)->opsel = 1; /* FI (Fetch Inactive) */
}
bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(UINT64_MAX));
if (ctx->program->wave_size == 64) {
/* fill in the gap in row 2 */
for (unsigned i = 0; i < src.size(); i++) {
bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
bld.writelane(Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{sitmp+i}, s1), Operand(32u), Operand(PhysReg{vtmp+i}, v1));
}
}
std::swap(tmp, vtmp);
} else if (ctx->program->chip_class >= GFX8) {
emit_dpp_mov(ctx, tmp, tmp, src.size(), dpp_wf_sr1, 0xf, 0xf, true);
} else {
// TODO: use LDS on CS with a single write and shifted read
/* wavefront shift_right by 1 on SI/CI */
emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(0, 0, 1, 2));
emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x07)); /* mirror(8) */
bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x10101010u));
bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
for (unsigned i = 0; i < src.size(); i++)
bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x08)); /* swap(8) */
bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x01000100u));
bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
for (unsigned i = 0; i < src.size(); i++)
bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x10)); /* swap(16) */
bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(1u), Operand(16u));
bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(1u), Operand(16u));
for (unsigned i = 0; i < src.size(); i++)
bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
for (unsigned i = 0; i < src.size(); i++) {
bld.writelane(Definition(PhysReg{vtmp+i}, v1), identity[i], Operand(0u), Operand(PhysReg{vtmp+i}, v1));
bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(0u));
bld.writelane(Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{sitmp+i}, s1), Operand(32u), Operand(PhysReg{vtmp+i}, v1));
identity[i] = Operand(0u); /* prevent further uses of identity */
}
std::swap(tmp, vtmp);
}
for (unsigned i = 0; i < src.size(); i++) {
if (!identity[i].isConstant() || identity[i].constantValue()) { /* bound_ctrl should take care of this overwise */
if (ctx->program->chip_class < GFX10)
assert((identity[i].isConstant() && !identity[i].isLiteral()) || identity[i].physReg() == PhysReg{sitmp+i});
bld.writelane(Definition(PhysReg{tmp+i}, v1), identity[i], Operand(0u), Operand(PhysReg{tmp+i}, v1));
}
}
/* fall through */
case aco_opcode::p_inclusive_scan:
assert(cluster_size == ctx->program->wave_size);
if (ctx->program->chip_class <= GFX7) {
emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1e, 0x00, 0x00));
bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xAAAAAAAAu));
bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1c, 0x01, 0x00));
bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xCCCCCCCCu));
bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x18, 0x03, 0x00));
bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xF0F0F0F0u));
bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x10, 0x07, 0x00));
bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xFF00FF00u));
bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x00, 0x0f, 0x00));
bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(16u), Operand(16u));
bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(16u), Operand(16u));
emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
for (unsigned i = 0; i < src.size(); i++)
bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size());
break;
}
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
dpp_row_sr(1), 0xf, 0xf, false, identity);
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
dpp_row_sr(2), 0xf, 0xf, false, identity);
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
dpp_row_sr(4), 0xf, 0xf, false, identity);
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
dpp_row_sr(8), 0xf, 0xf, false, identity);
if (ctx->program->chip_class >= GFX10) {
bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(16u), Operand(16u));
bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(16u), Operand(16u));
for (unsigned i = 0; i < src.size(); i++) {
Instruction *perm = bld.vop3(aco_opcode::v_permlanex16_b32,
Definition(PhysReg{vtmp+i}, v1),
Operand(PhysReg{tmp+i}, v1),
Operand(0xffffffffu), Operand(0xffffffffu)).instr;
static_cast<VOP3A_instruction*>(perm)->opsel = 1; /* FI (Fetch Inactive) */
}
emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
if (ctx->program->wave_size == 64) {
bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
for (unsigned i = 0; i < src.size(); i++)
bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size());
}
} else {
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
dpp_row_bcast15, 0xa, 0xf, false, identity);
emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
dpp_row_bcast31, 0xc, 0xf, false, identity);
}
break;
default:
unreachable("Invalid reduction mode");
}
if (op == aco_opcode::p_reduce) {
if (reduction_needs_last_op && dst.regClass().type() == RegType::vgpr) {
bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm));
emit_op(ctx, dst.physReg(), tmp, vtmp, PhysReg{0}, reduce_op, src.size());
return;
}
if (reduction_needs_last_op)
emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
}
/* restore exec */
bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm));
if (dst.regClass().type() == RegType::sgpr) {
for (unsigned k = 0; k < src.size(); k++) {
bld.readlane(Definition(PhysReg{dst.physReg() + k}, s1),
Operand(PhysReg{tmp + k}, v1), Operand(ctx->program->wave_size - 1));
}
} else if (dst.physReg() != tmp) {
for (unsigned k = 0; k < src.size(); k++) {
bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{dst.physReg() + k}, v1),
Operand(PhysReg{tmp + k}, v1));
}
}
}
void emit_gfx10_wave64_bpermute(Program *program, aco_ptr<Instruction> &instr, Builder &bld)
{
/* Emulates proper bpermute on GFX10 in wave64 mode.
*
* This is necessary because on GFX10 the bpermute instruction only works
* on half waves (you can think of it as having a cluster size of 32), so we
* manually swap the data between the two halves using two shared VGPRs.
*/
assert(program->chip_class >= GFX10);
assert(program->wave_size == 64);
unsigned shared_vgpr_reg_0 = align(program->config->num_vgprs, 4) + 256;
Definition dst = instr->definitions[0];
Definition tmp_exec = instr->definitions[1];
Definition clobber_scc = instr->definitions[2];
Operand index_x4 = instr->operands[0];
Operand input_data = instr->operands[1];
Operand same_half = instr->operands[2];
assert(dst.regClass() == v1);
assert(tmp_exec.regClass() == bld.lm);
assert(clobber_scc.isFixed() && clobber_scc.physReg() == scc);
assert(same_half.regClass() == bld.lm);
assert(index_x4.regClass() == v1);
assert(input_data.regClass().type() == RegType::vgpr);
assert(input_data.bytes() <= 4);
assert(dst.physReg() != index_x4.physReg());
assert(dst.physReg() != input_data.physReg());
assert(tmp_exec.physReg() != same_half.physReg());
PhysReg shared_vgpr_lo(shared_vgpr_reg_0);
PhysReg shared_vgpr_hi(shared_vgpr_reg_0 + 1);
/* Permute the input within the same half-wave */
bld.ds(aco_opcode::ds_bpermute_b32, dst, index_x4, input_data);
/* HI: Copy data from high lanes 32-63 to shared vgpr */
bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(shared_vgpr_hi, v1), input_data, dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false);
/* Save EXEC */
bld.sop1(aco_opcode::s_mov_b64, tmp_exec, Operand(exec, s2));
/* Set EXEC to enable LO lanes only */
bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(0u));
/* LO: Copy data from low lanes 0-31 to shared vgpr */
bld.vop1(aco_opcode::v_mov_b32, Definition(shared_vgpr_lo, v1), input_data);
/* LO: bpermute shared vgpr (high lanes' data) */
bld.ds(aco_opcode::ds_bpermute_b32, Definition(shared_vgpr_hi, v1), index_x4, Operand(shared_vgpr_hi, v1));
/* Set EXEC to enable HI lanes only */
bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
/* HI: bpermute shared vgpr (low lanes' data) */
bld.ds(aco_opcode::ds_bpermute_b32, Definition(shared_vgpr_lo, v1), index_x4, Operand(shared_vgpr_lo, v1));
/* Only enable lanes which use the other half's data */
bld.sop2(aco_opcode::s_andn2_b64, Definition(exec, s2), clobber_scc, Operand(tmp_exec.physReg(), s2), same_half);
/* LO: Copy shared vgpr (high lanes' bpermuted data) to output vgpr */
bld.vop1_dpp(aco_opcode::v_mov_b32, dst, Operand(shared_vgpr_hi, v1), dpp_quad_perm(0, 1, 2, 3), 0x3, 0xf, false);
/* HI: Copy shared vgpr (low lanes' bpermuted data) to output vgpr */
bld.vop1_dpp(aco_opcode::v_mov_b32, dst, Operand(shared_vgpr_lo, v1), dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false);
/* Restore saved EXEC */
bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(tmp_exec.physReg(), s2));
/* RA assumes that the result is always in the low part of the register, so we have to shift, if it's not there already */
if (input_data.physReg().byte()) {
unsigned right_shift = input_data.physReg().byte() * 8;
bld.vop2(aco_opcode::v_lshrrev_b32, dst, Operand(right_shift), Operand(dst.physReg(), v1));
}
}
void emit_gfx6_bpermute(Program *program, aco_ptr<Instruction> &instr, Builder &bld)
{
/* Emulates bpermute using readlane instructions */
Operand index = instr->operands[0];
Operand input = instr->operands[1];
Definition dst = instr->definitions[0];
Definition temp_exec = instr->definitions[1];
Definition clobber_vcc = instr->definitions[2];
assert(dst.regClass() == v1);
assert(temp_exec.regClass() == bld.lm);
assert(clobber_vcc.regClass() == bld.lm);
assert(clobber_vcc.physReg() == vcc);
assert(index.regClass() == v1);
assert(index.physReg() != dst.physReg());
assert(input.regClass().type() == RegType::vgpr);
assert(input.bytes() <= 4);
assert(input.physReg() != dst.physReg());
/* Save original EXEC */
bld.sop1(aco_opcode::s_mov_b64, temp_exec, Operand(exec, s2));
/* An "unrolled loop" that is executed per each lane.
* This takes only a few instructions per lane, as opposed to a "real" loop
* with branching, where the branch instruction alone would take 16+ cycles.
*/
for (unsigned n = 0; n < program->wave_size; ++n) {
/* Activate the lane which has N for its source index */
bld.vopc(aco_opcode::v_cmpx_eq_u32, Definition(exec, bld.lm), clobber_vcc, Operand(n), index);
/* Read the data from lane N */
bld.readlane(Definition(vcc, s1), input, Operand(n));
/* On the active lane, move the data we read from lane N to the destination VGPR */
bld.vop1(aco_opcode::v_mov_b32, dst, Operand(vcc, s1));
/* Restore original EXEC */
bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(temp_exec.physReg(), s2));
}
}
struct copy_operation {
Operand op;
Definition def;
unsigned bytes;
union {
uint8_t uses[8];
uint64_t is_used = 0;
};
};
void split_copy(unsigned offset, Definition *def, Operand *op, const copy_operation& src, bool ignore_uses, unsigned max_size)
{
PhysReg def_reg = src.def.physReg();
PhysReg op_reg = src.op.physReg();
def_reg.reg_b += offset;
op_reg.reg_b += offset;
max_size = MIN2(max_size, src.def.regClass().type() == RegType::vgpr ? 4 : 8);
/* make sure the size is a power of two and reg % bytes == 0 */
unsigned bytes = 1;
for (; bytes <= max_size; bytes *= 2) {
unsigned next = bytes * 2u;
bool can_increase = def_reg.reg_b % next == 0 &&
offset + next <= src.bytes && next <= max_size;
if (!src.op.isConstant() && can_increase)
can_increase = op_reg.reg_b % next == 0;
for (unsigned i = 0; !ignore_uses && can_increase && (i < bytes); i++)
can_increase = (src.uses[offset + bytes + i] == 0) == (src.uses[offset] == 0);
if (!can_increase)
break;
}
RegClass def_cls = bytes % 4 == 0 ? RegClass(src.def.regClass().type(), bytes / 4u) :
RegClass(src.def.regClass().type(), bytes).as_subdword();
*def = Definition(src.def.tempId(), def_reg, def_cls);
if (src.op.isConstant()) {
assert(bytes >= 1 && bytes <= 8);
if (bytes == 8)
*op = Operand(src.op.constantValue64() >> (offset * 8u));
else if (bytes == 4)
*op = Operand(uint32_t(src.op.constantValue64() >> (offset * 8u)));
else if (bytes == 2)
*op = Operand(uint16_t(src.op.constantValue64() >> (offset * 8u)));
else if (bytes == 1)
*op = Operand(uint8_t(src.op.constantValue64() >> (offset * 8u)));
} else {
RegClass op_cls = bytes % 4 == 0 ? RegClass(src.op.regClass().type(), bytes / 4u) :
RegClass(src.op.regClass().type(), bytes).as_subdword();
*op = Operand(op_reg, op_cls);
op->setTemp(Temp(src.op.tempId(), op_cls));
}
}
uint32_t get_intersection_mask(int a_start, int a_size,
int b_start, int b_size)
{
int intersection_start = MAX2(b_start - a_start, 0);
int intersection_end = MAX2(b_start + b_size - a_start, 0);
if (intersection_start >= a_size || intersection_end == 0)
return 0;
uint32_t mask = u_bit_consecutive(0, a_size);
return u_bit_consecutive(intersection_start, intersection_end - intersection_start) & mask;
}
void copy_16bit_literal(lower_context *ctx, Builder& bld, Definition def, Operand op)
{
if (ctx->program->chip_class < GFX10 || !(ctx->block->fp_mode.denorm16_64 & fp_denorm_keep_in)) {
unsigned offset = def.physReg().byte() * 8u;
def = Definition(PhysReg(def.physReg().reg()), v1);
Operand def_op(def.physReg(), v1);
bld.vop2(aco_opcode::v_and_b32, def, Operand(~(0xffffu << offset)), def_op);
bld.vop2(aco_opcode::v_or_b32, def, Operand(op.constantValue() << offset), def_op);
} else if (def.physReg().byte() == 2) {
Operand def_lo(def.physReg().advance(-2), v2b);
Instruction* instr = bld.vop3(aco_opcode::v_pack_b32_f16, def, def_lo, op);
static_cast<VOP3A_instruction*>(instr)->opsel = 0;
} else {
assert(def.physReg().byte() == 0);
Operand def_hi(def.physReg().advance(2), v2b);
Instruction* instr = bld.vop3(aco_opcode::v_pack_b32_f16, def, op, def_hi);
static_cast<VOP3A_instruction*>(instr)->opsel = 2;
}
}
bool do_copy(lower_context* ctx, Builder& bld, const copy_operation& copy, bool *preserve_scc, PhysReg scratch_sgpr)
{
bool did_copy = false;
for (unsigned offset = 0; offset < copy.bytes;) {
if (copy.uses[offset]) {
offset++;
continue;
}
Definition def;
Operand op;
split_copy(offset, &def, &op, copy, false, 8);
if (def.physReg() == scc) {
bld.sopc(aco_opcode::s_cmp_lg_i32, def, op, Operand(0u));
*preserve_scc = true;
} else if (def.bytes() == 8 && def.getTemp().type() == RegType::sgpr) {
bld.sop1(aco_opcode::s_mov_b64, def, Operand(op.physReg(), s2));
} else if (def.regClass().is_subdword() && ctx->program->chip_class < GFX8) {
if (op.physReg().byte()) {
assert(def.physReg().byte() == 0);
bld.vop2(aco_opcode::v_lshrrev_b32, def, Operand(op.physReg().byte() * 8), op);
} else if (def.physReg().byte()) {
assert(op.physReg().byte() == 0);
/* preserve the target's lower half */
uint32_t bits = def.physReg().byte() * 8;
PhysReg lo_reg = PhysReg(def.physReg().reg());
Definition lo_half = Definition(lo_reg, RegClass::get(RegType::vgpr, def.physReg().byte()));
Definition dst = Definition(lo_reg, RegClass::get(RegType::vgpr, lo_half.bytes() + op.bytes()));
if (def.physReg().reg() == op.physReg().reg()) {
bld.vop2(aco_opcode::v_and_b32, lo_half, Operand((1 << bits) - 1u), Operand(lo_reg, lo_half.regClass()));
if (def.physReg().byte() == 1) {
bld.vop2(aco_opcode::v_mul_u32_u24, dst, Operand((1 << bits) + 1u), op);
} else if (def.physReg().byte() == 2) {
bld.vop2(aco_opcode::v_cvt_pk_u16_u32, dst, Operand(lo_reg, v2b), op);
} else if (def.physReg().byte() == 3) {
bld.sop1(aco_opcode::s_mov_b32, Definition(scratch_sgpr, s1), Operand((1 << bits) + 1u));
bld.vop3(aco_opcode::v_mul_lo_u32, dst, Operand(scratch_sgpr, s1), op);
}
} else {
lo_half.setFixed(lo_half.physReg().advance(4 - def.physReg().byte()));
bld.vop2(aco_opcode::v_lshlrev_b32, lo_half, Operand(32 - bits), Operand(lo_reg, lo_half.regClass()));
bld.vop3(aco_opcode::v_alignbyte_b32, dst, op, Operand(lo_half.physReg(), lo_half.regClass()), Operand(4 - def.physReg().byte()));
}
} else {
bld.vop1(aco_opcode::v_mov_b32, def, op);
}
} else if (def.regClass() == v2b && op.isLiteral()) {
copy_16bit_literal(ctx, bld, def, op);
} else {
bld.copy(def, op);
}
did_copy = true;
offset += def.bytes();
}
return did_copy;
}
void do_swap(lower_context *ctx, Builder& bld, const copy_operation& copy, bool preserve_scc, Pseudo_instruction *pi)
{
unsigned offset = 0;
if (copy.bytes == 3 && (copy.def.physReg().reg_b % 4 <= 1) &&
(copy.def.physReg().reg_b % 4) == (copy.op.physReg().reg_b % 4)) {
/* instead of doing a 2-byte and 1-byte swap, do a 4-byte swap and then fixup with a 1-byte swap */
PhysReg op = copy.op.physReg();
PhysReg def = copy.def.physReg();
op.reg_b &= ~0x3;
def.reg_b &= ~0x3;
copy_operation tmp;
tmp.op = Operand(op, v1);
tmp.def = Definition(def, v1);
tmp.bytes = 4;
memset(tmp.uses, 1, 4);
do_swap(ctx, bld, tmp, preserve_scc, pi);
op.reg_b += copy.def.physReg().reg_b % 4 == 0 ? 3 : 0;
def.reg_b += copy.def.physReg().reg_b % 4 == 0 ? 3 : 0;
tmp.op = Operand(op, v1b);
tmp.def = Definition(def, v1b);
tmp.bytes = 1;
tmp.uses[0] = 1;
do_swap(ctx, bld, tmp, preserve_scc, pi);
offset = copy.bytes;
}
for (; offset < copy.bytes;) {
Definition def;
Operand op;
split_copy(offset, &def, &op, copy, true, 8);
assert(op.regClass() == def.regClass());
Operand def_as_op = Operand(def.physReg(), def.regClass());
Definition op_as_def = Definition(op.physReg(), op.regClass());
if (ctx->program->chip_class >= GFX9 && def.regClass() == v1) {
bld.vop1(aco_opcode::v_swap_b32, def, op_as_def, op, def_as_op);
} else if (def.regClass() == v1) {
assert(def.physReg().byte() == 0 && op.physReg().byte() == 0);
bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
bld.vop2(aco_opcode::v_xor_b32, def, op, def_as_op);
bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
} else if (op.physReg() == scc || def.physReg() == scc) {
/* we need to swap scc and another sgpr */
assert(!preserve_scc);
PhysReg other = op.physReg() == scc ? def.physReg() : op.physReg();
bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(other, s1), Operand(0u));
bld.sop1(aco_opcode::s_mov_b32, Definition(other, s1), Operand(pi->scratch_sgpr, s1));
} else if (def.regClass() == s1) {
if (preserve_scc) {
bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), op);
bld.sop1(aco_opcode::s_mov_b32, op_as_def, def_as_op);
bld.sop1(aco_opcode::s_mov_b32, def, Operand(pi->scratch_sgpr, s1));
} else {
bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), op, def_as_op);
bld.sop2(aco_opcode::s_xor_b32, def, Definition(scc, s1), op, def_as_op);
bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), op, def_as_op);
}
} else if (def.regClass() == s2) {
if (preserve_scc)
bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
bld.sop2(aco_opcode::s_xor_b64, op_as_def, Definition(scc, s1), op, def_as_op);
bld.sop2(aco_opcode::s_xor_b64, def, Definition(scc, s1), op, def_as_op);
bld.sop2(aco_opcode::s_xor_b64, op_as_def, Definition(scc, s1), op, def_as_op);
if (preserve_scc)
bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(pi->scratch_sgpr, s1), Operand(0u));
} else if (def.bytes() == 2 && def.physReg().reg() == op.physReg().reg()) {
bld.vop3(aco_opcode::v_alignbyte_b32, Definition(def.physReg(), v1), def_as_op, op, Operand(2u));
} else {
assert(def.regClass().is_subdword());
bld.vop2_sdwa(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
bld.vop2_sdwa(aco_opcode::v_xor_b32, def, op, def_as_op);
bld.vop2_sdwa(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
}
offset += def.bytes();
}
if (ctx->program->chip_class <= GFX7)
return;
/* fixup in case we swapped bytes we shouldn't have */
copy_operation tmp_copy = copy;
tmp_copy.op.setFixed(copy.def.physReg());
tmp_copy.def.setFixed(copy.op.physReg());
do_copy(ctx, bld, tmp_copy, &preserve_scc, pi->scratch_sgpr);
}
void do_pack_2x16(lower_context *ctx, Builder& bld, Definition def, Operand lo, Operand hi)
{
if (lo.isConstant() && hi.isConstant()) {
bld.copy(def, Operand(lo.constantValue() | (hi.constantValue() << 16)));
return;
}
bool can_use_pack = (ctx->block->fp_mode.denorm16_64 & fp_denorm_keep_in) &&
(ctx->program->chip_class >= GFX10 ||
(ctx->program->chip_class >= GFX9 &&
!lo.isLiteral() && !hi.isLiteral()));
if (can_use_pack) {
Instruction* instr = bld.vop3(aco_opcode::v_pack_b32_f16, def, lo, hi);
/* opsel: 0 = select low half, 1 = select high half. [0] = src0, [1] = src1 */
static_cast<VOP3A_instruction*>(instr)->opsel = hi.physReg().byte() | (lo.physReg().byte() >> 1);
return;
}
/* a single alignbyte can be sufficient: hi can be a 32-bit integer constant */
if (lo.physReg().byte() == 2 && hi.physReg().byte() == 0 &&
(!hi.isConstant() || !Operand(hi.constantValue()).isLiteral() ||
ctx->program->chip_class >= GFX10)) {
bld.vop3(aco_opcode::v_alignbyte_b32, def, hi, lo, Operand(2u));
return;
}
Definition def_lo = Definition(def.physReg(), v2b);
Definition def_hi = Definition(def.physReg().advance(2), v2b);
if (lo.isConstant()) {
/* move hi and zero low bits */
if (hi.physReg().byte() == 0)
bld.vop2(aco_opcode::v_lshlrev_b32, def_hi, Operand(16u), hi);
else
bld.vop2(aco_opcode::v_and_b32, def_hi, Operand(~0xFFFFu), hi);
bld.vop2(aco_opcode::v_or_b32, def, Operand(lo.constantValue()), Operand(def.physReg(), v1));
return;
}
if (hi.isConstant()) {
/* move lo and zero high bits */
if (lo.physReg().byte() == 2)
bld.vop2(aco_opcode::v_lshrrev_b32, def_lo, Operand(16u), lo);
else
bld.vop2(aco_opcode::v_and_b32, def_lo, Operand(0xFFFFu), lo);
bld.vop2(aco_opcode::v_or_b32, def, Operand(hi.constantValue() << 16u), Operand(def.physReg(), v1));
return;
}
if (lo.physReg().reg() == def.physReg().reg()) {
/* lo is in the high bits of def */
assert(lo.physReg().byte() == 2);
bld.vop2(aco_opcode::v_lshrrev_b32, def_lo, Operand(16u), lo);
lo.setFixed(def.physReg());
} else if (hi.physReg() == def.physReg()) {
/* hi is in the low bits of def */
assert(hi.physReg().byte() == 0);
bld.vop2(aco_opcode::v_lshlrev_b32, def_hi, Operand(16u), hi);
hi.setFixed(def.physReg().advance(2));
} else if (ctx->program->chip_class >= GFX8) {
/* either lo or hi can be placed with just a v_mov */
assert(lo.physReg().byte() == 0 || hi.physReg().byte() == 2);
Operand& op = lo.physReg().byte() == 0 ? lo : hi;
PhysReg reg = def.physReg().advance(op.physReg().byte());
bld.vop1(aco_opcode::v_mov_b32, Definition(reg, v2b), op);
op.setFixed(reg);
}
if (ctx->program->chip_class >= GFX8) {
/* either hi or lo are already placed correctly */
if (lo.physReg().reg() == def.physReg().reg())
bld.copy(def_hi, hi);
else
bld.copy(def_lo, lo);
return;
}
/* alignbyte needs the operands in the following way:
* | xx hi | lo xx | >> 2 byte */
if (lo.physReg().byte() != hi.physReg().byte()) {
/* | xx lo | hi xx | => | lo hi | lo hi | */
assert(lo.physReg().byte() == 0 && hi.physReg().byte() == 2);
bld.vop3(aco_opcode::v_alignbyte_b32, def, lo, hi, Operand(2u));
lo = Operand(def_hi.physReg(), v2b);
hi = Operand(def_lo.physReg(), v2b);
} else if (lo.physReg().byte() == 0) {
/* | xx hi | xx lo | => | xx hi | lo 00 | */
bld.vop2(aco_opcode::v_lshlrev_b32, def_hi, Operand(16u), lo);
lo = Operand(def_hi.physReg(), v2b);
} else {
/* | hi xx | lo xx | => | 00 hi | lo xx | */
assert(hi.physReg().byte() == 2);
bld.vop2(aco_opcode::v_lshrrev_b32, def_lo, Operand(16u), hi);
hi = Operand(def_lo.physReg(), v2b);
}
/* perform the alignbyte */
bld.vop3(aco_opcode::v_alignbyte_b32, def, hi, lo, Operand(2u));
}
void handle_operands(std::map<PhysReg, copy_operation>& copy_map, lower_context* ctx, chip_class chip_class, Pseudo_instruction *pi)
{
Builder bld(ctx->program, &ctx->instructions);
unsigned num_instructions_before = ctx->instructions.size();
aco_ptr<Instruction> mov;
std::map<PhysReg, copy_operation>::iterator it = copy_map.begin();
std::map<PhysReg, copy_operation>::iterator target;
bool writes_scc = false;
/* count the number of uses for each dst reg */
while (it != copy_map.end()) {
if (it->second.def.physReg() == scc)
writes_scc = true;
assert(!pi->tmp_in_scc || !(it->second.def.physReg() == pi->scratch_sgpr));
/* if src and dst reg are the same, remove operation */
if (it->first == it->second.op.physReg()) {
it = copy_map.erase(it);
continue;
}
/* split large copies */
if (it->second.bytes > 8) {
assert(!it->second.op.isConstant());
assert(!it->second.def.regClass().is_subdword());
RegClass rc = RegClass(it->second.def.regClass().type(), it->second.def.size() - 2);
Definition hi_def = Definition(PhysReg{it->first + 2}, rc);
rc = RegClass(it->second.op.regClass().type(), it->second.op.size() - 2);
Operand hi_op = Operand(PhysReg{it->second.op.physReg() + 2}, rc);
copy_operation copy = {hi_op, hi_def, it->second.bytes - 8};
copy_map[hi_def.physReg()] = copy;
assert(it->second.op.physReg().byte() == 0 && it->second.def.physReg().byte() == 0);
it->second.op = Operand(it->second.op.physReg(), it->second.op.regClass().type() == RegType::sgpr ? s2 : v2);
it->second.def = Definition(it->second.def.physReg(), it->second.def.regClass().type() == RegType::sgpr ? s2 : v2);
it->second.bytes = 8;
}
/* try to coalesce copies */
if (it->second.bytes < 8 && !it->second.op.isConstant() &&
it->first.reg_b % util_next_power_of_two(it->second.bytes + 1) == 0 &&
it->second.op.physReg().reg_b % util_next_power_of_two(it->second.bytes + 1) == 0) {
// TODO try more relaxed alignment for subdword copies
PhysReg other_def_reg = it->first;
other_def_reg.reg_b += it->second.bytes;
PhysReg other_op_reg = it->second.op.physReg();
other_op_reg.reg_b += it->second.bytes;
std::map<PhysReg, copy_operation>::iterator other = copy_map.find(other_def_reg);
if (other != copy_map.end() &&
other->second.op.physReg() == other_op_reg &&
it->second.bytes + other->second.bytes <= 8) {
it->second.bytes += other->second.bytes;
it->second.def = Definition(it->first, RegClass::get(it->second.def.regClass().type(), it->second.bytes));
it->second.op = Operand(it->second.op.physReg(), RegClass::get(it->second.op.regClass().type(), it->second.bytes));
copy_map.erase(other);
}
}
/* check if the definition reg is used by another copy operation */
for (std::pair<const PhysReg, copy_operation>& copy : copy_map) {
if (copy.second.op.isConstant())
continue;
for (uint16_t i = 0; i < it->second.bytes; i++) {
/* distance might underflow */
unsigned distance = it->first.reg_b + i - copy.second.op.physReg().reg_b;
if (distance < copy.second.bytes)
it->second.uses[i] += 1;
}
}
++it;
}
/* first, handle paths in the location transfer graph */
bool preserve_scc = pi->tmp_in_scc && !writes_scc;
bool skip_partial_copies = true;
it = copy_map.begin();
while (true) {
if (copy_map.empty()) {
ctx->program->statistics[statistic_copies] += ctx->instructions.size() - num_instructions_before;
return;
}
if (it == copy_map.end()) {
if (!skip_partial_copies)
break;
skip_partial_copies = false;
it = copy_map.begin();
}
/* check if we can pack one register at once */
if (it->first.byte() == 0 && it->second.bytes == 2) {
PhysReg reg_hi = it->first.advance(2);
std::map<PhysReg, copy_operation>::iterator other = copy_map.find(reg_hi);
if (other != copy_map.end() && other->second.bytes == 2) {
/* check if the target register is otherwise unused */
bool unused_lo = !it->second.is_used ||
(it->second.is_used == 0x0101 &&
other->second.op.physReg() == it->first);
bool unused_hi = !other->second.is_used ||
(other->second.is_used == 0x0101 &&
it->second.op.physReg() == reg_hi);
if (unused_lo && unused_hi) {
Operand lo = it->second.op;
Operand hi = other->second.op;
do_pack_2x16(ctx, bld, Definition(it->first, v1), lo, hi);
copy_map.erase(it);
copy_map.erase(other);
for (std::pair<const PhysReg, copy_operation>& other : copy_map) {
for (uint16_t i = 0; i < other.second.bytes; i++) {
/* distance might underflow */
unsigned distance_lo = other.first.reg_b + i - lo.physReg().reg_b;
unsigned distance_hi = other.first.reg_b + i - hi.physReg().reg_b;
if (distance_lo < 2 || distance_hi < 2)
other.second.uses[i] -= 1;
}
}
it = copy_map.begin();
continue;
}
}
}
/* on GFX6/7, we need some small workarounds as there is no
* SDWA instruction to do partial register writes */
if (ctx->program->chip_class < GFX8 && it->second.bytes < 4) {
if (it->first.byte() == 0 && it->second.op.physReg().byte() == 0 &&
!it->second.is_used && pi->opcode == aco_opcode::p_split_vector) {
/* Other operations might overwrite the high bits, so change all users
* of the high bits to the new target where they are still available.
* This mechanism depends on also emitting dead definitions. */
PhysReg reg_hi = it->second.op.physReg().advance(it->second.bytes);
while (reg_hi != PhysReg(it->second.op.physReg().reg() + 1)) {
std::map<PhysReg, copy_operation>::iterator other = copy_map.begin();
for (other = copy_map.begin(); other != copy_map.end(); other++) {
/* on GFX6/7, if the high bits are used as operand, they cannot be a target */
if (other->second.op.physReg() == reg_hi) {
other->second.op.setFixed(it->first.advance(reg_hi.byte()));
break; /* break because an operand can only be used once */
}
}
reg_hi = reg_hi.advance(it->second.bytes);
}
} else if (it->first.byte()) {
assert(pi->opcode == aco_opcode::p_create_vector);
/* on GFX6/7, if we target an upper half where the lower half hasn't yet been handled,
* move to the target operand's high bits. This is save to do as it cannot be an operand */
PhysReg lo = PhysReg(it->first.reg());
std::map<PhysReg, copy_operation>::iterator other = copy_map.find(lo);
if (other != copy_map.end()) {
assert(other->second.bytes == it->first.byte());
PhysReg new_reg_hi = other->second.op.physReg().advance(it->first.byte());
it->second.def = Definition(new_reg_hi, it->second.def.regClass());
it->second.is_used = 0;
other->second.bytes += it->second.bytes;
other->second.def.setTemp(Temp(other->second.def.tempId(), RegClass::get(RegType::vgpr, other->second.bytes)));
other->second.op.setTemp(Temp(other->second.op.tempId(), RegClass::get(RegType::vgpr, other->second.bytes)));
/* if the new target's high bits are also a target, change uses */
std::map<PhysReg, copy_operation>::iterator target = copy_map.find(new_reg_hi);
if (target != copy_map.end()) {
for (unsigned i = 0; i < it->second.bytes; i++)
target->second.uses[i]++;
}
}
}
}
/* find portions where the target reg is not used as operand for any other copy */
if (it->second.is_used) {
if (it->second.op.isConstant() || skip_partial_copies) {
/* we have to skip constants until is_used=0.
* we also skip partial copies at the beginning to help coalescing */
++it;
continue;
}
unsigned has_zero_use_bytes = 0;
for (unsigned i = 0; i < it->second.bytes; i++)
has_zero_use_bytes |= (it->second.uses[i] == 0) << i;
if (has_zero_use_bytes) {
/* Skipping partial copying and doing a v_swap_b32 and then fixup
* copies is usually beneficial for sub-dword copies, but if doing
* a partial copy allows further copies, it should be done instead. */
bool partial_copy = (has_zero_use_bytes == 0xf) || (has_zero_use_bytes == 0xf0);
for (std::pair<const PhysReg, copy_operation>& copy : copy_map) {
/* on GFX6/7, we can only do copies with full registers */
if (partial_copy || ctx->program->chip_class <= GFX7)
break;
for (uint16_t i = 0; i < copy.second.bytes; i++) {
/* distance might underflow */
unsigned distance = copy.first.reg_b + i - it->second.op.physReg().reg_b;
if (distance < it->second.bytes && copy.second.uses[i] == 1 &&
!it->second.uses[distance])
partial_copy = true;
}
}
if (!partial_copy) {
++it;
continue;
}
} else {
/* full target reg is used: register swapping needed */
++it;
continue;
}
}
bool did_copy = do_copy(ctx, bld, it->second, &preserve_scc, pi->scratch_sgpr);
skip_partial_copies = did_copy;
std::pair<PhysReg, copy_operation> copy = *it;
if (it->second.is_used == 0) {
/* the target reg is not used as operand for any other copy, so we
* copied to all of it */
copy_map.erase(it);
it = copy_map.begin();
} else {
/* we only performed some portions of this copy, so split it to only
* leave the portions that still need to be done */
copy_operation original = it->second; /* the map insertion below can overwrite this */
copy_map.erase(it);
for (unsigned offset = 0; offset < original.bytes;) {
if (original.uses[offset] == 0) {
offset++;
continue;
}
Definition def;
Operand op;
split_copy(offset, &def, &op, original, false, 8);
copy_operation copy = {op, def, def.bytes()};
for (unsigned i = 0; i < copy.bytes; i++)
copy.uses[i] = original.uses[i + offset];
copy_map[def.physReg()] = copy;
offset += def.bytes();
}
it = copy_map.begin();
}
/* Reduce the number of uses of the operand reg by one. Do this after
* splitting the copy or removing it in case the copy writes to it's own
* operand (for example, v[7:8] = v[8:9]) */
if (did_copy && !copy.second.op.isConstant()) {
for (std::pair<const PhysReg, copy_operation>& other : copy_map) {
for (uint16_t i = 0; i < other.second.bytes; i++) {
/* distance might underflow */
unsigned distance = other.first.reg_b + i - copy.second.op.physReg().reg_b;
if (distance < copy.second.bytes && !copy.second.uses[distance])
other.second.uses[i] -= 1;
}
}
}
}
/* all target regs are needed as operand somewhere which means, all entries are part of a cycle */
unsigned largest = 0;
for (const std::pair<const PhysReg, copy_operation>& op : copy_map)
largest = MAX2(largest, op.second.bytes);
while (!copy_map.empty()) {
/* Perform larger swaps first, because larger swaps swaps can make other
* swaps unnecessary. */
auto it = copy_map.begin();
for (auto it2 = copy_map.begin(); it2 != copy_map.end(); ++it2) {
if (it2->second.bytes > it->second.bytes) {
it = it2;
if (it->second.bytes == largest)
break;
}
}
/* should already be done */
assert(!it->second.op.isConstant());
assert(it->second.op.isFixed());
assert(it->second.def.regClass() == it->second.op.regClass());
if (it->first == it->second.op.physReg()) {
copy_map.erase(it);
continue;
}
if (preserve_scc && it->second.def.getTemp().type() == RegType::sgpr)
assert(!(it->second.def.physReg() == pi->scratch_sgpr));
/* to resolve the cycle, we have to swap the src reg with the dst reg */
copy_operation swap = it->second;
/* if this is self-intersecting, we have to split it because
* self-intersecting swaps don't make sense */
PhysReg lower = swap.def.physReg();
PhysReg higher = swap.op.physReg();
if (lower.reg_b > higher.reg_b)
std::swap(lower, higher);
if (higher.reg_b - lower.reg_b < (int)swap.bytes) {
unsigned offset = higher.reg_b - lower.reg_b;
RegType type = swap.def.regClass().type();
copy_operation middle;
lower.reg_b += offset;
higher.reg_b += offset;
middle.bytes = swap.bytes - offset * 2;
memcpy(middle.uses, swap.uses + offset, middle.bytes);
middle.op = Operand(lower, RegClass::get(type, middle.bytes));
middle.def = Definition(higher, RegClass::get(type, middle.bytes));
copy_map[higher] = middle;
copy_operation end;
lower.reg_b += middle.bytes;
higher.reg_b += middle.bytes;
end.bytes = swap.bytes - (offset + middle.bytes);
memcpy(end.uses, swap.uses + offset + middle.bytes, end.bytes);
end.op = Operand(lower, RegClass::get(type, end.bytes));
end.def = Definition(higher, RegClass::get(type, end.bytes));
copy_map[higher] = end;
memset(swap.uses + offset, 0, swap.bytes - offset);
swap.bytes = offset;
}
/* GFX6-7 can only swap full registers */
if (ctx->program->chip_class <= GFX7)
swap.bytes = align(swap.bytes, 4);
do_swap(ctx, bld, swap, preserve_scc, pi);
/* remove from map */
copy_map.erase(it);
/* change the operand reg of the target's uses and split uses if needed */
target = copy_map.begin();
uint32_t bytes_left = u_bit_consecutive(0, swap.bytes);
for (; target != copy_map.end(); ++target) {
if (target->second.op.physReg() == swap.def.physReg() && swap.bytes == target->second.bytes) {
target->second.op.setFixed(swap.op.physReg());
break;
}
uint32_t imask = get_intersection_mask(swap.def.physReg().reg_b, swap.bytes,
target->second.op.physReg().reg_b, target->second.bytes);
if (!imask)
continue;
int offset = (int)target->second.op.physReg().reg_b - (int)swap.def.physReg().reg_b;
/* split and update the middle (the portion that reads the swap's
* definition) to read the swap's operand instead */
int target_op_end = target->second.op.physReg().reg_b + target->second.bytes;
int swap_def_end = swap.def.physReg().reg_b + swap.bytes;
int before_bytes = MAX2(-offset, 0);
int after_bytes = MAX2(target_op_end - swap_def_end, 0);
int middle_bytes = target->second.bytes - before_bytes - after_bytes;
if (after_bytes) {
unsigned after_offset = before_bytes + middle_bytes;
assert(after_offset > 0);
copy_operation copy;
copy.bytes = after_bytes;
memcpy(copy.uses, target->second.uses + after_offset, copy.bytes);
RegClass rc = RegClass::get(target->second.op.regClass().type(), after_bytes);
copy.op = Operand(target->second.op.physReg().advance(after_offset), rc);
copy.def = Definition(target->second.def.physReg().advance(after_offset), rc);
copy_map[copy.def.physReg()] = copy;
}
if (middle_bytes) {
copy_operation copy;
copy.bytes = middle_bytes;
memcpy(copy.uses, target->second.uses + before_bytes, copy.bytes);
RegClass rc = RegClass::get(target->second.op.regClass().type(), middle_bytes);
copy.op = Operand(swap.op.physReg().advance(MAX2(offset, 0)), rc);
copy.def = Definition(target->second.def.physReg().advance(before_bytes), rc);
copy_map[copy.def.physReg()] = copy;
}
if (before_bytes) {
copy_operation copy;
target->second.bytes = before_bytes;
RegClass rc = RegClass::get(target->second.op.regClass().type(), before_bytes);
target->second.op = Operand(target->second.op.physReg(), rc);
target->second.def = Definition(target->second.def.physReg(), rc);
memset(target->second.uses + target->second.bytes, 0, 8 - target->second.bytes);
}
/* break early since we know each byte of the swap's definition is used
* at most once */
bytes_left &= ~imask;
if (!bytes_left)
break;
}
}
ctx->program->statistics[statistic_copies] += ctx->instructions.size() - num_instructions_before;
}
void emit_set_mode(Builder& bld, float_mode new_mode, bool set_round, bool set_denorm)
{
if (bld.program->chip_class >= GFX10) {
if (set_round)
bld.sopp(aco_opcode::s_round_mode, -1, new_mode.round);
if (set_denorm)
bld.sopp(aco_opcode::s_denorm_mode, -1, new_mode.denorm);
} else if (set_round || set_denorm) {
/* "((size - 1) << 11) | register" (MODE is encoded as register 1) */
Instruction *instr = bld.sopk(aco_opcode::s_setreg_imm32_b32, Operand(new_mode.val), (7 << 11) | 1).instr;
/* has to be a literal */
instr->operands[0].setFixed(PhysReg{255});
}
}
void lower_to_hw_instr(Program* program)
{
Block *discard_block = NULL;
for (size_t i = 0; i < program->blocks.size(); i++)
{
Block *block = &program->blocks[i];
lower_context ctx;
ctx.program = program;
ctx.block = block;
Builder bld(program, &ctx.instructions);
float_mode config_mode;
config_mode.val = program->config->float_mode;
bool set_round = i == 0 && block->fp_mode.round != config_mode.round;
bool set_denorm = i == 0 && block->fp_mode.denorm != config_mode.denorm;
if (block->kind & block_kind_top_level) {
for (unsigned pred : block->linear_preds) {
if (program->blocks[pred].fp_mode.round != block->fp_mode.round)
set_round = true;
if (program->blocks[pred].fp_mode.denorm != block->fp_mode.denorm)
set_denorm = true;
}
}
/* only allow changing modes at top-level blocks so this doesn't break
* the "jump over empty blocks" optimization */
assert((!set_round && !set_denorm) || (block->kind & block_kind_top_level));
emit_set_mode(bld, block->fp_mode, set_round, set_denorm);
for (size_t j = 0; j < block->instructions.size(); j++) {
aco_ptr<Instruction>& instr = block->instructions[j];
aco_ptr<Instruction> mov;
if (instr->format == Format::PSEUDO && instr->opcode != aco_opcode::p_unit_test) {
Pseudo_instruction *pi = (Pseudo_instruction*)instr.get();
switch (instr->opcode)
{
case aco_opcode::p_extract_vector:
{
PhysReg reg = instr->operands[0].physReg();
Definition& def = instr->definitions[0];
reg.reg_b += instr->operands[1].constantValue() * def.bytes();
if (reg == def.physReg())
break;
RegClass op_rc = def.regClass().is_subdword() ? def.regClass() :
RegClass(instr->operands[0].getTemp().type(), def.size());
std::map<PhysReg, copy_operation> copy_operations;
copy_operations[def.physReg()] = {Operand(reg, op_rc), def, def.bytes()};
handle_operands(copy_operations, &ctx, program->chip_class, pi);
break;
}
case aco_opcode::p_create_vector:
{
std::map<PhysReg, copy_operation> copy_operations;
PhysReg reg = instr->definitions[0].physReg();
for (const Operand& op : instr->operands) {
if (op.isConstant()) {
const Definition def = Definition(reg, RegClass(instr->definitions[0].getTemp().type(), op.size()));
copy_operations[reg] = {op, def, op.bytes()};
reg.reg_b += op.bytes();
continue;
}
if (op.isUndefined()) {
// TODO: coalesce subdword copies if dst byte is 0
reg.reg_b += op.bytes();
continue;
}
RegClass rc_def = op.regClass().is_subdword() ? op.regClass() :
RegClass(instr->definitions[0].getTemp().type(), op.size());
const Definition def = Definition(reg, rc_def);
copy_operations[def.physReg()] = {op, def, op.bytes()};
reg.reg_b += op.bytes();
}
handle_operands(copy_operations, &ctx, program->chip_class, pi);
break;
}
case aco_opcode::p_split_vector:
{
std::map<PhysReg, copy_operation> copy_operations;
PhysReg reg = instr->operands[0].physReg();
for (const Definition& def : instr->definitions) {
RegClass rc_op = def.regClass().is_subdword() ? def.regClass() :
RegClass(instr->operands[0].getTemp().type(), def.size());
const Operand op = Operand(reg, rc_op);
copy_operations[def.physReg()] = {op, def, def.bytes()};
reg.reg_b += def.bytes();
}
handle_operands(copy_operations, &ctx, program->chip_class, pi);
break;
}
case aco_opcode::p_parallelcopy:
case aco_opcode::p_wqm:
{
std::map<PhysReg, copy_operation> copy_operations;
for (unsigned i = 0; i < instr->operands.size(); i++) {
assert(instr->definitions[i].bytes() == instr->operands[i].bytes());
copy_operations[instr->definitions[i].physReg()] = {instr->operands[i], instr->definitions[i], instr->operands[i].bytes()};
}
handle_operands(copy_operations, &ctx, program->chip_class, pi);
break;
}
case aco_opcode::p_exit_early_if:
{
/* don't bother with an early exit near the end of the program */
if ((block->instructions.size() - 1 - j) <= 4 &&
block->instructions.back()->opcode == aco_opcode::s_endpgm) {
unsigned null_exp_dest = (ctx.program->stage.hw == HWStage::FS) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
bool ignore_early_exit = true;
for (unsigned k = j + 1; k < block->instructions.size(); ++k) {
const aco_ptr<Instruction> &instr = block->instructions[k];
if (instr->opcode == aco_opcode::s_endpgm ||
instr->opcode == aco_opcode::p_logical_end)
continue;
else if (instr->opcode == aco_opcode::exp &&
static_cast<Export_instruction *>(instr.get())->dest == null_exp_dest)
continue;
else if (instr->opcode == aco_opcode::p_parallelcopy &&
instr->definitions[0].isFixed() &&
instr->definitions[0].physReg() == exec)
continue;
ignore_early_exit = false;
}
if (ignore_early_exit)
break;
}
if (!discard_block) {
discard_block = program->create_and_insert_block();
block = &program->blocks[i];
bld.reset(discard_block);
bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
0, V_008DFC_SQ_EXP_NULL, false, true, true);
if (program->wb_smem_l1_on_end)
bld.smem(aco_opcode::s_dcache_wb);
bld.sopp(aco_opcode::s_endpgm);
bld.reset(&ctx.instructions);
}
//TODO: exec can be zero here with block_kind_discard
assert(instr->operands[0].physReg() == scc);
bld.sopp(aco_opcode::s_cbranch_scc0, Definition(exec, s2), instr->operands[0], discard_block->index);
discard_block->linear_preds.push_back(block->index);
block->linear_succs.push_back(discard_block->index);
break;
}
case aco_opcode::p_spill:
{
assert(instr->operands[0].regClass() == v1.as_linear());
for (unsigned i = 0; i < instr->operands[2].size(); i++)
bld.writelane(bld.def(v1, instr->operands[0].physReg()),
Operand(PhysReg{instr->operands[2].physReg() + i}, s1),
Operand(instr->operands[1].constantValue() + i),
instr->operands[0]);
break;
}
case aco_opcode::p_reload:
{
assert(instr->operands[0].regClass() == v1.as_linear());
for (unsigned i = 0; i < instr->definitions[0].size(); i++)
bld.readlane(bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
instr->operands[0],
Operand(instr->operands[1].constantValue() + i));
break;
}
case aco_opcode::p_as_uniform:
{
if (instr->operands[0].isConstant() || instr->operands[0].regClass().type() == RegType::sgpr) {
std::map<PhysReg, copy_operation> copy_operations;
copy_operations[instr->definitions[0].physReg()] = {instr->operands[0], instr->definitions[0], instr->definitions[0].bytes()};
handle_operands(copy_operations, &ctx, program->chip_class, pi);
} else {
assert(instr->operands[0].regClass().type() == RegType::vgpr);
assert(instr->definitions[0].regClass().type() == RegType::sgpr);
assert(instr->operands[0].size() == instr->definitions[0].size());
for (unsigned i = 0; i < instr->definitions[0].size(); i++) {
bld.vop1(aco_opcode::v_readfirstlane_b32,
bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
Operand(PhysReg{instr->operands[0].physReg() + i}, v1));
}
}
break;
}
case aco_opcode::p_bpermute:
{
if (ctx.program->chip_class <= GFX7)
emit_gfx6_bpermute(program, instr, bld);
else if (ctx.program->chip_class >= GFX10 && ctx.program->wave_size == 64)
emit_gfx10_wave64_bpermute(program, instr, bld);
else
unreachable("Current hardware supports ds_bpermute, don't emit p_bpermute.");
break;
}
default:
break;
}
} else if (instr->format == Format::PSEUDO_BRANCH) {
Pseudo_branch_instruction* branch = static_cast<Pseudo_branch_instruction*>(instr.get());
/* check if all blocks from current to target are empty */
bool can_remove = block->index < branch->target[0];
for (unsigned i = block->index + 1; can_remove && i < branch->target[0]; i++) {
if (program->blocks[i].instructions.size())
can_remove = false;
}
if (can_remove)
continue;
switch (instr->opcode) {
case aco_opcode::p_branch:
assert(block->linear_succs[0] == branch->target[0]);
bld.sopp(aco_opcode::s_branch, branch->definitions[0], branch->target[0]);
break;
case aco_opcode::p_cbranch_nz:
assert(block->linear_succs[1] == branch->target[0]);
if (branch->operands[0].physReg() == exec)
bld.sopp(aco_opcode::s_cbranch_execnz, branch->definitions[0], branch->target[0]);
else if (branch->operands[0].physReg() == vcc)
bld.sopp(aco_opcode::s_cbranch_vccnz, branch->definitions[0], branch->target[0]);
else {
assert(branch->operands[0].physReg() == scc);
bld.sopp(aco_opcode::s_cbranch_scc1, branch->definitions[0], branch->target[0]);
}
break;
case aco_opcode::p_cbranch_z:
assert(block->linear_succs[1] == branch->target[0]);
if (branch->operands[0].physReg() == exec)
bld.sopp(aco_opcode::s_cbranch_execz, branch->definitions[0], branch->target[0]);
else if (branch->operands[0].physReg() == vcc)
bld.sopp(aco_opcode::s_cbranch_vccz, branch->definitions[0], branch->target[0]);
else {
assert(branch->operands[0].physReg() == scc);
bld.sopp(aco_opcode::s_cbranch_scc0, branch->definitions[0], branch->target[0]);
}
break;
default:
unreachable("Unknown Pseudo branch instruction!");
}
} else if (instr->format == Format::PSEUDO_REDUCTION) {
Pseudo_reduction_instruction* reduce = static_cast<Pseudo_reduction_instruction*>(instr.get());
emit_reduction(&ctx, reduce->opcode, reduce->reduce_op, reduce->cluster_size,
reduce->operands[1].physReg(), // tmp
reduce->definitions[1].physReg(), // stmp
reduce->operands[2].physReg(), // vtmp
reduce->definitions[2].physReg(), // sitmp
reduce->operands[0], reduce->definitions[0]);
} else if (instr->format == Format::PSEUDO_BARRIER) {
Pseudo_barrier_instruction* barrier = static_cast<Pseudo_barrier_instruction*>(instr.get());
/* Anything larger than a workgroup isn't possible. Anything
* smaller requires no instructions and this pseudo instruction
* would only be included to control optimizations. */
bool emit_s_barrier = barrier->exec_scope == scope_workgroup &&
program->workgroup_size > program->wave_size;
bld.insert(std::move(instr));
if (emit_s_barrier)
bld.sopp(aco_opcode::s_barrier);
} else if (instr->opcode == aco_opcode::p_cvt_f16_f32_rtne) {
float_mode new_mode = block->fp_mode;
new_mode.round16_64 = fp_round_ne;
bool set_round = new_mode.round != block->fp_mode.round;
emit_set_mode(bld, new_mode, set_round, false);
instr->opcode = aco_opcode::v_cvt_f16_f32;
ctx.instructions.emplace_back(std::move(instr));
emit_set_mode(bld, block->fp_mode, set_round, false);
} else {
ctx.instructions.emplace_back(std::move(instr));
}
}
block->instructions.swap(ctx.instructions);
}
}
}