blob: 689b7ea06ad67fcbba2262a26a5a5d0709031ca7 [file] [log] [blame]
/*
* Copyright 2012 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "ac_debug.h"
#include "si_build_pm4.h"
#include "sid.h"
#include "util/u_index_modify.h"
#include "util/u_log.h"
#include "util/u_prim.h"
#include "util/u_suballoc.h"
#include "util/u_upload_mgr.h"
/* special primitive types */
#define SI_PRIM_RECTANGLE_LIST PIPE_PRIM_MAX
ALWAYS_INLINE
static unsigned si_conv_pipe_prim(unsigned mode)
{
static const unsigned prim_conv[] = {
[PIPE_PRIM_POINTS] = V_008958_DI_PT_POINTLIST,
[PIPE_PRIM_LINES] = V_008958_DI_PT_LINELIST,
[PIPE_PRIM_LINE_LOOP] = V_008958_DI_PT_LINELOOP,
[PIPE_PRIM_LINE_STRIP] = V_008958_DI_PT_LINESTRIP,
[PIPE_PRIM_TRIANGLES] = V_008958_DI_PT_TRILIST,
[PIPE_PRIM_TRIANGLE_STRIP] = V_008958_DI_PT_TRISTRIP,
[PIPE_PRIM_TRIANGLE_FAN] = V_008958_DI_PT_TRIFAN,
[PIPE_PRIM_QUADS] = V_008958_DI_PT_QUADLIST,
[PIPE_PRIM_QUAD_STRIP] = V_008958_DI_PT_QUADSTRIP,
[PIPE_PRIM_POLYGON] = V_008958_DI_PT_POLYGON,
[PIPE_PRIM_LINES_ADJACENCY] = V_008958_DI_PT_LINELIST_ADJ,
[PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_008958_DI_PT_LINESTRIP_ADJ,
[PIPE_PRIM_TRIANGLES_ADJACENCY] = V_008958_DI_PT_TRILIST_ADJ,
[PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_008958_DI_PT_TRISTRIP_ADJ,
[PIPE_PRIM_PATCHES] = V_008958_DI_PT_PATCH,
[SI_PRIM_RECTANGLE_LIST] = V_008958_DI_PT_RECTLIST};
assert(mode < ARRAY_SIZE(prim_conv));
return prim_conv[mode];
}
/**
* This calculates the LDS size for tessellation shaders (VS, TCS, TES).
* LS.LDS_SIZE is shared by all 3 shader stages.
*
* The information about LDS and other non-compile-time parameters is then
* written to userdata SGPRs.
*/
static void si_emit_derived_tess_state(struct si_context *sctx, const struct pipe_draw_info *info,
unsigned *num_patches)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
struct si_shader *ls_current;
struct si_shader_selector *ls;
/* The TES pointer will only be used for sctx->last_tcs.
* It would be wrong to think that TCS = TES. */
struct si_shader_selector *tcs =
sctx->tcs_shader.cso ? sctx->tcs_shader.cso : sctx->tes_shader.cso;
unsigned tess_uses_primid = sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id;
bool has_primid_instancing_bug = sctx->chip_class == GFX6 && sctx->screen->info.max_se == 1;
unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
unsigned num_tcs_input_cp = info->vertices_per_patch;
unsigned num_tcs_output_cp, num_tcs_inputs, num_tcs_outputs;
unsigned num_tcs_patch_outputs;
unsigned input_vertex_size, output_vertex_size, pervertex_output_patch_size;
unsigned input_patch_size, output_patch_size, output_patch0_offset;
unsigned perpatch_output_offset, lds_size;
unsigned tcs_in_layout, tcs_out_layout, tcs_out_offsets;
unsigned offchip_layout, hardware_lds_size, ls_hs_config;
/* Since GFX9 has merged LS-HS in the TCS state, set LS = TCS. */
if (sctx->chip_class >= GFX9) {
if (sctx->tcs_shader.cso)
ls_current = sctx->tcs_shader.current;
else
ls_current = sctx->fixed_func_tcs_shader.current;
ls = ls_current->key.part.tcs.ls;
} else {
ls_current = sctx->vs_shader.current;
ls = sctx->vs_shader.cso;
}
if (sctx->last_ls == ls_current && sctx->last_tcs == tcs &&
sctx->last_tes_sh_base == tes_sh_base && sctx->last_num_tcs_input_cp == num_tcs_input_cp &&
(!has_primid_instancing_bug || (sctx->last_tess_uses_primid == tess_uses_primid))) {
*num_patches = sctx->last_num_patches;
return;
}
sctx->last_ls = ls_current;
sctx->last_tcs = tcs;
sctx->last_tes_sh_base = tes_sh_base;
sctx->last_num_tcs_input_cp = num_tcs_input_cp;
sctx->last_tess_uses_primid = tess_uses_primid;
/* This calculates how shader inputs and outputs among VS, TCS, and TES
* are laid out in LDS. */
num_tcs_inputs = util_last_bit64(ls->outputs_written);
if (sctx->tcs_shader.cso) {
num_tcs_outputs = util_last_bit64(tcs->outputs_written);
num_tcs_output_cp = tcs->info.base.tess.tcs_vertices_out;
num_tcs_patch_outputs = util_last_bit64(tcs->patch_outputs_written);
} else {
/* No TCS. Route varyings from LS to TES. */
num_tcs_outputs = num_tcs_inputs;
num_tcs_output_cp = num_tcs_input_cp;
num_tcs_patch_outputs = 2; /* TESSINNER + TESSOUTER */
}
input_vertex_size = ls->lshs_vertex_stride;
output_vertex_size = num_tcs_outputs * 16;
input_patch_size = num_tcs_input_cp * input_vertex_size;
pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
/* Ensure that we only need one wave per SIMD so we don't need to check
* resource usage. Also ensures that the number of tcs in and out
* vertices per threadgroup are at most 256.
*/
unsigned max_verts_per_patch = MAX2(num_tcs_input_cp, num_tcs_output_cp);
*num_patches = 256 / max_verts_per_patch;
/* Make sure that the data fits in LDS. This assumes the shaders only
* use LDS for the inputs and outputs.
*
* While GFX7 can use 64K per threadgroup, there is a hang on Stoney
* with 2 CUs if we use more than 32K. The closed Vulkan driver also
* uses 32K at most on all GCN chips.
*/
hardware_lds_size = 32768;
*num_patches = MIN2(*num_patches, hardware_lds_size / (input_patch_size + output_patch_size));
/* Make sure the output data fits in the offchip buffer */
*num_patches =
MIN2(*num_patches, (sctx->screen->tess_offchip_block_dw_size * 4) / output_patch_size);
/* Not necessary for correctness, but improves performance.
* The hardware can do more, but the radeonsi shader constant is
* limited to 6 bits.
*/
*num_patches = MIN2(*num_patches, 63); /* triangles: 3 full waves except 3 lanes */
/* When distributed tessellation is unsupported, switch between SEs
* at a higher frequency to compensate for it.
*/
if (!sctx->screen->info.has_distributed_tess && sctx->screen->info.max_se > 1)
*num_patches = MIN2(*num_patches, 16); /* recommended */
/* Make sure that vector lanes are reasonably occupied. It probably
* doesn't matter much because this is LS-HS, and TES is likely to
* occupy significantly more CUs.
*/
unsigned temp_verts_per_tg = *num_patches * max_verts_per_patch;
unsigned wave_size = sctx->screen->ge_wave_size;
if (temp_verts_per_tg > wave_size && temp_verts_per_tg % wave_size < wave_size * 3 / 4)
*num_patches = (temp_verts_per_tg & ~(wave_size - 1)) / max_verts_per_patch;
if (sctx->chip_class == GFX6) {
/* GFX6 bug workaround, related to power management. Limit LS-HS
* threadgroups to only one wave.
*/
unsigned one_wave = wave_size / max_verts_per_patch;
*num_patches = MIN2(*num_patches, one_wave);
}
/* The VGT HS block increments the patch ID unconditionally
* within a single threadgroup. This results in incorrect
* patch IDs when instanced draws are used.
*
* The intended solution is to restrict threadgroups to
* a single instance by setting SWITCH_ON_EOI, which
* should cause IA to split instances up. However, this
* doesn't work correctly on GFX6 when there is no other
* SE to switch to.
*/
if (has_primid_instancing_bug && tess_uses_primid)
*num_patches = 1;
sctx->last_num_patches = *num_patches;
output_patch0_offset = input_patch_size * *num_patches;
perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size;
/* Compute userdata SGPRs. */
assert(((input_vertex_size / 4) & ~0xff) == 0);
assert(((output_vertex_size / 4) & ~0xff) == 0);
assert(((input_patch_size / 4) & ~0x1fff) == 0);
assert(((output_patch_size / 4) & ~0x1fff) == 0);
assert(((output_patch0_offset / 16) & ~0xffff) == 0);
assert(((perpatch_output_offset / 16) & ~0xffff) == 0);
assert(num_tcs_input_cp <= 32);
assert(num_tcs_output_cp <= 32);
uint64_t ring_va = (unlikely(sctx->ws->cs_is_secure(sctx->gfx_cs)) ?
si_resource(sctx->tess_rings_tmz) : si_resource(sctx->tess_rings))->gpu_address;
assert((ring_va & u_bit_consecutive(0, 19)) == 0);
tcs_in_layout = S_VS_STATE_LS_OUT_PATCH_SIZE(input_patch_size / 4) |
S_VS_STATE_LS_OUT_VERTEX_SIZE(input_vertex_size / 4);
tcs_out_layout = (output_patch_size / 4) | (num_tcs_input_cp << 13) | ring_va;
tcs_out_offsets = (output_patch0_offset / 16) | ((perpatch_output_offset / 16) << 16);
offchip_layout =
*num_patches | (num_tcs_output_cp << 6) | (pervertex_output_patch_size * *num_patches << 12);
/* Compute the LDS size. */
lds_size = output_patch0_offset + output_patch_size * *num_patches;
if (sctx->chip_class >= GFX7) {
assert(lds_size <= 65536);
lds_size = align(lds_size, 512) / 512;
} else {
assert(lds_size <= 32768);
lds_size = align(lds_size, 256) / 256;
}
/* Set SI_SGPR_VS_STATE_BITS. */
sctx->current_vs_state &= C_VS_STATE_LS_OUT_PATCH_SIZE & C_VS_STATE_LS_OUT_VERTEX_SIZE;
sctx->current_vs_state |= tcs_in_layout;
/* We should be able to support in-shader LDS use with LLVM >= 9
* by just adding the lds_sizes together, but it has never
* been tested. */
assert(ls_current->config.lds_size == 0);
if (sctx->chip_class >= GFX9) {
unsigned hs_rsrc2 = ls_current->config.rsrc2;
if (sctx->chip_class >= GFX10)
hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(lds_size);
else
hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(lds_size);
radeon_set_sh_reg(cs, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, hs_rsrc2);
/* Set userdata SGPRs for merged LS-HS. */
radeon_set_sh_reg_seq(
cs, R_00B430_SPI_SHADER_USER_DATA_LS_0 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4, 3);
radeon_emit(cs, offchip_layout);
radeon_emit(cs, tcs_out_offsets);
radeon_emit(cs, tcs_out_layout);
} else {
unsigned ls_rsrc2 = ls_current->config.rsrc2;
si_multiwave_lds_size_workaround(sctx->screen, &lds_size);
ls_rsrc2 |= S_00B52C_LDS_SIZE(lds_size);
/* Due to a hw bug, RSRC2_LS must be written twice with another
* LS register written in between. */
if (sctx->chip_class == GFX7 && sctx->family != CHIP_HAWAII)
radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, ls_rsrc2);
radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
radeon_emit(cs, ls_current->config.rsrc1);
radeon_emit(cs, ls_rsrc2);
/* Set userdata SGPRs for TCS. */
radeon_set_sh_reg_seq(
cs, R_00B430_SPI_SHADER_USER_DATA_HS_0 + GFX6_SGPR_TCS_OFFCHIP_LAYOUT * 4, 4);
radeon_emit(cs, offchip_layout);
radeon_emit(cs, tcs_out_offsets);
radeon_emit(cs, tcs_out_layout);
radeon_emit(cs, tcs_in_layout);
}
/* Set userdata SGPRs for TES. */
radeon_set_sh_reg_seq(cs, tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4, 2);
radeon_emit(cs, offchip_layout);
radeon_emit(cs, ring_va);
ls_hs_config = S_028B58_NUM_PATCHES(*num_patches) | S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
if (sctx->last_ls_hs_config != ls_hs_config) {
if (sctx->chip_class >= GFX7) {
radeon_set_context_reg_idx(cs, R_028B58_VGT_LS_HS_CONFIG, 2, ls_hs_config);
} else {
radeon_set_context_reg(cs, R_028B58_VGT_LS_HS_CONFIG, ls_hs_config);
}
sctx->last_ls_hs_config = ls_hs_config;
sctx->context_roll = true;
}
}
static unsigned si_num_prims_for_vertices(enum pipe_prim_type prim,
unsigned count, unsigned vertices_per_patch)
{
switch (prim) {
case PIPE_PRIM_PATCHES:
return count / vertices_per_patch;
case PIPE_PRIM_POLYGON:
return count >= 3;
case SI_PRIM_RECTANGLE_LIST:
return count / 3;
default:
return u_decomposed_prims_for_vertices(prim, count);
}
}
static unsigned si_get_init_multi_vgt_param(struct si_screen *sscreen, union si_vgt_param_key *key)
{
STATIC_ASSERT(sizeof(union si_vgt_param_key) == 4);
unsigned max_primgroup_in_wave = 2;
/* SWITCH_ON_EOP(0) is always preferable. */
bool wd_switch_on_eop = false;
bool ia_switch_on_eop = false;
bool ia_switch_on_eoi = false;
bool partial_vs_wave = false;
bool partial_es_wave = false;
if (key->u.uses_tess) {
/* SWITCH_ON_EOI must be set if PrimID is used. */
if (key->u.tess_uses_prim_id)
ia_switch_on_eoi = true;
/* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
if ((sscreen->info.family == CHIP_TAHITI || sscreen->info.family == CHIP_PITCAIRN ||
sscreen->info.family == CHIP_BONAIRE) &&
key->u.uses_gs)
partial_vs_wave = true;
/* Needed for 028B6C_DISTRIBUTION_MODE != 0. (implies >= GFX8) */
if (sscreen->info.has_distributed_tess) {
if (key->u.uses_gs) {
if (sscreen->info.chip_class == GFX8)
partial_es_wave = true;
} else {
partial_vs_wave = true;
}
}
}
/* This is a hardware requirement. */
if (key->u.line_stipple_enabled || (sscreen->debug_flags & DBG(SWITCH_ON_EOP))) {
ia_switch_on_eop = true;
wd_switch_on_eop = true;
}
if (sscreen->info.chip_class >= GFX7) {
/* WD_SWITCH_ON_EOP has no effect on GPUs with less than
* 4 shader engines. Set 1 to pass the assertion below.
* The other cases are hardware requirements.
*
* Polaris supports primitive restart with WD_SWITCH_ON_EOP=0
* for points, line strips, and tri strips.
*/
if (sscreen->info.max_se <= 2 || key->u.prim == PIPE_PRIM_POLYGON ||
key->u.prim == PIPE_PRIM_LINE_LOOP || key->u.prim == PIPE_PRIM_TRIANGLE_FAN ||
key->u.prim == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY ||
(key->u.primitive_restart &&
(sscreen->info.family < CHIP_POLARIS10 ||
(key->u.prim != PIPE_PRIM_POINTS && key->u.prim != PIPE_PRIM_LINE_STRIP &&
key->u.prim != PIPE_PRIM_TRIANGLE_STRIP))) ||
key->u.count_from_stream_output)
wd_switch_on_eop = true;
/* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
* We don't know that for indirect drawing, so treat it as
* always problematic. */
if (sscreen->info.family == CHIP_HAWAII && key->u.uses_instancing)
wd_switch_on_eop = true;
/* Performance recommendation for 4 SE Gfx7-8 parts if
* instances are smaller than a primgroup.
* Assume indirect draws always use small instances.
* This is needed for good VS wave utilization.
*/
if (sscreen->info.chip_class <= GFX8 && sscreen->info.max_se == 4 &&
key->u.multi_instances_smaller_than_primgroup)
wd_switch_on_eop = true;
/* Required on GFX7 and later. */
if (sscreen->info.max_se == 4 && !wd_switch_on_eop)
ia_switch_on_eoi = true;
/* HW engineers suggested that PARTIAL_VS_WAVE_ON should be set
* to work around a GS hang.
*/
if (key->u.uses_gs &&
(sscreen->info.family == CHIP_TONGA || sscreen->info.family == CHIP_FIJI ||
sscreen->info.family == CHIP_POLARIS10 || sscreen->info.family == CHIP_POLARIS11 ||
sscreen->info.family == CHIP_POLARIS12 || sscreen->info.family == CHIP_VEGAM))
partial_vs_wave = true;
/* Required by Hawaii and, for some special cases, by GFX8. */
if (ia_switch_on_eoi &&
(sscreen->info.family == CHIP_HAWAII ||
(sscreen->info.chip_class == GFX8 && (key->u.uses_gs || max_primgroup_in_wave != 2))))
partial_vs_wave = true;
/* Instancing bug on Bonaire. */
if (sscreen->info.family == CHIP_BONAIRE && ia_switch_on_eoi && key->u.uses_instancing)
partial_vs_wave = true;
/* This only applies to Polaris10 and later 4 SE chips.
* wd_switch_on_eop is already true on all other chips.
*/
if (!wd_switch_on_eop && key->u.primitive_restart)
partial_vs_wave = true;
/* If the WD switch is false, the IA switch must be false too. */
assert(wd_switch_on_eop || !ia_switch_on_eop);
}
/* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
if (sscreen->info.chip_class <= GFX8 && ia_switch_on_eoi)
partial_es_wave = true;
return S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) | S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
S_028AA8_WD_SWITCH_ON_EOP(sscreen->info.chip_class >= GFX7 ? wd_switch_on_eop : 0) |
/* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
S_028AA8_MAX_PRIMGRP_IN_WAVE(sscreen->info.chip_class == GFX8 ? max_primgroup_in_wave
: 0) |
S_030960_EN_INST_OPT_BASIC(sscreen->info.chip_class >= GFX9) |
S_030960_EN_INST_OPT_ADV(sscreen->info.chip_class >= GFX9);
}
static void si_init_ia_multi_vgt_param_table(struct si_context *sctx)
{
for (int prim = 0; prim <= SI_PRIM_RECTANGLE_LIST; prim++)
for (int uses_instancing = 0; uses_instancing < 2; uses_instancing++)
for (int multi_instances = 0; multi_instances < 2; multi_instances++)
for (int primitive_restart = 0; primitive_restart < 2; primitive_restart++)
for (int count_from_so = 0; count_from_so < 2; count_from_so++)
for (int line_stipple = 0; line_stipple < 2; line_stipple++)
for (int uses_tess = 0; uses_tess < 2; uses_tess++)
for (int tess_uses_primid = 0; tess_uses_primid < 2; tess_uses_primid++)
for (int uses_gs = 0; uses_gs < 2; uses_gs++) {
union si_vgt_param_key key;
key.index = 0;
key.u.prim = prim;
key.u.uses_instancing = uses_instancing;
key.u.multi_instances_smaller_than_primgroup = multi_instances;
key.u.primitive_restart = primitive_restart;
key.u.count_from_stream_output = count_from_so;
key.u.line_stipple_enabled = line_stipple;
key.u.uses_tess = uses_tess;
key.u.tess_uses_prim_id = tess_uses_primid;
key.u.uses_gs = uses_gs;
sctx->ia_multi_vgt_param[key.index] =
si_get_init_multi_vgt_param(sctx->screen, &key);
}
}
static bool si_is_line_stipple_enabled(struct si_context *sctx)
{
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
return rs->line_stipple_enable && sctx->current_rast_prim != PIPE_PRIM_POINTS &&
(rs->polygon_mode_is_lines || util_prim_is_lines(sctx->current_rast_prim));
}
ALWAYS_INLINE
static unsigned si_get_ia_multi_vgt_param(struct si_context *sctx,
const struct pipe_draw_info *info,
enum pipe_prim_type prim, unsigned num_patches,
unsigned instance_count, bool primitive_restart,
unsigned min_vertex_count)
{
union si_vgt_param_key key = sctx->ia_multi_vgt_param_key;
unsigned primgroup_size;
unsigned ia_multi_vgt_param;
if (sctx->tes_shader.cso) {
primgroup_size = num_patches; /* must be a multiple of NUM_PATCHES */
} else if (sctx->gs_shader.cso) {
primgroup_size = 64; /* recommended with a GS */
} else {
primgroup_size = 128; /* recommended without a GS and tess */
}
key.u.prim = prim;
key.u.uses_instancing = info->indirect || instance_count > 1;
key.u.multi_instances_smaller_than_primgroup =
info->indirect ||
(instance_count > 1 &&
(info->count_from_stream_output ||
si_num_prims_for_vertices(prim, min_vertex_count, info->vertices_per_patch) < primgroup_size));
key.u.primitive_restart = primitive_restart;
key.u.count_from_stream_output = info->count_from_stream_output != NULL;
key.u.line_stipple_enabled = si_is_line_stipple_enabled(sctx);
ia_multi_vgt_param =
sctx->ia_multi_vgt_param[key.index] | S_028AA8_PRIMGROUP_SIZE(primgroup_size - 1);
if (sctx->gs_shader.cso) {
/* GS requirement. */
if (sctx->chip_class <= GFX8 &&
SI_GS_PER_ES / primgroup_size >= sctx->screen->gs_table_depth - 3)
ia_multi_vgt_param |= S_028AA8_PARTIAL_ES_WAVE_ON(1);
/* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
* The hw doc says all multi-SE chips are affected, but Vulkan
* only applies it to Hawaii. Do what Vulkan does.
*/
if (sctx->family == CHIP_HAWAII && G_028AA8_SWITCH_ON_EOI(ia_multi_vgt_param) &&
(info->indirect ||
(instance_count > 1 &&
(info->count_from_stream_output ||
si_num_prims_for_vertices(prim, min_vertex_count, info->vertices_per_patch) <= 1))))
sctx->flags |= SI_CONTEXT_VGT_FLUSH;
}
return ia_multi_vgt_param;
}
ALWAYS_INLINE
static unsigned si_conv_prim_to_gs_out(unsigned mode)
{
static const int prim_conv[] = {
[PIPE_PRIM_POINTS] = V_028A6C_POINTLIST,
[PIPE_PRIM_LINES] = V_028A6C_LINESTRIP,
[PIPE_PRIM_LINE_LOOP] = V_028A6C_LINESTRIP,
[PIPE_PRIM_LINE_STRIP] = V_028A6C_LINESTRIP,
[PIPE_PRIM_TRIANGLES] = V_028A6C_TRISTRIP,
[PIPE_PRIM_TRIANGLE_STRIP] = V_028A6C_TRISTRIP,
[PIPE_PRIM_TRIANGLE_FAN] = V_028A6C_TRISTRIP,
[PIPE_PRIM_QUADS] = V_028A6C_TRISTRIP,
[PIPE_PRIM_QUAD_STRIP] = V_028A6C_TRISTRIP,
[PIPE_PRIM_POLYGON] = V_028A6C_TRISTRIP,
[PIPE_PRIM_LINES_ADJACENCY] = V_028A6C_LINESTRIP,
[PIPE_PRIM_LINE_STRIP_ADJACENCY] = V_028A6C_LINESTRIP,
[PIPE_PRIM_TRIANGLES_ADJACENCY] = V_028A6C_TRISTRIP,
[PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = V_028A6C_TRISTRIP,
[PIPE_PRIM_PATCHES] = V_028A6C_POINTLIST,
[SI_PRIM_RECTANGLE_LIST] = V_028A6C_RECTLIST,
};
assert(mode < ARRAY_SIZE(prim_conv));
return prim_conv[mode];
}
/* rast_prim is the primitive type after GS. */
ALWAYS_INLINE
static void si_emit_rasterizer_prim_state(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
enum pipe_prim_type rast_prim = sctx->current_rast_prim;
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
unsigned initial_cdw = cs->current.cdw;
if (unlikely(si_is_line_stipple_enabled(sctx))) {
/* For lines, reset the stipple pattern at each primitive. Otherwise,
* reset the stipple pattern at each packet (line strips, line loops).
*/
unsigned value =
rs->pa_sc_line_stipple | S_028A0C_AUTO_RESET_CNTL(rast_prim == PIPE_PRIM_LINES ? 1 : 2);
radeon_opt_set_context_reg(sctx, R_028A0C_PA_SC_LINE_STIPPLE, SI_TRACKED_PA_SC_LINE_STIPPLE,
value);
}
unsigned gs_out_prim = si_conv_prim_to_gs_out(rast_prim);
if (unlikely(gs_out_prim != sctx->last_gs_out_prim && (sctx->ngg || sctx->gs_shader.cso))) {
radeon_set_context_reg(cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out_prim);
sctx->last_gs_out_prim = gs_out_prim;
}
if (initial_cdw != cs->current.cdw)
sctx->context_roll = true;
if (sctx->ngg) {
unsigned vtx_index = rs->flatshade_first ? 0 : gs_out_prim;
sctx->current_vs_state &= C_VS_STATE_OUTPRIM & C_VS_STATE_PROVOKING_VTX_INDEX;
sctx->current_vs_state |=
S_VS_STATE_OUTPRIM(gs_out_prim) | S_VS_STATE_PROVOKING_VTX_INDEX(vtx_index);
}
}
ALWAYS_INLINE
static void si_emit_vs_state(struct si_context *sctx, const struct pipe_draw_info *info)
{
sctx->current_vs_state &= C_VS_STATE_INDEXED;
sctx->current_vs_state |= S_VS_STATE_INDEXED(!!info->index_size);
if (sctx->num_vs_blit_sgprs) {
/* Re-emit the state after we leave u_blitter. */
sctx->last_vs_state = ~0;
return;
}
if (sctx->current_vs_state != sctx->last_vs_state) {
struct radeon_cmdbuf *cs = sctx->gfx_cs;
/* For the API vertex shader (VS_STATE_INDEXED, LS_OUT_*). */
radeon_set_sh_reg(
cs, sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX] + SI_SGPR_VS_STATE_BITS * 4,
sctx->current_vs_state);
/* Set CLAMP_VERTEX_COLOR and OUTPRIM in the last stage
* before the rasterizer.
*
* For TES or the GS copy shader without NGG:
*/
if (sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX] != R_00B130_SPI_SHADER_USER_DATA_VS_0) {
radeon_set_sh_reg(cs, R_00B130_SPI_SHADER_USER_DATA_VS_0 + SI_SGPR_VS_STATE_BITS * 4,
sctx->current_vs_state);
}
/* For NGG: */
if (sctx->screen->use_ngg &&
sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX] != R_00B230_SPI_SHADER_USER_DATA_GS_0) {
radeon_set_sh_reg(cs, R_00B230_SPI_SHADER_USER_DATA_GS_0 + SI_SGPR_VS_STATE_BITS * 4,
sctx->current_vs_state);
}
sctx->last_vs_state = sctx->current_vs_state;
}
}
ALWAYS_INLINE
static bool si_prim_restart_index_changed(struct si_context *sctx, bool primitive_restart,
unsigned restart_index)
{
return primitive_restart && (restart_index != sctx->last_restart_index ||
sctx->last_restart_index == SI_RESTART_INDEX_UNKNOWN);
}
ALWAYS_INLINE
static void si_emit_ia_multi_vgt_param(struct si_context *sctx, const struct pipe_draw_info *info,
enum pipe_prim_type prim, unsigned num_patches,
unsigned instance_count, bool primitive_restart,
unsigned min_vertex_count)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
unsigned ia_multi_vgt_param;
ia_multi_vgt_param =
si_get_ia_multi_vgt_param(sctx, info, prim, num_patches, instance_count, primitive_restart,
min_vertex_count);
/* Draw state. */
if (ia_multi_vgt_param != sctx->last_multi_vgt_param) {
if (sctx->chip_class == GFX9)
radeon_set_uconfig_reg_idx(cs, sctx->screen, R_030960_IA_MULTI_VGT_PARAM, 4,
ia_multi_vgt_param);
else if (sctx->chip_class >= GFX7)
radeon_set_context_reg_idx(cs, R_028AA8_IA_MULTI_VGT_PARAM, 1, ia_multi_vgt_param);
else
radeon_set_context_reg(cs, R_028AA8_IA_MULTI_VGT_PARAM, ia_multi_vgt_param);
sctx->last_multi_vgt_param = ia_multi_vgt_param;
}
}
/* GFX10 removed IA_MULTI_VGT_PARAM in exchange for GE_CNTL.
* We overload last_multi_vgt_param.
*/
ALWAYS_INLINE
static void gfx10_emit_ge_cntl(struct si_context *sctx, unsigned num_patches)
{
union si_vgt_param_key key = sctx->ia_multi_vgt_param_key;
unsigned ge_cntl;
if (sctx->ngg) {
if (sctx->tes_shader.cso) {
ge_cntl = S_03096C_PRIM_GRP_SIZE(num_patches) |
S_03096C_VERT_GRP_SIZE(0) |
S_03096C_BREAK_WAVE_AT_EOI(key.u.tess_uses_prim_id);
} else {
ge_cntl = si_get_vs_state(sctx)->ge_cntl;
}
} else {
unsigned primgroup_size;
unsigned vertgroup_size;
if (sctx->tes_shader.cso) {
primgroup_size = num_patches; /* must be a multiple of NUM_PATCHES */
vertgroup_size = 0;
} else if (sctx->gs_shader.cso) {
unsigned vgt_gs_onchip_cntl = sctx->gs_shader.current->ctx_reg.gs.vgt_gs_onchip_cntl;
primgroup_size = G_028A44_GS_PRIMS_PER_SUBGRP(vgt_gs_onchip_cntl);
vertgroup_size = G_028A44_ES_VERTS_PER_SUBGRP(vgt_gs_onchip_cntl);
} else {
primgroup_size = 128; /* recommended without a GS and tess */
vertgroup_size = 0;
}
ge_cntl = S_03096C_PRIM_GRP_SIZE(primgroup_size) | S_03096C_VERT_GRP_SIZE(vertgroup_size) |
S_03096C_BREAK_WAVE_AT_EOI(key.u.uses_tess && key.u.tess_uses_prim_id);
}
ge_cntl |= S_03096C_PACKET_TO_ONE_PA(si_is_line_stipple_enabled(sctx));
if (ge_cntl != sctx->last_multi_vgt_param) {
radeon_set_uconfig_reg(sctx->gfx_cs, R_03096C_GE_CNTL, ge_cntl);
sctx->last_multi_vgt_param = ge_cntl;
}
}
ALWAYS_INLINE
static void si_emit_draw_registers(struct si_context *sctx, const struct pipe_draw_info *info,
enum pipe_prim_type prim, unsigned num_patches,
unsigned instance_count, bool primitive_restart,
unsigned min_vertex_count)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
unsigned vgt_prim = si_conv_pipe_prim(prim);
if (sctx->chip_class >= GFX10)
gfx10_emit_ge_cntl(sctx, num_patches);
else
si_emit_ia_multi_vgt_param(sctx, info, prim, num_patches, instance_count, primitive_restart,
min_vertex_count);
if (vgt_prim != sctx->last_prim) {
if (sctx->chip_class >= GFX10)
radeon_set_uconfig_reg(cs, R_030908_VGT_PRIMITIVE_TYPE, vgt_prim);
else if (sctx->chip_class >= GFX7)
radeon_set_uconfig_reg_idx(cs, sctx->screen, R_030908_VGT_PRIMITIVE_TYPE, 1, vgt_prim);
else
radeon_set_config_reg(cs, R_008958_VGT_PRIMITIVE_TYPE, vgt_prim);
sctx->last_prim = vgt_prim;
}
/* Primitive restart. */
if (primitive_restart != sctx->last_primitive_restart_en) {
if (sctx->chip_class >= GFX9)
radeon_set_uconfig_reg(cs, R_03092C_VGT_MULTI_PRIM_IB_RESET_EN, primitive_restart);
else
radeon_set_context_reg(cs, R_028A94_VGT_MULTI_PRIM_IB_RESET_EN, primitive_restart);
sctx->last_primitive_restart_en = primitive_restart;
}
if (si_prim_restart_index_changed(sctx, primitive_restart, info->restart_index)) {
radeon_set_context_reg(cs, R_02840C_VGT_MULTI_PRIM_IB_RESET_INDX, info->restart_index);
sctx->last_restart_index = info->restart_index;
sctx->context_roll = true;
}
}
static void si_emit_draw_packets(struct si_context *sctx, const struct pipe_draw_info *info,
const struct pipe_draw_start_count *draws,
unsigned num_draws,
struct pipe_resource *indexbuf, unsigned index_size,
unsigned index_offset, unsigned instance_count,
bool dispatch_prim_discard_cs, unsigned original_index_size)
{
struct pipe_draw_indirect_info *indirect = info->indirect;
struct radeon_cmdbuf *cs = sctx->gfx_cs;
unsigned sh_base_reg = sctx->shader_pointers.sh_base[PIPE_SHADER_VERTEX];
bool render_cond_bit = sctx->render_cond && !sctx->render_cond_force_off;
uint32_t index_max_size = 0;
uint64_t index_va = 0;
if (info->count_from_stream_output) {
struct si_streamout_target *t = (struct si_streamout_target *)info->count_from_stream_output;
radeon_set_context_reg(cs, R_028B30_VGT_STRMOUT_DRAW_OPAQUE_VERTEX_STRIDE, t->stride_in_dw);
si_cp_copy_data(sctx, sctx->gfx_cs, COPY_DATA_REG, NULL,
R_028B2C_VGT_STRMOUT_DRAW_OPAQUE_BUFFER_FILLED_SIZE >> 2, COPY_DATA_SRC_MEM,
t->buf_filled_size, t->buf_filled_size_offset);
}
/* draw packet */
if (index_size) {
/* Register shadowing doesn't shadow INDEX_TYPE. */
if (index_size != sctx->last_index_size || sctx->shadowed_regs) {
unsigned index_type;
/* index type */
switch (index_size) {
case 1:
index_type = V_028A7C_VGT_INDEX_8;
break;
case 2:
index_type =
V_028A7C_VGT_INDEX_16 |
(SI_BIG_ENDIAN && sctx->chip_class <= GFX7 ? V_028A7C_VGT_DMA_SWAP_16_BIT : 0);
break;
case 4:
index_type =
V_028A7C_VGT_INDEX_32 |
(SI_BIG_ENDIAN && sctx->chip_class <= GFX7 ? V_028A7C_VGT_DMA_SWAP_32_BIT : 0);
break;
default:
assert(!"unreachable");
return;
}
if (sctx->chip_class >= GFX9) {
radeon_set_uconfig_reg_idx(cs, sctx->screen, R_03090C_VGT_INDEX_TYPE, 2, index_type);
} else {
radeon_emit(cs, PKT3(PKT3_INDEX_TYPE, 0, 0));
radeon_emit(cs, index_type);
}
sctx->last_index_size = index_size;
}
if (original_index_size) {
index_max_size = (indexbuf->width0 - index_offset) / original_index_size;
/* Skip draw calls with 0-sized index buffers.
* They cause a hang on some chips, like Navi10-14.
*/
if (!index_max_size)
return;
index_va = si_resource(indexbuf)->gpu_address + index_offset;
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(indexbuf), RADEON_USAGE_READ,
RADEON_PRIO_INDEX_BUFFER);
}
} else {
/* On GFX7 and later, non-indexed draws overwrite VGT_INDEX_TYPE,
* so the state must be re-emitted before the next indexed draw.
*/
if (sctx->chip_class >= GFX7)
sctx->last_index_size = -1;
}
if (indirect) {
assert(num_draws == 1);
uint64_t indirect_va = si_resource(indirect->buffer)->gpu_address;
assert(indirect_va % 8 == 0);
si_invalidate_draw_sh_constants(sctx);
radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0));
radeon_emit(cs, 1);
radeon_emit(cs, indirect_va);
radeon_emit(cs, indirect_va >> 32);
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(indirect->buffer),
RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
unsigned di_src_sel = index_size ? V_0287F0_DI_SRC_SEL_DMA : V_0287F0_DI_SRC_SEL_AUTO_INDEX;
assert(indirect->offset % 4 == 0);
if (index_size) {
radeon_emit(cs, PKT3(PKT3_INDEX_BASE, 1, 0));
radeon_emit(cs, index_va);
radeon_emit(cs, index_va >> 32);
radeon_emit(cs, PKT3(PKT3_INDEX_BUFFER_SIZE, 0, 0));
radeon_emit(cs, index_max_size);
}
if (!sctx->screen->has_draw_indirect_multi) {
radeon_emit(cs, PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT : PKT3_DRAW_INDIRECT, 3,
render_cond_bit));
radeon_emit(cs, indirect->offset);
radeon_emit(cs, (sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, (sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, di_src_sel);
} else {
uint64_t count_va = 0;
if (indirect->indirect_draw_count) {
struct si_resource *params_buf = si_resource(indirect->indirect_draw_count);
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, params_buf, RADEON_USAGE_READ,
RADEON_PRIO_DRAW_INDIRECT);
count_va = params_buf->gpu_address + indirect->indirect_draw_count_offset;
}
radeon_emit(cs,
PKT3(index_size ? PKT3_DRAW_INDEX_INDIRECT_MULTI : PKT3_DRAW_INDIRECT_MULTI, 8,
render_cond_bit));
radeon_emit(cs, indirect->offset);
radeon_emit(cs, (sh_base_reg + SI_SGPR_BASE_VERTEX * 4 - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, (sh_base_reg + SI_SGPR_START_INSTANCE * 4 - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, ((sh_base_reg + SI_SGPR_DRAWID * 4 - SI_SH_REG_OFFSET) >> 2) |
S_2C3_DRAW_INDEX_ENABLE(1) |
S_2C3_COUNT_INDIRECT_ENABLE(!!indirect->indirect_draw_count));
radeon_emit(cs, indirect->draw_count);
radeon_emit(cs, count_va);
radeon_emit(cs, count_va >> 32);
radeon_emit(cs, indirect->stride);
radeon_emit(cs, di_src_sel);
}
} else {
int base_vertex;
/* Register shadowing requires that we always emit PKT3_NUM_INSTANCES. */
if (sctx->shadowed_regs ||
sctx->last_instance_count == SI_INSTANCE_COUNT_UNKNOWN ||
sctx->last_instance_count != instance_count) {
radeon_emit(cs, PKT3(PKT3_NUM_INSTANCES, 0, 0));
radeon_emit(cs, instance_count);
sctx->last_instance_count = instance_count;
}
/* Base vertex and start instance. */
base_vertex = original_index_size ? info->index_bias : draws[0].start;
if (sctx->num_vs_blit_sgprs) {
/* Re-emit draw constants after we leave u_blitter. */
si_invalidate_draw_sh_constants(sctx);
/* Blit VS doesn't use BASE_VERTEX, START_INSTANCE, and DRAWID. */
radeon_set_sh_reg_seq(cs, sh_base_reg + SI_SGPR_VS_BLIT_DATA * 4, sctx->num_vs_blit_sgprs);
radeon_emit_array(cs, sctx->vs_blit_sh_data, sctx->num_vs_blit_sgprs);
} else if (base_vertex != sctx->last_base_vertex ||
sctx->last_base_vertex == SI_BASE_VERTEX_UNKNOWN ||
info->start_instance != sctx->last_start_instance ||
info->drawid != sctx->last_drawid || sh_base_reg != sctx->last_sh_base_reg) {
radeon_set_sh_reg_seq(cs, sh_base_reg + SI_SGPR_BASE_VERTEX * 4, 3);
radeon_emit(cs, base_vertex);
radeon_emit(cs, info->start_instance);
radeon_emit(cs, info->drawid);
sctx->last_base_vertex = base_vertex;
sctx->last_start_instance = info->start_instance;
sctx->last_drawid = info->drawid;
sctx->last_sh_base_reg = sh_base_reg;
}
if (index_size) {
if (dispatch_prim_discard_cs) {
index_va += draws[0].start * original_index_size;
index_max_size = MIN2(index_max_size, draws[0].count);
si_dispatch_prim_discard_cs_and_draw(sctx, info, draws[0].count,
original_index_size, base_vertex,
index_va, index_max_size);
return;
}
for (unsigned i = 0; i < num_draws; i++) {
uint64_t va = index_va + draws[i].start * index_size;
radeon_emit(cs, PKT3(PKT3_DRAW_INDEX_2, 4, render_cond_bit));
radeon_emit(cs, index_max_size);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
radeon_emit(cs, draws[i].count);
radeon_emit(cs, V_0287F0_DI_SRC_SEL_DMA);
}
} else {
for (unsigned i = 0; i < num_draws; i++) {
if (i > 0)
radeon_set_sh_reg(cs, sh_base_reg + SI_SGPR_BASE_VERTEX * 4, draws[i].start);
radeon_emit(cs, PKT3(PKT3_DRAW_INDEX_AUTO, 1, render_cond_bit));
radeon_emit(cs, draws[i].count);
radeon_emit(cs, V_0287F0_DI_SRC_SEL_AUTO_INDEX |
S_0287F0_USE_OPAQUE(!!info->count_from_stream_output));
}
if (num_draws > 1 && !sctx->num_vs_blit_sgprs)
sctx->last_base_vertex = draws[num_draws - 1].start;
}
}
}
void si_emit_surface_sync(struct si_context *sctx, struct radeon_cmdbuf *cs, unsigned cp_coher_cntl)
{
bool compute_ib = !sctx->has_graphics || cs == sctx->prim_discard_compute_cs;
assert(sctx->chip_class <= GFX9);
if (sctx->chip_class == GFX9 || compute_ib) {
/* Flush caches and wait for the caches to assert idle. */
radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, 0));
radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */
radeon_emit(cs, 0); /* CP_COHER_BASE */
radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
} else {
/* ACQUIRE_MEM is only required on a compute ring. */
radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, 0));
radeon_emit(cs, cp_coher_cntl); /* CP_COHER_CNTL */
radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
radeon_emit(cs, 0); /* CP_COHER_BASE */
radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
}
/* ACQUIRE_MEM has an implicit context roll if the current context
* is busy. */
if (!compute_ib)
sctx->context_roll = true;
}
void si_prim_discard_signal_next_compute_ib_start(struct si_context *sctx)
{
if (!si_compute_prim_discard_enabled(sctx))
return;
if (!sctx->barrier_buf) {
u_suballocator_alloc(sctx->allocator_zeroed_memory, 4, 4, &sctx->barrier_buf_offset,
(struct pipe_resource **)&sctx->barrier_buf);
}
/* Emit a placeholder to signal the next compute IB to start.
* See si_compute_prim_discard.c for explanation.
*/
uint32_t signal = 1;
si_cp_write_data(sctx, sctx->barrier_buf, sctx->barrier_buf_offset, 4, V_370_MEM, V_370_ME,
&signal);
sctx->last_pkt3_write_data = &sctx->gfx_cs->current.buf[sctx->gfx_cs->current.cdw - 5];
/* Only the last occurence of WRITE_DATA will be executed.
* The packet will be enabled in si_flush_gfx_cs.
*/
*sctx->last_pkt3_write_data = PKT3(PKT3_NOP, 3, 0);
}
void gfx10_emit_cache_flush(struct si_context *ctx)
{
struct radeon_cmdbuf *cs = ctx->gfx_cs;
uint32_t gcr_cntl = 0;
unsigned cb_db_event = 0;
unsigned flags = ctx->flags;
if (!ctx->has_graphics) {
/* Only process compute flags. */
flags &= SI_CONTEXT_INV_ICACHE | SI_CONTEXT_INV_SCACHE | SI_CONTEXT_INV_VCACHE |
SI_CONTEXT_INV_L2 | SI_CONTEXT_WB_L2 | SI_CONTEXT_INV_L2_METADATA |
SI_CONTEXT_CS_PARTIAL_FLUSH;
}
/* We don't need these. */
assert(!(flags & (SI_CONTEXT_VGT_STREAMOUT_SYNC | SI_CONTEXT_FLUSH_AND_INV_DB_META)));
if (flags & SI_CONTEXT_VGT_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
}
if (flags & SI_CONTEXT_FLUSH_AND_INV_CB)
ctx->num_cb_cache_flushes++;
if (flags & SI_CONTEXT_FLUSH_AND_INV_DB)
ctx->num_db_cache_flushes++;
if (flags & SI_CONTEXT_INV_ICACHE)
gcr_cntl |= S_586_GLI_INV(V_586_GLI_ALL);
if (flags & SI_CONTEXT_INV_SCACHE) {
/* TODO: When writing to the SMEM L1 cache, we need to set SEQ
* to FORWARD when both L1 and L2 are written out (WB or INV).
*/
gcr_cntl |= S_586_GL1_INV(1) | S_586_GLK_INV(1);
}
if (flags & SI_CONTEXT_INV_VCACHE)
gcr_cntl |= S_586_GL1_INV(1) | S_586_GLV_INV(1);
/* The L2 cache ops are:
* - INV: - invalidate lines that reflect memory (were loaded from memory)
* - don't touch lines that were overwritten (were stored by gfx clients)
* - WB: - don't touch lines that reflect memory
* - write back lines that were overwritten
* - WB | INV: - invalidate lines that reflect memory
* - write back lines that were overwritten
*
* GLM doesn't support WB alone. If WB is set, INV must be set too.
*/
if (flags & SI_CONTEXT_INV_L2) {
/* Writeback and invalidate everything in L2. */
gcr_cntl |= S_586_GL2_INV(1) | S_586_GL2_WB(1) | S_586_GLM_INV(1) | S_586_GLM_WB(1);
ctx->num_L2_invalidates++;
} else if (flags & SI_CONTEXT_WB_L2) {
gcr_cntl |= S_586_GL2_WB(1) | S_586_GLM_WB(1) | S_586_GLM_INV(1);
} else if (flags & SI_CONTEXT_INV_L2_METADATA) {
gcr_cntl |= S_586_GLM_INV(1) | S_586_GLM_WB(1);
}
if (flags & (SI_CONTEXT_FLUSH_AND_INV_CB | SI_CONTEXT_FLUSH_AND_INV_DB)) {
if (flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
/* Flush CMASK/FMASK/DCC. Will wait for idle later. */
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
}
if (flags & SI_CONTEXT_FLUSH_AND_INV_DB) {
/* Flush HTILE. Will wait for idle later. */
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
}
/* First flush CB/DB, then L1/L2. */
gcr_cntl |= S_586_SEQ(V_586_SEQ_FORWARD);
if ((flags & (SI_CONTEXT_FLUSH_AND_INV_CB | SI_CONTEXT_FLUSH_AND_INV_DB)) ==
(SI_CONTEXT_FLUSH_AND_INV_CB | SI_CONTEXT_FLUSH_AND_INV_DB)) {
cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
} else if (flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
} else if (flags & SI_CONTEXT_FLUSH_AND_INV_DB) {
cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
} else {
assert(0);
}
} else {
/* Wait for graphics shaders to go idle if requested. */
if (flags & SI_CONTEXT_PS_PARTIAL_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
/* Only count explicit shader flushes, not implicit ones. */
ctx->num_vs_flushes++;
ctx->num_ps_flushes++;
} else if (flags & SI_CONTEXT_VS_PARTIAL_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
ctx->num_vs_flushes++;
}
}
if (flags & SI_CONTEXT_CS_PARTIAL_FLUSH && ctx->compute_is_busy) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH | EVENT_INDEX(4)));
ctx->num_cs_flushes++;
ctx->compute_is_busy = false;
}
if (cb_db_event) {
struct si_resource* wait_mem_scratch = unlikely(ctx->ws->cs_is_secure(cs)) ?
ctx->wait_mem_scratch_tmz : ctx->wait_mem_scratch;
/* CB/DB flush and invalidate (or possibly just a wait for a
* meta flush) via RELEASE_MEM.
*
* Combine this with other cache flushes when possible; this
* requires affected shaders to be idle, so do it after the
* CS_PARTIAL_FLUSH before (VS/PS partial flushes are always
* implied).
*/
uint64_t va;
/* Do the flush (enqueue the event and wait for it). */
va = wait_mem_scratch->gpu_address;
ctx->wait_mem_number++;
/* Get GCR_CNTL fields, because the encoding is different in RELEASE_MEM. */
unsigned glm_wb = G_586_GLM_WB(gcr_cntl);
unsigned glm_inv = G_586_GLM_INV(gcr_cntl);
unsigned glv_inv = G_586_GLV_INV(gcr_cntl);
unsigned gl1_inv = G_586_GL1_INV(gcr_cntl);
assert(G_586_GL2_US(gcr_cntl) == 0);
assert(G_586_GL2_RANGE(gcr_cntl) == 0);
assert(G_586_GL2_DISCARD(gcr_cntl) == 0);
unsigned gl2_inv = G_586_GL2_INV(gcr_cntl);
unsigned gl2_wb = G_586_GL2_WB(gcr_cntl);
unsigned gcr_seq = G_586_SEQ(gcr_cntl);
gcr_cntl &= C_586_GLM_WB & C_586_GLM_INV & C_586_GLV_INV & C_586_GL1_INV & C_586_GL2_INV &
C_586_GL2_WB; /* keep SEQ */
si_cp_release_mem(ctx, cs, cb_db_event,
S_490_GLM_WB(glm_wb) | S_490_GLM_INV(glm_inv) | S_490_GLV_INV(glv_inv) |
S_490_GL1_INV(gl1_inv) | S_490_GL2_INV(gl2_inv) | S_490_GL2_WB(gl2_wb) |
S_490_SEQ(gcr_seq),
EOP_DST_SEL_MEM, EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM,
EOP_DATA_SEL_VALUE_32BIT, wait_mem_scratch, va, ctx->wait_mem_number,
SI_NOT_QUERY);
si_cp_wait_mem(ctx, ctx->gfx_cs, va, ctx->wait_mem_number, 0xffffffff, WAIT_REG_MEM_EQUAL);
}
/* Ignore fields that only modify the behavior of other fields. */
if (gcr_cntl & C_586_GL1_RANGE & C_586_GL2_RANGE & C_586_SEQ) {
/* Flush caches and wait for the caches to assert idle.
* The cache flush is executed in the ME, but the PFP waits
* for completion.
*/
radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 6, 0));
radeon_emit(cs, 0); /* CP_COHER_CNTL */
radeon_emit(cs, 0xffffffff); /* CP_COHER_SIZE */
radeon_emit(cs, 0xffffff); /* CP_COHER_SIZE_HI */
radeon_emit(cs, 0); /* CP_COHER_BASE */
radeon_emit(cs, 0); /* CP_COHER_BASE_HI */
radeon_emit(cs, 0x0000000A); /* POLL_INTERVAL */
radeon_emit(cs, gcr_cntl); /* GCR_CNTL */
} else if (cb_db_event || (flags & (SI_CONTEXT_VS_PARTIAL_FLUSH | SI_CONTEXT_PS_PARTIAL_FLUSH |
SI_CONTEXT_CS_PARTIAL_FLUSH))) {
/* We need to ensure that PFP waits as well. */
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
}
if (flags & SI_CONTEXT_START_PIPELINE_STATS) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) | EVENT_INDEX(0));
} else if (flags & SI_CONTEXT_STOP_PIPELINE_STATS) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) | EVENT_INDEX(0));
}
ctx->flags = 0;
}
void si_emit_cache_flush(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
uint32_t flags = sctx->flags;
if (!sctx->has_graphics) {
/* Only process compute flags. */
flags &= SI_CONTEXT_INV_ICACHE | SI_CONTEXT_INV_SCACHE | SI_CONTEXT_INV_VCACHE |
SI_CONTEXT_INV_L2 | SI_CONTEXT_WB_L2 | SI_CONTEXT_INV_L2_METADATA |
SI_CONTEXT_CS_PARTIAL_FLUSH;
}
uint32_t cp_coher_cntl = 0;
const uint32_t flush_cb_db = flags & (SI_CONTEXT_FLUSH_AND_INV_CB | SI_CONTEXT_FLUSH_AND_INV_DB);
const bool is_barrier =
flush_cb_db ||
/* INV_ICACHE == beginning of gfx IB. Checking
* INV_ICACHE fixes corruption for DeusExMD with
* compute-based culling, but I don't know why.
*/
flags & (SI_CONTEXT_INV_ICACHE | SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_VS_PARTIAL_FLUSH) ||
(flags & SI_CONTEXT_CS_PARTIAL_FLUSH && sctx->compute_is_busy);
assert(sctx->chip_class <= GFX9);
if (flags & SI_CONTEXT_FLUSH_AND_INV_CB)
sctx->num_cb_cache_flushes++;
if (flags & SI_CONTEXT_FLUSH_AND_INV_DB)
sctx->num_db_cache_flushes++;
/* GFX6 has a bug that it always flushes ICACHE and KCACHE if either
* bit is set. An alternative way is to write SQC_CACHES, but that
* doesn't seem to work reliably. Since the bug doesn't affect
* correctness (it only does more work than necessary) and
* the performance impact is likely negligible, there is no plan
* to add a workaround for it.
*/
if (flags & SI_CONTEXT_INV_ICACHE)
cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
if (flags & SI_CONTEXT_INV_SCACHE)
cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
if (sctx->chip_class <= GFX8) {
if (flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) | S_0085F0_CB0_DEST_BASE_ENA(1) |
S_0085F0_CB1_DEST_BASE_ENA(1) | S_0085F0_CB2_DEST_BASE_ENA(1) |
S_0085F0_CB3_DEST_BASE_ENA(1) | S_0085F0_CB4_DEST_BASE_ENA(1) |
S_0085F0_CB5_DEST_BASE_ENA(1) | S_0085F0_CB6_DEST_BASE_ENA(1) |
S_0085F0_CB7_DEST_BASE_ENA(1);
/* Necessary for DCC */
if (sctx->chip_class == GFX8)
si_cp_release_mem(sctx, cs, V_028A90_FLUSH_AND_INV_CB_DATA_TS, 0, EOP_DST_SEL_MEM,
EOP_INT_SEL_NONE, EOP_DATA_SEL_DISCARD, NULL, 0, 0, SI_NOT_QUERY);
}
if (flags & SI_CONTEXT_FLUSH_AND_INV_DB)
cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) | S_0085F0_DB_DEST_BASE_ENA(1);
}
if (flags & SI_CONTEXT_FLUSH_AND_INV_CB) {
/* Flush CMASK/FMASK/DCC. SURFACE_SYNC will wait for idle. */
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
}
if (flags & (SI_CONTEXT_FLUSH_AND_INV_DB | SI_CONTEXT_FLUSH_AND_INV_DB_META)) {
/* Flush HTILE. SURFACE_SYNC will wait for idle. */
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
}
/* Wait for shader engines to go idle.
* VS and PS waits are unnecessary if SURFACE_SYNC is going to wait
* for everything including CB/DB cache flushes.
*/
if (!flush_cb_db) {
if (flags & SI_CONTEXT_PS_PARTIAL_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
/* Only count explicit shader flushes, not implicit ones
* done by SURFACE_SYNC.
*/
sctx->num_vs_flushes++;
sctx->num_ps_flushes++;
} else if (flags & SI_CONTEXT_VS_PARTIAL_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
sctx->num_vs_flushes++;
}
}
if (flags & SI_CONTEXT_CS_PARTIAL_FLUSH && sctx->compute_is_busy) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
sctx->num_cs_flushes++;
sctx->compute_is_busy = false;
}
/* VGT state synchronization. */
if (flags & SI_CONTEXT_VGT_FLUSH) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
}
if (flags & SI_CONTEXT_VGT_STREAMOUT_SYNC) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0));
}
/* GFX9: Wait for idle if we're flushing CB or DB. ACQUIRE_MEM doesn't
* wait for idle on GFX9. We have to use a TS event.
*/
if (sctx->chip_class == GFX9 && flush_cb_db) {
uint64_t va;
unsigned tc_flags, cb_db_event;
/* Set the CB/DB flush event. */
switch (flush_cb_db) {
case SI_CONTEXT_FLUSH_AND_INV_CB:
cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
break;
case SI_CONTEXT_FLUSH_AND_INV_DB:
cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
break;
default:
/* both CB & DB */
cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
}
/* These are the only allowed combinations. If you need to
* do multiple operations at once, do them separately.
* All operations that invalidate L2 also seem to invalidate
* metadata. Volatile (VOL) and WC flushes are not listed here.
*
* TC | TC_WB = writeback & invalidate L2 & L1
* TC | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
* TC_WB | TC_NC = writeback L2 for MTYPE == NC
* TC | TC_NC = invalidate L2 for MTYPE == NC
* TC | TC_MD = writeback & invalidate L2 metadata (DCC, etc.)
* TCL1 = invalidate L1
*/
tc_flags = 0;
if (flags & SI_CONTEXT_INV_L2_METADATA) {
tc_flags = EVENT_TC_ACTION_ENA | EVENT_TC_MD_ACTION_ENA;
}
/* Ideally flush TC together with CB/DB. */
if (flags & SI_CONTEXT_INV_L2) {
/* Writeback and invalidate everything in L2 & L1. */
tc_flags = EVENT_TC_ACTION_ENA | EVENT_TC_WB_ACTION_ENA;
/* Clear the flags. */
flags &= ~(SI_CONTEXT_INV_L2 | SI_CONTEXT_WB_L2 | SI_CONTEXT_INV_VCACHE);
sctx->num_L2_invalidates++;
}
/* Do the flush (enqueue the event and wait for it). */
struct si_resource* wait_mem_scratch = unlikely(sctx->ws->cs_is_secure(cs)) ?
sctx->wait_mem_scratch_tmz : sctx->wait_mem_scratch;
va = wait_mem_scratch->gpu_address;
sctx->wait_mem_number++;
si_cp_release_mem(sctx, cs, cb_db_event, tc_flags, EOP_DST_SEL_MEM,
EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM, EOP_DATA_SEL_VALUE_32BIT,
wait_mem_scratch, va, sctx->wait_mem_number, SI_NOT_QUERY);
si_cp_wait_mem(sctx, cs, va, sctx->wait_mem_number, 0xffffffff, WAIT_REG_MEM_EQUAL);
}
/* Make sure ME is idle (it executes most packets) before continuing.
* This prevents read-after-write hazards between PFP and ME.
*/
if (sctx->has_graphics &&
(cp_coher_cntl || (flags & (SI_CONTEXT_CS_PARTIAL_FLUSH | SI_CONTEXT_INV_VCACHE |
SI_CONTEXT_INV_L2 | SI_CONTEXT_WB_L2)))) {
radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
radeon_emit(cs, 0);
}
/* GFX6-GFX8 only:
* When one of the CP_COHER_CNTL.DEST_BASE flags is set, SURFACE_SYNC
* waits for idle, so it should be last. SURFACE_SYNC is done in PFP.
*
* cp_coher_cntl should contain all necessary flags except TC flags
* at this point.
*
* GFX6-GFX7 don't support L2 write-back.
*/
if (flags & SI_CONTEXT_INV_L2 || (sctx->chip_class <= GFX7 && (flags & SI_CONTEXT_WB_L2))) {
/* Invalidate L1 & L2. (L1 is always invalidated on GFX6)
* WB must be set on GFX8+ when TC_ACTION is set.
*/
si_emit_surface_sync(sctx, sctx->gfx_cs,
cp_coher_cntl | S_0085F0_TC_ACTION_ENA(1) | S_0085F0_TCL1_ACTION_ENA(1) |
S_0301F0_TC_WB_ACTION_ENA(sctx->chip_class >= GFX8));
cp_coher_cntl = 0;
sctx->num_L2_invalidates++;
} else {
/* L1 invalidation and L2 writeback must be done separately,
* because both operations can't be done together.
*/
if (flags & SI_CONTEXT_WB_L2) {
/* WB = write-back
* NC = apply to non-coherent MTYPEs
* (i.e. MTYPE <= 1, which is what we use everywhere)
*
* WB doesn't work without NC.
*/
si_emit_surface_sync(
sctx, sctx->gfx_cs,
cp_coher_cntl | S_0301F0_TC_WB_ACTION_ENA(1) | S_0301F0_TC_NC_ACTION_ENA(1));
cp_coher_cntl = 0;
sctx->num_L2_writebacks++;
}
if (flags & SI_CONTEXT_INV_VCACHE) {
/* Invalidate per-CU VMEM L1. */
si_emit_surface_sync(sctx, sctx->gfx_cs, cp_coher_cntl | S_0085F0_TCL1_ACTION_ENA(1));
cp_coher_cntl = 0;
}
}
/* If TC flushes haven't cleared this... */
if (cp_coher_cntl)
si_emit_surface_sync(sctx, sctx->gfx_cs, cp_coher_cntl);
if (is_barrier)
si_prim_discard_signal_next_compute_ib_start(sctx);
if (flags & SI_CONTEXT_START_PIPELINE_STATS) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) | EVENT_INDEX(0));
} else if (flags & SI_CONTEXT_STOP_PIPELINE_STATS) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) | EVENT_INDEX(0));
}
sctx->flags = 0;
}
ALWAYS_INLINE
static bool si_upload_vertex_buffer_descriptors(struct si_context *sctx)
{
unsigned i, count = sctx->num_vertex_elements;
uint32_t *ptr;
struct si_vertex_elements *velems = sctx->vertex_elements;
unsigned alloc_size = velems->vb_desc_list_alloc_size;
if (alloc_size) {
/* Vertex buffer descriptors are the only ones which are uploaded
* directly through a staging buffer and don't go through
* the fine-grained upload path.
*/
u_upload_alloc(sctx->b.const_uploader, 0, alloc_size,
si_optimal_tcc_alignment(sctx, alloc_size), &sctx->vb_descriptors_offset,
(struct pipe_resource **)&sctx->vb_descriptors_buffer, (void **)&ptr);
if (!sctx->vb_descriptors_buffer) {
sctx->vb_descriptors_offset = 0;
sctx->vb_descriptors_gpu_list = NULL;
return false;
}
sctx->vb_descriptors_gpu_list = ptr;
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, sctx->vb_descriptors_buffer, RADEON_USAGE_READ,
RADEON_PRIO_DESCRIPTORS);
sctx->vertex_buffer_pointer_dirty = true;
sctx->prefetch_L2_mask |= SI_PREFETCH_VBO_DESCRIPTORS;
} else {
si_resource_reference(&sctx->vb_descriptors_buffer, NULL);
sctx->vertex_buffer_pointer_dirty = false;
sctx->prefetch_L2_mask &= ~SI_PREFETCH_VBO_DESCRIPTORS;
}
assert(count <= SI_MAX_ATTRIBS);
unsigned first_vb_use_mask = velems->first_vb_use_mask;
unsigned num_vbos_in_user_sgprs = sctx->screen->num_vbos_in_user_sgprs;
for (i = 0; i < count; i++) {
struct pipe_vertex_buffer *vb;
struct si_resource *buf;
unsigned vbo_index = velems->vertex_buffer_index[i];
uint32_t *desc = i < num_vbos_in_user_sgprs ? &sctx->vb_descriptor_user_sgprs[i * 4]
: &ptr[(i - num_vbos_in_user_sgprs) * 4];
vb = &sctx->vertex_buffer[vbo_index];
buf = si_resource(vb->buffer.resource);
if (!buf) {
memset(desc, 0, 16);
continue;
}
int64_t offset = (int64_t)((int)vb->buffer_offset) + velems->src_offset[i];
if (offset >= buf->b.b.width0) {
assert(offset < buf->b.b.width0);
memset(desc, 0, 16);
continue;
}
uint64_t va = buf->gpu_address + offset;
int64_t num_records = (int64_t)buf->b.b.width0 - offset;
if (sctx->chip_class != GFX8 && vb->stride) {
/* Round up by rounding down and adding 1 */
num_records = (num_records - velems->format_size[i]) / vb->stride + 1;
}
assert(num_records >= 0 && num_records <= UINT_MAX);
uint32_t rsrc_word3 = velems->rsrc_word3[i];
/* OOB_SELECT chooses the out-of-bounds check:
* - 1: index >= NUM_RECORDS (Structured)
* - 3: offset >= NUM_RECORDS (Raw)
*/
if (sctx->chip_class >= GFX10)
rsrc_word3 |= S_008F0C_OOB_SELECT(vb->stride ? V_008F0C_OOB_SELECT_STRUCTURED
: V_008F0C_OOB_SELECT_RAW);
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) | S_008F04_STRIDE(vb->stride);
desc[2] = num_records;
desc[3] = rsrc_word3;
if (first_vb_use_mask & (1 << i)) {
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(vb->buffer.resource),
RADEON_USAGE_READ, RADEON_PRIO_VERTEX_BUFFER);
}
}
/* Don't flush the const cache. It would have a very negative effect
* on performance (confirmed by testing). New descriptors are always
* uploaded to a fresh new buffer, so I don't think flushing the const
* cache is needed. */
si_mark_atom_dirty(sctx, &sctx->atoms.s.shader_pointers);
sctx->vertex_buffer_user_sgprs_dirty = num_vbos_in_user_sgprs > 0;
sctx->vertex_buffers_dirty = false;
return true;
}
static void si_get_draw_start_count(struct si_context *sctx, const struct pipe_draw_info *info,
const struct pipe_draw_start_count *draws,
unsigned num_draws, unsigned *start, unsigned *count)
{
struct pipe_draw_indirect_info *indirect = info->indirect;
if (indirect) {
unsigned indirect_count;
struct pipe_transfer *transfer;
unsigned begin, end;
unsigned map_size;
unsigned *data;
if (indirect->indirect_draw_count) {
data = pipe_buffer_map_range(&sctx->b, indirect->indirect_draw_count,
indirect->indirect_draw_count_offset, sizeof(unsigned),
PIPE_MAP_READ, &transfer);
indirect_count = *data;
pipe_buffer_unmap(&sctx->b, transfer);
} else {
indirect_count = indirect->draw_count;
}
if (!indirect_count) {
*start = *count = 0;
return;
}
map_size = (indirect_count - 1) * indirect->stride + 3 * sizeof(unsigned);
data = pipe_buffer_map_range(&sctx->b, indirect->buffer, indirect->offset, map_size,
PIPE_MAP_READ, &transfer);
begin = UINT_MAX;
end = 0;
for (unsigned i = 0; i < indirect_count; ++i) {
unsigned count = data[0];
unsigned start = data[2];
if (count > 0) {
begin = MIN2(begin, start);
end = MAX2(end, start + count);
}
data += indirect->stride / sizeof(unsigned);
}
pipe_buffer_unmap(&sctx->b, transfer);
if (begin < end) {
*start = begin;
*count = end - begin;
} else {
*start = *count = 0;
}
} else {
unsigned min_element = UINT_MAX;
unsigned max_element = 0;
for (unsigned i = 0; i < num_draws; i++) {
min_element = MIN2(min_element, draws[i].start);
max_element = MAX2(max_element, draws[i].start + draws[i].count);
}
*start = min_element;
*count = max_element;
}
}
static void si_emit_all_states(struct si_context *sctx, const struct pipe_draw_info *info,
enum pipe_prim_type prim, unsigned instance_count,
unsigned min_vertex_count, bool primitive_restart,
unsigned skip_atom_mask)
{
unsigned num_patches = 0;
si_emit_rasterizer_prim_state(sctx);
if (sctx->tes_shader.cso)
si_emit_derived_tess_state(sctx, info, &num_patches);
/* Emit state atoms. */
unsigned mask = sctx->dirty_atoms & ~skip_atom_mask;
while (mask)
sctx->atoms.array[u_bit_scan(&mask)].emit(sctx);
sctx->dirty_atoms &= skip_atom_mask;
/* Emit states. */
mask = sctx->dirty_states;
while (mask) {
unsigned i = u_bit_scan(&mask);
struct si_pm4_state *state = sctx->queued.array[i];
if (!state || sctx->emitted.array[i] == state)
continue;
si_pm4_emit(sctx, state);
sctx->emitted.array[i] = state;
}
sctx->dirty_states = 0;
/* Emit draw states. */
si_emit_vs_state(sctx, info);
si_emit_draw_registers(sctx, info, prim, num_patches, instance_count, primitive_restart,
min_vertex_count);
}
static bool si_all_vs_resources_read_only(struct si_context *sctx, struct pipe_resource *indexbuf)
{
struct radeon_winsys *ws = sctx->ws;
struct radeon_cmdbuf *cs = sctx->gfx_cs;
/* Index buffer. */
if (indexbuf && ws->cs_is_buffer_referenced(cs, si_resource(indexbuf)->buf, RADEON_USAGE_WRITE))
goto has_write_reference;
/* Vertex buffers. */
struct si_vertex_elements *velems = sctx->vertex_elements;
unsigned num_velems = velems->count;
for (unsigned i = 0; i < num_velems; i++) {
if (!((1 << i) & velems->first_vb_use_mask))
continue;
unsigned vb_index = velems->vertex_buffer_index[i];
struct pipe_resource *res = sctx->vertex_buffer[vb_index].buffer.resource;
if (!res)
continue;
if (ws->cs_is_buffer_referenced(cs, si_resource(res)->buf, RADEON_USAGE_WRITE))
goto has_write_reference;
}
/* Constant and shader buffers. */
struct si_descriptors *buffers =
&sctx->descriptors[si_const_and_shader_buffer_descriptors_idx(PIPE_SHADER_VERTEX)];
for (unsigned i = 0; i < buffers->num_active_slots; i++) {
unsigned index = buffers->first_active_slot + i;
struct pipe_resource *res = sctx->const_and_shader_buffers[PIPE_SHADER_VERTEX].buffers[index];
if (!res)
continue;
if (ws->cs_is_buffer_referenced(cs, si_resource(res)->buf, RADEON_USAGE_WRITE))
goto has_write_reference;
}
/* Samplers. */
struct si_shader_selector *vs = sctx->vs_shader.cso;
if (vs->info.base.textures_used) {
unsigned num_samplers = util_last_bit(vs->info.base.textures_used);
for (unsigned i = 0; i < num_samplers; i++) {
struct pipe_sampler_view *view = sctx->samplers[PIPE_SHADER_VERTEX].views[i];
if (!view)
continue;
if (ws->cs_is_buffer_referenced(cs, si_resource(view->texture)->buf, RADEON_USAGE_WRITE))
goto has_write_reference;
}
}
/* Images. */
unsigned num_images = vs->info.base.num_images;
if (num_images) {
for (unsigned i = 0; i < num_images; i++) {
struct pipe_resource *res = sctx->images[PIPE_SHADER_VERTEX].views[i].resource;
if (!res)
continue;
if (ws->cs_is_buffer_referenced(cs, si_resource(res)->buf, RADEON_USAGE_WRITE))
goto has_write_reference;
}
}
return true;
has_write_reference:
/* If the current gfx IB has enough packets, flush it to remove write
* references to buffers.
*/
if (cs->prev_dw + cs->current.cdw > 2048) {
si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
assert(si_all_vs_resources_read_only(sctx, indexbuf));
return true;
}
return false;
}
static ALWAYS_INLINE bool pd_msg(const char *s)
{
if (SI_PRIM_DISCARD_DEBUG)
printf("PD failed: %s\n", s);
return false;
}
static void si_multi_draw_vbo(struct pipe_context *ctx,
const struct pipe_draw_info *info,
const struct pipe_draw_start_count *draws,
unsigned num_draws)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
struct pipe_resource *indexbuf = info->index.resource;
unsigned dirty_tex_counter, dirty_buf_counter;
enum pipe_prim_type rast_prim, prim = info->mode;
unsigned index_size = info->index_size;
unsigned index_offset = info->indirect ? draws[0].start * index_size : 0;
unsigned instance_count = info->instance_count;
bool primitive_restart =
info->primitive_restart &&
(!sctx->screen->options.prim_restart_tri_strips_only ||
(prim != PIPE_PRIM_TRIANGLE_STRIP && prim != PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY));
/* GFX6-GFX7 treat instance_count==0 as instance_count==1. There is
* no workaround for indirect draws, but we can at least skip
* direct draws.
*/
if (unlikely(!info->indirect && !instance_count))
return;
struct si_shader_selector *vs = sctx->vs_shader.cso;
if (unlikely(!vs || sctx->num_vertex_elements < vs->num_vs_inputs ||
(!sctx->ps_shader.cso && !rs->rasterizer_discard) ||
(!!sctx->tes_shader.cso != (prim == PIPE_PRIM_PATCHES)))) {
assert(0);
return;
}
/* Recompute and re-emit the texture resource states if needed. */
dirty_tex_counter = p_atomic_read(&sctx->screen->dirty_tex_counter);
if (unlikely(dirty_tex_counter != sctx->last_dirty_tex_counter)) {
sctx->last_dirty_tex_counter = dirty_tex_counter;
sctx->framebuffer.dirty_cbufs |= ((1 << sctx->framebuffer.state.nr_cbufs) - 1);
sctx->framebuffer.dirty_zsbuf = true;
si_mark_atom_dirty(sctx, &sctx->atoms.s.framebuffer);
si_update_all_texture_descriptors(sctx);
}
dirty_buf_counter = p_atomic_read(&sctx->screen->dirty_buf_counter);
if (unlikely(dirty_buf_counter != sctx->last_dirty_buf_counter)) {
sctx->last_dirty_buf_counter = dirty_buf_counter;
/* Rebind all buffers unconditionally. */
si_rebind_buffer(sctx, NULL);
}
si_decompress_textures(sctx, u_bit_consecutive(0, SI_NUM_GRAPHICS_SHADERS));
/* Set the rasterization primitive type.
*
* This must be done after si_decompress_textures, which can call
* draw_vbo recursively, and before si_update_shaders, which uses
* current_rast_prim for this draw_vbo call. */
if (sctx->gs_shader.cso) {
/* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
rast_prim = sctx->gs_shader.cso->rast_prim;
} else if (sctx->tes_shader.cso) {
/* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
rast_prim = sctx->tes_shader.cso->rast_prim;
} else if (util_rast_prim_is_triangles(prim)) {
rast_prim = PIPE_PRIM_TRIANGLES;
} else {
/* Only possibilities, POINTS, LINE*, RECTANGLES */
rast_prim = prim;
}
if (rast_prim != sctx->current_rast_prim) {
if (util_prim_is_points_or_lines(sctx->current_rast_prim) !=
util_prim_is_points_or_lines(rast_prim))
si_mark_atom_dirty(sctx, &sctx->atoms.s.guardband);
sctx->current_rast_prim = rast_prim;
sctx->do_update_shaders = true;
}
if (sctx->tes_shader.cso && sctx->screen->info.has_ls_vgpr_init_bug) {
/* Determine whether the LS VGPR fix should be applied.
*
* It is only required when num input CPs > num output CPs,
* which cannot happen with the fixed function TCS. We should
* also update this bit when switching from TCS to fixed
* function TCS.
*/
struct si_shader_selector *tcs = sctx->tcs_shader.cso;
bool ls_vgpr_fix =
tcs && info->vertices_per_patch > tcs->info.base.tess.tcs_vertices_out;
if (ls_vgpr_fix != sctx->ls_vgpr_fix) {
sctx->ls_vgpr_fix = ls_vgpr_fix;
sctx->do_update_shaders = true;
}
}
if (sctx->chip_class <= GFX9 && sctx->gs_shader.cso) {
/* Determine whether the GS triangle strip adjacency fix should
* be applied. Rotate every other triangle if
* - triangle strips with adjacency are fed to the GS and
* - primitive restart is disabled (the rotation doesn't help
* when the restart occurs after an odd number of triangles).
*/
bool gs_tri_strip_adj_fix =
!sctx->tes_shader.cso && prim == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY && !primitive_restart;
if (gs_tri_strip_adj_fix != sctx->gs_tri_strip_adj_fix) {
sctx->gs_tri_strip_adj_fix = gs_tri_strip_adj_fix;
sctx->do_update_shaders = true;
}
}
if (index_size) {
/* Translate or upload, if needed. */
/* 8-bit indices are supported on GFX8. */
if (sctx->chip_class <= GFX7 && index_size == 1) {
unsigned start, count, start_offset, size, offset;
void *ptr;
si_get_draw_start_count(sctx, info, draws, num_draws, &start, &count);
start_offset = start * 2;
size = count * 2;
indexbuf = NULL;
u_upload_alloc(ctx->stream_uploader, start_offset, size,
si_optimal_tcc_alignment(sctx, size), &offset, &indexbuf, &ptr);
if (unlikely(!indexbuf))
return;
util_shorten_ubyte_elts_to_userptr(&sctx->b, info, 0, 0, index_offset + start, count, ptr);
/* info->start will be added by the drawing code */
index_offset = offset - start_offset;
index_size = 2;
} else if (info->has_user_indices) {
unsigned start_offset;
assert(!info->indirect);
assert(num_draws == 1);
start_offset = draws[0].start * index_size;
indexbuf = NULL;
u_upload_data(ctx->stream_uploader, start_offset, draws[0].count * index_size,
sctx->screen->info.tcc_cache_line_size,
(char *)info->index.user + start_offset, &index_offset, &indexbuf);
if (unlikely(!indexbuf))
return;
/* info->start will be added by the drawing code */
index_offset -= start_offset;
} else if (sctx->chip_class <= GFX7 && si_resource(indexbuf)->TC_L2_dirty) {
/* GFX8 reads index buffers through TC L2, so it doesn't
* need this. */
sctx->flags |= SI_CONTEXT_WB_L2;
si_resource(indexbuf)->TC_L2_dirty = false;
}
}
bool dispatch_prim_discard_cs = false;
bool prim_discard_cs_instancing = false;
unsigned original_index_size = index_size;
unsigned avg_direct_count = 0;
unsigned min_direct_count = 0;
unsigned total_direct_count = 0;
if (info->indirect) {
struct pipe_draw_indirect_info *indirect = info->indirect;
/* Add the buffer size for memory checking in need_cs_space. */
si_context_add_resource_size(sctx, indirect->buffer);
/* Indirect buffers use TC L2 on GFX9, but not older hw. */
if (sctx->chip_class <= GFX8) {
if (si_resource(indirect->buffer)->TC_L2_dirty) {
sctx->flags |= SI_CONTEXT_WB_L2;
si_resource(indirect->buffer)->TC_L2_dirty = false;
}
if (indirect->indirect_draw_count &&
si_resource(indirect->indirect_draw_count)->TC_L2_dirty) {
sctx->flags |= SI_CONTEXT_WB_L2;
si_resource(indirect->indirect_draw_count)->TC_L2_dirty = false;
}
}
} else {
for (unsigned i = 0; i < num_draws; i++) {
unsigned count = draws[i].count;
total_direct_count += count;
min_direct_count = MIN2(min_direct_count, count);
}
avg_direct_count = (total_direct_count / num_draws) * instance_count;
}
/* Determine if we can use the primitive discard compute shader. */
if (si_compute_prim_discard_enabled(sctx) &&
(avg_direct_count > sctx->prim_discard_vertex_count_threshold
? (sctx->compute_num_verts_rejected += total_direct_count, true)
: /* Add, then return true. */
(sctx->compute_num_verts_ineligible += total_direct_count,
false)) && /* Add, then return false. */
(!info->count_from_stream_output || pd_msg("draw_opaque")) &&
(primitive_restart ?
/* Supported prim types with primitive restart: */
(prim == PIPE_PRIM_TRIANGLE_STRIP || pd_msg("bad prim type with primitive restart")) &&
/* Disallow instancing with primitive restart: */
(instance_count == 1 || pd_msg("instance_count > 1 with primitive restart"))
:
/* Supported prim types without primitive restart + allow instancing: */
(1 << prim) & ((1 << PIPE_PRIM_TRIANGLES) | (1 << PIPE_PRIM_TRIANGLE_STRIP) |
(1 << PIPE_PRIM_TRIANGLE_FAN)) &&
/* Instancing is limited to 16-bit indices, because InstanceID is packed into
VertexID. */
/* TODO: DrawArraysInstanced doesn't sometimes work, so it's disabled. */
(instance_count == 1 ||
(instance_count <= USHRT_MAX && index_size && index_size <= 2) ||
pd_msg("instance_count too large or index_size == 4 or DrawArraysInstanced"))) &&
(info->drawid == 0 || !sctx->vs_shader.cso->info.uses_drawid || pd_msg("draw_id > 0")) &&
(!sctx->render_cond || pd_msg("render condition")) &&
/* Forced enablement ignores pipeline statistics queries. */
(sctx->screen->debug_flags & (DBG(PD) | DBG(ALWAYS_PD)) ||
(!sctx->num_pipeline_stat_queries && !sctx->streamout.prims_gen_query_enabled) ||
pd_msg("pipestat or primgen query")) &&
(!sctx->vertex_elements->instance_divisor_is_fetched || pd_msg("loads instance divisors")) &&
(!sctx->tes_shader.cso || pd_msg("uses tess")) &&
(!sctx->gs_shader.cso || pd_msg("uses GS")) &&
(!sctx->ps_shader.cso->info.uses_primid || pd_msg("PS uses PrimID")) &&
!rs->polygon_mode_enabled &&
#if SI_PRIM_DISCARD_DEBUG /* same as cso->prim_discard_cs_allowed */
(!sctx->vs_shader.cso->info.uses_bindless_images || pd_msg("uses bindless images")) &&
(!sctx->vs_shader.cso->info.uses_bindless_samplers || pd_msg("uses bindless samplers")) &&
(!sctx->vs_shader.cso->info.writes_memory || pd_msg("writes memory")) &&
(!sctx->vs_shader.cso->info.writes_viewport_index || pd_msg("writes viewport index")) &&
!sctx->vs_shader.cso->info.base.vs.window_space_position &&
!sctx->vs_shader.cso->so.num_outputs &&
#else
(sctx->vs_shader.cso->prim_discard_cs_allowed ||
pd_msg("VS shader uses unsupported features")) &&
#endif
/* Check that all buffers are used for read only, because compute
* dispatches can run ahead. */
(si_all_vs_resources_read_only(sctx, index_size ? indexbuf : NULL) ||
pd_msg("write reference"))) {
switch (si_prepare_prim_discard_or_split_draw(sctx, info, draws, num_draws,
primitive_restart)) {
case SI_PRIM_DISCARD_ENABLED:
original_index_size = index_size;
prim_discard_cs_instancing = instance_count > 1;
dispatch_prim_discard_cs = true;
/* The compute shader changes/lowers the following: */
prim = PIPE_PRIM_TRIANGLES;
index_size = 4;
instance_count = 1;
primitive_restart = false;
sctx->compute_num_verts_rejected -= total_direct_count;
sctx->compute_num_verts_accepted += total_direct_count;
break;
case SI_PRIM_DISCARD_DISABLED:
break;
case SI_PRIM_DISCARD_DRAW_SPLIT:
sctx->compute_num_verts_rejected -= total_direct_count;
goto return_cleanup;
}
}
if (prim_discard_cs_instancing != sctx->prim_discard_cs_instancing) {
sctx->prim_discard_cs_instancing = prim_discard_cs_instancing;
sctx->do_update_shaders = true;
}
/* Update NGG culling settings. */
struct si_shader_selector *hw_vs;
if (sctx->ngg && !dispatch_prim_discard_cs && rast_prim == PIPE_PRIM_TRIANGLES &&
(hw_vs = si_get_vs(sctx)->cso) &&
(avg_direct_count > hw_vs->ngg_cull_vert_threshold ||
(!index_size &&
avg_direct_count > hw_vs->ngg_cull_nonindexed_fast_launch_vert_threshold &&
prim & ((1 << PIPE_PRIM_TRIANGLES) |
(1 << PIPE_PRIM_TRIANGLE_STRIP))))) {
unsigned ngg_culling = 0;
if (rs->rasterizer_discard) {
ngg_culling |= SI_NGG_CULL_FRONT_FACE | SI_NGG_CULL_BACK_FACE;
} else {
/* Polygon mode can't use view and small primitive culling,
* because it draws points or lines where the culling depends
* on the point or line width.
*/
if (!rs->polygon_mode_enabled)
ngg_culling |= SI_NGG_CULL_VIEW_SMALLPRIMS;
if (sctx->viewports.y_inverted ? rs->cull_back : rs->cull_front)
ngg_culling |= SI_NGG_CULL_FRONT_FACE;
if (sctx->viewports.y_inverted ? rs->cull_front : rs->cull_back)
ngg_culling |= SI_NGG_CULL_BACK_FACE;
}
/* Use NGG fast launch for certain non-indexed primitive types.
* A draw must have at least 1 full primitive.
*/
if (ngg_culling && !index_size && min_direct_count >= 3 && !sctx->tes_shader.cso &&
!sctx->gs_shader.cso) {
if (prim == PIPE_PRIM_TRIANGLES)
ngg_culling |= SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST;
else if (prim == PIPE_PRIM_TRIANGLE_STRIP)
ngg_culling |= SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP;
}
if (ngg_culling != sctx->ngg_culling) {
/* Insert a VGT_FLUSH when enabling fast launch changes to prevent hangs.
* See issues #2418, #2426, #2434
*/
if (ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL)
sctx->flags |= SI_CONTEXT_VGT_FLUSH;
sctx->ngg_culling = ngg_culling;
sctx->do_update_shaders = true;
}
} else if (sctx->ngg_culling) {
sctx->ngg_culling = false;
sctx->do_update_shaders = true;
}
if (sctx->shader_has_inlinable_uniforms_mask &
sctx->inlinable_uniforms_valid_mask &
sctx->inlinable_uniforms_dirty_mask) {
sctx->do_update_shaders = true;
/* If inlinable uniforms are not valid, they are also not dirty, so clear all bits. */
sctx->inlinable_uniforms_dirty_mask = 0;
}
if (unlikely(sctx->do_update_shaders && !si_update_shaders(sctx)))
goto return_cleanup;
si_need_gfx_cs_space(sctx, num_draws);
/* If we're using a secure context, determine if cs must be secure or not */
if (unlikely(radeon_uses_secure_bos(sctx->ws))) {
bool secure = si_gfx_resources_check_encrypted(sctx);
if (secure != sctx->ws->cs_is_secure(sctx->gfx_cs)) {
si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW |
RADEON_FLUSH_TOGGLE_SECURE_SUBMISSION, NULL);
}
}
/* Since we've called si_context_add_resource_size for vertex buffers,
* this must be called after si_need_cs_space, because we must let
* need_cs_space flush before we add buffers to the buffer list.
*/
if (sctx->bo_list_add_all_gfx_resources)
si_gfx_resources_add_all_to_bo_list(sctx);
if (unlikely(!si_upload_graphics_shader_descriptors(sctx) ||
(sctx->vertex_buffers_dirty &&
sctx->num_vertex_elements &&
!si_upload_vertex_buffer_descriptors(sctx))))
goto return_cleanup;
/* Vega10/Raven scissor bug workaround. When any context register is
* written (i.e. the GPU rolls the context), PA_SC_VPORT_SCISSOR
* registers must be written too.
*/
unsigned masked_atoms = 0;
bool gfx9_scissor_bug = false;
if (sctx->screen->info.has_gfx9_scissor_bug) {
masked_atoms |= si_get_atom_bit(sctx, &sctx->atoms.s.scissors);
gfx9_scissor_bug = true;
if (info->count_from_stream_output ||
sctx->dirty_atoms & si_atoms_that_always_roll_context() ||
sctx->dirty_states & si_states_that_always_roll_context())
sctx->context_roll = true;
}
/* Use optimal packet order based on whether we need to sync the pipeline. */
if (unlikely(sctx->flags & (SI_CONTEXT_FLUSH_AND_INV_CB | SI_CONTEXT_FLUSH_AND_INV_DB |
SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH))) {
/* If we have to wait for idle, set all states first, so that all
* SET packets are processed in parallel with previous draw calls.
* Then draw and prefetch at the end. This ensures that the time
* the CUs are idle is very short.
*/
if (unlikely(sctx->flags & SI_CONTEXT_FLUSH_FOR_RENDER_COND))
masked_atoms |= si_get_atom_bit(sctx, &sctx->atoms.s.render_cond);
/* Emit all states except possibly render condition. */
si_emit_all_states(sctx, info, prim, instance_count, min_direct_count,
primitive_restart, masked_atoms);
sctx->emit_cache_flush(sctx);
/* <-- CUs are idle here. */
if (si_is_atom_dirty(sctx, &sctx->atoms.s.render_cond)) {
sctx->atoms.s.render_cond.emit(sctx);
sctx->dirty_atoms &= ~si_get_atom_bit(sctx, &sctx->atoms.s.render_cond);
}
if (gfx9_scissor_bug &&
(sctx->context_roll || si_is_atom_dirty(sctx, &sctx->atoms.s.scissors))) {
sctx->atoms.s.scissors.emit(sctx);
sctx->dirty_atoms &= ~si_get_atom_bit(sctx, &sctx->atoms.s.scissors);
}
assert(sctx->dirty_atoms == 0);
si_emit_draw_packets(sctx, info, draws, num_draws,
indexbuf, index_size, index_offset, instance_count,
dispatch_prim_discard_cs, original_index_size);
/* <-- CUs are busy here. */
/* Start prefetches after the draw has been started. Both will run
* in parallel, but starting the draw first is more important.
*/
if (sctx->chip_class >= GFX7 && sctx->prefetch_L2_mask)
cik_emit_prefetch_L2(sctx, false);
} else {
/* If we don't wait for idle, start prefetches first, then set
* states, and draw at the end.
*/
if (sctx->flags)
sctx->emit_cache_flush(sctx);
/* Only prefetch the API VS and VBO descriptors. */
if (sctx->chip_class >= GFX7 && sctx->prefetch_L2_mask)
cik_emit_prefetch_L2(sctx, true);
si_emit_all_states(sctx, info, prim, instance_count, min_direct_count,
primitive_restart, masked_atoms);
if (gfx9_scissor_bug &&
(sctx->context_roll || si_is_atom_dirty(sctx, &sctx->atoms.s.scissors))) {
sctx->atoms.s.scissors.emit(sctx);
sctx->dirty_atoms &= ~si_get_atom_bit(sctx, &sctx->atoms.s.scissors);
}
assert(sctx->dirty_atoms == 0);
si_emit_draw_packets(sctx, info, draws, num_draws,
indexbuf, index_size, index_offset, instance_count,
dispatch_prim_discard_cs, original_index_size);
/* Prefetch the remaining shaders after the draw has been
* started. */
if (sctx->chip_class >= GFX7 && sctx->prefetch_L2_mask)
cik_emit_prefetch_L2(sctx, false);
}
/* Clear the context roll flag after the draw call. */
sctx->context_roll = false;
if (unlikely(sctx->current_saved_cs)) {
si_trace_emit(sctx);
si_log_draw_state(sctx, sctx->log);
}
/* Workaround for a VGT hang when streamout is enabled.
* It must be done after drawing. */
if ((sctx->family == CHIP_HAWAII || sctx->family == CHIP_TONGA || sctx->family == CHIP_FIJI) &&
si_get_strmout_en(sctx)) {
sctx->flags |= SI_CONTEXT_VGT_STREAMOUT_SYNC;
}
if (unlikely(sctx->decompression_enabled)) {
sctx->num_decompress_calls++;
} else {
sctx->num_draw_calls++;
if (sctx->framebuffer.state.nr_cbufs > 1)
sctx->num_mrt_draw_calls++;
if (primitive_restart)
sctx->num_prim_restart_calls++;
if (G_0286E8_WAVESIZE(sctx->spi_tmpring_size))
sctx->num_spill_draw_calls++;
}
return_cleanup:
if (index_size && indexbuf != info->index.resource)
pipe_resource_reference(&indexbuf, NULL);
}
static void si_draw_vbo(struct pipe_context *ctx,
const struct pipe_draw_info *info)
{
struct pipe_draw_start_count draw = {info->start, info->count};
si_multi_draw_vbo(ctx, info, &draw, 1);
}
static void si_draw_rectangle(struct blitter_context *blitter, void *vertex_elements_cso,
blitter_get_vs_func get_vs, int x1, int y1, int x2, int y2,
float depth, unsigned num_instances, enum blitter_attrib_type type,
const union blitter_attrib *attrib)
{
struct pipe_context *pipe = util_blitter_get_pipe(blitter);
struct si_context *sctx = (struct si_context *)pipe;
/* Pack position coordinates as signed int16. */
sctx->vs_blit_sh_data[0] = (uint32_t)(x1 & 0xffff) | ((uint32_t)(y1 & 0xffff) << 16);
sctx->vs_blit_sh_data[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(y2 & 0xffff) << 16);
sctx->vs_blit_sh_data[2] = fui(depth);
switch (type) {
case UTIL_BLITTER_ATTRIB_COLOR:
memcpy(&sctx->vs_blit_sh_data[3], attrib->color, sizeof(float) * 4);
break;
case UTIL_BLITTER_ATTRIB_TEXCOORD_XY:
case UTIL_BLITTER_ATTRIB_TEXCOORD_XYZW:
memcpy(&sctx->vs_blit_sh_data[3], &attrib->texcoord, sizeof(attrib->texcoord));
break;
case UTIL_BLITTER_ATTRIB_NONE:;
}
pipe->bind_vs_state(pipe, si_get_blitter_vs(sctx, type, num_instances));
struct pipe_draw_info info = {};
info.mode = SI_PRIM_RECTANGLE_LIST;
info.count = 3;
info.instance_count = num_instances;
/* Don't set per-stage shader pointers for VS. */
sctx->shader_pointers_dirty &= ~SI_DESCS_SHADER_MASK(VERTEX);
sctx->vertex_buffer_pointer_dirty = false;
sctx->vertex_buffer_user_sgprs_dirty = false;
si_draw_vbo(pipe, &info);
}
void si_trace_emit(struct si_context *sctx)
{
struct radeon_cmdbuf *cs = sctx->gfx_cs;
uint32_t trace_id = ++sctx->current_saved_cs->trace_id;
si_cp_write_data(sctx, sctx->current_saved_cs->trace_buf, 0, 4, V_370_MEM, V_370_ME, &trace_id);
radeon_emit(cs, PKT3(PKT3_NOP, 0, 0));
radeon_emit(cs, AC_ENCODE_TRACE_POINT(trace_id));
if (sctx->log)
u_log_flush(sctx->log);
}
void si_init_draw_functions(struct si_context *sctx)
{
sctx->b.draw_vbo = si_draw_vbo;
sctx->b.multi_draw = si_multi_draw_vbo;
sctx->blitter->draw_rectangle = si_draw_rectangle;
si_init_ia_multi_vgt_param_table(sctx);
}