| /* |
| * Copyright © 2010 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| * |
| */ |
| |
| #include "brw_eu.h" |
| #include "brw_fs.h" |
| #include "brw_builder.h" |
| #include "brw_cfg.h" |
| #include "util/set.h" |
| #include "util/register_allocate.h" |
| |
| using namespace brw; |
| |
| static void |
| assign_reg(const struct intel_device_info *devinfo, |
| unsigned *reg_hw_locations, brw_reg *reg) |
| { |
| if (reg->file == VGRF) { |
| reg->nr = reg_unit(devinfo) * reg_hw_locations[reg->nr] + reg->offset / REG_SIZE; |
| reg->offset %= REG_SIZE; |
| } |
| } |
| |
| void |
| brw_assign_regs_trivial(fs_visitor &s) |
| { |
| const struct intel_device_info *devinfo = s.devinfo; |
| unsigned *hw_reg_mapping = ralloc_array(NULL, unsigned, s.alloc.count + 1); |
| unsigned i; |
| int reg_width = s.dispatch_width / 8; |
| |
| /* Note that compressed instructions require alignment to 2 registers. */ |
| hw_reg_mapping[0] = ALIGN(s.first_non_payload_grf, reg_width); |
| for (i = 1; i <= s.alloc.count; i++) { |
| hw_reg_mapping[i] = (hw_reg_mapping[i - 1] + |
| DIV_ROUND_UP(s.alloc.sizes[i - 1], |
| reg_unit(devinfo))); |
| } |
| s.grf_used = hw_reg_mapping[s.alloc.count]; |
| |
| foreach_block_and_inst(block, brw_inst, inst, s.cfg) { |
| assign_reg(devinfo, hw_reg_mapping, &inst->dst); |
| for (i = 0; i < inst->sources; i++) { |
| assign_reg(devinfo, hw_reg_mapping, &inst->src[i]); |
| } |
| } |
| |
| if (s.grf_used >= BRW_MAX_GRF) { |
| s.fail("Ran out of regs on trivial allocator (%d/%d)\n", |
| s.grf_used, BRW_MAX_GRF); |
| } else { |
| s.alloc.count = s.grf_used; |
| } |
| |
| ralloc_free(hw_reg_mapping); |
| } |
| |
| extern "C" void |
| brw_fs_alloc_reg_sets(struct brw_compiler *compiler) |
| { |
| const struct intel_device_info *devinfo = compiler->devinfo; |
| int base_reg_count = (devinfo->ver >= 30 ? XE3_MAX_GRF / reg_unit(devinfo) : |
| BRW_MAX_GRF); |
| |
| /* The registers used to make up almost all values handled in the compiler |
| * are a scalar value occupying a single register (or 2 registers in the |
| * case of SIMD16, which is handled by dividing base_reg_count by 2 and |
| * multiplying allocated register numbers by 2). Things that were |
| * aggregates of scalar values at the GLSL level were split to scalar |
| * values by split_virtual_grfs(). |
| * |
| * However, texture SEND messages return a series of contiguous registers |
| * to write into. We currently always ask for 4 registers, but we may |
| * convert that to use less some day. |
| * |
| * Additionally, on gfx5 we need aligned pairs of registers for the PLN |
| * instruction, and on gfx4 we need 8 contiguous regs for workaround simd16 |
| * texturing. |
| */ |
| assert(REG_CLASS_COUNT == MAX_VGRF_SIZE(devinfo) / reg_unit(devinfo)); |
| int class_sizes[REG_CLASS_COUNT]; |
| for (unsigned i = 0; i < REG_CLASS_COUNT; i++) |
| class_sizes[i] = i + 1; |
| |
| struct ra_regs *regs = ra_alloc_reg_set(compiler, base_reg_count, false); |
| if (devinfo->ver < 30) |
| ra_set_allocate_round_robin(regs); |
| struct ra_class **classes = ralloc_array(compiler, struct ra_class *, |
| REG_CLASS_COUNT); |
| |
| /* Now, make the register classes for each size of contiguous register |
| * allocation we might need to make. |
| */ |
| for (int i = 0; i < REG_CLASS_COUNT; i++) { |
| classes[i] = ra_alloc_contig_reg_class(regs, class_sizes[i]); |
| |
| for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg++) |
| ra_class_add_reg(classes[i], reg); |
| } |
| |
| ra_set_finalize(regs, NULL); |
| |
| compiler->reg_set.regs = regs; |
| for (unsigned i = 0; i < ARRAY_SIZE(compiler->reg_set.classes); i++) |
| compiler->reg_set.classes[i] = NULL; |
| for (int i = 0; i < REG_CLASS_COUNT; i++) |
| compiler->reg_set.classes[class_sizes[i] - 1] = classes[i]; |
| } |
| |
| static int |
| count_to_loop_end(const bblock_t *block) |
| { |
| if (block->end()->opcode == BRW_OPCODE_WHILE) |
| return block->end_ip; |
| |
| int depth = 1; |
| /* Skip the first block, since we don't want to count the do the calling |
| * function found. |
| */ |
| for (block = block->next(); |
| depth > 0; |
| block = block->next()) { |
| if (block->start()->opcode == BRW_OPCODE_DO) |
| depth++; |
| if (block->end()->opcode == BRW_OPCODE_WHILE) { |
| depth--; |
| if (depth == 0) |
| return block->end_ip; |
| } |
| } |
| unreachable("not reached"); |
| } |
| |
| void fs_visitor::calculate_payload_ranges(bool allow_spilling, |
| unsigned payload_node_count, |
| int *payload_last_use_ip) const |
| { |
| int loop_depth = 0; |
| int loop_end_ip = 0; |
| |
| for (unsigned i = 0; i < payload_node_count; i++) |
| payload_last_use_ip[i] = -1; |
| |
| int ip = 0; |
| foreach_block_and_inst(block, brw_inst, inst, cfg) { |
| switch (inst->opcode) { |
| case BRW_OPCODE_DO: |
| loop_depth++; |
| |
| /* Since payload regs are deffed only at the start of the shader |
| * execution, any uses of the payload within a loop mean the live |
| * interval extends to the end of the outermost loop. Find the ip of |
| * the end now. |
| */ |
| if (loop_depth == 1) |
| loop_end_ip = count_to_loop_end(block); |
| break; |
| case BRW_OPCODE_WHILE: |
| loop_depth--; |
| break; |
| default: |
| break; |
| } |
| |
| int use_ip; |
| if (loop_depth > 0) |
| use_ip = loop_end_ip; |
| else |
| use_ip = ip; |
| |
| /* Note that UNIFORM args have been turned into FIXED_GRF by |
| * assign_curbe_setup(), and interpolation uses fixed hardware regs from |
| * the start (see interp_reg()). |
| */ |
| for (int i = 0; i < inst->sources; i++) { |
| if (inst->src[i].file == FIXED_GRF) { |
| unsigned reg_nr = inst->src[i].nr; |
| if (reg_nr / reg_unit(devinfo) >= payload_node_count) |
| continue; |
| |
| for (unsigned j = reg_nr / reg_unit(devinfo); |
| j < DIV_ROUND_UP(reg_nr + regs_read(devinfo, inst, i), |
| reg_unit(devinfo)); |
| j++) { |
| payload_last_use_ip[j] = use_ip; |
| assert(j < payload_node_count); |
| } |
| } |
| } |
| |
| if (inst->dst.file == FIXED_GRF) { |
| unsigned reg_nr = inst->dst.nr; |
| if (reg_nr / reg_unit(devinfo) < payload_node_count) { |
| for (unsigned j = reg_nr / reg_unit(devinfo); |
| j < DIV_ROUND_UP(reg_nr + regs_written(inst), |
| reg_unit(devinfo)); |
| j++) { |
| payload_last_use_ip[j] = use_ip; |
| assert(j < payload_node_count); |
| } |
| } |
| } |
| |
| ip++; |
| } |
| |
| /* g0 is needed to construct scratch headers for spilling. While we could |
| * extend its live range each time we spill a register, and update the |
| * interference graph accordingly, this would get pretty messy. Instead, |
| * simply consider g0 live for the whole program if spilling is required. |
| */ |
| if (allow_spilling) |
| payload_last_use_ip[0] = ip - 1; |
| } |
| |
| class brw_reg_alloc { |
| public: |
| brw_reg_alloc(fs_visitor *fs): |
| fs(fs), devinfo(fs->devinfo), compiler(fs->compiler), |
| live(fs->live_analysis.require()), g(NULL), |
| have_spill_costs(false) |
| { |
| mem_ctx = ralloc_context(NULL); |
| |
| /* Stash the number of instructions so we can sanity check that our |
| * counts still match liveness. |
| */ |
| live_instr_count = fs->cfg->last_block()->end_ip + 1; |
| |
| spill_insts = _mesa_pointer_set_create(mem_ctx); |
| |
| /* Most of this allocation was written for a reg_width of 1 |
| * (dispatch_width == 8). In extending to SIMD16, the code was |
| * left in place and it was converted to have the hardware |
| * registers it's allocating be contiguous physical pairs of regs |
| * for reg_width == 2. |
| */ |
| int reg_width = fs->dispatch_width / 8; |
| payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width); |
| |
| /* Get payload IP information */ |
| payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count); |
| |
| node_count = 0; |
| first_payload_node = 0; |
| grf127_send_hack_node = 0; |
| first_vgrf_node = 0; |
| last_vgrf_node = 0; |
| first_spill_node = 0; |
| |
| spill_vgrf_ip = NULL; |
| spill_vgrf_ip_alloc = 0; |
| spill_node_count = 0; |
| } |
| |
| ~brw_reg_alloc() |
| { |
| ralloc_free(mem_ctx); |
| } |
| |
| bool assign_regs(bool allow_spilling, bool spill_all); |
| |
| private: |
| void setup_live_interference(unsigned node, |
| int node_start_ip, int node_end_ip); |
| void setup_inst_interference(const brw_inst *inst); |
| |
| void build_interference_graph(bool allow_spilling); |
| |
| brw_reg build_ex_desc(const brw_builder &bld, unsigned reg_size, bool unspill); |
| |
| brw_reg build_lane_offsets(const brw_builder &bld, |
| uint32_t spill_offset, int ip); |
| brw_reg build_single_offset(const brw_builder &bld, |
| uint32_t spill_offset, int ip); |
| brw_reg build_legacy_scratch_header(const brw_builder &bld, |
| uint32_t spill_offset, int ip); |
| |
| void emit_unspill(const brw_builder &bld, struct brw_shader_stats *stats, |
| brw_reg dst, uint32_t spill_offset, unsigned count, int ip); |
| void emit_spill(const brw_builder &bld, struct brw_shader_stats *stats, |
| brw_reg src, uint32_t spill_offset, unsigned count, int ip); |
| |
| void set_spill_costs(); |
| int choose_spill_reg(); |
| brw_reg alloc_spill_reg(unsigned size, int ip); |
| void spill_reg(unsigned spill_reg); |
| |
| void *mem_ctx; |
| fs_visitor *fs; |
| const intel_device_info *devinfo; |
| const brw_compiler *compiler; |
| const fs_live_variables &live; |
| int live_instr_count; |
| |
| set *spill_insts; |
| |
| ra_graph *g; |
| bool have_spill_costs; |
| |
| int payload_node_count; |
| int *payload_last_use_ip; |
| |
| int node_count; |
| int first_payload_node; |
| int grf127_send_hack_node; |
| int first_vgrf_node; |
| int last_vgrf_node; |
| int first_spill_node; |
| |
| int *spill_vgrf_ip; |
| int spill_vgrf_ip_alloc; |
| int spill_node_count; |
| }; |
| |
| namespace { |
| /** |
| * Maximum spill block size we expect to encounter in 32B units. |
| * |
| * This is somewhat arbitrary and doesn't necessarily limit the maximum |
| * variable size that can be spilled -- A higher value will allow a |
| * variable of a given size to be spilled more efficiently with a smaller |
| * number of scratch messages, but will increase the likelihood of a |
| * collision between the MRFs reserved for spilling and other MRFs used by |
| * the program (and possibly increase GRF register pressure on platforms |
| * without hardware MRFs), what could cause register allocation to fail. |
| * |
| * For the moment reserve just enough space so a register of 32 bit |
| * component type and natural region width can be spilled without splitting |
| * into multiple (force_writemask_all) scratch messages. |
| */ |
| unsigned |
| spill_max_size(const fs_visitor *s) |
| { |
| /* LSC is limited to SIMD16 sends (SIMD32 on Xe2) */ |
| if (s->devinfo->has_lsc) |
| return 2 * reg_unit(s->devinfo); |
| |
| /* FINISHME - On Gfx7+ it should be possible to avoid this limit |
| * altogether by spilling directly from the temporary GRF |
| * allocated to hold the result of the instruction (and the |
| * scratch write header). |
| */ |
| /* FINISHME - The shader's dispatch width probably belongs in |
| * backend_shader (or some nonexistent fs_shader class?) |
| * rather than in the visitor class. |
| */ |
| return s->dispatch_width / 8; |
| } |
| } |
| |
| void |
| brw_reg_alloc::setup_live_interference(unsigned node, |
| int node_start_ip, int node_end_ip) |
| { |
| /* Mark any virtual grf that is live between the start of the program and |
| * the last use of a payload node interfering with that payload node. |
| */ |
| for (int i = 0; i < payload_node_count; i++) { |
| if (payload_last_use_ip[i] == -1) |
| continue; |
| |
| /* Note that we use a <= comparison, unlike vgrfs_interfere(), |
| * in order to not have to worry about the uniform issue described in |
| * calculate_live_intervals(). |
| */ |
| if (node_start_ip <= payload_last_use_ip[i]) |
| ra_add_node_interference(g, node, first_payload_node + i); |
| } |
| |
| /* Add interference with every vgrf whose live range intersects this |
| * node's. We only need to look at nodes below this one as the reflexivity |
| * of interference will take care of the rest. |
| */ |
| for (unsigned n2 = first_vgrf_node; |
| n2 <= (unsigned)last_vgrf_node && n2 < node; n2++) { |
| unsigned vgrf = n2 - first_vgrf_node; |
| if (!(node_end_ip <= live.vgrf_start[vgrf] || |
| live.vgrf_end[vgrf] <= node_start_ip)) |
| ra_add_node_interference(g, node, n2); |
| } |
| } |
| |
| /** |
| * Returns true if this instruction's sources and destinations cannot |
| * safely be the same register. |
| * |
| * In most cases, a register can be written over safely by the same |
| * instruction that is its last use. For a single instruction, the |
| * sources are dereferenced before writing of the destination starts |
| * (naturally). |
| * |
| * However, there are a few cases where this can be problematic: |
| * |
| * - Virtual opcodes that translate to multiple instructions in the |
| * code generator: if src == dst and one instruction writes the |
| * destination before a later instruction reads the source, then |
| * src will have been clobbered. |
| * |
| * - SIMD16 compressed instructions with certain regioning (see below). |
| * |
| * The register allocator uses this information to set up conflicts between |
| * GRF sources and the destination. |
| */ |
| static bool |
| brw_inst_has_source_and_destination_hazard(const brw_inst *inst) |
| { |
| switch (inst->opcode) { |
| case FS_OPCODE_PACK_HALF_2x16_SPLIT: |
| /* Multiple partial writes to the destination */ |
| return true; |
| case SHADER_OPCODE_SHUFFLE: |
| /* This instruction returns an arbitrary channel from the source and |
| * gets split into smaller instructions in the generator. It's possible |
| * that one of the instructions will read from a channel corresponding |
| * to an earlier instruction. |
| */ |
| case SHADER_OPCODE_SEL_EXEC: |
| /* This is implemented as |
| * |
| * mov(16) g4<1>D 0D { align1 WE_all 1H }; |
| * mov(16) g4<1>D g5<8,8,1>D { align1 1H } |
| * |
| * Because the source is only read in the second instruction, the first |
| * may stomp all over it. |
| */ |
| return true; |
| case SHADER_OPCODE_QUAD_SWIZZLE: |
| switch (inst->src[1].ud) { |
| case BRW_SWIZZLE_XXXX: |
| case BRW_SWIZZLE_YYYY: |
| case BRW_SWIZZLE_ZZZZ: |
| case BRW_SWIZZLE_WWWW: |
| case BRW_SWIZZLE_XXZZ: |
| case BRW_SWIZZLE_YYWW: |
| case BRW_SWIZZLE_XYXY: |
| case BRW_SWIZZLE_ZWZW: |
| /* These can be implemented as a single Align1 region on all |
| * platforms, so there's never a hazard between source and |
| * destination. C.f. brw_generator::generate_quad_swizzle(). |
| */ |
| return false; |
| default: |
| return !is_uniform(inst->src[0]); |
| } |
| case BRW_OPCODE_DPAS: |
| /* This is overly conservative. The actual hazard is more complicated to |
| * describe. When the repeat count is N, the single instruction behaves |
| * like N instructions with a repeat count of one, but the destination |
| * and source registers are incremented (in somewhat complex ways) for |
| * each instruction. |
| * |
| * This means the source and destination register is actually a range of |
| * registers. The hazard exists of an earlier iteration would write a |
| * register that should be read by a later iteration. |
| * |
| * There may be some advantage to properly modeling this, but for now, |
| * be overly conservative. |
| */ |
| return inst->rcount > 1; |
| default: |
| /* The SIMD16 compressed instruction |
| * |
| * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F |
| * |
| * is actually decoded in hardware as: |
| * |
| * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F |
| * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F |
| * |
| * Which is safe. However, if we have uniform accesses |
| * happening, we get into trouble: |
| * |
| * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F |
| * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F |
| * |
| * Now our destination for the first instruction overwrote the |
| * second instruction's src0, and we get garbage for those 8 |
| * pixels. There's a similar issue for the pre-gfx6 |
| * pixel_x/pixel_y, which are registers of 16-bit values and thus |
| * would get stomped by the first decode as well. |
| */ |
| if (inst->exec_size == 16) { |
| for (int i = 0; i < inst->sources; i++) { |
| if (inst->src[i].file == VGRF && (inst->src[i].stride == 0 || |
| inst->src[i].type == BRW_TYPE_UW || |
| inst->src[i].type == BRW_TYPE_W || |
| inst->src[i].type == BRW_TYPE_UB || |
| inst->src[i].type == BRW_TYPE_B)) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| } |
| |
| void |
| brw_reg_alloc::setup_inst_interference(const brw_inst *inst) |
| { |
| /* Certain instructions can't safely use the same register for their |
| * sources and destination. Add interference. |
| */ |
| if (inst->dst.file == VGRF && brw_inst_has_source_and_destination_hazard(inst)) { |
| for (unsigned i = 0; i < inst->sources; i++) { |
| if (inst->src[i].file == VGRF) { |
| ra_add_node_interference(g, first_vgrf_node + inst->dst.nr, |
| first_vgrf_node + inst->src[i].nr); |
| } |
| } |
| } |
| |
| /* A compressed instruction is actually two instructions executed |
| * simultaneously. On most platforms, it ok to have the source and |
| * destination registers be the same. In this case, each instruction |
| * over-writes its own source and there's no problem. The real problem |
| * here is if the source and destination registers are off by one. Then |
| * you can end up in a scenario where the first instruction over-writes the |
| * source of the second instruction. Since the compiler doesn't know about |
| * this level of granularity, we simply make the source and destination |
| * interfere. |
| */ |
| if (inst->dst.component_size(inst->exec_size) > REG_SIZE && |
| inst->dst.file == VGRF) { |
| for (int i = 0; i < inst->sources; ++i) { |
| if (inst->src[i].file == VGRF) { |
| ra_add_node_interference(g, first_vgrf_node + inst->dst.nr, |
| first_vgrf_node + inst->src[i].nr); |
| } |
| } |
| } |
| |
| if (grf127_send_hack_node >= 0) { |
| /* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference", |
| * subsection "EUISA Instructions", Send Message (page 990): |
| * |
| * "r127 must not be used for return address when there is a src and |
| * dest overlap in send instruction." |
| * |
| * We are avoiding using grf127 as part of the destination of send |
| * messages adding a node interference to the grf127_send_hack_node. |
| * This node has a fixed assignment to grf127. |
| * |
| * We don't apply it to SIMD16 instructions because previous code avoids |
| * any register overlap between sources and destination. |
| */ |
| if (inst->exec_size < 16 && inst->is_send_from_grf() && |
| inst->dst.file == VGRF) |
| ra_add_node_interference(g, first_vgrf_node + inst->dst.nr, |
| grf127_send_hack_node); |
| } |
| |
| /* From the Skylake PRM Vol. 2a docs for sends: |
| * |
| * "It is required that the second block of GRFs does not overlap with |
| * the first block." |
| * |
| * Normally, this is taken care of by fixup_sends_duplicate_payload() but |
| * in the case where one of the registers is an undefined value, the |
| * register allocator may decide that they don't interfere even though |
| * they're used as sources in the same instruction. We also need to add |
| * interference here. |
| */ |
| if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 && |
| inst->src[2].file == VGRF && inst->src[3].file == VGRF && |
| inst->src[2].nr != inst->src[3].nr) |
| ra_add_node_interference(g, first_vgrf_node + inst->src[2].nr, |
| first_vgrf_node + inst->src[3].nr); |
| |
| /* When we do send-from-GRF for FB writes, we need to ensure that the last |
| * write instruction sends from a high register. This is because the |
| * vertex fetcher wants to start filling the low payload registers while |
| * the pixel data port is still working on writing out the memory. If we |
| * don't do this, we get rendering artifacts. |
| * |
| * We could just do "something high". Instead, we just pick the highest |
| * register that works. |
| */ |
| if (inst->eot && devinfo->ver < 30) { |
| const int vgrf = inst->opcode == SHADER_OPCODE_SEND ? |
| inst->src[2].nr : inst->src[0].nr; |
| const int size = DIV_ROUND_UP(fs->alloc.sizes[vgrf], reg_unit(devinfo)); |
| int reg = BRW_MAX_GRF - size; |
| |
| if (grf127_send_hack_node >= 0) { |
| /* Avoid r127 which might be unusable if the node was previously |
| * written by a SIMD8 SEND message with source/destination overlap. |
| */ |
| reg--; |
| } |
| |
| assert(reg >= 112); |
| ra_set_node_reg(g, first_vgrf_node + vgrf, reg); |
| |
| if (inst->ex_mlen > 0) { |
| const int vgrf = inst->src[3].nr; |
| reg -= DIV_ROUND_UP(fs->alloc.sizes[vgrf], reg_unit(devinfo)); |
| assert(reg >= 112); |
| ra_set_node_reg(g, first_vgrf_node + vgrf, reg); |
| } |
| } |
| } |
| |
| void |
| brw_reg_alloc::build_interference_graph(bool allow_spilling) |
| { |
| /* Compute the RA node layout */ |
| node_count = 0; |
| first_payload_node = node_count; |
| node_count += payload_node_count; |
| |
| grf127_send_hack_node = node_count; |
| node_count++; |
| |
| first_vgrf_node = node_count; |
| node_count += fs->alloc.count; |
| last_vgrf_node = node_count - 1; |
| first_spill_node = node_count; |
| |
| fs->calculate_payload_ranges(allow_spilling, payload_node_count, |
| payload_last_use_ip); |
| |
| assert(g == NULL); |
| g = ra_alloc_interference_graph(compiler->reg_set.regs, node_count); |
| ralloc_steal(mem_ctx, g); |
| |
| /* Set up the payload nodes */ |
| for (int i = 0; i < payload_node_count; i++) |
| ra_set_node_reg(g, first_payload_node + i, i); |
| |
| if (grf127_send_hack_node >= 0) |
| ra_set_node_reg(g, grf127_send_hack_node, 127); |
| |
| /* Specify the classes of each virtual register. */ |
| for (unsigned i = 0; i < fs->alloc.count; i++) { |
| unsigned size = DIV_ROUND_UP(fs->alloc.sizes[i], reg_unit(devinfo)); |
| |
| assert(size <= ARRAY_SIZE(compiler->reg_set.classes) && |
| "Register allocation relies on split_virtual_grfs()"); |
| |
| ra_set_node_class(g, first_vgrf_node + i, |
| compiler->reg_set.classes[size - 1]); |
| } |
| |
| /* Add interference based on the live range of the register */ |
| for (unsigned i = 0; i < fs->alloc.count; i++) { |
| setup_live_interference(first_vgrf_node + i, |
| live.vgrf_start[i], |
| live.vgrf_end[i]); |
| } |
| |
| /* Add interference based on the instructions in which a register is used. |
| */ |
| foreach_block_and_inst(block, brw_inst, inst, fs->cfg) |
| setup_inst_interference(inst); |
| } |
| |
| brw_reg |
| brw_reg_alloc::build_single_offset(const brw_builder &bld, uint32_t spill_offset, int ip) |
| { |
| brw_reg offset = retype(alloc_spill_reg(1, ip), BRW_TYPE_UD); |
| brw_inst *inst = bld.MOV(offset, brw_imm_ud(spill_offset)); |
| _mesa_set_add(spill_insts, inst); |
| return offset; |
| } |
| |
| brw_reg |
| brw_reg_alloc::build_ex_desc(const brw_builder &bld, unsigned reg_size, bool unspill) |
| { |
| /* Use a different area of the address register than what is used in |
| * brw_lower_logical_sends.c (brw_address_reg(2)) so we don't have |
| * interactions between the spill/fill instructions and the other send |
| * messages. |
| */ |
| brw_reg ex_desc = bld.vaddr(BRW_TYPE_UD, |
| BRW_ADDRESS_SUBREG_INDIRECT_SPILL_DESC); |
| brw_inst *inst = bld.exec_all().group(1, 0).AND( |
| ex_desc, |
| retype(brw_vec1_grf(0, 5), BRW_TYPE_UD), |
| brw_imm_ud(INTEL_MASK(31, 10))); |
| _mesa_set_add(spill_insts, inst); |
| |
| const intel_device_info *devinfo = bld.shader->devinfo; |
| if (devinfo->verx10 >= 200) { |
| inst = bld.exec_all().group(1, 0).SHR( |
| ex_desc, ex_desc, brw_imm_ud(4)); |
| _mesa_set_add(spill_insts, inst); |
| } else { |
| if (unspill) { |
| inst = bld.exec_all().group(1, 0).OR( |
| ex_desc, ex_desc, brw_imm_ud(GFX12_SFID_UGM)); |
| _mesa_set_add(spill_insts, inst); |
| } else { |
| inst = bld.exec_all().group(1, 0).OR( |
| ex_desc, ex_desc, |
| brw_imm_ud(brw_message_ex_desc(devinfo, reg_size) | |
| GFX12_SFID_UGM)); |
| _mesa_set_add(spill_insts, inst); |
| } |
| } |
| |
| return ex_desc; |
| } |
| |
| brw_reg |
| brw_reg_alloc::build_lane_offsets(const brw_builder &bld, uint32_t spill_offset, int ip) |
| { |
| assert(bld.dispatch_width() <= 16 * reg_unit(bld.shader->devinfo)); |
| |
| const brw_builder ubld = bld.exec_all(); |
| const unsigned reg_count = ubld.dispatch_width() / 8; |
| |
| brw_reg offset = retype(alloc_spill_reg(reg_count, ip), BRW_TYPE_UD); |
| brw_inst *inst; |
| |
| /* Build an offset per lane in SIMD8 */ |
| inst = ubld.group(8, 0).MOV(retype(offset, BRW_TYPE_UW), |
| brw_imm_uv(0x76543210)); |
| _mesa_set_add(spill_insts, inst); |
| inst = ubld.group(8, 0).MOV(offset, retype(offset, BRW_TYPE_UW)); |
| _mesa_set_add(spill_insts, inst); |
| |
| /* Build offsets in the upper 8 lanes of SIMD16 */ |
| if (ubld.dispatch_width() > 8) { |
| inst = ubld.group(8, 0).ADD( |
| byte_offset(offset, REG_SIZE), |
| byte_offset(offset, 0), |
| brw_imm_ud(8)); |
| _mesa_set_add(spill_insts, inst); |
| } |
| |
| /* Make the offset a dword */ |
| inst = ubld.SHL(offset, offset, brw_imm_ud(2)); |
| _mesa_set_add(spill_insts, inst); |
| |
| /* Build offsets in the upper 16 lanes of SIMD32 */ |
| if (ubld.dispatch_width() > 16) { |
| inst = ubld.group(16, 0).ADD( |
| byte_offset(offset, 2 * REG_SIZE), |
| byte_offset(offset, 0), |
| brw_imm_ud(16 << 2)); |
| _mesa_set_add(spill_insts, inst); |
| } |
| |
| /* Add the base offset */ |
| if (spill_offset) { |
| inst = ubld.ADD(offset, offset, brw_imm_ud(spill_offset)); |
| _mesa_set_add(spill_insts, inst); |
| } |
| |
| return offset; |
| } |
| |
| /** |
| * Generate a scratch header for pre-LSC platforms. |
| */ |
| brw_reg |
| brw_reg_alloc::build_legacy_scratch_header(const brw_builder &bld, |
| uint32_t spill_offset, int ip) |
| { |
| const brw_builder ubld8 = bld.exec_all().group(8, 0); |
| const brw_builder ubld1 = bld.exec_all().group(1, 0); |
| |
| /* Allocate a spill header and make it interfere with g0 */ |
| brw_reg header = retype(alloc_spill_reg(1, ip), BRW_TYPE_UD); |
| ra_add_node_interference(g, first_vgrf_node + header.nr, first_payload_node); |
| |
| brw_inst *inst = |
| ubld8.emit(SHADER_OPCODE_SCRATCH_HEADER, header, brw_ud8_grf(0, 0)); |
| _mesa_set_add(spill_insts, inst); |
| |
| /* Write the scratch offset */ |
| assert(spill_offset % 16 == 0); |
| inst = ubld1.MOV(component(header, 2), brw_imm_ud(spill_offset / 16)); |
| _mesa_set_add(spill_insts, inst); |
| |
| return header; |
| } |
| |
| void |
| brw_reg_alloc::emit_unspill(const brw_builder &bld, |
| struct brw_shader_stats *stats, |
| brw_reg dst, |
| uint32_t spill_offset, unsigned count, int ip) |
| { |
| const intel_device_info *devinfo = bld.shader->devinfo; |
| const unsigned reg_size = dst.component_size(bld.dispatch_width()) / |
| REG_SIZE; |
| |
| for (unsigned i = 0; i < DIV_ROUND_UP(count, reg_size); i++) { |
| ++stats->fill_count; |
| |
| brw_inst *unspill_inst; |
| if (devinfo->verx10 >= 125) { |
| /* LSC is limited to SIMD16 (SIMD32 on Xe2) load/store but we can |
| * load more using transpose messages. |
| */ |
| const bool use_transpose = |
| bld.dispatch_width() > 16 * reg_unit(devinfo) || |
| bld.has_writemask_all(); |
| const brw_builder ubld = use_transpose ? bld.exec_all().group(1, 0) : bld; |
| brw_reg offset; |
| if (use_transpose) { |
| offset = build_single_offset(ubld, spill_offset, ip); |
| } else { |
| offset = build_lane_offsets(ubld, spill_offset, ip); |
| } |
| |
| brw_reg srcs[] = { |
| brw_imm_ud(0), /* desc */ |
| build_ex_desc(bld, reg_size, true), |
| offset, /* payload */ |
| brw_reg(), /* payload2 */ |
| }; |
| |
| uint32_t desc = lsc_msg_desc(devinfo, LSC_OP_LOAD, |
| LSC_ADDR_SURFTYPE_SS, |
| LSC_ADDR_SIZE_A32, |
| LSC_DATA_SIZE_D32, |
| use_transpose ? reg_size * 8 : 1 /* num_channels */, |
| use_transpose, |
| LSC_CACHE(devinfo, LOAD, L1STATE_L3MOCS)); |
| |
| |
| unspill_inst = ubld.emit(SHADER_OPCODE_SEND, dst, |
| srcs, ARRAY_SIZE(srcs)); |
| unspill_inst->sfid = GFX12_SFID_UGM; |
| unspill_inst->header_size = 0; |
| unspill_inst->mlen = lsc_msg_addr_len(devinfo, LSC_ADDR_SIZE_A32, |
| unspill_inst->exec_size); |
| unspill_inst->ex_mlen = 0; |
| unspill_inst->size_written = |
| lsc_msg_dest_len(devinfo, LSC_DATA_SIZE_D32, bld.dispatch_width()) * REG_SIZE; |
| unspill_inst->send_has_side_effects = false; |
| unspill_inst->send_is_volatile = true; |
| |
| unspill_inst->src[0] = brw_imm_ud( |
| desc | |
| brw_message_desc(devinfo, |
| unspill_inst->mlen, |
| unspill_inst->size_written / REG_SIZE, |
| unspill_inst->header_size)); |
| } else { |
| brw_reg header = build_legacy_scratch_header(bld, spill_offset, ip); |
| |
| const unsigned bti = GFX8_BTI_STATELESS_NON_COHERENT; |
| |
| brw_reg srcs[] = { |
| brw_imm_ud(0), /* desc */ |
| brw_imm_ud(0), /* ex_desc */ |
| header |
| }; |
| unspill_inst = bld.emit(SHADER_OPCODE_SEND, dst, |
| srcs, ARRAY_SIZE(srcs)); |
| unspill_inst->mlen = 1; |
| unspill_inst->header_size = 1; |
| unspill_inst->size_written = reg_size * REG_SIZE; |
| unspill_inst->send_has_side_effects = false; |
| unspill_inst->send_is_volatile = true; |
| unspill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE; |
| |
| unspill_inst->src[0] = brw_imm_ud( |
| brw_dp_desc(devinfo, bti, |
| BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ, |
| BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8)) | |
| brw_message_desc(devinfo, |
| unspill_inst->mlen, |
| unspill_inst->size_written / REG_SIZE, |
| unspill_inst->header_size)); |
| } |
| _mesa_set_add(spill_insts, unspill_inst); |
| assert(unspill_inst->force_writemask_all || count % reg_size == 0); |
| |
| dst.offset += reg_size * REG_SIZE; |
| spill_offset += reg_size * REG_SIZE; |
| } |
| } |
| |
| void |
| brw_reg_alloc::emit_spill(const brw_builder &bld, |
| struct brw_shader_stats *stats, |
| brw_reg src, |
| uint32_t spill_offset, unsigned count, int ip) |
| { |
| const intel_device_info *devinfo = bld.shader->devinfo; |
| const unsigned reg_size = src.component_size(bld.dispatch_width()) / |
| REG_SIZE; |
| |
| for (unsigned i = 0; i < DIV_ROUND_UP(count, reg_size); i++) { |
| ++stats->spill_count; |
| |
| brw_inst *spill_inst; |
| if (devinfo->verx10 >= 125) { |
| brw_reg offset = build_lane_offsets(bld, spill_offset, ip); |
| |
| brw_reg srcs[] = { |
| brw_imm_ud(0), /* desc */ |
| build_ex_desc(bld, reg_size, false), |
| offset, /* payload */ |
| src, /* payload2 */ |
| }; |
| spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(), |
| srcs, ARRAY_SIZE(srcs)); |
| spill_inst->sfid = GFX12_SFID_UGM; |
| uint32_t desc = lsc_msg_desc(devinfo, LSC_OP_STORE, |
| LSC_ADDR_SURFTYPE_SS, |
| LSC_ADDR_SIZE_A32, |
| LSC_DATA_SIZE_D32, |
| 1 /* num_channels */, |
| false /* transpose */, |
| LSC_CACHE(devinfo, LOAD, L1STATE_L3MOCS)); |
| spill_inst->header_size = 0; |
| spill_inst->mlen = lsc_msg_addr_len(devinfo, LSC_ADDR_SIZE_A32, |
| bld.dispatch_width()); |
| spill_inst->ex_mlen = reg_size; |
| spill_inst->size_written = 0; |
| spill_inst->send_has_side_effects = true; |
| spill_inst->send_is_volatile = false; |
| |
| spill_inst->src[0] = brw_imm_ud( |
| desc | |
| brw_message_desc(devinfo, |
| spill_inst->mlen, |
| spill_inst->size_written / REG_SIZE, |
| spill_inst->header_size)); |
| } else { |
| brw_reg header = build_legacy_scratch_header(bld, spill_offset, ip); |
| |
| const unsigned bti = GFX8_BTI_STATELESS_NON_COHERENT; |
| brw_reg srcs[] = { |
| brw_imm_ud(0), /* desc */ |
| brw_imm_ud(0), /* ex_desc */ |
| header, |
| src |
| }; |
| spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(), |
| srcs, ARRAY_SIZE(srcs)); |
| spill_inst->mlen = 1; |
| spill_inst->ex_mlen = reg_size; |
| spill_inst->size_written = 0; |
| spill_inst->header_size = 1; |
| spill_inst->send_has_side_effects = true; |
| spill_inst->send_is_volatile = false; |
| spill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE; |
| |
| spill_inst->src[0] = brw_imm_ud( |
| brw_dp_desc(devinfo, bti, |
| GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE, |
| BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8)) | |
| brw_message_desc(devinfo, |
| spill_inst->mlen, |
| spill_inst->size_written / REG_SIZE, |
| spill_inst->header_size)); |
| spill_inst->src[1] = brw_imm_ud( |
| brw_message_ex_desc(devinfo, spill_inst->ex_mlen)); |
| } |
| _mesa_set_add(spill_insts, spill_inst); |
| assert(spill_inst->force_writemask_all || count % reg_size == 0); |
| |
| src.offset += reg_size * REG_SIZE; |
| spill_offset += reg_size * REG_SIZE; |
| } |
| } |
| |
| void |
| brw_reg_alloc::set_spill_costs() |
| { |
| float block_scale = 1.0; |
| float *spill_costs = rzalloc_array(NULL, float, fs->alloc.count); |
| |
| /* Calculate costs for spilling nodes. Call it a cost of 1 per |
| * spill/unspill we'll have to do, and guess that the insides of |
| * loops run 10 times. |
| */ |
| foreach_block_and_inst(block, brw_inst, inst, fs->cfg) { |
| for (unsigned int i = 0; i < inst->sources; i++) { |
| if (inst->src[i].file == VGRF) |
| spill_costs[inst->src[i].nr] += regs_read(devinfo, inst, i) * block_scale; |
| } |
| |
| if (inst->dst.file == VGRF) |
| spill_costs[inst->dst.nr] += regs_written(inst) * block_scale; |
| |
| /* Don't spill anything we generated while spilling */ |
| if (_mesa_set_search(spill_insts, inst)) { |
| for (unsigned int i = 0; i < inst->sources; i++) { |
| if (inst->src[i].file == VGRF) |
| spill_costs[inst->src[i].nr] = INFINITY; |
| } |
| if (inst->dst.file == VGRF) |
| spill_costs[inst->dst.nr] = INFINITY; |
| } |
| |
| switch (inst->opcode) { |
| |
| case BRW_OPCODE_DO: |
| block_scale *= 10; |
| break; |
| |
| case BRW_OPCODE_WHILE: |
| block_scale /= 10; |
| break; |
| |
| case BRW_OPCODE_IF: |
| block_scale *= 0.5; |
| break; |
| |
| case BRW_OPCODE_ENDIF: |
| block_scale /= 0.5; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| for (unsigned i = 0; i < fs->alloc.count; i++) { |
| /* Do the no_spill check first. Registers that are used as spill |
| * temporaries may have been allocated after we calculated liveness so |
| * we shouldn't look their liveness up. Fortunately, they're always |
| * used in SCRATCH_READ/WRITE instructions so they'll always be flagged |
| * no_spill. |
| */ |
| if (isinf(spill_costs[i])) |
| continue; |
| |
| int live_length = live.vgrf_end[i] - live.vgrf_start[i]; |
| if (live_length <= 0) |
| continue; |
| |
| /* Divide the cost (in number of spills/fills) by the log of the length |
| * of the live range of the register. This will encourage spill logic |
| * to spill long-living things before spilling short-lived things where |
| * spilling is less likely to actually do us any good. We use the log |
| * of the length because it will fall off very quickly and not cause us |
| * to spill medium length registers with more uses. |
| */ |
| float adjusted_cost = spill_costs[i] / logf(live_length); |
| ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost); |
| } |
| |
| have_spill_costs = true; |
| |
| ralloc_free(spill_costs); |
| } |
| |
| int |
| brw_reg_alloc::choose_spill_reg() |
| { |
| if (!have_spill_costs) |
| set_spill_costs(); |
| |
| int node = ra_get_best_spill_node(g); |
| if (node < 0) |
| return -1; |
| |
| assert(node >= first_vgrf_node); |
| return node - first_vgrf_node; |
| } |
| |
| brw_reg |
| brw_reg_alloc::alloc_spill_reg(unsigned size, int ip) |
| { |
| int vgrf = fs->alloc.allocate(ALIGN(size, reg_unit(devinfo))); |
| int class_idx = DIV_ROUND_UP(size, reg_unit(devinfo)) - 1; |
| int n = ra_add_node(g, compiler->reg_set.classes[class_idx]); |
| assert(n == first_vgrf_node + vgrf); |
| assert(n == first_spill_node + spill_node_count); |
| |
| setup_live_interference(n, ip - 1, ip + 1); |
| |
| /* Add interference between this spill node and any other spill nodes for |
| * the same instruction. |
| */ |
| for (int s = 0; s < spill_node_count; s++) { |
| if (spill_vgrf_ip[s] == ip) |
| ra_add_node_interference(g, n, first_spill_node + s); |
| } |
| |
| /* Add this spill node to the list for next time */ |
| if (spill_node_count >= spill_vgrf_ip_alloc) { |
| if (spill_vgrf_ip_alloc == 0) |
| spill_vgrf_ip_alloc = 16; |
| else |
| spill_vgrf_ip_alloc *= 2; |
| spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int, |
| spill_vgrf_ip_alloc); |
| } |
| spill_vgrf_ip[spill_node_count++] = ip; |
| |
| return brw_vgrf(vgrf, BRW_TYPE_F); |
| } |
| |
| void |
| brw_reg_alloc::spill_reg(unsigned spill_reg) |
| { |
| int size = fs->alloc.sizes[spill_reg]; |
| unsigned int spill_offset = fs->last_scratch; |
| assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */ |
| |
| fs->spilled_any_registers = true; |
| |
| fs->last_scratch += align(size * REG_SIZE, REG_SIZE * reg_unit(devinfo)); |
| |
| /* We're about to replace all uses of this register. It no longer |
| * conflicts with anything so we can get rid of its interference. |
| */ |
| ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0); |
| ra_reset_node_interference(g, first_vgrf_node + spill_reg); |
| |
| /* Generate spill/unspill instructions for the objects being |
| * spilled. Right now, we spill or unspill the whole thing to a |
| * virtual grf of the same size. For most instructions, though, we |
| * could just spill/unspill the GRF being accessed. |
| */ |
| int ip = 0; |
| foreach_block_and_inst (block, brw_inst, inst, fs->cfg) { |
| const brw_builder ibld = brw_builder(fs, block, inst); |
| exec_node *before = inst->prev; |
| exec_node *after = inst->next; |
| |
| for (unsigned int i = 0; i < inst->sources; i++) { |
| if (inst->src[i].file == VGRF && |
| inst->src[i].nr == spill_reg) { |
| /* Count registers needed in units of physical registers */ |
| int count = align(regs_read(devinfo, inst, i), reg_unit(devinfo)); |
| /* Align the spilling offset the physical register size */ |
| int subset_spill_offset = spill_offset + |
| ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE * reg_unit(devinfo)); |
| brw_reg unspill_dst = alloc_spill_reg(count, ip); |
| |
| inst->src[i].nr = unspill_dst.nr; |
| /* The unspilled register is aligned to physical register, so |
| * adjust the offset to the remaining within the physical register |
| * size. |
| */ |
| inst->src[i].offset %= REG_SIZE * reg_unit(devinfo); |
| |
| /* We read the largest power-of-two divisor of the register count |
| * (because only POT scratch read blocks are allowed by the |
| * hardware) up to the maximum supported block size. |
| */ |
| const unsigned width = |
| MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1)); |
| |
| /* Set exec_all() on unspill messages under the (rather |
| * pessimistic) assumption that there is no one-to-one |
| * correspondence between channels of the spilled variable in |
| * scratch space and the scratch read message, which operates on |
| * 32 bit channels. It shouldn't hurt in any case because the |
| * unspill destination is a block-local temporary. |
| */ |
| emit_unspill(ibld.exec_all().group(width, 0), &fs->shader_stats, |
| unspill_dst, subset_spill_offset, count, ip); |
| } |
| } |
| |
| if (inst->dst.file == VGRF && |
| inst->dst.nr == spill_reg && |
| inst->opcode != SHADER_OPCODE_UNDEF) { |
| /* Count registers needed in units of physical registers */ |
| int count = align(regs_written(inst), reg_unit(devinfo)); |
| /* Align the spilling offset the physical register size */ |
| int subset_spill_offset = spill_offset + |
| ROUND_DOWN_TO(inst->dst.offset, reg_unit(devinfo) * REG_SIZE); |
| brw_reg spill_src = alloc_spill_reg(count, ip); |
| |
| inst->dst.nr = spill_src.nr; |
| /* The spilled register is aligned to physical register, so adjust |
| * the offset to the remaining within the physical register size. |
| */ |
| inst->dst.offset %= REG_SIZE * reg_unit(devinfo); |
| |
| /* If we're immediately spilling the register, we should not use |
| * destination dependency hints. Doing so will cause the GPU do |
| * try to read and write the register at the same time and may |
| * hang the GPU. |
| */ |
| inst->no_dd_clear = false; |
| inst->no_dd_check = false; |
| |
| /* Calculate the execution width of the scratch messages (which work |
| * in terms of 32 bit components so we have a fixed number of eight |
| * channels per spilled register). We attempt to write one |
| * exec_size-wide component of the variable at a time without |
| * exceeding the maximum number of (fake) MRF registers reserved for |
| * spills. |
| */ |
| const unsigned width = 8 * reg_unit(devinfo) * |
| DIV_ROUND_UP(MIN2(inst->dst.component_size(inst->exec_size), |
| spill_max_size(fs) * REG_SIZE), |
| reg_unit(devinfo) * REG_SIZE); |
| |
| /* Spills should only write data initialized by the instruction for |
| * whichever channels are enabled in the execution mask. If that's |
| * not possible we'll have to emit a matching unspill before the |
| * instruction and set force_writemask_all on the spill. |
| */ |
| const bool per_channel = |
| inst->dst.is_contiguous() && |
| brw_type_size_bytes(inst->dst.type) == 4 && |
| inst->exec_size == width; |
| |
| /* Builder used to emit the scratch messages. */ |
| const brw_builder ubld = ibld.exec_all(!per_channel).group(width, 0); |
| |
| /* If our write is going to affect just part of the |
| * regs_written(inst), then we need to unspill the destination since |
| * we write back out all of the regs_written(). If the original |
| * instruction had force_writemask_all set and is not a partial |
| * write, there should be no need for the unspill since the |
| * instruction will be overwriting the whole destination in any case. |
| */ |
| if (inst->is_partial_write() || |
| (!inst->force_writemask_all && !per_channel)) |
| emit_unspill(ubld, &fs->shader_stats, spill_src, |
| subset_spill_offset, regs_written(inst), ip); |
| |
| emit_spill(ubld.at(block, inst->next), &fs->shader_stats, spill_src, |
| subset_spill_offset, regs_written(inst), ip); |
| } |
| |
| for (brw_inst *inst = (brw_inst *)before->next; |
| inst != after; inst = (brw_inst *)inst->next) |
| setup_inst_interference(inst); |
| |
| /* We don't advance the ip for scratch read/write instructions |
| * because we consider them to have the same ip as instruction we're |
| * spilling around for the purposes of interference. Also, we're |
| * inserting spill instructions without re-running liveness analysis |
| * and we don't want to mess up our IPs. |
| */ |
| if (!_mesa_set_search(spill_insts, inst)) |
| ip++; |
| } |
| |
| assert(ip == live_instr_count); |
| } |
| |
| bool |
| brw_reg_alloc::assign_regs(bool allow_spilling, bool spill_all) |
| { |
| build_interference_graph(allow_spilling); |
| |
| unsigned spilled = 0; |
| while (1) { |
| /* Debug of register spilling: Go spill everything. */ |
| if (unlikely(spill_all)) { |
| int reg = choose_spill_reg(); |
| if (reg != -1) { |
| spill_reg(reg); |
| continue; |
| } |
| } |
| |
| if (ra_allocate(g)) |
| break; |
| |
| if (!allow_spilling) |
| return false; |
| |
| /* Failed to allocate registers. Spill some regs, and the caller will |
| * loop back into here to try again. |
| */ |
| unsigned nr_spills = 1; |
| if (compiler->spilling_rate) |
| nr_spills = MAX2(1, spilled / compiler->spilling_rate); |
| |
| for (unsigned j = 0; j < nr_spills; j++) { |
| int reg = choose_spill_reg(); |
| if (reg == -1) { |
| if (j == 0) |
| return false; /* Nothing to spill */ |
| break; |
| } |
| |
| spill_reg(reg); |
| spilled++; |
| } |
| } |
| |
| if (spilled) |
| fs->invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); |
| |
| /* Get the chosen virtual registers for each node, and map virtual |
| * regs in the register classes back down to real hardware reg |
| * numbers. |
| */ |
| unsigned *hw_reg_mapping = ralloc_array(NULL, unsigned, fs->alloc.count); |
| fs->grf_used = fs->first_non_payload_grf; |
| for (unsigned i = 0; i < fs->alloc.count; i++) { |
| int reg = ra_get_node_reg(g, first_vgrf_node + i); |
| |
| hw_reg_mapping[i] = reg; |
| fs->grf_used = MAX2(fs->grf_used, |
| hw_reg_mapping[i] + DIV_ROUND_UP(fs->alloc.sizes[i], |
| reg_unit(devinfo))); |
| } |
| |
| foreach_block_and_inst(block, brw_inst, inst, fs->cfg) { |
| assign_reg(devinfo, hw_reg_mapping, &inst->dst); |
| for (int i = 0; i < inst->sources; i++) { |
| assign_reg(devinfo, hw_reg_mapping, &inst->src[i]); |
| } |
| } |
| |
| fs->alloc.count = fs->grf_used; |
| |
| ralloc_free(hw_reg_mapping); |
| |
| return true; |
| } |
| |
| bool |
| brw_assign_regs(fs_visitor &s, bool allow_spilling, bool spill_all) |
| { |
| brw_reg_alloc alloc(&s); |
| bool success = alloc.assign_regs(allow_spilling, spill_all); |
| if (!success && allow_spilling) { |
| s.fail("no register to spill:\n"); |
| brw_print_instructions(s); |
| } |
| return success; |
| } |