blob: 4fa013b470d6a945ad60713417952df8f3a518e2 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "brw_eu.h"
#include "brw_fs.h"
#include "brw_builder.h"
#include "brw_cfg.h"
#include "util/set.h"
#include "util/register_allocate.h"
using namespace brw;
static void
assign_reg(const struct intel_device_info *devinfo,
unsigned *reg_hw_locations, brw_reg *reg)
{
if (reg->file == VGRF) {
reg->nr = reg_unit(devinfo) * reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
reg->offset %= REG_SIZE;
}
}
void
brw_assign_regs_trivial(fs_visitor &s)
{
const struct intel_device_info *devinfo = s.devinfo;
unsigned *hw_reg_mapping = ralloc_array(NULL, unsigned, s.alloc.count + 1);
unsigned i;
int reg_width = s.dispatch_width / 8;
/* Note that compressed instructions require alignment to 2 registers. */
hw_reg_mapping[0] = ALIGN(s.first_non_payload_grf, reg_width);
for (i = 1; i <= s.alloc.count; i++) {
hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
DIV_ROUND_UP(s.alloc.sizes[i - 1],
reg_unit(devinfo)));
}
s.grf_used = hw_reg_mapping[s.alloc.count];
foreach_block_and_inst(block, brw_inst, inst, s.cfg) {
assign_reg(devinfo, hw_reg_mapping, &inst->dst);
for (i = 0; i < inst->sources; i++) {
assign_reg(devinfo, hw_reg_mapping, &inst->src[i]);
}
}
if (s.grf_used >= BRW_MAX_GRF) {
s.fail("Ran out of regs on trivial allocator (%d/%d)\n",
s.grf_used, BRW_MAX_GRF);
} else {
s.alloc.count = s.grf_used;
}
ralloc_free(hw_reg_mapping);
}
extern "C" void
brw_fs_alloc_reg_sets(struct brw_compiler *compiler)
{
const struct intel_device_info *devinfo = compiler->devinfo;
int base_reg_count = (devinfo->ver >= 30 ? XE3_MAX_GRF / reg_unit(devinfo) :
BRW_MAX_GRF);
/* The registers used to make up almost all values handled in the compiler
* are a scalar value occupying a single register (or 2 registers in the
* case of SIMD16, which is handled by dividing base_reg_count by 2 and
* multiplying allocated register numbers by 2). Things that were
* aggregates of scalar values at the GLSL level were split to scalar
* values by split_virtual_grfs().
*
* However, texture SEND messages return a series of contiguous registers
* to write into. We currently always ask for 4 registers, but we may
* convert that to use less some day.
*
* Additionally, on gfx5 we need aligned pairs of registers for the PLN
* instruction, and on gfx4 we need 8 contiguous regs for workaround simd16
* texturing.
*/
assert(REG_CLASS_COUNT == MAX_VGRF_SIZE(devinfo) / reg_unit(devinfo));
int class_sizes[REG_CLASS_COUNT];
for (unsigned i = 0; i < REG_CLASS_COUNT; i++)
class_sizes[i] = i + 1;
struct ra_regs *regs = ra_alloc_reg_set(compiler, base_reg_count, false);
if (devinfo->ver < 30)
ra_set_allocate_round_robin(regs);
struct ra_class **classes = ralloc_array(compiler, struct ra_class *,
REG_CLASS_COUNT);
/* Now, make the register classes for each size of contiguous register
* allocation we might need to make.
*/
for (int i = 0; i < REG_CLASS_COUNT; i++) {
classes[i] = ra_alloc_contig_reg_class(regs, class_sizes[i]);
for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg++)
ra_class_add_reg(classes[i], reg);
}
ra_set_finalize(regs, NULL);
compiler->reg_set.regs = regs;
for (unsigned i = 0; i < ARRAY_SIZE(compiler->reg_set.classes); i++)
compiler->reg_set.classes[i] = NULL;
for (int i = 0; i < REG_CLASS_COUNT; i++)
compiler->reg_set.classes[class_sizes[i] - 1] = classes[i];
}
static int
count_to_loop_end(const bblock_t *block)
{
if (block->end()->opcode == BRW_OPCODE_WHILE)
return block->end_ip;
int depth = 1;
/* Skip the first block, since we don't want to count the do the calling
* function found.
*/
for (block = block->next();
depth > 0;
block = block->next()) {
if (block->start()->opcode == BRW_OPCODE_DO)
depth++;
if (block->end()->opcode == BRW_OPCODE_WHILE) {
depth--;
if (depth == 0)
return block->end_ip;
}
}
unreachable("not reached");
}
void fs_visitor::calculate_payload_ranges(bool allow_spilling,
unsigned payload_node_count,
int *payload_last_use_ip) const
{
int loop_depth = 0;
int loop_end_ip = 0;
for (unsigned i = 0; i < payload_node_count; i++)
payload_last_use_ip[i] = -1;
int ip = 0;
foreach_block_and_inst(block, brw_inst, inst, cfg) {
switch (inst->opcode) {
case BRW_OPCODE_DO:
loop_depth++;
/* Since payload regs are deffed only at the start of the shader
* execution, any uses of the payload within a loop mean the live
* interval extends to the end of the outermost loop. Find the ip of
* the end now.
*/
if (loop_depth == 1)
loop_end_ip = count_to_loop_end(block);
break;
case BRW_OPCODE_WHILE:
loop_depth--;
break;
default:
break;
}
int use_ip;
if (loop_depth > 0)
use_ip = loop_end_ip;
else
use_ip = ip;
/* Note that UNIFORM args have been turned into FIXED_GRF by
* assign_curbe_setup(), and interpolation uses fixed hardware regs from
* the start (see interp_reg()).
*/
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == FIXED_GRF) {
unsigned reg_nr = inst->src[i].nr;
if (reg_nr / reg_unit(devinfo) >= payload_node_count)
continue;
for (unsigned j = reg_nr / reg_unit(devinfo);
j < DIV_ROUND_UP(reg_nr + regs_read(devinfo, inst, i),
reg_unit(devinfo));
j++) {
payload_last_use_ip[j] = use_ip;
assert(j < payload_node_count);
}
}
}
if (inst->dst.file == FIXED_GRF) {
unsigned reg_nr = inst->dst.nr;
if (reg_nr / reg_unit(devinfo) < payload_node_count) {
for (unsigned j = reg_nr / reg_unit(devinfo);
j < DIV_ROUND_UP(reg_nr + regs_written(inst),
reg_unit(devinfo));
j++) {
payload_last_use_ip[j] = use_ip;
assert(j < payload_node_count);
}
}
}
ip++;
}
/* g0 is needed to construct scratch headers for spilling. While we could
* extend its live range each time we spill a register, and update the
* interference graph accordingly, this would get pretty messy. Instead,
* simply consider g0 live for the whole program if spilling is required.
*/
if (allow_spilling)
payload_last_use_ip[0] = ip - 1;
}
class brw_reg_alloc {
public:
brw_reg_alloc(fs_visitor *fs):
fs(fs), devinfo(fs->devinfo), compiler(fs->compiler),
live(fs->live_analysis.require()), g(NULL),
have_spill_costs(false)
{
mem_ctx = ralloc_context(NULL);
/* Stash the number of instructions so we can sanity check that our
* counts still match liveness.
*/
live_instr_count = fs->cfg->last_block()->end_ip + 1;
spill_insts = _mesa_pointer_set_create(mem_ctx);
/* Most of this allocation was written for a reg_width of 1
* (dispatch_width == 8). In extending to SIMD16, the code was
* left in place and it was converted to have the hardware
* registers it's allocating be contiguous physical pairs of regs
* for reg_width == 2.
*/
int reg_width = fs->dispatch_width / 8;
payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width);
/* Get payload IP information */
payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count);
node_count = 0;
first_payload_node = 0;
grf127_send_hack_node = 0;
first_vgrf_node = 0;
last_vgrf_node = 0;
first_spill_node = 0;
spill_vgrf_ip = NULL;
spill_vgrf_ip_alloc = 0;
spill_node_count = 0;
}
~brw_reg_alloc()
{
ralloc_free(mem_ctx);
}
bool assign_regs(bool allow_spilling, bool spill_all);
private:
void setup_live_interference(unsigned node,
int node_start_ip, int node_end_ip);
void setup_inst_interference(const brw_inst *inst);
void build_interference_graph(bool allow_spilling);
brw_reg build_ex_desc(const brw_builder &bld, unsigned reg_size, bool unspill);
brw_reg build_lane_offsets(const brw_builder &bld,
uint32_t spill_offset, int ip);
brw_reg build_single_offset(const brw_builder &bld,
uint32_t spill_offset, int ip);
brw_reg build_legacy_scratch_header(const brw_builder &bld,
uint32_t spill_offset, int ip);
void emit_unspill(const brw_builder &bld, struct brw_shader_stats *stats,
brw_reg dst, uint32_t spill_offset, unsigned count, int ip);
void emit_spill(const brw_builder &bld, struct brw_shader_stats *stats,
brw_reg src, uint32_t spill_offset, unsigned count, int ip);
void set_spill_costs();
int choose_spill_reg();
brw_reg alloc_spill_reg(unsigned size, int ip);
void spill_reg(unsigned spill_reg);
void *mem_ctx;
fs_visitor *fs;
const intel_device_info *devinfo;
const brw_compiler *compiler;
const fs_live_variables &live;
int live_instr_count;
set *spill_insts;
ra_graph *g;
bool have_spill_costs;
int payload_node_count;
int *payload_last_use_ip;
int node_count;
int first_payload_node;
int grf127_send_hack_node;
int first_vgrf_node;
int last_vgrf_node;
int first_spill_node;
int *spill_vgrf_ip;
int spill_vgrf_ip_alloc;
int spill_node_count;
};
namespace {
/**
* Maximum spill block size we expect to encounter in 32B units.
*
* This is somewhat arbitrary and doesn't necessarily limit the maximum
* variable size that can be spilled -- A higher value will allow a
* variable of a given size to be spilled more efficiently with a smaller
* number of scratch messages, but will increase the likelihood of a
* collision between the MRFs reserved for spilling and other MRFs used by
* the program (and possibly increase GRF register pressure on platforms
* without hardware MRFs), what could cause register allocation to fail.
*
* For the moment reserve just enough space so a register of 32 bit
* component type and natural region width can be spilled without splitting
* into multiple (force_writemask_all) scratch messages.
*/
unsigned
spill_max_size(const fs_visitor *s)
{
/* LSC is limited to SIMD16 sends (SIMD32 on Xe2) */
if (s->devinfo->has_lsc)
return 2 * reg_unit(s->devinfo);
/* FINISHME - On Gfx7+ it should be possible to avoid this limit
* altogether by spilling directly from the temporary GRF
* allocated to hold the result of the instruction (and the
* scratch write header).
*/
/* FINISHME - The shader's dispatch width probably belongs in
* backend_shader (or some nonexistent fs_shader class?)
* rather than in the visitor class.
*/
return s->dispatch_width / 8;
}
}
void
brw_reg_alloc::setup_live_interference(unsigned node,
int node_start_ip, int node_end_ip)
{
/* Mark any virtual grf that is live between the start of the program and
* the last use of a payload node interfering with that payload node.
*/
for (int i = 0; i < payload_node_count; i++) {
if (payload_last_use_ip[i] == -1)
continue;
/* Note that we use a <= comparison, unlike vgrfs_interfere(),
* in order to not have to worry about the uniform issue described in
* calculate_live_intervals().
*/
if (node_start_ip <= payload_last_use_ip[i])
ra_add_node_interference(g, node, first_payload_node + i);
}
/* Add interference with every vgrf whose live range intersects this
* node's. We only need to look at nodes below this one as the reflexivity
* of interference will take care of the rest.
*/
for (unsigned n2 = first_vgrf_node;
n2 <= (unsigned)last_vgrf_node && n2 < node; n2++) {
unsigned vgrf = n2 - first_vgrf_node;
if (!(node_end_ip <= live.vgrf_start[vgrf] ||
live.vgrf_end[vgrf] <= node_start_ip))
ra_add_node_interference(g, node, n2);
}
}
/**
* Returns true if this instruction's sources and destinations cannot
* safely be the same register.
*
* In most cases, a register can be written over safely by the same
* instruction that is its last use. For a single instruction, the
* sources are dereferenced before writing of the destination starts
* (naturally).
*
* However, there are a few cases where this can be problematic:
*
* - Virtual opcodes that translate to multiple instructions in the
* code generator: if src == dst and one instruction writes the
* destination before a later instruction reads the source, then
* src will have been clobbered.
*
* - SIMD16 compressed instructions with certain regioning (see below).
*
* The register allocator uses this information to set up conflicts between
* GRF sources and the destination.
*/
static bool
brw_inst_has_source_and_destination_hazard(const brw_inst *inst)
{
switch (inst->opcode) {
case FS_OPCODE_PACK_HALF_2x16_SPLIT:
/* Multiple partial writes to the destination */
return true;
case SHADER_OPCODE_SHUFFLE:
/* This instruction returns an arbitrary channel from the source and
* gets split into smaller instructions in the generator. It's possible
* that one of the instructions will read from a channel corresponding
* to an earlier instruction.
*/
case SHADER_OPCODE_SEL_EXEC:
/* This is implemented as
*
* mov(16) g4<1>D 0D { align1 WE_all 1H };
* mov(16) g4<1>D g5<8,8,1>D { align1 1H }
*
* Because the source is only read in the second instruction, the first
* may stomp all over it.
*/
return true;
case SHADER_OPCODE_QUAD_SWIZZLE:
switch (inst->src[1].ud) {
case BRW_SWIZZLE_XXXX:
case BRW_SWIZZLE_YYYY:
case BRW_SWIZZLE_ZZZZ:
case BRW_SWIZZLE_WWWW:
case BRW_SWIZZLE_XXZZ:
case BRW_SWIZZLE_YYWW:
case BRW_SWIZZLE_XYXY:
case BRW_SWIZZLE_ZWZW:
/* These can be implemented as a single Align1 region on all
* platforms, so there's never a hazard between source and
* destination. C.f. brw_generator::generate_quad_swizzle().
*/
return false;
default:
return !is_uniform(inst->src[0]);
}
case BRW_OPCODE_DPAS:
/* This is overly conservative. The actual hazard is more complicated to
* describe. When the repeat count is N, the single instruction behaves
* like N instructions with a repeat count of one, but the destination
* and source registers are incremented (in somewhat complex ways) for
* each instruction.
*
* This means the source and destination register is actually a range of
* registers. The hazard exists of an earlier iteration would write a
* register that should be read by a later iteration.
*
* There may be some advantage to properly modeling this, but for now,
* be overly conservative.
*/
return inst->rcount > 1;
default:
/* The SIMD16 compressed instruction
*
* add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
*
* is actually decoded in hardware as:
*
* add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
* add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
*
* Which is safe. However, if we have uniform accesses
* happening, we get into trouble:
*
* add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
* add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
*
* Now our destination for the first instruction overwrote the
* second instruction's src0, and we get garbage for those 8
* pixels. There's a similar issue for the pre-gfx6
* pixel_x/pixel_y, which are registers of 16-bit values and thus
* would get stomped by the first decode as well.
*/
if (inst->exec_size == 16) {
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF && (inst->src[i].stride == 0 ||
inst->src[i].type == BRW_TYPE_UW ||
inst->src[i].type == BRW_TYPE_W ||
inst->src[i].type == BRW_TYPE_UB ||
inst->src[i].type == BRW_TYPE_B)) {
return true;
}
}
}
return false;
}
}
void
brw_reg_alloc::setup_inst_interference(const brw_inst *inst)
{
/* Certain instructions can't safely use the same register for their
* sources and destination. Add interference.
*/
if (inst->dst.file == VGRF && brw_inst_has_source_and_destination_hazard(inst)) {
for (unsigned i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF) {
ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
first_vgrf_node + inst->src[i].nr);
}
}
}
/* A compressed instruction is actually two instructions executed
* simultaneously. On most platforms, it ok to have the source and
* destination registers be the same. In this case, each instruction
* over-writes its own source and there's no problem. The real problem
* here is if the source and destination registers are off by one. Then
* you can end up in a scenario where the first instruction over-writes the
* source of the second instruction. Since the compiler doesn't know about
* this level of granularity, we simply make the source and destination
* interfere.
*/
if (inst->dst.component_size(inst->exec_size) > REG_SIZE &&
inst->dst.file == VGRF) {
for (int i = 0; i < inst->sources; ++i) {
if (inst->src[i].file == VGRF) {
ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
first_vgrf_node + inst->src[i].nr);
}
}
}
if (grf127_send_hack_node >= 0) {
/* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference",
* subsection "EUISA Instructions", Send Message (page 990):
*
* "r127 must not be used for return address when there is a src and
* dest overlap in send instruction."
*
* We are avoiding using grf127 as part of the destination of send
* messages adding a node interference to the grf127_send_hack_node.
* This node has a fixed assignment to grf127.
*
* We don't apply it to SIMD16 instructions because previous code avoids
* any register overlap between sources and destination.
*/
if (inst->exec_size < 16 && inst->is_send_from_grf() &&
inst->dst.file == VGRF)
ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
grf127_send_hack_node);
}
/* From the Skylake PRM Vol. 2a docs for sends:
*
* "It is required that the second block of GRFs does not overlap with
* the first block."
*
* Normally, this is taken care of by fixup_sends_duplicate_payload() but
* in the case where one of the registers is an undefined value, the
* register allocator may decide that they don't interfere even though
* they're used as sources in the same instruction. We also need to add
* interference here.
*/
if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
inst->src[2].file == VGRF && inst->src[3].file == VGRF &&
inst->src[2].nr != inst->src[3].nr)
ra_add_node_interference(g, first_vgrf_node + inst->src[2].nr,
first_vgrf_node + inst->src[3].nr);
/* When we do send-from-GRF for FB writes, we need to ensure that the last
* write instruction sends from a high register. This is because the
* vertex fetcher wants to start filling the low payload registers while
* the pixel data port is still working on writing out the memory. If we
* don't do this, we get rendering artifacts.
*
* We could just do "something high". Instead, we just pick the highest
* register that works.
*/
if (inst->eot && devinfo->ver < 30) {
const int vgrf = inst->opcode == SHADER_OPCODE_SEND ?
inst->src[2].nr : inst->src[0].nr;
const int size = DIV_ROUND_UP(fs->alloc.sizes[vgrf], reg_unit(devinfo));
int reg = BRW_MAX_GRF - size;
if (grf127_send_hack_node >= 0) {
/* Avoid r127 which might be unusable if the node was previously
* written by a SIMD8 SEND message with source/destination overlap.
*/
reg--;
}
assert(reg >= 112);
ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
if (inst->ex_mlen > 0) {
const int vgrf = inst->src[3].nr;
reg -= DIV_ROUND_UP(fs->alloc.sizes[vgrf], reg_unit(devinfo));
assert(reg >= 112);
ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
}
}
}
void
brw_reg_alloc::build_interference_graph(bool allow_spilling)
{
/* Compute the RA node layout */
node_count = 0;
first_payload_node = node_count;
node_count += payload_node_count;
grf127_send_hack_node = node_count;
node_count++;
first_vgrf_node = node_count;
node_count += fs->alloc.count;
last_vgrf_node = node_count - 1;
first_spill_node = node_count;
fs->calculate_payload_ranges(allow_spilling, payload_node_count,
payload_last_use_ip);
assert(g == NULL);
g = ra_alloc_interference_graph(compiler->reg_set.regs, node_count);
ralloc_steal(mem_ctx, g);
/* Set up the payload nodes */
for (int i = 0; i < payload_node_count; i++)
ra_set_node_reg(g, first_payload_node + i, i);
if (grf127_send_hack_node >= 0)
ra_set_node_reg(g, grf127_send_hack_node, 127);
/* Specify the classes of each virtual register. */
for (unsigned i = 0; i < fs->alloc.count; i++) {
unsigned size = DIV_ROUND_UP(fs->alloc.sizes[i], reg_unit(devinfo));
assert(size <= ARRAY_SIZE(compiler->reg_set.classes) &&
"Register allocation relies on split_virtual_grfs()");
ra_set_node_class(g, first_vgrf_node + i,
compiler->reg_set.classes[size - 1]);
}
/* Add interference based on the live range of the register */
for (unsigned i = 0; i < fs->alloc.count; i++) {
setup_live_interference(first_vgrf_node + i,
live.vgrf_start[i],
live.vgrf_end[i]);
}
/* Add interference based on the instructions in which a register is used.
*/
foreach_block_and_inst(block, brw_inst, inst, fs->cfg)
setup_inst_interference(inst);
}
brw_reg
brw_reg_alloc::build_single_offset(const brw_builder &bld, uint32_t spill_offset, int ip)
{
brw_reg offset = retype(alloc_spill_reg(1, ip), BRW_TYPE_UD);
brw_inst *inst = bld.MOV(offset, brw_imm_ud(spill_offset));
_mesa_set_add(spill_insts, inst);
return offset;
}
brw_reg
brw_reg_alloc::build_ex_desc(const brw_builder &bld, unsigned reg_size, bool unspill)
{
/* Use a different area of the address register than what is used in
* brw_lower_logical_sends.c (brw_address_reg(2)) so we don't have
* interactions between the spill/fill instructions and the other send
* messages.
*/
brw_reg ex_desc = bld.vaddr(BRW_TYPE_UD,
BRW_ADDRESS_SUBREG_INDIRECT_SPILL_DESC);
brw_inst *inst = bld.exec_all().group(1, 0).AND(
ex_desc,
retype(brw_vec1_grf(0, 5), BRW_TYPE_UD),
brw_imm_ud(INTEL_MASK(31, 10)));
_mesa_set_add(spill_insts, inst);
const intel_device_info *devinfo = bld.shader->devinfo;
if (devinfo->verx10 >= 200) {
inst = bld.exec_all().group(1, 0).SHR(
ex_desc, ex_desc, brw_imm_ud(4));
_mesa_set_add(spill_insts, inst);
} else {
if (unspill) {
inst = bld.exec_all().group(1, 0).OR(
ex_desc, ex_desc, brw_imm_ud(GFX12_SFID_UGM));
_mesa_set_add(spill_insts, inst);
} else {
inst = bld.exec_all().group(1, 0).OR(
ex_desc, ex_desc,
brw_imm_ud(brw_message_ex_desc(devinfo, reg_size) |
GFX12_SFID_UGM));
_mesa_set_add(spill_insts, inst);
}
}
return ex_desc;
}
brw_reg
brw_reg_alloc::build_lane_offsets(const brw_builder &bld, uint32_t spill_offset, int ip)
{
assert(bld.dispatch_width() <= 16 * reg_unit(bld.shader->devinfo));
const brw_builder ubld = bld.exec_all();
const unsigned reg_count = ubld.dispatch_width() / 8;
brw_reg offset = retype(alloc_spill_reg(reg_count, ip), BRW_TYPE_UD);
brw_inst *inst;
/* Build an offset per lane in SIMD8 */
inst = ubld.group(8, 0).MOV(retype(offset, BRW_TYPE_UW),
brw_imm_uv(0x76543210));
_mesa_set_add(spill_insts, inst);
inst = ubld.group(8, 0).MOV(offset, retype(offset, BRW_TYPE_UW));
_mesa_set_add(spill_insts, inst);
/* Build offsets in the upper 8 lanes of SIMD16 */
if (ubld.dispatch_width() > 8) {
inst = ubld.group(8, 0).ADD(
byte_offset(offset, REG_SIZE),
byte_offset(offset, 0),
brw_imm_ud(8));
_mesa_set_add(spill_insts, inst);
}
/* Make the offset a dword */
inst = ubld.SHL(offset, offset, brw_imm_ud(2));
_mesa_set_add(spill_insts, inst);
/* Build offsets in the upper 16 lanes of SIMD32 */
if (ubld.dispatch_width() > 16) {
inst = ubld.group(16, 0).ADD(
byte_offset(offset, 2 * REG_SIZE),
byte_offset(offset, 0),
brw_imm_ud(16 << 2));
_mesa_set_add(spill_insts, inst);
}
/* Add the base offset */
if (spill_offset) {
inst = ubld.ADD(offset, offset, brw_imm_ud(spill_offset));
_mesa_set_add(spill_insts, inst);
}
return offset;
}
/**
* Generate a scratch header for pre-LSC platforms.
*/
brw_reg
brw_reg_alloc::build_legacy_scratch_header(const brw_builder &bld,
uint32_t spill_offset, int ip)
{
const brw_builder ubld8 = bld.exec_all().group(8, 0);
const brw_builder ubld1 = bld.exec_all().group(1, 0);
/* Allocate a spill header and make it interfere with g0 */
brw_reg header = retype(alloc_spill_reg(1, ip), BRW_TYPE_UD);
ra_add_node_interference(g, first_vgrf_node + header.nr, first_payload_node);
brw_inst *inst =
ubld8.emit(SHADER_OPCODE_SCRATCH_HEADER, header, brw_ud8_grf(0, 0));
_mesa_set_add(spill_insts, inst);
/* Write the scratch offset */
assert(spill_offset % 16 == 0);
inst = ubld1.MOV(component(header, 2), brw_imm_ud(spill_offset / 16));
_mesa_set_add(spill_insts, inst);
return header;
}
void
brw_reg_alloc::emit_unspill(const brw_builder &bld,
struct brw_shader_stats *stats,
brw_reg dst,
uint32_t spill_offset, unsigned count, int ip)
{
const intel_device_info *devinfo = bld.shader->devinfo;
const unsigned reg_size = dst.component_size(bld.dispatch_width()) /
REG_SIZE;
for (unsigned i = 0; i < DIV_ROUND_UP(count, reg_size); i++) {
++stats->fill_count;
brw_inst *unspill_inst;
if (devinfo->verx10 >= 125) {
/* LSC is limited to SIMD16 (SIMD32 on Xe2) load/store but we can
* load more using transpose messages.
*/
const bool use_transpose =
bld.dispatch_width() > 16 * reg_unit(devinfo) ||
bld.has_writemask_all();
const brw_builder ubld = use_transpose ? bld.exec_all().group(1, 0) : bld;
brw_reg offset;
if (use_transpose) {
offset = build_single_offset(ubld, spill_offset, ip);
} else {
offset = build_lane_offsets(ubld, spill_offset, ip);
}
brw_reg srcs[] = {
brw_imm_ud(0), /* desc */
build_ex_desc(bld, reg_size, true),
offset, /* payload */
brw_reg(), /* payload2 */
};
uint32_t desc = lsc_msg_desc(devinfo, LSC_OP_LOAD,
LSC_ADDR_SURFTYPE_SS,
LSC_ADDR_SIZE_A32,
LSC_DATA_SIZE_D32,
use_transpose ? reg_size * 8 : 1 /* num_channels */,
use_transpose,
LSC_CACHE(devinfo, LOAD, L1STATE_L3MOCS));
unspill_inst = ubld.emit(SHADER_OPCODE_SEND, dst,
srcs, ARRAY_SIZE(srcs));
unspill_inst->sfid = GFX12_SFID_UGM;
unspill_inst->header_size = 0;
unspill_inst->mlen = lsc_msg_addr_len(devinfo, LSC_ADDR_SIZE_A32,
unspill_inst->exec_size);
unspill_inst->ex_mlen = 0;
unspill_inst->size_written =
lsc_msg_dest_len(devinfo, LSC_DATA_SIZE_D32, bld.dispatch_width()) * REG_SIZE;
unspill_inst->send_has_side_effects = false;
unspill_inst->send_is_volatile = true;
unspill_inst->src[0] = brw_imm_ud(
desc |
brw_message_desc(devinfo,
unspill_inst->mlen,
unspill_inst->size_written / REG_SIZE,
unspill_inst->header_size));
} else {
brw_reg header = build_legacy_scratch_header(bld, spill_offset, ip);
const unsigned bti = GFX8_BTI_STATELESS_NON_COHERENT;
brw_reg srcs[] = {
brw_imm_ud(0), /* desc */
brw_imm_ud(0), /* ex_desc */
header
};
unspill_inst = bld.emit(SHADER_OPCODE_SEND, dst,
srcs, ARRAY_SIZE(srcs));
unspill_inst->mlen = 1;
unspill_inst->header_size = 1;
unspill_inst->size_written = reg_size * REG_SIZE;
unspill_inst->send_has_side_effects = false;
unspill_inst->send_is_volatile = true;
unspill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
unspill_inst->src[0] = brw_imm_ud(
brw_dp_desc(devinfo, bti,
BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ,
BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8)) |
brw_message_desc(devinfo,
unspill_inst->mlen,
unspill_inst->size_written / REG_SIZE,
unspill_inst->header_size));
}
_mesa_set_add(spill_insts, unspill_inst);
assert(unspill_inst->force_writemask_all || count % reg_size == 0);
dst.offset += reg_size * REG_SIZE;
spill_offset += reg_size * REG_SIZE;
}
}
void
brw_reg_alloc::emit_spill(const brw_builder &bld,
struct brw_shader_stats *stats,
brw_reg src,
uint32_t spill_offset, unsigned count, int ip)
{
const intel_device_info *devinfo = bld.shader->devinfo;
const unsigned reg_size = src.component_size(bld.dispatch_width()) /
REG_SIZE;
for (unsigned i = 0; i < DIV_ROUND_UP(count, reg_size); i++) {
++stats->spill_count;
brw_inst *spill_inst;
if (devinfo->verx10 >= 125) {
brw_reg offset = build_lane_offsets(bld, spill_offset, ip);
brw_reg srcs[] = {
brw_imm_ud(0), /* desc */
build_ex_desc(bld, reg_size, false),
offset, /* payload */
src, /* payload2 */
};
spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(),
srcs, ARRAY_SIZE(srcs));
spill_inst->sfid = GFX12_SFID_UGM;
uint32_t desc = lsc_msg_desc(devinfo, LSC_OP_STORE,
LSC_ADDR_SURFTYPE_SS,
LSC_ADDR_SIZE_A32,
LSC_DATA_SIZE_D32,
1 /* num_channels */,
false /* transpose */,
LSC_CACHE(devinfo, LOAD, L1STATE_L3MOCS));
spill_inst->header_size = 0;
spill_inst->mlen = lsc_msg_addr_len(devinfo, LSC_ADDR_SIZE_A32,
bld.dispatch_width());
spill_inst->ex_mlen = reg_size;
spill_inst->size_written = 0;
spill_inst->send_has_side_effects = true;
spill_inst->send_is_volatile = false;
spill_inst->src[0] = brw_imm_ud(
desc |
brw_message_desc(devinfo,
spill_inst->mlen,
spill_inst->size_written / REG_SIZE,
spill_inst->header_size));
} else {
brw_reg header = build_legacy_scratch_header(bld, spill_offset, ip);
const unsigned bti = GFX8_BTI_STATELESS_NON_COHERENT;
brw_reg srcs[] = {
brw_imm_ud(0), /* desc */
brw_imm_ud(0), /* ex_desc */
header,
src
};
spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(),
srcs, ARRAY_SIZE(srcs));
spill_inst->mlen = 1;
spill_inst->ex_mlen = reg_size;
spill_inst->size_written = 0;
spill_inst->header_size = 1;
spill_inst->send_has_side_effects = true;
spill_inst->send_is_volatile = false;
spill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
spill_inst->src[0] = brw_imm_ud(
brw_dp_desc(devinfo, bti,
GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE,
BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8)) |
brw_message_desc(devinfo,
spill_inst->mlen,
spill_inst->size_written / REG_SIZE,
spill_inst->header_size));
spill_inst->src[1] = brw_imm_ud(
brw_message_ex_desc(devinfo, spill_inst->ex_mlen));
}
_mesa_set_add(spill_insts, spill_inst);
assert(spill_inst->force_writemask_all || count % reg_size == 0);
src.offset += reg_size * REG_SIZE;
spill_offset += reg_size * REG_SIZE;
}
}
void
brw_reg_alloc::set_spill_costs()
{
float block_scale = 1.0;
float *spill_costs = rzalloc_array(NULL, float, fs->alloc.count);
/* Calculate costs for spilling nodes. Call it a cost of 1 per
* spill/unspill we'll have to do, and guess that the insides of
* loops run 10 times.
*/
foreach_block_and_inst(block, brw_inst, inst, fs->cfg) {
for (unsigned int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF)
spill_costs[inst->src[i].nr] += regs_read(devinfo, inst, i) * block_scale;
}
if (inst->dst.file == VGRF)
spill_costs[inst->dst.nr] += regs_written(inst) * block_scale;
/* Don't spill anything we generated while spilling */
if (_mesa_set_search(spill_insts, inst)) {
for (unsigned int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF)
spill_costs[inst->src[i].nr] = INFINITY;
}
if (inst->dst.file == VGRF)
spill_costs[inst->dst.nr] = INFINITY;
}
switch (inst->opcode) {
case BRW_OPCODE_DO:
block_scale *= 10;
break;
case BRW_OPCODE_WHILE:
block_scale /= 10;
break;
case BRW_OPCODE_IF:
block_scale *= 0.5;
break;
case BRW_OPCODE_ENDIF:
block_scale /= 0.5;
break;
default:
break;
}
}
for (unsigned i = 0; i < fs->alloc.count; i++) {
/* Do the no_spill check first. Registers that are used as spill
* temporaries may have been allocated after we calculated liveness so
* we shouldn't look their liveness up. Fortunately, they're always
* used in SCRATCH_READ/WRITE instructions so they'll always be flagged
* no_spill.
*/
if (isinf(spill_costs[i]))
continue;
int live_length = live.vgrf_end[i] - live.vgrf_start[i];
if (live_length <= 0)
continue;
/* Divide the cost (in number of spills/fills) by the log of the length
* of the live range of the register. This will encourage spill logic
* to spill long-living things before spilling short-lived things where
* spilling is less likely to actually do us any good. We use the log
* of the length because it will fall off very quickly and not cause us
* to spill medium length registers with more uses.
*/
float adjusted_cost = spill_costs[i] / logf(live_length);
ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost);
}
have_spill_costs = true;
ralloc_free(spill_costs);
}
int
brw_reg_alloc::choose_spill_reg()
{
if (!have_spill_costs)
set_spill_costs();
int node = ra_get_best_spill_node(g);
if (node < 0)
return -1;
assert(node >= first_vgrf_node);
return node - first_vgrf_node;
}
brw_reg
brw_reg_alloc::alloc_spill_reg(unsigned size, int ip)
{
int vgrf = fs->alloc.allocate(ALIGN(size, reg_unit(devinfo)));
int class_idx = DIV_ROUND_UP(size, reg_unit(devinfo)) - 1;
int n = ra_add_node(g, compiler->reg_set.classes[class_idx]);
assert(n == first_vgrf_node + vgrf);
assert(n == first_spill_node + spill_node_count);
setup_live_interference(n, ip - 1, ip + 1);
/* Add interference between this spill node and any other spill nodes for
* the same instruction.
*/
for (int s = 0; s < spill_node_count; s++) {
if (spill_vgrf_ip[s] == ip)
ra_add_node_interference(g, n, first_spill_node + s);
}
/* Add this spill node to the list for next time */
if (spill_node_count >= spill_vgrf_ip_alloc) {
if (spill_vgrf_ip_alloc == 0)
spill_vgrf_ip_alloc = 16;
else
spill_vgrf_ip_alloc *= 2;
spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int,
spill_vgrf_ip_alloc);
}
spill_vgrf_ip[spill_node_count++] = ip;
return brw_vgrf(vgrf, BRW_TYPE_F);
}
void
brw_reg_alloc::spill_reg(unsigned spill_reg)
{
int size = fs->alloc.sizes[spill_reg];
unsigned int spill_offset = fs->last_scratch;
assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
fs->spilled_any_registers = true;
fs->last_scratch += align(size * REG_SIZE, REG_SIZE * reg_unit(devinfo));
/* We're about to replace all uses of this register. It no longer
* conflicts with anything so we can get rid of its interference.
*/
ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0);
ra_reset_node_interference(g, first_vgrf_node + spill_reg);
/* Generate spill/unspill instructions for the objects being
* spilled. Right now, we spill or unspill the whole thing to a
* virtual grf of the same size. For most instructions, though, we
* could just spill/unspill the GRF being accessed.
*/
int ip = 0;
foreach_block_and_inst (block, brw_inst, inst, fs->cfg) {
const brw_builder ibld = brw_builder(fs, block, inst);
exec_node *before = inst->prev;
exec_node *after = inst->next;
for (unsigned int i = 0; i < inst->sources; i++) {
if (inst->src[i].file == VGRF &&
inst->src[i].nr == spill_reg) {
/* Count registers needed in units of physical registers */
int count = align(regs_read(devinfo, inst, i), reg_unit(devinfo));
/* Align the spilling offset the physical register size */
int subset_spill_offset = spill_offset +
ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE * reg_unit(devinfo));
brw_reg unspill_dst = alloc_spill_reg(count, ip);
inst->src[i].nr = unspill_dst.nr;
/* The unspilled register is aligned to physical register, so
* adjust the offset to the remaining within the physical register
* size.
*/
inst->src[i].offset %= REG_SIZE * reg_unit(devinfo);
/* We read the largest power-of-two divisor of the register count
* (because only POT scratch read blocks are allowed by the
* hardware) up to the maximum supported block size.
*/
const unsigned width =
MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1));
/* Set exec_all() on unspill messages under the (rather
* pessimistic) assumption that there is no one-to-one
* correspondence between channels of the spilled variable in
* scratch space and the scratch read message, which operates on
* 32 bit channels. It shouldn't hurt in any case because the
* unspill destination is a block-local temporary.
*/
emit_unspill(ibld.exec_all().group(width, 0), &fs->shader_stats,
unspill_dst, subset_spill_offset, count, ip);
}
}
if (inst->dst.file == VGRF &&
inst->dst.nr == spill_reg &&
inst->opcode != SHADER_OPCODE_UNDEF) {
/* Count registers needed in units of physical registers */
int count = align(regs_written(inst), reg_unit(devinfo));
/* Align the spilling offset the physical register size */
int subset_spill_offset = spill_offset +
ROUND_DOWN_TO(inst->dst.offset, reg_unit(devinfo) * REG_SIZE);
brw_reg spill_src = alloc_spill_reg(count, ip);
inst->dst.nr = spill_src.nr;
/* The spilled register is aligned to physical register, so adjust
* the offset to the remaining within the physical register size.
*/
inst->dst.offset %= REG_SIZE * reg_unit(devinfo);
/* If we're immediately spilling the register, we should not use
* destination dependency hints. Doing so will cause the GPU do
* try to read and write the register at the same time and may
* hang the GPU.
*/
inst->no_dd_clear = false;
inst->no_dd_check = false;
/* Calculate the execution width of the scratch messages (which work
* in terms of 32 bit components so we have a fixed number of eight
* channels per spilled register). We attempt to write one
* exec_size-wide component of the variable at a time without
* exceeding the maximum number of (fake) MRF registers reserved for
* spills.
*/
const unsigned width = 8 * reg_unit(devinfo) *
DIV_ROUND_UP(MIN2(inst->dst.component_size(inst->exec_size),
spill_max_size(fs) * REG_SIZE),
reg_unit(devinfo) * REG_SIZE);
/* Spills should only write data initialized by the instruction for
* whichever channels are enabled in the execution mask. If that's
* not possible we'll have to emit a matching unspill before the
* instruction and set force_writemask_all on the spill.
*/
const bool per_channel =
inst->dst.is_contiguous() &&
brw_type_size_bytes(inst->dst.type) == 4 &&
inst->exec_size == width;
/* Builder used to emit the scratch messages. */
const brw_builder ubld = ibld.exec_all(!per_channel).group(width, 0);
/* If our write is going to affect just part of the
* regs_written(inst), then we need to unspill the destination since
* we write back out all of the regs_written(). If the original
* instruction had force_writemask_all set and is not a partial
* write, there should be no need for the unspill since the
* instruction will be overwriting the whole destination in any case.
*/
if (inst->is_partial_write() ||
(!inst->force_writemask_all && !per_channel))
emit_unspill(ubld, &fs->shader_stats, spill_src,
subset_spill_offset, regs_written(inst), ip);
emit_spill(ubld.at(block, inst->next), &fs->shader_stats, spill_src,
subset_spill_offset, regs_written(inst), ip);
}
for (brw_inst *inst = (brw_inst *)before->next;
inst != after; inst = (brw_inst *)inst->next)
setup_inst_interference(inst);
/* We don't advance the ip for scratch read/write instructions
* because we consider them to have the same ip as instruction we're
* spilling around for the purposes of interference. Also, we're
* inserting spill instructions without re-running liveness analysis
* and we don't want to mess up our IPs.
*/
if (!_mesa_set_search(spill_insts, inst))
ip++;
}
assert(ip == live_instr_count);
}
bool
brw_reg_alloc::assign_regs(bool allow_spilling, bool spill_all)
{
build_interference_graph(allow_spilling);
unsigned spilled = 0;
while (1) {
/* Debug of register spilling: Go spill everything. */
if (unlikely(spill_all)) {
int reg = choose_spill_reg();
if (reg != -1) {
spill_reg(reg);
continue;
}
}
if (ra_allocate(g))
break;
if (!allow_spilling)
return false;
/* Failed to allocate registers. Spill some regs, and the caller will
* loop back into here to try again.
*/
unsigned nr_spills = 1;
if (compiler->spilling_rate)
nr_spills = MAX2(1, spilled / compiler->spilling_rate);
for (unsigned j = 0; j < nr_spills; j++) {
int reg = choose_spill_reg();
if (reg == -1) {
if (j == 0)
return false; /* Nothing to spill */
break;
}
spill_reg(reg);
spilled++;
}
}
if (spilled)
fs->invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
/* Get the chosen virtual registers for each node, and map virtual
* regs in the register classes back down to real hardware reg
* numbers.
*/
unsigned *hw_reg_mapping = ralloc_array(NULL, unsigned, fs->alloc.count);
fs->grf_used = fs->first_non_payload_grf;
for (unsigned i = 0; i < fs->alloc.count; i++) {
int reg = ra_get_node_reg(g, first_vgrf_node + i);
hw_reg_mapping[i] = reg;
fs->grf_used = MAX2(fs->grf_used,
hw_reg_mapping[i] + DIV_ROUND_UP(fs->alloc.sizes[i],
reg_unit(devinfo)));
}
foreach_block_and_inst(block, brw_inst, inst, fs->cfg) {
assign_reg(devinfo, hw_reg_mapping, &inst->dst);
for (int i = 0; i < inst->sources; i++) {
assign_reg(devinfo, hw_reg_mapping, &inst->src[i]);
}
}
fs->alloc.count = fs->grf_used;
ralloc_free(hw_reg_mapping);
return true;
}
bool
brw_assign_regs(fs_visitor &s, bool allow_spilling, bool spill_all)
{
brw_reg_alloc alloc(&s);
bool success = alloc.assign_regs(allow_spilling, spill_all);
if (!success && allow_spilling) {
s.fail("no register to spill:\n");
brw_print_instructions(s);
}
return success;
}