blob: 1e8600c6ad1af1415c8c504a9f65f8a63f71f394 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
* SPDX-License-Identifier: MIT
*/
#include "brw_fs.h"
#include "brw_builder.h"
using namespace brw;
/**
* Align16 3-source instructions cannot have scalar stride w/64-bit types.
*
* The Bspec says:
*
* Replicate Control. This field is only present in three-source
* instructions, for each of the three source operands. It controls
* replication of the starting channel to all channels in the execution
* size. ChanSel does not apply when Replicate Control is set. This is
* applicable to 32b datatypes and 16b datatype. 64b datatypes cannot use
* the replicate control.
*
* In practice, this can only happen on Gfx9 with DF sources to MAD. Since
* the source is_scalar, this can be fixed by just making the stride=1. Also
* clear is_scalar "just in case."
*/
bool
brw_lower_scalar_fp64_MAD(fs_visitor &s)
{
const intel_device_info *devinfo = s.devinfo;
bool progress = false;
if (devinfo->ver != 9)
return false;
foreach_block_and_inst_safe(block, brw_inst, inst, s.cfg) {
if (inst->opcode == BRW_OPCODE_MAD &&
inst->dst.type == BRW_TYPE_DF) {
for (unsigned i = 0; i < 3; i++) {
if (inst->src[i].is_scalar) {
inst->src[i].is_scalar = false;
inst->src[i].stride = 1;
progress = true;
}
}
}
}
return progress;
}
bool
brw_lower_load_payload(fs_visitor &s)
{
bool progress = false;
foreach_block_and_inst_safe (block, brw_inst, inst, s.cfg) {
if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
continue;
assert(inst->dst.file == VGRF);
assert(inst->saturate == false);
brw_reg dst = inst->dst;
const brw_builder ibld(&s, block, inst);
const brw_builder ubld = ibld.exec_all();
for (uint8_t i = 0; i < inst->header_size;) {
/* Number of header GRFs to initialize at once with a single MOV
* instruction.
*/
const unsigned n =
(i + 1 < inst->header_size && inst->src[i].stride == 1 &&
inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ?
2 : 1;
if (inst->src[i].file != BAD_FILE)
ubld.group(8 * n, 0).MOV(retype(dst, BRW_TYPE_UD),
retype(inst->src[i], BRW_TYPE_UD));
dst = byte_offset(dst, n * REG_SIZE);
i += n;
}
for (uint8_t i = inst->header_size; i < inst->sources; i++) {
dst.type = inst->src[i].type;
if (inst->src[i].file != BAD_FILE) {
ibld.MOV(dst, inst->src[i]);
}
dst = offset(dst, ibld, 1);
}
inst->remove(block);
progress = true;
}
if (progress)
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
return progress;
}
/**
* Lower CSEL with unsupported types to CMP+SEL.
*
* Or, for unsigned ==/!= comparisons, simply change the types.
*/
bool
brw_lower_csel(fs_visitor &s)
{
const intel_device_info *devinfo = s.devinfo;
bool progress = false;
foreach_block_and_inst_safe(block, brw_inst, inst, s.cfg) {
if (inst->opcode != BRW_OPCODE_CSEL)
continue;
bool supported = false;
enum brw_reg_type orig_type = inst->src[2].type;
enum brw_reg_type new_type = orig_type;
switch (orig_type) {
case BRW_TYPE_F:
/* Gfx9 CSEL can only do F */
supported = true;
break;
case BRW_TYPE_HF:
case BRW_TYPE_W:
case BRW_TYPE_D:
/* Gfx11+ CSEL can do HF, W, and D. Note that we can't simply
* retype integer ==/!= comparisons as float on earlier hardware
* because it breaks for 0x8000000 and 0 (-0.0 == 0.0).
*/
supported = devinfo->ver >= 11;
break;
case BRW_TYPE_UW:
case BRW_TYPE_UD:
/* CSEL doesn't support UW/UD but we can simply retype to use the
* signed types when comparing with == or !=.
*/
supported = devinfo->ver >= 11 &&
(inst->conditional_mod == BRW_CONDITIONAL_EQ ||
inst->conditional_mod == BRW_CONDITIONAL_NEQ);
/* Bspec 47408, Gfx125+ CSEL does support the both signed and unsigned
* integer types.
*/
if (devinfo->verx10 < 125) {
new_type = inst->src[2].type == BRW_TYPE_UD ?
BRW_TYPE_D : BRW_TYPE_W;
}
break;
default:
break;
}
if (!supported) {
const brw_builder ibld(&s, block, inst);
/* CSEL: dst = src2 <op> 0 ? src0 : src1 */
brw_reg zero = brw_imm_reg(orig_type);
ibld.CMP(retype(brw_null_reg(), orig_type),
inst->src[2], zero, inst->conditional_mod);
inst->opcode = BRW_OPCODE_SEL;
inst->predicate = BRW_PREDICATE_NORMAL;
inst->conditional_mod = BRW_CONDITIONAL_NONE;
inst->resize_sources(2);
progress = true;
} else if (new_type != orig_type) {
inst->src[0].type = new_type;
inst->src[1].type = new_type;
inst->src[2].type = new_type;
progress = true;
}
}
if (progress)
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
return progress;
}
bool
brw_lower_sub_sat(fs_visitor &s)
{
bool progress = false;
foreach_block_and_inst_safe(block, brw_inst, inst, s.cfg) {
const brw_builder ibld(&s, block, inst);
if (inst->opcode == SHADER_OPCODE_USUB_SAT ||
inst->opcode == SHADER_OPCODE_ISUB_SAT) {
/* The fundamental problem is the hardware performs source negation
* at the bit width of the source. If the source is 0x80000000D, the
* negation is 0x80000000D. As a result, subtractSaturate(0,
* 0x80000000) will produce 0x80000000 instead of 0x7fffffff. There
* are at least three ways to resolve this:
*
* 1. Use the accumulator for the negated source. The accumulator is
* 33 bits, so our source 0x80000000 is sign-extended to
* 0x1800000000. The negation of which is 0x080000000. This
* doesn't help for 64-bit integers (which are already bigger than
* 33 bits). There are also only 8 accumulators, so SIMD16 or
* SIMD32 instructions would have to be split into multiple SIMD8
* instructions.
*
* 2. Use slightly different math. For any n-bit value x, we know (x
* >> 1) != -(x >> 1). We can use this fact to only do
* subtractions involving (x >> 1). subtractSaturate(a, b) ==
* subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)).
*
* 3. For unsigned sources, it is sufficient to replace the
* subtractSaturate with (a > b) ? a - b : 0.
*
* It may also be possible to use the SUBB instruction. This
* implicitly writes the accumulator, so it could only be used in the
* same situations as #1 above. It is further limited by only
* allowing UD sources.
*/
if (inst->exec_size == 8 && inst->src[0].type != BRW_TYPE_Q &&
inst->src[0].type != BRW_TYPE_UQ) {
brw_reg acc = retype(brw_acc_reg(inst->exec_size),
inst->src[1].type);
ibld.MOV(acc, inst->src[1]);
brw_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]);
add->saturate = true;
add->src[0].negate = true;
} else if (inst->opcode == SHADER_OPCODE_ISUB_SAT) {
/* tmp = src1 >> 1;
* dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp));
*/
brw_inst *add;
brw_reg tmp = ibld.vgrf(inst->src[0].type);
ibld.SHR(tmp, inst->src[1], brw_imm_d(1));
brw_reg s1_sub_t = ibld.ADD(inst->src[1], negate(tmp));
brw_reg sat_s0_sub_t = ibld.ADD(inst->src[0], negate(tmp), &add);
add->saturate = true;
add = ibld.ADD(inst->dst, sat_s0_sub_t, negate(s1_sub_t));
add->saturate = true;
} else {
/* a > b ? a - b : 0 */
ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
BRW_CONDITIONAL_G);
brw_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]);
add->src[1].negate = !add->src[1].negate;
ibld.SEL(inst->dst, inst->dst, brw_imm_ud(0))
->predicate = BRW_PREDICATE_NORMAL;
}
inst->remove(block);
progress = true;
}
}
if (progress)
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return progress;
}
/**
* Transform barycentric vectors into the interleaved form expected by the PLN
* instruction and returned by the Gfx7+ PI shared function.
*
* For channels 0-15 in SIMD16 mode they are expected to be laid out as
* follows in the register file:
*
* rN+0: X[0-7]
* rN+1: Y[0-7]
* rN+2: X[8-15]
* rN+3: Y[8-15]
*
* There is no need to handle SIMD32 here -- This is expected to be run after
* SIMD lowering, since SIMD lowering relies on vectors having the standard
* component layout.
*/
bool
brw_lower_barycentrics(fs_visitor &s)
{
const intel_device_info *devinfo = s.devinfo;
if (s.stage != MESA_SHADER_FRAGMENT || devinfo->ver >= 20)
return false;
bool progress = false;
foreach_block_and_inst_safe(block, brw_inst, inst, s.cfg) {
if (inst->exec_size < 16)
continue;
const brw_builder ibld(&s, block, inst);
const brw_builder ubld = ibld.exec_all().group(8, 0);
switch (inst->opcode) {
case BRW_OPCODE_PLN: {
assert(inst->exec_size == 16);
const brw_reg tmp = ibld.vgrf(inst->src[1].type, 2);
brw_reg srcs[4];
for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++)
srcs[i] = horiz_offset(offset(inst->src[1], ibld, i % 2),
8 * (i / 2));
ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs));
inst->src[1] = tmp;
progress = true;
break;
}
case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: {
assert(inst->exec_size == 16);
const brw_reg tmp = ibld.vgrf(inst->dst.type, 2);
for (unsigned i = 0; i < 2; i++) {
for (unsigned g = 0; g < inst->exec_size / 8; g++) {
brw_inst *mov = ibld.at(block, inst->next).group(8, g)
.MOV(horiz_offset(offset(inst->dst, ibld, i),
8 * g),
offset(tmp, ubld, 2 * g + i));
mov->predicate = inst->predicate;
mov->predicate_inverse = inst->predicate_inverse;
mov->flag_subreg = inst->flag_subreg;
}
}
inst->dst = tmp;
progress = true;
break;
}
default:
break;
}
}
if (progress)
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return progress;
}
/**
* Lower a derivative instruction as the floating-point difference of two
* swizzles of the source, specified as \p swz0 and \p swz1.
*/
static bool
lower_derivative(fs_visitor &s, bblock_t *block, brw_inst *inst,
unsigned swz0, unsigned swz1)
{
const brw_builder ubld = brw_builder(&s, block, inst).exec_all();
const brw_reg tmp0 = ubld.vgrf(inst->src[0].type);
const brw_reg tmp1 = ubld.vgrf(inst->src[0].type);
ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp0, inst->src[0], brw_imm_ud(swz0));
ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp1, inst->src[0], brw_imm_ud(swz1));
inst->resize_sources(2);
inst->src[0] = negate(tmp0);
inst->src[1] = tmp1;
inst->opcode = BRW_OPCODE_ADD;
return true;
}
/**
* Lower derivative instructions on platforms where codegen cannot implement
* them efficiently (i.e. XeHP).
*/
bool
brw_lower_derivatives(fs_visitor &s)
{
bool progress = false;
if (s.devinfo->verx10 < 125)
return false;
foreach_block_and_inst(block, brw_inst, inst, s.cfg) {
if (inst->opcode == FS_OPCODE_DDX_COARSE)
progress |= lower_derivative(s, block, inst,
BRW_SWIZZLE_XXXX, BRW_SWIZZLE_YYYY);
else if (inst->opcode == FS_OPCODE_DDX_FINE)
progress |= lower_derivative(s, block, inst,
BRW_SWIZZLE_XXZZ, BRW_SWIZZLE_YYWW);
else if (inst->opcode == FS_OPCODE_DDY_COARSE)
progress |= lower_derivative(s, block, inst,
BRW_SWIZZLE_XXXX, BRW_SWIZZLE_ZZZZ);
else if (inst->opcode == FS_OPCODE_DDY_FINE)
progress |= lower_derivative(s, block, inst,
BRW_SWIZZLE_XYXY, BRW_SWIZZLE_ZWZW);
}
if (progress)
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return progress;
}
bool
brw_lower_find_live_channel(fs_visitor &s)
{
bool progress = false;
bool packed_dispatch =
brw_stage_has_packed_dispatch(s.devinfo, s.stage, s.max_polygons,
s.prog_data);
bool vmask =
s.stage == MESA_SHADER_FRAGMENT &&
brw_wm_prog_data(s.prog_data)->uses_vmask;
foreach_block_and_inst_safe(block, brw_inst, inst, s.cfg) {
if (inst->opcode != SHADER_OPCODE_FIND_LIVE_CHANNEL &&
inst->opcode != SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL &&
inst->opcode != SHADER_OPCODE_LOAD_LIVE_CHANNELS)
continue;
bool first = inst->opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL;
/* Getting the first active channel index is easy on Gfx8: Just find
* the first bit set in the execution mask. The register exists on
* HSW already but it reads back as all ones when the current
* instruction has execution masking disabled, so it's kind of
* useless there.
*/
const brw_builder ibld(&s, block, inst);
if (!inst->is_partial_write())
ibld.emit_undef_for_dst(inst);
const brw_builder ubld = brw_builder(&s, block, inst).exec_all().group(1, 0);
brw_reg exec_mask = ubld.vgrf(BRW_TYPE_UD);
ubld.UNDEF(exec_mask);
ubld.emit(SHADER_OPCODE_READ_ARCH_REG, exec_mask,
retype(brw_mask_reg(0),
BRW_TYPE_UD));
/* ce0 doesn't consider the thread dispatch mask (DMask or VMask),
* so combine the execution and dispatch masks to obtain the true mask.
*
* If we're looking for the first live channel, and we have packed
* dispatch, we can skip this step, as we know all dispatched channels
* will appear at the front of the mask.
*/
if (!(first && packed_dispatch)) {
brw_reg mask = ubld.vgrf(BRW_TYPE_UD);
ubld.UNDEF(mask);
ubld.emit(SHADER_OPCODE_READ_ARCH_REG, mask,
retype(brw_sr0_reg(vmask ? 3 : 2),
BRW_TYPE_UD));
/* Quarter control has the effect of magically shifting the value of
* ce0 so you'll get the first/last active channel relative to the
* specified quarter control as result.
*/
if (inst->group > 0)
ubld.SHR(mask, mask, brw_imm_ud(ALIGN(inst->group, 8)));
ubld.AND(mask, exec_mask, mask);
exec_mask = mask;
}
switch (inst->opcode) {
case SHADER_OPCODE_FIND_LIVE_CHANNEL:
ubld.FBL(inst->dst, exec_mask);
break;
case SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL: {
brw_reg tmp = ubld.vgrf(BRW_TYPE_UD);
ubld.UNDEF(tmp);
ubld.LZD(tmp, exec_mask);
ubld.ADD(inst->dst, negate(tmp), brw_imm_uw(31));
break;
}
case SHADER_OPCODE_LOAD_LIVE_CHANNELS:
ubld.MOV(inst->dst, exec_mask);
break;
default:
unreachable("Impossible.");
}
inst->remove(block);
progress = true;
}
if (progress)
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return progress;
}
/**
* From the Skylake PRM Vol. 2a docs for sends:
*
* "It is required that the second block of GRFs does not overlap with the
* first block."
*
* There are plenty of cases where we may accidentally violate this due to
* having, for instance, both sources be the constant 0. This little pass
* just adds a new vgrf for the second payload and copies it over.
*/
bool
brw_lower_sends_overlapping_payload(fs_visitor &s)
{
bool progress = false;
foreach_block_and_inst_safe (block, brw_inst, inst, s.cfg) {
if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
regions_overlap(inst->src[2], inst->mlen * REG_SIZE,
inst->src[3], inst->ex_mlen * REG_SIZE)) {
const unsigned arg = inst->mlen < inst->ex_mlen ? 2 : 3;
const unsigned len = MIN2(inst->mlen, inst->ex_mlen);
brw_reg tmp = brw_vgrf(s.alloc.allocate(len),
BRW_TYPE_UD);
/* Sadly, we've lost all notion of channels and bit sizes at this
* point. Just WE_all it.
*/
const brw_builder ibld = brw_builder(&s, block, inst).exec_all().group(16, 0);
brw_reg copy_src = retype(inst->src[arg], BRW_TYPE_UD);
brw_reg copy_dst = tmp;
for (unsigned i = 0; i < len; i += 2) {
if (len == i + 1) {
/* Only one register left; do SIMD8 */
ibld.group(8, 0).MOV(copy_dst, copy_src);
} else {
ibld.MOV(copy_dst, copy_src);
}
copy_src = offset(copy_src, ibld, 1);
copy_dst = offset(copy_dst, ibld, 1);
}
inst->src[arg] = tmp;
progress = true;
}
}
if (progress)
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return progress;
}
/**
* Three source instruction must have a GRF destination register.
* ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
*/
bool
brw_lower_3src_null_dest(fs_visitor &s)
{
bool progress = false;
foreach_block_and_inst_safe (block, brw_inst, inst, s.cfg) {
if (inst->is_3src(s.compiler) && inst->dst.is_null()) {
inst->dst = brw_vgrf(s.alloc.allocate(s.dispatch_width / 8),
inst->dst.type);
progress = true;
}
}
if (progress)
s.invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
DEPENDENCY_VARIABLES);
return progress;
}
static bool
unsupported_64bit_type(const intel_device_info *devinfo,
enum brw_reg_type type)
{
return (!devinfo->has_64bit_float && type == BRW_TYPE_DF) ||
(!devinfo->has_64bit_int && (type == BRW_TYPE_UQ ||
type == BRW_TYPE_Q));
}
/**
* Perform lowering to legalize the IR for various ALU restrictions.
*
* For example:
* - Splitting 64-bit MOV/SEL into 2x32-bit where needed
*/
bool
brw_lower_alu_restrictions(fs_visitor &s)
{
const intel_device_info *devinfo = s.devinfo;
bool progress = false;
foreach_block_and_inst_safe(block, brw_inst, inst, s.cfg) {
switch (inst->opcode) {
case BRW_OPCODE_MOV:
if (unsupported_64bit_type(devinfo, inst->dst.type)) {
assert(inst->dst.type == inst->src[0].type);
assert(!inst->saturate);
assert(!inst->src[0].abs);
assert(!inst->src[0].negate);
const brw_builder ibld(&s, block, inst);
enum brw_reg_type type = brw_type_with_size(inst->dst.type, 32);
if (!inst->is_partial_write())
ibld.emit_undef_for_dst(inst);
ibld.MOV(subscript(inst->dst, type, 1),
subscript(inst->src[0], type, 1));
ibld.MOV(subscript(inst->dst, type, 0),
subscript(inst->src[0], type, 0));
inst->remove(block);
progress = true;
}
break;
case BRW_OPCODE_SEL:
if (unsupported_64bit_type(devinfo, inst->dst.type)) {
assert(inst->dst.type == inst->src[0].type);
assert(!inst->saturate);
assert(!inst->src[0].abs && !inst->src[0].negate);
assert(!inst->src[1].abs && !inst->src[1].negate);
assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
const brw_builder ibld(&s, block, inst);
enum brw_reg_type type = brw_type_with_size(inst->dst.type, 32);
if (!inst->is_partial_write())
ibld.emit_undef_for_dst(inst);
set_predicate(inst->predicate,
ibld.SEL(subscript(inst->dst, type, 0),
subscript(inst->src[0], type, 0),
subscript(inst->src[1], type, 0)));
set_predicate(inst->predicate,
ibld.SEL(subscript(inst->dst, type, 1),
subscript(inst->src[0], type, 1),
subscript(inst->src[1], type, 1)));
inst->remove(block);
progress = true;
}
break;
default:
break;
}
}
if (progress) {
s.invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
DEPENDENCY_INSTRUCTION_DETAIL);
}
return progress;
}
static void
brw_lower_vgrf_to_fixed_grf(const struct intel_device_info *devinfo, brw_inst *inst,
brw_reg *reg, bool compressed)
{
if (reg->file != VGRF)
return;
struct brw_reg new_reg;
if (reg->stride == 0) {
new_reg = brw_vec1_grf(reg->nr, 0);
} else if (reg->stride > 4) {
assert(reg != &inst->dst);
assert(reg->stride * brw_type_size_bytes(reg->type) <= REG_SIZE);
new_reg = brw_vecn_grf(1, reg->nr, 0);
new_reg = stride(new_reg, reg->stride, 1, 0);
} else {
/* From the Haswell PRM:
*
* "VertStride must be used to cross GRF register boundaries. This
* rule implies that elements within a 'Width' cannot cross GRF
* boundaries."
*
* The maximum width value that could satisfy this restriction is:
*/
const unsigned reg_width =
REG_SIZE / (reg->stride * brw_type_size_bytes(reg->type));
/* Because the hardware can only split source regions at a whole
* multiple of width during decompression (i.e. vertically), clamp
* the value obtained above to the physical execution size of a
* single decompressed chunk of the instruction:
*/
const bool compressed = inst->dst.component_size(inst->exec_size) > REG_SIZE;
const unsigned phys_width = compressed ? inst->exec_size / 2 :
inst->exec_size;
/* XXX - The equation above is strictly speaking not correct on
* hardware that supports unbalanced GRF writes -- On Gfx9+
* each decompressed chunk of the instruction may have a
* different execution size when the number of components
* written to each destination GRF is not the same.
*/
const unsigned max_hw_width = 16;
const unsigned width = MIN3(reg_width, phys_width, max_hw_width);
new_reg = brw_vecn_grf(width, reg->nr, 0);
new_reg = stride(new_reg, width * reg->stride, width, reg->stride);
}
new_reg = retype(new_reg, reg->type);
new_reg = byte_offset(new_reg, reg->offset);
new_reg.abs = reg->abs;
new_reg.negate = reg->negate;
new_reg.is_scalar = reg->is_scalar;
*reg = new_reg;
}
void
brw_lower_vgrfs_to_fixed_grfs(fs_visitor &s)
{
assert(s.grf_used || !"Must be called after register allocation");
foreach_block_and_inst(block, brw_inst, inst, s.cfg) {
/* If the instruction writes to more than one register, it needs to be
* explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
* hardware figures out by itself what the right compression mode is,
* but we still need to know whether the instruction is compressed to
* set up the source register regions appropriately.
*
* XXX - This is wrong for instructions that write a single register but
* read more than one which should strictly speaking be treated as
* compressed. For instructions that don't write any registers it
* relies on the destination being a null register of the correct
* type and regioning so the instruction is considered compressed
* or not accordingly.
*/
const bool compressed =
inst->dst.component_size(inst->exec_size) > REG_SIZE;
brw_lower_vgrf_to_fixed_grf(s.devinfo, inst, &inst->dst, compressed);
for (int i = 0; i < inst->sources; i++) {
brw_lower_vgrf_to_fixed_grf(s.devinfo, inst, &inst->src[i], compressed);
}
}
s.invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
DEPENDENCY_VARIABLES);
}
static brw_reg
brw_s0(enum brw_reg_type type, unsigned subnr)
{
return brw_make_reg(ARF,
BRW_ARF_SCALAR,
subnr,
0,
0,
type,
BRW_VERTICAL_STRIDE_0,
BRW_WIDTH_1,
BRW_HORIZONTAL_STRIDE_0,
BRW_SWIZZLE_XYZW,
WRITEMASK_XYZW);
}
static bool
brw_lower_send_gather_inst(fs_visitor &s, bblock_t *block, brw_inst *inst)
{
const intel_device_info *devinfo = s.devinfo;
assert(devinfo->ver >= 30);
const unsigned unit = reg_unit(devinfo);
assert(unit == 2);
assert(inst->opcode == SHADER_OPCODE_SEND_GATHER);
assert(inst->sources > 2);
assert(inst->src[2].file == BAD_FILE);
unsigned count = 0;
uint8_t regs[16] = {};
const unsigned num_payload_sources = inst->sources - 3;
assert(num_payload_sources > 0);
/* Limited by Src0.Length in the SEND instruction. */
assert(num_payload_sources < 16);
for (unsigned i = 3; i < inst->sources; i++) {
assert(inst->src[i].file == FIXED_GRF);
assert(inst->src[i].nr % reg_unit(devinfo) == 0);
unsigned nr = phys_nr(devinfo, inst->src[i]);
assert(nr <= UINT8_MAX);
regs[count++] = nr;
}
/* Fill out ARF scalar register with the physical register numbers
* and use SEND_GATHER.
*/
brw_builder ubld = brw_builder(&s, block, inst).group(1, 0).exec_all();
for (unsigned q = 0; q < DIV_ROUND_UP(count, 8); q++) {
uint64_t v = 0;
for (unsigned i = 0; i < 8; i++) {
const uint64_t reg = regs[(q * 8) + i];
v |= reg << (8 * i);
}
ubld.MOV(brw_s0(BRW_TYPE_UQ, q), brw_imm_uq(v));
}
inst->src[2] = brw_s0(BRW_TYPE_UD, 0);
inst->mlen = count * unit;
return true;
}
bool
brw_lower_send_gather(fs_visitor &s)
{
assert(s.devinfo->ver >= 30);
assert(s.grf_used || !"Must be called after register allocation");
bool progress = false;
foreach_block_and_inst(block, brw_inst, inst, s.cfg) {
if (inst->opcode == SHADER_OPCODE_SEND_GATHER)
progress |= brw_lower_send_gather_inst(s, block, inst);
}
if (progress)
s.invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
DEPENDENCY_VARIABLES);
return progress;
}
bool
brw_lower_load_subgroup_invocation(fs_visitor &s)
{
bool progress = false;
foreach_block_and_inst_safe(block, brw_inst, inst, s.cfg) {
if (inst->opcode != SHADER_OPCODE_LOAD_SUBGROUP_INVOCATION)
continue;
const brw_builder abld =
brw_builder(&s, block, inst).annotate("SubgroupInvocation");
const brw_builder ubld8 = abld.group(8, 0).exec_all();
ubld8.UNDEF(inst->dst);
if (inst->exec_size == 8) {
assert(inst->dst.type == BRW_TYPE_UD);
brw_reg uw = retype(inst->dst, BRW_TYPE_UW);
ubld8.MOV(uw, brw_imm_v(0x76543210));
ubld8.MOV(inst->dst, uw);
} else {
assert(inst->dst.type == BRW_TYPE_UW);
ubld8.MOV(inst->dst, brw_imm_v(0x76543210));
ubld8.ADD(byte_offset(inst->dst, 16), inst->dst, brw_imm_uw(8u));
if (inst->exec_size > 16) {
const brw_builder ubld16 = abld.group(16, 0).exec_all();
ubld16.ADD(byte_offset(inst->dst, 32), inst->dst, brw_imm_uw(16u));
}
}
inst->remove(block);
progress = true;
}
if (progress)
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return progress;
}
bool
brw_lower_indirect_mov(fs_visitor &s)
{
bool progress = false;
if (s.devinfo->ver < 20)
return progress;
foreach_block_and_inst_safe(block, brw_inst, inst, s.cfg) {
if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT) {
if (brw_type_size_bytes(inst->src[0].type) > 1 &&
brw_type_size_bytes(inst->dst.type) > 1) {
continue;
}
assert(brw_type_size_bytes(inst->src[0].type) ==
brw_type_size_bytes(inst->dst.type));
const brw_builder ibld(&s, block, inst);
/* Extract unaligned part */
uint16_t extra_offset = inst->src[0].offset & 0x1;
brw_reg offset = ibld.ADD(inst->src[1], brw_imm_uw(extra_offset));
/* Check if offset is odd or even so that we can choose either high or
* low byte from the result.
*/
brw_reg is_odd = ibld.AND(offset, brw_imm_ud(1));
/* Make sure offset is word (2-bytes) aligned */
offset = ibld.AND(offset, brw_imm_uw(~1));
/* Indirect addressing(vx1 and vxh) not supported with UB/B datatype for
* Src0, so change data type for src0 and dst to UW.
*/
brw_reg dst = ibld.vgrf(BRW_TYPE_UW);
/* Substract unaligned offset from src0 offset since we already
* accounted unaligned part in the indirect byte offset.
*/
brw_reg start = retype(inst->src[0], BRW_TYPE_UW);
start.offset &= ~extra_offset;
/* Adjust length to account extra offset. */
assert(inst->src[2].file == IMM);
brw_reg length = brw_imm_ud(inst->src[2].ud + extra_offset);
ibld.emit(SHADER_OPCODE_MOV_INDIRECT, dst, start, offset, length);
/* Select high byte if offset is odd otherwise select low byte. */
brw_reg lo = ibld.AND(dst, brw_imm_uw(0xff));
brw_reg hi = ibld.SHR(dst, brw_imm_uw(8));
brw_reg result = ibld.vgrf(BRW_TYPE_UW);
ibld.CSEL(result, hi, lo, is_odd, BRW_CONDITIONAL_NZ);
/* Extra MOV needed here to convert back to the corresponding B type */
ibld.MOV(inst->dst, result);
inst->remove(block);
progress = true;
}
}
if (progress)
s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return progress;
}