blob: 648adb8d293ebd59ceed91600c829741d63bdeb5 [file] [log] [blame]
/*
* Copyright © 2013 Intel Corporation
* SPDX-License-Identifier: MIT
*/
#include "brw_eu.h"
#include "brw_fs.h"
#include "brw_builder.h"
#include "brw_generator.h"
#include "brw_prim.h"
#include "brw_nir.h"
#include "brw_private.h"
#include "dev/intel_debug.h"
using namespace brw;
static const GLuint gl_prim_to_hw_prim[MESA_PRIM_TRIANGLE_STRIP_ADJACENCY+1] = {
[MESA_PRIM_POINTS] =_3DPRIM_POINTLIST,
[MESA_PRIM_LINES] = _3DPRIM_LINELIST,
[MESA_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
[MESA_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
[MESA_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
[MESA_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[MESA_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[MESA_PRIM_QUADS] = _3DPRIM_QUADLIST,
[MESA_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
[MESA_PRIM_POLYGON] = _3DPRIM_POLYGON,
[MESA_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[MESA_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[MESA_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[MESA_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
};
static void
brw_emit_gs_thread_end(fs_visitor &s)
{
assert(s.stage == MESA_SHADER_GEOMETRY);
struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(s.prog_data);
if (s.gs.control_data_header_size_bits > 0) {
s.emit_gs_control_data_bits(s.final_gs_vertex_count);
}
const brw_builder abld = brw_builder(&s).at_end().annotate("thread end");
brw_inst *inst;
if (gs_prog_data->static_vertex_count != -1) {
/* Try and tag the last URB write with EOT instead of emitting a whole
* separate write just to finish the thread.
*/
if (s.mark_last_urb_write_with_eot())
return;
brw_reg srcs[URB_LOGICAL_NUM_SRCS];
srcs[URB_LOGICAL_SRC_HANDLE] = s.gs_payload().urb_handles;
srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(0);
inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
srcs, ARRAY_SIZE(srcs));
} else {
brw_reg srcs[URB_LOGICAL_NUM_SRCS];
srcs[URB_LOGICAL_SRC_HANDLE] = s.gs_payload().urb_handles;
srcs[URB_LOGICAL_SRC_DATA] = s.final_gs_vertex_count;
srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(1);
inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
srcs, ARRAY_SIZE(srcs));
}
inst->eot = true;
inst->offset = 0;
}
static void
brw_assign_gs_urb_setup(fs_visitor &s)
{
assert(s.stage == MESA_SHADER_GEOMETRY);
struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(s.prog_data);
s.first_non_payload_grf +=
8 * vue_prog_data->urb_read_length * s.nir->info.gs.vertices_in;
foreach_block_and_inst(block, brw_inst, inst, s.cfg) {
/* Rewrite all ATTR file references to GRFs. */
s.convert_attr_sources_to_hw_regs(inst);
}
}
static bool
run_gs(fs_visitor &s)
{
assert(s.stage == MESA_SHADER_GEOMETRY);
s.payload_ = new gs_thread_payload(s);
const brw_builder bld = brw_builder(&s).at_end();
s.final_gs_vertex_count = bld.vgrf(BRW_TYPE_UD);
if (s.gs.control_data_header_size_bits > 0) {
/* Create a VGRF to store accumulated control data bits. */
s.control_data_bits = bld.vgrf(BRW_TYPE_UD);
/* If we're outputting more than 32 control data bits, then EmitVertex()
* will set control_data_bits to 0 after emitting the first vertex.
* Otherwise, we need to initialize it to 0 here.
*/
if (s.gs.control_data_header_size_bits <= 32) {
const brw_builder abld = bld.annotate("initialize control data bits");
abld.MOV(s.control_data_bits, brw_imm_ud(0u));
}
}
brw_from_nir(&s);
brw_emit_gs_thread_end(s);
if (s.failed)
return false;
brw_calculate_cfg(s);
brw_optimize(s);
s.assign_curb_setup();
brw_assign_gs_urb_setup(s);
brw_lower_3src_null_dest(s);
brw_workaround_memory_fence_before_eot(s);
brw_workaround_emit_dummy_mov_instruction(s);
brw_allocate_registers(s, true /* allow_spilling */);
brw_workaround_source_arf_before_eot(s);
return !s.failed;
}
extern "C" const unsigned *
brw_compile_gs(const struct brw_compiler *compiler,
struct brw_compile_gs_params *params)
{
nir_shader *nir = params->base.nir;
const struct brw_gs_prog_key *key = params->key;
struct brw_gs_prog_data *prog_data = params->prog_data;
const unsigned dispatch_width = brw_geometry_stage_dispatch_width(compiler->devinfo);
struct intel_vue_map input_vue_map = {0};
unsigned control_data_bits_per_vertex = 0;
unsigned control_data_header_size_bits = 0;
const bool debug_enabled = brw_should_print_shader(nir, DEBUG_GS);
prog_data->base.base.stage = MESA_SHADER_GEOMETRY;
prog_data->base.base.ray_queries = nir->info.ray_queries;
prog_data->base.base.total_scratch = 0;
/* The GLSL linker will have already matched up GS inputs and the outputs
* of prior stages. The driver does extend VS outputs in some cases, but
* only for legacy OpenGL or Gfx4-5 hardware, neither of which offer
* geometry shader support. So we can safely ignore that.
*
* For SSO pipelines, we use a fixed VUE map layout based on variable
* locations, so we can rely on rendezvous-by-location making this work.
*/
GLbitfield64 inputs_read = nir->info.inputs_read;
brw_compute_vue_map(compiler->devinfo,
&input_vue_map, inputs_read,
nir->info.separate_shader, 1);
brw_nir_apply_key(nir, compiler, &key->base, dispatch_width);
brw_nir_lower_vue_inputs(nir, &input_vue_map);
brw_nir_lower_vue_outputs(nir);
brw_postprocess_nir(nir, compiler, debug_enabled,
key->base.robust_flags);
prog_data->base.clip_distance_mask =
((1 << nir->info.clip_distance_array_size) - 1);
prog_data->base.cull_distance_mask =
((1 << nir->info.cull_distance_array_size) - 1) <<
nir->info.clip_distance_array_size;
prog_data->include_primitive_id =
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
prog_data->invocations = nir->info.gs.invocations;
nir_gs_count_vertices_and_primitives(
nir, &prog_data->static_vertex_count, nullptr, nullptr, 1u);
if (nir->info.gs.output_primitive == MESA_PRIM_POINTS) {
/* When the output type is points, the geometry shader may output data
* to multiple streams, and EndPrimitive() has no effect. So we
* configure the hardware to interpret the control data as stream ID.
*/
prog_data->control_data_format = GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
/* We only have to emit control bits if we are using non-zero streams */
if (nir->info.gs.active_stream_mask != (1 << 0))
control_data_bits_per_vertex = 2;
else
control_data_bits_per_vertex = 0;
} else {
/* When the output type is triangle_strip or line_strip, EndPrimitive()
* may be used to terminate the current strip and start a new one
* (similar to primitive restart), and outputting data to multiple
* streams is not supported. So we configure the hardware to interpret
* the control data as EndPrimitive information (a.k.a. "cut bits").
*/
prog_data->control_data_format = GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
/* We only need to output control data if the shader actually calls
* EndPrimitive().
*/
control_data_bits_per_vertex =
nir->info.gs.uses_end_primitive ? 1 : 0;
}
control_data_header_size_bits =
nir->info.gs.vertices_out * control_data_bits_per_vertex;
/* 1 HWORD = 32 bytes = 256 bits */
prog_data->control_data_header_size_hwords =
ALIGN(control_data_header_size_bits, 256) / 256;
/* Compute the output vertex size.
*
* From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
* Size (p168):
*
* [0,62] indicating [1,63] 16B units
*
* Specifies the size of each vertex stored in the GS output entry
* (following any Control Header data) as a number of 128-bit units
* (minus one).
*
* Programming Restrictions: The vertex size must be programmed as a
* multiple of 32B units with the following exception: Rendering is
* disabled (as per SOL stage state) and the vertex size output by the
* GS thread is 16B.
*
* If rendering is enabled (as per SOL state) the vertex size must be
* programmed as a multiple of 32B units. In other words, the only time
* software can program a vertex size with an odd number of 16B units
* is when rendering is disabled.
*
* Note: B=bytes in the above text.
*
* It doesn't seem worth the extra trouble to optimize the case where the
* vertex size is 16B (especially since this would require special-casing
* the GEN assembly that writes to the URB). So we just set the vertex
* size to a multiple of 32B (2 vec4's) in all cases.
*
* The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
* budget that as follows:
*
* 512 bytes for varyings (a varying component is 4 bytes and
* gl_MaxGeometryOutputComponents = 128)
* 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
* bytes)
* 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
* even if it's not used)
* 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
* whenever clip planes are enabled, even if the shader doesn't
* write to gl_ClipDistance)
* 16 bytes overhead since the VUE size must be a multiple of 32 bytes
* (see below)--this causes up to 1 VUE slot to be wasted
* 400 bytes available for varying packing overhead
*
* Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
* per interpolation type, so this is plenty.
*
*/
unsigned output_vertex_size_bytes = prog_data->base.vue_map.num_slots * 16;
assert(output_vertex_size_bytes <= GFX7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
prog_data->output_vertex_size_hwords =
ALIGN(output_vertex_size_bytes, 32) / 32;
/* Compute URB entry size. The maximum allowed URB entry size is 32k.
* That divides up as follows:
*
* 64 bytes for the control data header (cut indices or StreamID bits)
* 4096 bytes for varyings (a varying component is 4 bytes and
* gl_MaxGeometryTotalOutputComponents = 1024)
* 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
* bytes/vertex and gl_MaxGeometryOutputVertices is 256)
* 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
* even if it's not used)
* 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
* whenever clip planes are enabled, even if the shader doesn't
* write to gl_ClipDistance)
* 4096 bytes overhead since the VUE size must be a multiple of 32
* bytes (see above)--this causes up to 1 VUE slot to be wasted
* 8128 bytes available for varying packing overhead
*
* Worst-case varying packing overhead is 3/4 of a varying slot per
* interpolation type, which works out to 3072 bytes, so this would allow
* us to accommodate 2 interpolation types without any danger of running
* out of URB space.
*
* In practice, the risk of running out of URB space is very small, since
* the above figures are all worst-case, and most of them scale with the
* number of output vertices. So we'll just calculate the amount of space
* we need, and if it's too large, fail to compile.
*
* The above is for gfx7+ where we have a single URB entry that will hold
* all the output.
*/
unsigned output_size_bytes =
prog_data->output_vertex_size_hwords * 32 * nir->info.gs.vertices_out;
output_size_bytes += 32 * prog_data->control_data_header_size_hwords;
/* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
* which comes before the control header.
*/
output_size_bytes += 32;
/* Shaders can technically set max_vertices = 0, at which point we
* may have a URB size of 0 bytes. Nothing good can come from that,
* so enforce a minimum size.
*/
if (output_size_bytes == 0)
output_size_bytes = 1;
unsigned max_output_size_bytes = GFX7_MAX_GS_URB_ENTRY_SIZE_BYTES;
if (output_size_bytes > max_output_size_bytes)
return NULL;
/* URB entry sizes are stored as a multiple of 64 bytes in gfx7+. */
prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
assert(nir->info.gs.output_primitive < ARRAY_SIZE(gl_prim_to_hw_prim));
prog_data->output_topology =
gl_prim_to_hw_prim[nir->info.gs.output_primitive];
prog_data->vertices_in = nir->info.gs.vertices_in;
/* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
* need to program a URB read length of ceiling(num_slots / 2).
*/
prog_data->base.urb_read_length = (input_vue_map.num_slots + 1) / 2;
/* Now that prog_data setup is done, we are ready to actually compile the
* program.
*/
if (unlikely(debug_enabled)) {
fprintf(stderr, "GS Input ");
brw_print_vue_map(stderr, &input_vue_map, MESA_SHADER_GEOMETRY);
fprintf(stderr, "GS Output ");
brw_print_vue_map(stderr, &prog_data->base.vue_map, MESA_SHADER_GEOMETRY);
}
fs_visitor v(compiler, &params->base, &key->base, &prog_data->base.base,
nir, dispatch_width,
params->base.stats != NULL, debug_enabled);
v.gs.control_data_bits_per_vertex = control_data_bits_per_vertex;
v.gs.control_data_header_size_bits = control_data_header_size_bits;
if (run_gs(v)) {
prog_data->base.dispatch_mode = INTEL_DISPATCH_MODE_SIMD8;
assert(v.payload().num_regs % reg_unit(compiler->devinfo) == 0);
prog_data->base.base.dispatch_grf_start_reg =
v.payload().num_regs / reg_unit(compiler->devinfo);
prog_data->base.base.grf_used = v.grf_used;
brw_generator g(compiler, &params->base,
&prog_data->base.base, MESA_SHADER_GEOMETRY);
if (unlikely(debug_enabled)) {
const char *label =
nir->info.label ? nir->info.label : "unnamed";
char *name = ralloc_asprintf(params->base.mem_ctx,
"%s geometry shader %s",
label, nir->info.name);
g.enable_debug(name);
}
g.generate_code(v.cfg, v.dispatch_width, v.shader_stats,
v.performance_analysis.require(), params->base.stats);
g.add_const_data(nir->constant_data, nir->constant_data_size);
return g.get_assembly();
}
params->base.error_str = ralloc_strdup(params->base.mem_ctx, v.fail_msg);
return NULL;
}