blob: b3672ac3ffb7b9dc7b93d3250682530c24fc791a [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "util/mesa-sha1.h"
#include "util/os_time.h"
#include "common/gen_l3_config.h"
#include "anv_private.h"
#include "compiler/brw_nir.h"
#include "anv_nir.h"
#include "nir/nir_xfb_info.h"
#include "spirv/nir_spirv.h"
#include "vk_util.h"
/* Needed for SWIZZLE macros */
#include "program/prog_instruction.h"
// Shader functions
VkResult anv_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = vk_alloc2(&device->alloc, pAllocator,
sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (module == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
_mesa_sha1_compute(module->data, module->size, module->sha1);
*pShaderModule = anv_shader_module_to_handle(module);
return VK_SUCCESS;
}
void anv_DestroyShaderModule(
VkDevice _device,
VkShaderModule _module,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_shader_module, module, _module);
if (!module)
return;
vk_free2(&device->alloc, pAllocator, module);
}
#define SPIR_V_MAGIC_NUMBER 0x07230203
static const uint64_t stage_to_debug[] = {
[MESA_SHADER_VERTEX] = DEBUG_VS,
[MESA_SHADER_TESS_CTRL] = DEBUG_TCS,
[MESA_SHADER_TESS_EVAL] = DEBUG_TES,
[MESA_SHADER_GEOMETRY] = DEBUG_GS,
[MESA_SHADER_FRAGMENT] = DEBUG_WM,
[MESA_SHADER_COMPUTE] = DEBUG_CS,
};
/* Eventually, this will become part of anv_CreateShader. Unfortunately,
* we can't do that yet because we don't have the ability to copy nir.
*/
static nir_shader *
anv_shader_compile_to_nir(struct anv_device *device,
void *mem_ctx,
const struct anv_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info)
{
const struct anv_physical_device *pdevice =
&device->instance->physicalDevice;
const struct brw_compiler *compiler = pdevice->compiler;
const nir_shader_compiler_options *nir_options =
compiler->glsl_compiler_options[stage].NirOptions;
uint32_t *spirv = (uint32_t *) module->data;
assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
assert(module->size % 4 == 0);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = NULL;
if (spec_info && spec_info->mapEntryCount > 0) {
num_spec_entries = spec_info->mapEntryCount;
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
for (uint32_t i = 0; i < num_spec_entries; i++) {
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
const void *data = spec_info->pData + entry.offset;
assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
if (spec_info->dataSize == 8)
spec_entries[i].data64 = *(const uint64_t *)data;
else
spec_entries[i].data32 = *(const uint32_t *)data;
}
}
nir_address_format ssbo_addr_format =
anv_nir_ssbo_addr_format(pdevice, device->robust_buffer_access);
struct spirv_to_nir_options spirv_options = {
.lower_workgroup_access_to_offsets = true,
.caps = {
.derivative_group = true,
.descriptor_array_dynamic_indexing = true,
.descriptor_array_non_uniform_indexing = true,
.descriptor_indexing = true,
.device_group = true,
.draw_parameters = true,
.float16 = pdevice->info.gen >= 8,
.float64 = pdevice->info.gen >= 8,
.geometry_streams = true,
.image_write_without_format = true,
.int8 = pdevice->info.gen >= 8,
.int16 = pdevice->info.gen >= 8,
.int64 = pdevice->info.gen >= 8,
.int64_atomics = pdevice->info.gen >= 9 && pdevice->use_softpin,
.min_lod = true,
.multiview = true,
.physical_storage_buffer_address = pdevice->has_a64_buffer_access,
.post_depth_coverage = pdevice->info.gen >= 9,
.runtime_descriptor_array = true,
.shader_viewport_index_layer = true,
.stencil_export = pdevice->info.gen >= 9,
.storage_8bit = pdevice->info.gen >= 8,
.storage_16bit = pdevice->info.gen >= 8,
.subgroup_arithmetic = true,
.subgroup_basic = true,
.subgroup_ballot = true,
.subgroup_quad = true,
.subgroup_shuffle = true,
.subgroup_vote = true,
.tessellation = true,
.transform_feedback = pdevice->info.gen >= 8,
.variable_pointers = true,
},
.ubo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2),
.ssbo_ptr_type = nir_address_format_to_glsl_type(ssbo_addr_format),
.phys_ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT64, 1),
.push_const_ptr_type = glsl_uint_type(),
.shared_ptr_type = glsl_uint_type(),
};
nir_function *entry_point =
spirv_to_nir(spirv, module->size / 4,
spec_entries, num_spec_entries,
stage, entrypoint_name, &spirv_options, nir_options);
nir_shader *nir = entry_point->shader;
assert(nir->info.stage == stage);
nir_validate_shader(nir, "after spirv_to_nir");
ralloc_steal(mem_ctx, nir);
free(spec_entries);
if (unlikely(INTEL_DEBUG & stage_to_debug[stage])) {
fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
gl_shader_stage_name(stage));
nir_print_shader(nir, stderr);
}
/* We have to lower away local constant initializers right before we
* inline functions. That way they get properly initialized at the top
* of the function and not at the top of its caller.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
NIR_PASS_V(nir, nir_lower_returns);
NIR_PASS_V(nir, nir_inline_functions);
NIR_PASS_V(nir, nir_opt_deref);
/* Pick off the single entrypoint that we want */
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (func != entry_point)
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
/* Now that we've deleted all but the main function, we can go ahead and
* lower the rest of the constant initializers. We do this here so that
* nir_remove_dead_variables and split_per_member_structs below see the
* corresponding stores.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
/* Split member structs. We do this before lower_io_to_temporaries so that
* it doesn't lower system values to temporaries by accident.
*/
NIR_PASS_V(nir, nir_split_var_copies);
NIR_PASS_V(nir, nir_split_per_member_structs);
NIR_PASS_V(nir, nir_remove_dead_variables,
nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_global,
nir_address_format_64bit_global);
NIR_PASS_V(nir, nir_propagate_invariant);
NIR_PASS_V(nir, nir_lower_io_to_temporaries,
entry_point->impl, true, false);
NIR_PASS_V(nir, nir_lower_frexp);
/* Vulkan uses the separate-shader linking model */
nir->info.separate_shader = true;
nir = brw_preprocess_nir(compiler, nir, NULL);
return nir;
}
void anv_DestroyPipeline(
VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
if (!pipeline)
return;
anv_reloc_list_finish(&pipeline->batch_relocs,
pAllocator ? pAllocator : &device->alloc);
if (pipeline->blend_state.map)
anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (pipeline->shaders[s])
anv_shader_bin_unref(device, pipeline->shaders[s]);
}
vk_free2(&device->alloc, pAllocator, pipeline);
}
static const uint32_t vk_to_gen_primitive_type[] = {
[VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
};
static void
populate_sampler_prog_key(const struct gen_device_info *devinfo,
struct brw_sampler_prog_key_data *key)
{
/* Almost all multisampled textures are compressed. The only time when we
* don't compress a multisampled texture is for 16x MSAA with a surface
* width greater than 8k which is a bit of an edge case. Since the sampler
* just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
* to tell the compiler to always assume compression.
*/
key->compressed_multisample_layout_mask = ~0;
/* SkyLake added support for 16x MSAA. With this came a new message for
* reading from a 16x MSAA surface with compression. The new message was
* needed because now the MCS data is 64 bits instead of 32 or lower as is
* the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
* message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
* so we can just use it unconditionally. This may not be quite as
* efficient but it saves us from recompiling.
*/
if (devinfo->gen >= 9)
key->msaa_16 = ~0;
/* XXX: Handle texture swizzle on HSW- */
for (int i = 0; i < MAX_SAMPLERS; i++) {
/* Assume color sampler, no swizzling. (Works for BDW+) */
key->swizzles[i] = SWIZZLE_XYZW;
}
}
static void
populate_vs_prog_key(const struct gen_device_info *devinfo,
struct brw_vs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
/* XXX: Handle vertex input work-arounds */
/* XXX: Handle sampler_prog_key */
}
static void
populate_tcs_prog_key(const struct gen_device_info *devinfo,
unsigned input_vertices,
struct brw_tcs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
key->input_vertices = input_vertices;
}
static void
populate_tes_prog_key(const struct gen_device_info *devinfo,
struct brw_tes_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
}
static void
populate_gs_prog_key(const struct gen_device_info *devinfo,
struct brw_gs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
}
static void
populate_wm_prog_key(const struct gen_device_info *devinfo,
const struct anv_subpass *subpass,
const VkPipelineMultisampleStateCreateInfo *ms_info,
struct brw_wm_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
/* We set this to 0 here and set to the actual value before we call
* brw_compile_fs.
*/
key->input_slots_valid = 0;
/* Vulkan doesn't specify a default */
key->high_quality_derivatives = false;
/* XXX Vulkan doesn't appear to specify */
key->clamp_fragment_color = false;
assert(subpass->color_count <= MAX_RTS);
for (uint32_t i = 0; i < subpass->color_count; i++) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
key->color_outputs_valid |= (1 << i);
}
key->nr_color_regions = util_bitcount(key->color_outputs_valid);
/* To reduce possible shader recompilations we would need to know if
* there is a SampleMask output variable to compute if we should emit
* code to workaround the issue that hardware disables alpha to coverage
* when there is SampleMask output.
*/
key->alpha_to_coverage = ms_info && ms_info->alphaToCoverageEnable;
/* Vulkan doesn't support fixed-function alpha test */
key->alpha_test_replicate_alpha = false;
if (ms_info) {
/* We should probably pull this out of the shader, but it's fairly
* harmless to compute it and then let dead-code take care of it.
*/
if (ms_info->rasterizationSamples > 1) {
key->persample_interp = ms_info->sampleShadingEnable &&
(ms_info->minSampleShading * ms_info->rasterizationSamples) > 1;
key->multisample_fbo = true;
}
key->frag_coord_adds_sample_pos = key->persample_interp;
}
}
static void
populate_cs_prog_key(const struct gen_device_info *devinfo,
struct brw_cs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
}
struct anv_pipeline_stage {
gl_shader_stage stage;
const struct anv_shader_module *module;
const char *entrypoint;
const VkSpecializationInfo *spec_info;
unsigned char shader_sha1[20];
union brw_any_prog_key key;
struct {
gl_shader_stage stage;
unsigned char sha1[20];
} cache_key;
nir_shader *nir;
struct anv_pipeline_binding surface_to_descriptor[256];
struct anv_pipeline_binding sampler_to_descriptor[256];
struct anv_pipeline_bind_map bind_map;
union brw_any_prog_data prog_data;
VkPipelineCreationFeedbackEXT feedback;
};
static void
anv_pipeline_hash_shader(const struct anv_shader_module *module,
const char *entrypoint,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
_mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
_mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
_mesa_sha1_update(&ctx, &stage, sizeof(stage));
if (spec_info) {
_mesa_sha1_update(&ctx, spec_info->pMapEntries,
spec_info->mapEntryCount *
sizeof(*spec_info->pMapEntries));
_mesa_sha1_update(&ctx, spec_info->pData,
spec_info->dataSize);
}
_mesa_sha1_final(&ctx, sha1_out);
}
static void
anv_pipeline_hash_graphics(struct anv_pipeline *pipeline,
struct anv_pipeline_layout *layout,
struct anv_pipeline_stage *stages,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
_mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
sizeof(pipeline->subpass->view_mask));
if (layout)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
const bool rba = pipeline->device->robust_buffer_access;
_mesa_sha1_update(&ctx, &rba, sizeof(rba));
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (stages[s].entrypoint) {
_mesa_sha1_update(&ctx, stages[s].shader_sha1,
sizeof(stages[s].shader_sha1));
_mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
}
}
_mesa_sha1_final(&ctx, sha1_out);
}
static void
anv_pipeline_hash_compute(struct anv_pipeline *pipeline,
struct anv_pipeline_layout *layout,
struct anv_pipeline_stage *stage,
unsigned char *sha1_out)
{
struct mesa_sha1 ctx;
_mesa_sha1_init(&ctx);
if (layout)
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
const bool rba = pipeline->device->robust_buffer_access;
_mesa_sha1_update(&ctx, &rba, sizeof(rba));
_mesa_sha1_update(&ctx, stage->shader_sha1,
sizeof(stage->shader_sha1));
_mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
_mesa_sha1_final(&ctx, sha1_out);
}
static nir_shader *
anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
void *mem_ctx,
struct anv_pipeline_stage *stage)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
const nir_shader_compiler_options *nir_options =
compiler->glsl_compiler_options[stage->stage].NirOptions;
nir_shader *nir;
nir = anv_device_search_for_nir(pipeline->device, cache,
nir_options,
stage->shader_sha1,
mem_ctx);
if (nir) {
assert(nir->info.stage == stage->stage);
return nir;
}
nir = anv_shader_compile_to_nir(pipeline->device,
mem_ctx,
stage->module,
stage->entrypoint,
stage->stage,
stage->spec_info);
if (nir) {
anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
return nir;
}
return NULL;
}
static void
anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
void *mem_ctx,
struct anv_pipeline_stage *stage,
struct anv_pipeline_layout *layout)
{
const struct anv_physical_device *pdevice =
&pipeline->device->instance->physicalDevice;
const struct brw_compiler *compiler = pdevice->compiler;
struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
nir_shader *nir = stage->nir;
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
NIR_PASS_V(nir, anv_nir_lower_input_attachments);
}
NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout);
NIR_PASS_V(nir, anv_nir_lower_push_constants);
if (nir->info.stage != MESA_SHADER_COMPUTE)
NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
if (nir->info.stage == MESA_SHADER_COMPUTE)
prog_data->total_shared = nir->num_shared;
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
if (nir->num_uniforms > 0) {
assert(prog_data->nr_params == 0);
/* If the shader uses any push constants at all, we'll just give
* them the maximum possible number
*/
assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
nir->num_uniforms = MAX_PUSH_CONSTANTS_SIZE;
prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
prog_data->param = ralloc_array(mem_ctx, uint32_t, prog_data->nr_params);
/* We now set the param values to be offsets into a
* anv_push_constant_data structure. Since the compiler doesn't
* actually dereference any of the gl_constant_value pointers in the
* params array, it doesn't really matter what we put here.
*/
struct anv_push_constants *null_data = NULL;
/* Fill out the push constants section of the param array */
for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++) {
prog_data->param[i] = ANV_PARAM_PUSH(
(uintptr_t)&null_data->client_data[i * sizeof(float)]);
}
}
if (nir->info.num_ssbos > 0 || nir->info.num_images > 0)
pipeline->needs_data_cache = true;
NIR_PASS_V(nir, brw_nir_lower_image_load_store, compiler->devinfo);
/* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
if (layout) {
anv_nir_apply_pipeline_layout(pdevice,
pipeline->device->robust_buffer_access,
layout, nir, prog_data,
&stage->bind_map);
NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ubo,
nir_address_format_32bit_index_offset);
NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ssbo,
anv_nir_ssbo_addr_format(pdevice,
pipeline->device->robust_buffer_access));
NIR_PASS_V(nir, nir_opt_constant_folding);
/* We don't support non-uniform UBOs and non-uniform SSBO access is
* handled naturally by falling back to A64 messages.
*/
NIR_PASS_V(nir, nir_lower_non_uniform_access,
nir_lower_non_uniform_texture_access |
nir_lower_non_uniform_image_access);
}
if (nir->info.stage != MESA_SHADER_COMPUTE)
brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
assert(nir->num_uniforms == prog_data->nr_params * 4);
stage->nir = nir;
}
static void
anv_pipeline_link_vs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *vs_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, &vs_stage->nir, &next_stage->nir);
}
static const unsigned *
anv_pipeline_compile_vs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *vs_stage)
{
brw_compute_vue_map(compiler->devinfo,
&vs_stage->prog_data.vs.base.vue_map,
vs_stage->nir->info.outputs_written,
vs_stage->nir->info.separate_shader);
return brw_compile_vs(compiler, device, mem_ctx, &vs_stage->key.vs,
&vs_stage->prog_data.vs, vs_stage->nir, -1, NULL);
}
static void
merge_tess_info(struct shader_info *tes_info,
const struct shader_info *tcs_info)
{
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
*
* "PointMode. Controls generation of points rather than triangles
* or lines. This functionality defaults to disabled, and is
* enabled if either shader stage includes the execution mode.
*
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
* and OutputVertices, it says:
*
* "One mode must be set in at least one of the tessellation
* shader stages."
*
* So, the fields can be set in either the TCS or TES, but they must
* agree if set in both. Our backend looks at TES, so bitwise-or in
* the values from the TCS.
*/
assert(tcs_info->tess.tcs_vertices_out == 0 ||
tes_info->tess.tcs_vertices_out == 0 ||
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tcs_info->tess.spacing == tes_info->tess.spacing);
tes_info->tess.spacing |= tcs_info->tess.spacing;
assert(tcs_info->tess.primitive_mode == 0 ||
tes_info->tess.primitive_mode == 0 ||
tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
tes_info->tess.ccw |= tcs_info->tess.ccw;
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
}
static void
anv_pipeline_link_tcs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *tcs_stage,
struct anv_pipeline_stage *tes_stage)
{
assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
brw_nir_link_shaders(compiler, &tcs_stage->nir, &tes_stage->nir);
nir_lower_patch_vertices(tes_stage->nir,
tcs_stage->nir->info.tess.tcs_vertices_out,
NULL);
/* Copy TCS info into the TES info */
merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
/* Whacking the key after cache lookup is a bit sketchy, but all of
* this comes from the SPIR-V, which is part of the hash used for the
* pipeline cache. So it should be safe.
*/
tcs_stage->key.tcs.tes_primitive_mode =
tes_stage->nir->info.tess.primitive_mode;
tcs_stage->key.tcs.quads_workaround =
compiler->devinfo->gen < 9 &&
tes_stage->nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
}
static const unsigned *
anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *tcs_stage,
struct anv_pipeline_stage *prev_stage)
{
tcs_stage->key.tcs.outputs_written =
tcs_stage->nir->info.outputs_written;
tcs_stage->key.tcs.patch_outputs_written =
tcs_stage->nir->info.patch_outputs_written;
return brw_compile_tcs(compiler, device, mem_ctx, &tcs_stage->key.tcs,
&tcs_stage->prog_data.tcs, tcs_stage->nir,
-1, NULL);
}
static void
anv_pipeline_link_tes(const struct brw_compiler *compiler,
struct anv_pipeline_stage *tes_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, &tes_stage->nir, &next_stage->nir);
}
static const unsigned *
anv_pipeline_compile_tes(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *tes_stage,
struct anv_pipeline_stage *tcs_stage)
{
tes_stage->key.tes.inputs_read =
tcs_stage->nir->info.outputs_written;
tes_stage->key.tes.patch_inputs_read =
tcs_stage->nir->info.patch_outputs_written;
return brw_compile_tes(compiler, device, mem_ctx, &tes_stage->key.tes,
&tcs_stage->prog_data.tcs.base.vue_map,
&tes_stage->prog_data.tes, tes_stage->nir,
NULL, -1, NULL);
}
static void
anv_pipeline_link_gs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *gs_stage,
struct anv_pipeline_stage *next_stage)
{
if (next_stage)
brw_nir_link_shaders(compiler, &gs_stage->nir, &next_stage->nir);
}
static const unsigned *
anv_pipeline_compile_gs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *gs_stage,
struct anv_pipeline_stage *prev_stage)
{
brw_compute_vue_map(compiler->devinfo,
&gs_stage->prog_data.gs.base.vue_map,
gs_stage->nir->info.outputs_written,
gs_stage->nir->info.separate_shader);
return brw_compile_gs(compiler, device, mem_ctx, &gs_stage->key.gs,
&gs_stage->prog_data.gs, gs_stage->nir,
NULL, -1, NULL);
}
static void
anv_pipeline_link_fs(const struct brw_compiler *compiler,
struct anv_pipeline_stage *stage)
{
unsigned num_rts = 0;
const int max_rt = FRAG_RESULT_DATA7 - FRAG_RESULT_DATA0 + 1;
struct anv_pipeline_binding rt_bindings[max_rt];
nir_function_impl *impl = nir_shader_get_entrypoint(stage->nir);
int rt_to_bindings[max_rt];
memset(rt_to_bindings, -1, sizeof(rt_to_bindings));
bool rt_used[max_rt];
memset(rt_used, 0, sizeof(rt_used));
/* Flag used render targets */
nir_foreach_variable_safe(var, &stage->nir->outputs) {
if (var->data.location < FRAG_RESULT_DATA0)
continue;
const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
/* Unused or out-of-bounds */
if (rt >= MAX_RTS || !(stage->key.wm.color_outputs_valid & (1 << rt)))
continue;
const unsigned array_len =
glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
assert(rt + array_len <= max_rt);
for (unsigned i = 0; i < array_len; i++)
rt_used[rt + i] = true;
}
/* Set new, compacted, location */
for (unsigned i = 0; i < max_rt; i++) {
if (!rt_used[i])
continue;
rt_to_bindings[i] = num_rts;
rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.binding = 0,
.index = i,
};
num_rts++;
}
bool deleted_output = false;
nir_foreach_variable_safe(var, &stage->nir->outputs) {
if (var->data.location < FRAG_RESULT_DATA0)
continue;
const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
if (rt >= MAX_RTS ||
!(stage->key.wm.color_outputs_valid & (1 << rt))) {
/* Unused or out-of-bounds, throw it away */
deleted_output = true;
var->data.mode = nir_var_function_temp;
exec_node_remove(&var->node);
exec_list_push_tail(&impl->locals, &var->node);
continue;
}
/* Give it the new location */
assert(rt_to_bindings[rt] != -1);
var->data.location = rt_to_bindings[rt] + FRAG_RESULT_DATA0;
}
if (deleted_output)
nir_fixup_deref_modes(stage->nir);
if (num_rts == 0) {
/* If we have no render targets, we need a null render target */
rt_bindings[0] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
.binding = 0,
.index = UINT32_MAX,
};
num_rts = 1;
}
/* Now that we've determined the actual number of render targets, adjust
* the key accordingly.
*/
stage->key.wm.nr_color_regions = num_rts;
stage->key.wm.color_outputs_valid = (1 << num_rts) - 1;
assert(num_rts <= max_rt);
assert(stage->bind_map.surface_count == 0);
typed_memcpy(stage->bind_map.surface_to_descriptor,
rt_bindings, num_rts);
stage->bind_map.surface_count += num_rts;
}
static const unsigned *
anv_pipeline_compile_fs(const struct brw_compiler *compiler,
void *mem_ctx,
struct anv_device *device,
struct anv_pipeline_stage *fs_stage,
struct anv_pipeline_stage *prev_stage)
{
/* TODO: we could set this to 0 based on the information in nir_shader, but
* we need this before we call spirv_to_nir.
*/
assert(prev_stage);
fs_stage->key.wm.input_slots_valid =
prev_stage->prog_data.vue.vue_map.slots_valid;
const unsigned *code =
brw_compile_fs(compiler, device, mem_ctx, &fs_stage->key.wm,
&fs_stage->prog_data.wm, fs_stage->nir,
NULL, -1, -1, -1, true, false, NULL, NULL);
if (fs_stage->key.wm.nr_color_regions == 0 &&
!fs_stage->prog_data.wm.has_side_effects &&
!fs_stage->prog_data.wm.uses_kill &&
fs_stage->prog_data.wm.computed_depth_mode == BRW_PSCDEPTH_OFF &&
!fs_stage->prog_data.wm.computed_stencil) {
/* This fragment shader has no outputs and no side effects. Go ahead
* and return the code pointer so we don't accidentally think the
* compile failed but zero out prog_data which will set program_size to
* zero and disable the stage.
*/
memset(&fs_stage->prog_data, 0, sizeof(fs_stage->prog_data));
}
return code;
}
static VkResult
anv_pipeline_compile_graphics(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info)
{
VkPipelineCreationFeedbackEXT pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
};
int64_t pipeline_start = os_time_get_nano();
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct anv_pipeline_stage stages[MESA_SHADER_STAGES] = {};
pipeline->active_stages = 0;
VkResult result;
for (uint32_t i = 0; i < info->stageCount; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
pipeline->active_stages |= sinfo->stage;
int64_t stage_start = os_time_get_nano();
stages[stage].stage = stage;
stages[stage].module = anv_shader_module_from_handle(sinfo->module);
stages[stage].entrypoint = sinfo->pName;
stages[stage].spec_info = sinfo->pSpecializationInfo;
anv_pipeline_hash_shader(stages[stage].module,
stages[stage].entrypoint,
stage,
stages[stage].spec_info,
stages[stage].shader_sha1);
const struct gen_device_info *devinfo = &pipeline->device->info;
switch (stage) {
case MESA_SHADER_VERTEX:
populate_vs_prog_key(devinfo, &stages[stage].key.vs);
break;
case MESA_SHADER_TESS_CTRL:
populate_tcs_prog_key(devinfo,
info->pTessellationState->patchControlPoints,
&stages[stage].key.tcs);
break;
case MESA_SHADER_TESS_EVAL:
populate_tes_prog_key(devinfo, &stages[stage].key.tes);
break;
case MESA_SHADER_GEOMETRY:
populate_gs_prog_key(devinfo, &stages[stage].key.gs);
break;
case MESA_SHADER_FRAGMENT:
populate_wm_prog_key(devinfo, pipeline->subpass,
info->pMultisampleState,
&stages[stage].key.wm);
break;
default:
unreachable("Invalid graphics shader stage");
}
stages[stage].feedback.duration += os_time_get_nano() - stage_start;
stages[stage].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
}
if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
unsigned char sha1[20];
anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
unsigned found = 0;
unsigned cache_hits = 0;
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
stages[s].cache_key.stage = s;
memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
bool cache_hit;
struct anv_shader_bin *bin =
anv_device_search_for_kernel(pipeline->device, cache,
&stages[s].cache_key,
sizeof(stages[s].cache_key), &cache_hit);
if (bin) {
found++;
pipeline->shaders[s] = bin;
}
if (cache_hit) {
cache_hits++;
stages[s].feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
if (found == __builtin_popcount(pipeline->active_stages)) {
if (cache_hits == found) {
pipeline_feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
}
/* We found all our shaders in the cache. We're done. */
goto done;
} else if (found > 0) {
/* We found some but not all of our shaders. This shouldn't happen
* most of the time but it can if we have a partially populated
* pipeline cache.
*/
assert(found < __builtin_popcount(pipeline->active_stages));
vk_debug_report(&pipeline->device->instance->debug_report_callbacks,
VK_DEBUG_REPORT_WARNING_BIT_EXT |
VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT,
(uint64_t)(uintptr_t)cache,
0, 0, "anv",
"Found a partial pipeline in the cache. This is "
"most likely caused by an incomplete pipeline cache "
"import or export");
/* We're going to have to recompile anyway, so just throw away our
* references to the shaders in the cache. We'll get them out of the
* cache again as part of the compilation process.
*/
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
stages[s].feedback.flags = 0;
if (pipeline->shaders[s]) {
anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
pipeline->shaders[s] = NULL;
}
}
}
void *pipeline_ctx = ralloc_context(NULL);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
assert(stages[s].stage == s);
assert(pipeline->shaders[s] == NULL);
stages[s].bind_map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = stages[s].surface_to_descriptor,
.sampler_to_descriptor = stages[s].sampler_to_descriptor
};
stages[s].nir = anv_pipeline_stage_get_nir(pipeline, cache,
pipeline_ctx,
&stages[s]);
if (stages[s].nir == NULL) {
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail;
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
/* Walk backwards to link */
struct anv_pipeline_stage *next_stage = NULL;
for (int s = MESA_SHADER_STAGES - 1; s >= 0; s--) {
if (!stages[s].entrypoint)
continue;
switch (s) {
case MESA_SHADER_VERTEX:
anv_pipeline_link_vs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_TESS_CTRL:
anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_TESS_EVAL:
anv_pipeline_link_tes(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_GEOMETRY:
anv_pipeline_link_gs(compiler, &stages[s], next_stage);
break;
case MESA_SHADER_FRAGMENT:
anv_pipeline_link_fs(compiler, &stages[s]);
break;
default:
unreachable("Invalid graphics shader stage");
}
next_stage = &stages[s];
}
struct anv_pipeline_stage *prev_stage = NULL;
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
void *stage_ctx = ralloc_context(NULL);
nir_xfb_info *xfb_info = NULL;
if (s == MESA_SHADER_VERTEX ||
s == MESA_SHADER_TESS_EVAL ||
s == MESA_SHADER_GEOMETRY)
xfb_info = nir_gather_xfb_info(stages[s].nir, stage_ctx);
anv_pipeline_lower_nir(pipeline, stage_ctx, &stages[s], layout);
const unsigned *code;
switch (s) {
case MESA_SHADER_VERTEX:
code = anv_pipeline_compile_vs(compiler, stage_ctx, pipeline->device,
&stages[s]);
break;
case MESA_SHADER_TESS_CTRL:
code = anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->device,
&stages[s], prev_stage);
break;
case MESA_SHADER_TESS_EVAL:
code = anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->device,
&stages[s], prev_stage);
break;
case MESA_SHADER_GEOMETRY:
code = anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->device,
&stages[s], prev_stage);
break;
case MESA_SHADER_FRAGMENT:
code = anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->device,
&stages[s], prev_stage);
break;
default:
unreachable("Invalid graphics shader stage");
}
if (code == NULL) {
ralloc_free(stage_ctx);
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail;
}
struct anv_shader_bin *bin =
anv_device_upload_kernel(pipeline->device, cache,
&stages[s].cache_key,
sizeof(stages[s].cache_key),
code, stages[s].prog_data.base.program_size,
stages[s].nir->constant_data,
stages[s].nir->constant_data_size,
&stages[s].prog_data.base,
brw_prog_data_size(s),
xfb_info, &stages[s].bind_map);
if (!bin) {
ralloc_free(stage_ctx);
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail;
}
pipeline->shaders[s] = bin;
ralloc_free(stage_ctx);
stages[s].feedback.duration += os_time_get_nano() - stage_start;
prev_stage = &stages[s];
}
ralloc_free(pipeline_ctx);
done:
if (pipeline->shaders[MESA_SHADER_FRAGMENT] &&
pipeline->shaders[MESA_SHADER_FRAGMENT]->prog_data->program_size == 0) {
/* This can happen if we decided to implicitly disable the fragment
* shader. See anv_pipeline_compile_fs().
*/
anv_shader_bin_unref(pipeline->device,
pipeline->shaders[MESA_SHADER_FRAGMENT]);
pipeline->shaders[MESA_SHADER_FRAGMENT] = NULL;
pipeline->active_stages &= ~VK_SHADER_STAGE_FRAGMENT_BIT;
}
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
if (create_feedback) {
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount);
for (uint32_t i = 0; i < info->stageCount; i++) {
gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
}
}
return VK_SUCCESS;
fail:
ralloc_free(pipeline_ctx);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
if (pipeline->shaders[s])
anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
}
return result;
}
VkResult
anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkComputePipelineCreateInfo *info,
const struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
VkPipelineCreationFeedbackEXT pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
};
int64_t pipeline_start = os_time_get_nano();
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
struct anv_pipeline_stage stage = {
.stage = MESA_SHADER_COMPUTE,
.module = module,
.entrypoint = entrypoint,
.spec_info = spec_info,
.cache_key = {
.stage = MESA_SHADER_COMPUTE,
},
.feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
},
};
anv_pipeline_hash_shader(stage.module,
stage.entrypoint,
MESA_SHADER_COMPUTE,
stage.spec_info,
stage.shader_sha1);
struct anv_shader_bin *bin = NULL;
populate_cs_prog_key(&pipeline->device->info, &stage.key.cs);
ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
bool cache_hit;
bin = anv_device_search_for_kernel(pipeline->device, cache, &stage.cache_key,
sizeof(stage.cache_key), &cache_hit);
if (bin == NULL) {
int64_t stage_start = os_time_get_nano();
stage.bind_map = (struct anv_pipeline_bind_map) {
.surface_to_descriptor = stage.surface_to_descriptor,
.sampler_to_descriptor = stage.sampler_to_descriptor
};
/* Set up a binding for the gl_NumWorkGroups */
stage.bind_map.surface_count = 1;
stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
.set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
};
void *mem_ctx = ralloc_context(NULL);
stage.nir = anv_pipeline_stage_get_nir(pipeline, cache, mem_ctx, &stage);
if (stage.nir == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
anv_pipeline_lower_nir(pipeline, mem_ctx, &stage, layout);
NIR_PASS_V(stage.nir, anv_nir_add_base_work_group_id,
&stage.prog_data.cs);
const unsigned *shader_code =
brw_compile_cs(compiler, pipeline->device, mem_ctx, &stage.key.cs,
&stage.prog_data.cs, stage.nir, -1, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
const unsigned code_size = stage.prog_data.base.program_size;
bin = anv_device_upload_kernel(pipeline->device, cache,
&stage.cache_key, sizeof(stage.cache_key),
shader_code, code_size,
stage.nir->constant_data,
stage.nir->constant_data_size,
&stage.prog_data.base,
sizeof(stage.prog_data.cs),
NULL, &stage.bind_map);
if (!bin) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
ralloc_free(mem_ctx);
stage.feedback.duration = os_time_get_nano() - stage_start;
}
if (cache_hit) {
stage.feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
pipeline_feedback.flags |=
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
}
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
if (create_feedback) {
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
}
pipeline->active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
pipeline->shaders[MESA_SHADER_COMPUTE] = bin;
return VK_SUCCESS;
}
/**
* Copy pipeline state not marked as dynamic.
* Dynamic state is pipeline state which hasn't been provided at pipeline
* creation time, but is dynamically provided afterwards using various
* vkCmdSet* functions.
*
* The set of state considered "non_dynamic" is determined by the pieces of
* state that have their corresponding VkDynamicState enums omitted from
* VkPipelineDynamicStateCreateInfo::pDynamicStates.
*
* @param[out] pipeline Destination non_dynamic state.
* @param[in] pCreateInfo Source of non_dynamic state to be copied.
*/
static void
copy_non_dynamic_state(struct anv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
struct anv_subpass *subpass = pipeline->subpass;
pipeline->dynamic_state = default_dynamic_state;
if (pCreateInfo->pDynamicState) {
/* Remove all of the states that are marked as dynamic */
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++)
states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
}
struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pViewportState is [...] NULL if the pipeline
* has rasterization disabled.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
assert(pCreateInfo->pViewportState);
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
typed_memcpy(dynamic->viewport.viewports,
pCreateInfo->pViewportState->pViewports,
pCreateInfo->pViewportState->viewportCount);
}
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
typed_memcpy(dynamic->scissor.scissors,
pCreateInfo->pViewportState->pScissors,
pCreateInfo->pViewportState->scissorCount);
}
}
if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
assert(pCreateInfo->pRasterizationState);
dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
}
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
assert(pCreateInfo->pRasterizationState);
dynamic->depth_bias.bias =
pCreateInfo->pRasterizationState->depthBiasConstantFactor;
dynamic->depth_bias.clamp =
pCreateInfo->pRasterizationState->depthBiasClamp;
dynamic->depth_bias.slope =
pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
}
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pColorBlendState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
bool uses_color_att = false;
for (unsigned i = 0; i < subpass->color_count; ++i) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
uses_color_att = true;
break;
}
}
if (uses_color_att &&
!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
assert(pCreateInfo->pColorBlendState);
if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
typed_memcpy(dynamic->blend_constants,
pCreateInfo->pColorBlendState->blendConstants, 4);
}
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* anv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pDepthStencilState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is created
* against does not use a depth/stencil attachment.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
subpass->depth_stencil_attachment) {
assert(pCreateInfo->pDepthStencilState);
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
dynamic->depth_bounds.min =
pCreateInfo->pDepthStencilState->minDepthBounds;
dynamic->depth_bounds.max =
pCreateInfo->pDepthStencilState->maxDepthBounds;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
dynamic->stencil_compare_mask.front =
pCreateInfo->pDepthStencilState->front.compareMask;
dynamic->stencil_compare_mask.back =
pCreateInfo->pDepthStencilState->back.compareMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
dynamic->stencil_write_mask.front =
pCreateInfo->pDepthStencilState->front.writeMask;
dynamic->stencil_write_mask.back =
pCreateInfo->pDepthStencilState->back.writeMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
dynamic->stencil_reference.front =
pCreateInfo->pDepthStencilState->front.reference;
dynamic->stencil_reference.back =
pCreateInfo->pDepthStencilState->back.reference;
}
}
pipeline->dynamic_state_mask = states;
}
static void
anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
{
#ifdef DEBUG
struct anv_render_pass *renderpass = NULL;
struct anv_subpass *subpass = NULL;
/* Assert that all required members of VkGraphicsPipelineCreateInfo are
* present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
*/
assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
renderpass = anv_render_pass_from_handle(info->renderPass);
assert(renderpass);
assert(info->subpass < renderpass->subpass_count);
subpass = &renderpass->subpasses[info->subpass];
assert(info->stageCount >= 1);
assert(info->pVertexInputState);
assert(info->pInputAssemblyState);
assert(info->pRasterizationState);
if (!info->pRasterizationState->rasterizerDiscardEnable) {
assert(info->pViewportState);
assert(info->pMultisampleState);
if (subpass && subpass->depth_stencil_attachment)
assert(info->pDepthStencilState);
if (subpass && subpass->color_count > 0) {
bool all_color_unused = true;
for (int i = 0; i < subpass->color_count; i++) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
all_color_unused = false;
}
/* pColorBlendState is ignored if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
assert(info->pColorBlendState || all_color_unused);
}
}
for (uint32_t i = 0; i < info->stageCount; ++i) {
switch (info->pStages[i].stage) {
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
assert(info->pTessellationState);
break;
default:
break;
}
}
#endif
}
/**
* Calculate the desired L3 partitioning based on the current state of the
* pipeline. For now this simply returns the conservative defaults calculated
* by get_default_l3_weights(), but we could probably do better by gathering
* more statistics from the pipeline state (e.g. guess of expected URB usage
* and bound surfaces), or by using feed-back from performance counters.
*/
void
anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
{
const struct gen_device_info *devinfo = &pipeline->device->info;
const struct gen_l3_weights w =
gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
pipeline->urb.total_size =
gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
}
VkResult
anv_pipeline_init(struct anv_pipeline *pipeline,
struct anv_device *device,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *alloc)
{
VkResult result;
anv_pipeline_validate_create_info(pCreateInfo);
if (alloc == NULL)
alloc = &device->alloc;
pipeline->device = device;
ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
assert(pCreateInfo->subpass < render_pass->subpass_count);
pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
if (result != VK_SUCCESS)
return result;
pipeline->batch.alloc = alloc;
pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
pipeline->batch.relocs = &pipeline->batch_relocs;
pipeline->batch.status = VK_SUCCESS;
copy_non_dynamic_state(pipeline, pCreateInfo);
pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
pCreateInfo->pRasterizationState->depthClampEnable;
/* Previously we enabled depth clipping when !depthClampEnable.
* DepthClipStateCreateInfo now makes depth clipping explicit so if the
* clipping info is available, use its enable value to determine clipping,
* otherwise fallback to the previous !depthClampEnable logic.
*/
const VkPipelineRasterizationDepthClipStateCreateInfoEXT *clip_info =
vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
pipeline->depth_clip_enable = clip_info ? clip_info->depthClipEnable : !pipeline->depth_clamp_enable;
pipeline->sample_shading_enable = pCreateInfo->pMultisampleState &&
pCreateInfo->pMultisampleState->sampleShadingEnable;
pipeline->needs_data_cache = false;
/* When we free the pipeline, we detect stages based on the NULL status
* of various prog_data pointers. Make them NULL by default.
*/
memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
result = anv_pipeline_compile_graphics(pipeline, cache, pCreateInfo);
if (result != VK_SUCCESS) {
anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
return result;
}
assert(pipeline->shaders[MESA_SHADER_VERTEX]);
anv_pipeline_setup_l3_config(pipeline, false);
const VkPipelineVertexInputStateCreateInfo *vi_info =
pCreateInfo->pVertexInputState;
const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
pipeline->vb_used = 0;
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription *desc =
&vi_info->pVertexAttributeDescriptions[i];
if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
pipeline->vb_used |= 1 << desc->binding;
}
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *desc =
&vi_info->pVertexBindingDescriptions[i];
pipeline->vb[desc->binding].stride = desc->stride;
/* Step rate is programmed per vertex element (attribute), not
* binding. Set up a map of which bindings step per instance, for
* reference by vertex element setup. */
switch (desc->inputRate) {
default:
case VK_VERTEX_INPUT_RATE_VERTEX:
pipeline->vb[desc->binding].instanced = false;
break;
case VK_VERTEX_INPUT_RATE_INSTANCE:
pipeline->vb[desc->binding].instanced = true;
break;
}
pipeline->vb[desc->binding].instance_divisor = 1;
}
const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state =
vk_find_struct_const(vi_info->pNext,
PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
if (vi_div_state) {
for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) {
const VkVertexInputBindingDivisorDescriptionEXT *desc =
&vi_div_state->pVertexBindingDivisors[i];
pipeline->vb[desc->binding].instance_divisor = desc->divisor;
}
}
/* Our implementation of VK_KHR_multiview uses instancing to draw the
* different views. If the client asks for instancing, we need to multiply
* the instance divisor by the number of views ensure that we repeat the
* client's per-instance data once for each view.
*/
if (pipeline->subpass->view_mask) {
const uint32_t view_count = anv_subpass_view_count(pipeline->subpass);
for (uint32_t vb = 0; vb < MAX_VBS; vb++) {
if (pipeline->vb[vb].instanced)
pipeline->vb[vb].instance_divisor *= view_count;
}
}
const VkPipelineInputAssemblyStateCreateInfo *ia_info =
pCreateInfo->pInputAssemblyState;
const VkPipelineTessellationStateCreateInfo *tess_info =
pCreateInfo->pTessellationState;
pipeline->primitive_restart = ia_info->primitiveRestartEnable;
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
else
pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
return VK_SUCCESS;
}