blob: 8b24360293d4da20563ace6aca76ea610d9ec491 [file] [log] [blame]
/*
* Copyright (C) 2019 Connor Abbott <cwabbott0@gmail.com>
* Copyright (C) 2019 Lyude Paul <thatslyude@gmail.com>
* Copyright (C) 2019 Ryan Houdek <Sonicadvance1@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __bifrost_h__
#define __bifrost_h__
#include <stdint.h>
#include <stdbool.h>
#define BIFROST_DBG_MSGS 0x0001
#define BIFROST_DBG_SHADERS 0x0002
extern int bifrost_debug;
enum bifrost_clause_type {
BIFROST_CLAUSE_NONE = 0,
BIFROST_CLAUSE_LOAD_VARY = 1,
BIFROST_CLAUSE_UBO = 2,
BIFROST_CLAUSE_TEX = 3,
BIFROST_CLAUSE_SSBO_LOAD = 5,
BIFROST_CLAUSE_SSBO_STORE = 6,
BIFROST_CLAUSE_BLEND = 9,
BIFROST_CLAUSE_FRAGZ = 12,
BIFROST_CLAUSE_ATEST = 13,
BIFROST_CLAUSE_64BIT = 15
};
struct bifrost_header {
unsigned unk0 : 7;
// If true, convert any infinite result of any floating-point operation to
// the biggest representable number.
unsigned suppress_inf: 1;
// Convert any NaN results to 0.
unsigned suppress_nan : 1;
unsigned unk1 : 2;
// true if the execution mask of the next clause is the same as the mask of
// the current clause.
unsigned back_to_back : 1;
unsigned no_end_of_shader: 1;
unsigned unk2 : 2;
// Set to true for fragment shaders, to implement this bit of spec text
// from section 7.1.5 of the GLSL ES spec:
//
// "Stores to image and buffer variables performed by helper invocations
// have no effect on the underlying image or buffer memory."
//
// Helper invocations are threads (invocations) corresponding to pixels in
// a quad that aren't actually part of the triangle, but are included to
// make derivatives work correctly. They're usually turned on, but they
// need to be masked off for GLSL-level stores. This bit seems to be the
// only bit that's actually different between fragment shaders and other
// shaders, so this is probably what it's doing.
unsigned elide_writes : 1;
// If backToBack is off:
// - true for conditional branches and fallthrough
// - false for unconditional branches
// The blob seems to always set it to true if back-to-back is on.
unsigned branch_cond : 1;
// This bit is set when the next clause writes to the data register of some
// previous clause.
unsigned datareg_writebarrier: 1;
unsigned datareg : 6;
unsigned scoreboard_deps: 8;
unsigned scoreboard_index: 3;
enum bifrost_clause_type clause_type: 4;
unsigned unk3 : 1; // part of clauseType?
enum bifrost_clause_type next_clause_type: 4;
unsigned unk4 : 1; // part of nextClauseType?
} __attribute__((packed));
enum bifrost_packed_src {
BIFROST_SRC_PORT0 = 0,
BIFROST_SRC_PORT1 = 1,
BIFROST_SRC_PORT3 = 2,
BIFROST_SRC_STAGE = 3,
BIFROST_SRC_CONST_LO = 4,
BIFROST_SRC_CONST_HI = 5,
BIFROST_SRC_PASS_FMA = 6,
BIFROST_SRC_PASS_ADD = 7,
};
struct bifrost_fma_inst {
unsigned src0 : 3;
unsigned op : 20;
} __attribute__((packed));
struct bifrost_add_inst {
unsigned src0 : 3;
unsigned op : 17;
} __attribute__((packed));
enum bifrost_outmod {
BIFROST_NONE = 0x0,
BIFROST_POS = 0x1,
BIFROST_SAT_SIGNED = 0x2,
BIFROST_SAT = 0x3,
};
enum bifrost_roundmode {
BIFROST_RTE = 0x0, /* round to even */
BIFROST_RTP = 0x1, /* round to positive */
BIFROST_RTN = 0x2, /* round to negative */
BIFROST_RTZ = 0x3 /* round to zero */
};
/* NONE: Same as fmax() and fmin() -- return the other
* number if any number is NaN. Also always return +0 if
* one argument is +0 and the other is -0.
*
* NAN_WINS: Instead of never returning a NaN, always return
* one. The "greater"/"lesser" NaN is always returned, first
* by checking the sign and then the mantissa bits.
*
* SRC1_WINS: For max, implement src0 > src1 ? src0 : src1.
* For min, implement src0 < src1 ? src0 : src1. This
* includes handling NaN's and signedness of 0 differently
* from above, since +0 and -0 compare equal and comparisons
* always return false for NaN's. As a result, this mode is
* *not* commutative.
*
* SRC0_WINS: For max, implement src0 < src1 ? src1 : src0
* For min, implement src0 > src1 ? src1 : src0
*/
enum bifrost_minmax_mode {
BIFROST_MINMAX_NONE = 0x0,
BIFROST_NAN_WINS = 0x1,
BIFROST_SRC1_WINS = 0x2,
BIFROST_SRC0_WINS = 0x3,
};
enum bifrost_interp_mode {
BIFROST_INTERP_PER_FRAG = 0x0,
BIFROST_INTERP_CENTROID = 0x1,
BIFROST_INTERP_DEFAULT = 0x2,
BIFROST_INTERP_EXPLICIT = 0x3
};
/* Fixed location for gl_FragCoord.zw */
#define BIFROST_FRAGZ (23)
#define BIFROST_FRAGW (22)
enum branch_bit_size {
BR_SIZE_32 = 0,
BR_SIZE_16XX = 1,
BR_SIZE_16YY = 2,
// For the above combinations of bitsize and location, an extra bit is
// encoded via comparing the sources. The only possible source of ambiguity
// would be if the sources were the same, but then the branch condition
// would be always true or always false anyways, so we can ignore it. But
// this no longer works when comparing the y component to the x component,
// since it's valid to compare the y component of a source against its own
// x component. Instead, the extra bit is encoded via an extra bitsize.
BR_SIZE_16YX0 = 3,
BR_SIZE_16YX1 = 4,
BR_SIZE_32_AND_16X = 5,
BR_SIZE_32_AND_16Y = 6,
// Used for comparisons with zero and always-true, see below. I think this
// only works for integer comparisons.
BR_SIZE_ZERO = 7,
};
enum bifrost_reg_write_unit {
REG_WRITE_NONE = 0, // don't write
REG_WRITE_TWO, // write using reg2
REG_WRITE_THREE, // write using reg3
};
struct bifrost_regs {
unsigned uniform_const : 8;
unsigned reg3 : 6;
unsigned reg2 : 6;
unsigned reg0 : 5;
unsigned reg1 : 6;
unsigned ctrl : 4;
} __attribute__((packed));
enum bifrost_branch_cond {
BR_COND_LT = 0,
BR_COND_LE = 1,
BR_COND_GE = 2,
BR_COND_GT = 3,
// Equal vs. not-equal determined by src0/src1 comparison
BR_COND_EQ = 4,
// floating-point comparisons
// Becomes UNE when you flip the arguments
BR_COND_OEQ = 5,
// TODO what happens when you flip the arguments?
BR_COND_OGT = 6,
BR_COND_OLT = 7,
};
enum bifrost_branch_code {
BR_ALWAYS = 63,
};
#define BIFROST_ADD_OP_BRANCH (0x0d000 >> 12)
struct bifrost_branch {
unsigned src0 : 3;
/* For BR_SIZE_ZERO, upper two bits become ctrl */
unsigned src1 : 3;
/* Offset source -- always uniform/const but
* theoretically could support indirect jumps? */
unsigned src2 : 3;
enum bifrost_branch_cond cond : 3;
enum branch_bit_size size : 3;
unsigned op : 5;
};
/* Clause packing */
struct bifrost_fmt1 {
unsigned ins_0 : 3;
unsigned tag : 5;
uint64_t ins_1 : 64;
unsigned ins_2 : 11;
uint64_t header : 45;
} __attribute__((packed));
#define BIFROST_FMT1_INSTRUCTIONS 0b00101
#define BIFROST_FMT1_FINAL 0b01001
#define BIFROST_FMT1_CONSTANTS 0b00001
#define BIFROST_FMTC_CONSTANTS 0b0011
#define BIFROST_FMTC_FINAL 0b0111
struct bifrost_fmt_constant {
unsigned pos : 4;
unsigned tag : 4;
uint64_t imm_1 : 60;
uint64_t imm_2 : 60;
} __attribute__((packed));
enum bifrost_reg_control {
BIFROST_WRITE_FMA_P2 = 1,
BIFROST_WRITE_FMA_P2_READ_P3 = 2,
BIFROST_FIRST_WRITE_FMA_P2_READ_P3 = 3,
BIFROST_READ_P3 = 4,
BIFROST_WRITE_ADD_P2 = 5,
BIFROST_WRITE_ADD_P2_READ_P3 = 6,
BIFROST_WRITE_ADD_P2_FMA_P3 = 7,
BIFROST_FIRST_NONE = 8,
BIFROST_FIRST_WRITE_FMA_P2 = 9,
/* INSTR_INVALID_ENC */
BIFROST_REG_NONE = 11,
BIFROST_FIRST_READ_P3 = 12,
BIFROST_FIRST_WRITE_ADD_P2 = 13,
BIFROST_FIRST_WRITE_ADD_P2_READ_P3 = 14,
BIFROST_FIRST_WRITE_ADD_P2_FMA_P3 = 15
};
/* 32-bit modes for slots 2/3, as encoded in the register block. Other values
* are reserved. First part specifies behaviour of slot 2 (Idle, Read, Write
* Full, Write Low, Write High), second part behaviour of slot 3, and the last
* part specifies the source for the write (FMA, ADD, or MIX for FMA/ADD).
*
* IDLE is a special mode disabling both ports, except for the first
* instruction in the clause which uses IDLE_1 for the same purpose.
*
* All fields 0 used as sentinel for reserved encoding, so IDLE(_1) have FMA
* set (and ignored) as a placeholder to differentiate from reserved.
*/
enum bifrost_reg_mode {
BIFROST_R_WL_FMA = 1,
BIFROST_R_WH_FMA = 2,
BIFROST_R_W_FMA = 3,
BIFROST_R_WL_ADD = 4,
BIFROST_R_WH_ADD = 5,
BIFROST_R_W_ADD = 6,
BIFROST_WL_WL_ADD = 7,
BIFROST_WL_WH_ADD = 8,
BIFROST_WL_W_ADD = 9,
BIFROST_WH_WL_ADD = 10,
BIFROST_WH_WH_ADD = 11,
BIFROST_WH_W_ADD = 12,
BIFROST_W_WL_ADD = 13,
BIFROST_W_WH_ADD = 14,
BIFROST_W_W_ADD = 15,
BIFROST_IDLE_1 = 16,
BIFROST_I_W_FMA = 17,
BIFROST_I_WL_FMA = 18,
BIFROST_I_WH_FMA = 19,
BIFROST_R_I = 20,
BIFROST_I_W_ADD = 21,
BIFROST_I_WL_ADD = 22,
BIFROST_I_WH_ADD = 23,
BIFROST_WL_WH_MIX = 24,
BIFROST_WH_WL_MIX = 26,
BIFROST_IDLE = 27,
};
enum bifrost_reg_op {
BIFROST_OP_IDLE = 0,
BIFROST_OP_READ = 1,
BIFROST_OP_WRITE = 2,
BIFROST_OP_WRITE_LO = 3,
BIFROST_OP_WRITE_HI = 4,
};
struct bifrost_reg_ctrl_23 {
enum bifrost_reg_op slot2;
enum bifrost_reg_op slot3;
bool slot3_fma;
};
static const struct bifrost_reg_ctrl_23 bifrost_reg_ctrl_lut[32] = {
[BIFROST_R_WL_FMA] = { BIFROST_OP_READ, BIFROST_OP_WRITE_LO, true },
[BIFROST_R_WH_FMA] = { BIFROST_OP_READ, BIFROST_OP_WRITE_HI, true },
[BIFROST_R_W_FMA] = { BIFROST_OP_READ, BIFROST_OP_WRITE, true },
[BIFROST_R_WL_ADD] = { BIFROST_OP_READ, BIFROST_OP_WRITE_LO, false },
[BIFROST_R_WH_ADD] = { BIFROST_OP_READ, BIFROST_OP_WRITE_HI, false },
[BIFROST_R_W_ADD] = { BIFROST_OP_READ, BIFROST_OP_WRITE, false },
[BIFROST_WL_WL_ADD] = { BIFROST_OP_WRITE_LO, BIFROST_OP_WRITE_LO, false },
[BIFROST_WL_WH_ADD] = { BIFROST_OP_WRITE_LO, BIFROST_OP_WRITE_HI, false },
[BIFROST_WL_W_ADD] = { BIFROST_OP_WRITE_LO, BIFROST_OP_WRITE, false },
[BIFROST_WH_WL_ADD] = { BIFROST_OP_WRITE_HI, BIFROST_OP_WRITE_LO, false },
[BIFROST_WH_WH_ADD] = { BIFROST_OP_WRITE_HI, BIFROST_OP_WRITE_HI, false },
[BIFROST_WH_W_ADD] = { BIFROST_OP_WRITE_HI, BIFROST_OP_WRITE, false },
[BIFROST_W_WL_ADD] = { BIFROST_OP_WRITE, BIFROST_OP_WRITE_LO, false },
[BIFROST_W_WH_ADD] = { BIFROST_OP_WRITE, BIFROST_OP_WRITE_HI, false },
[BIFROST_W_W_ADD] = { BIFROST_OP_WRITE, BIFROST_OP_WRITE, false },
[BIFROST_IDLE_1] = { BIFROST_OP_IDLE, BIFROST_OP_IDLE, true },
[BIFROST_I_W_FMA] = { BIFROST_OP_IDLE, BIFROST_OP_WRITE, true },
[BIFROST_I_WL_FMA] = { BIFROST_OP_IDLE, BIFROST_OP_WRITE_LO, true },
[BIFROST_I_WH_FMA] = { BIFROST_OP_IDLE, BIFROST_OP_WRITE_HI, true },
[BIFROST_R_I] = { BIFROST_OP_READ, BIFROST_OP_IDLE, false },
[BIFROST_I_W_ADD] = { BIFROST_OP_IDLE, BIFROST_OP_WRITE, false },
[BIFROST_I_WL_ADD] = { BIFROST_OP_IDLE, BIFROST_OP_WRITE_LO, false },
[BIFROST_I_WH_ADD] = { BIFROST_OP_IDLE, BIFROST_OP_WRITE_HI, false },
[BIFROST_WL_WH_MIX] = { BIFROST_OP_WRITE_LO, BIFROST_OP_WRITE_HI, false },
[BIFROST_WH_WL_MIX] = { BIFROST_OP_WRITE_HI, BIFROST_OP_WRITE_LO, false },
[BIFROST_IDLE] = { BIFROST_OP_IDLE, BIFROST_OP_IDLE, true },
};
#endif