blob: 0c6f3a2b28c003bd2f8d1b00a90401008b91114a [file] [log] [blame]
/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir.h"
#include "nir_builder.h"
#include "util/u_math.h"
/**
* \file nir_opt_intrinsics.c
*/
static nir_intrinsic_instr *
lower_subgroups_64bit_split_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin,
unsigned int component)
{
nir_ssa_def *comp;
if (component == 0)
comp = nir_unpack_64_2x32_split_x(b, intrin->src[0].ssa);
else
comp = nir_unpack_64_2x32_split_y(b, intrin->src[0].ssa);
nir_intrinsic_instr *intr = nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
nir_ssa_dest_init(&intr->instr, &intr->dest, 1, 32, NULL);
intr->const_index[0] = intrin->const_index[0];
intr->const_index[1] = intrin->const_index[1];
intr->src[0] = nir_src_for_ssa(comp);
if (nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2)
nir_src_copy(&intr->src[1], &intrin->src[1], &intr->instr);
intr->num_components = 1;
nir_builder_instr_insert(b, &intr->instr);
return intr;
}
static nir_ssa_def *
lower_subgroup_op_to_32bit(nir_builder *b, nir_intrinsic_instr *intrin)
{
assert(intrin->src[0].ssa->bit_size == 64);
nir_intrinsic_instr *intr_x = lower_subgroups_64bit_split_intrinsic(b, intrin, 0);
nir_intrinsic_instr *intr_y = lower_subgroups_64bit_split_intrinsic(b, intrin, 1);
return nir_pack_64_2x32_split(b, &intr_x->dest.ssa, &intr_y->dest.ssa);
}
static nir_ssa_def *
ballot_type_to_uint(nir_builder *b, nir_ssa_def *value,
const nir_lower_subgroups_options *options)
{
/* Only the new-style SPIR-V subgroup instructions take a ballot result as
* an argument, so we only use this on uvec4 types.
*/
assert(value->num_components == 4 && value->bit_size == 32);
return nir_extract_bits(b, &value, 1, 0, options->ballot_components,
options->ballot_bit_size);
}
static nir_ssa_def *
uint_to_ballot_type(nir_builder *b, nir_ssa_def *value,
unsigned num_components, unsigned bit_size)
{
assert(util_is_power_of_two_nonzero(num_components));
assert(util_is_power_of_two_nonzero(value->num_components));
unsigned total_bits = bit_size * num_components;
/* If the source doesn't have enough bits, zero-pad */
if (total_bits > value->bit_size * value->num_components)
value = nir_pad_vector_imm_int(b, value, 0, total_bits / value->bit_size);
value = nir_bitcast_vector(b, value, bit_size);
/* If the source has too many components, truncate. This can happen if,
* for instance, we're implementing GL_ARB_shader_ballot or
* VK_EXT_shader_subgroup_ballot which have 64-bit ballot values on an
* architecture with a native 128-bit uvec4 ballot. This comes up in Zink
* for OpenGL on Vulkan. It's the job of the driver calling this lowering
* pass to ensure that it's restricted subgroup sizes sufficiently that we
* have enough ballot bits.
*/
if (value->num_components > num_components)
value = nir_trim_vector(b, value, num_components);
return value;
}
static nir_ssa_def *
lower_subgroup_op_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin,
bool lower_to_32bit)
{
/* This is safe to call on scalar things but it would be silly */
assert(intrin->dest.ssa.num_components > 1);
nir_ssa_def *value = nir_ssa_for_src(b, intrin->src[0],
intrin->num_components);
nir_ssa_def *reads[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < intrin->num_components; i++) {
nir_intrinsic_instr *chan_intrin =
nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
nir_ssa_dest_init(&chan_intrin->instr, &chan_intrin->dest,
1, intrin->dest.ssa.bit_size, NULL);
chan_intrin->num_components = 1;
/* value */
chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i));
/* invocation */
if (nir_intrinsic_infos[intrin->intrinsic].num_srcs > 1) {
assert(nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2);
nir_src_copy(&chan_intrin->src[1], &intrin->src[1], &chan_intrin->instr);
}
chan_intrin->const_index[0] = intrin->const_index[0];
chan_intrin->const_index[1] = intrin->const_index[1];
if (lower_to_32bit && chan_intrin->src[0].ssa->bit_size == 64) {
reads[i] = lower_subgroup_op_to_32bit(b, chan_intrin);
} else {
nir_builder_instr_insert(b, &chan_intrin->instr);
reads[i] = &chan_intrin->dest.ssa;
}
}
return nir_vec(b, reads, intrin->num_components);
}
static nir_ssa_def *
lower_vote_eq_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin)
{
assert(intrin->src[0].is_ssa);
nir_ssa_def *value = intrin->src[0].ssa;
nir_ssa_def *result = NULL;
for (unsigned i = 0; i < intrin->num_components; i++) {
nir_intrinsic_instr *chan_intrin =
nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
nir_ssa_dest_init(&chan_intrin->instr, &chan_intrin->dest,
1, intrin->dest.ssa.bit_size, NULL);
chan_intrin->num_components = 1;
chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i));
nir_builder_instr_insert(b, &chan_intrin->instr);
if (result) {
result = nir_iand(b, result, &chan_intrin->dest.ssa);
} else {
result = &chan_intrin->dest.ssa;
}
}
return result;
}
static nir_ssa_def *
lower_vote_eq(nir_builder *b, nir_intrinsic_instr *intrin)
{
assert(intrin->src[0].is_ssa);
nir_ssa_def *value = intrin->src[0].ssa;
/* We have to implicitly lower to scalar */
nir_ssa_def *all_eq = NULL;
for (unsigned i = 0; i < intrin->num_components; i++) {
nir_ssa_def *rfi = nir_read_first_invocation(b, nir_channel(b, value, i));
nir_ssa_def *is_eq;
if (intrin->intrinsic == nir_intrinsic_vote_feq) {
is_eq = nir_feq(b, rfi, nir_channel(b, value, i));
} else {
is_eq = nir_ieq(b, rfi, nir_channel(b, value, i));
}
if (all_eq == NULL) {
all_eq = is_eq;
} else {
all_eq = nir_iand(b, all_eq, is_eq);
}
}
return nir_vote_all(b, 1, all_eq);
}
static nir_ssa_def *
lower_shuffle_to_swizzle(nir_builder *b, nir_intrinsic_instr *intrin,
const nir_lower_subgroups_options *options)
{
unsigned mask = nir_src_as_uint(intrin->src[1]);
if (mask >= 32)
return NULL;
nir_intrinsic_instr *swizzle = nir_intrinsic_instr_create(
b->shader, nir_intrinsic_masked_swizzle_amd);
swizzle->num_components = intrin->num_components;
nir_src_copy(&swizzle->src[0], &intrin->src[0], &swizzle->instr);
nir_intrinsic_set_swizzle_mask(swizzle, (mask << 10) | 0x1f);
nir_ssa_dest_init(&swizzle->instr, &swizzle->dest,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size, NULL);
if (options->lower_to_scalar && swizzle->num_components > 1) {
return lower_subgroup_op_to_scalar(b, swizzle, options->lower_shuffle_to_32bit);
} else if (options->lower_shuffle_to_32bit && swizzle->src[0].ssa->bit_size == 64) {
return lower_subgroup_op_to_32bit(b, swizzle);
} else {
nir_builder_instr_insert(b, &swizzle->instr);
return &swizzle->dest.ssa;
}
}
/* Lowers "specialized" shuffles to a generic nir_intrinsic_shuffle. */
static nir_ssa_def *
lower_to_shuffle(nir_builder *b, nir_intrinsic_instr *intrin,
const nir_lower_subgroups_options *options)
{
if (intrin->intrinsic == nir_intrinsic_shuffle_xor &&
options->lower_shuffle_to_swizzle_amd &&
nir_src_is_const(intrin->src[1])) {
nir_ssa_def *result =
lower_shuffle_to_swizzle(b, intrin, options);
if (result)
return result;
}
nir_ssa_def *index = nir_load_subgroup_invocation(b);
bool is_shuffle = false;
switch (intrin->intrinsic) {
case nir_intrinsic_shuffle_xor:
assert(intrin->src[1].is_ssa);
index = nir_ixor(b, index, intrin->src[1].ssa);
is_shuffle = true;
break;
case nir_intrinsic_shuffle_up:
assert(intrin->src[1].is_ssa);
index = nir_isub(b, index, intrin->src[1].ssa);
is_shuffle = true;
break;
case nir_intrinsic_shuffle_down:
assert(intrin->src[1].is_ssa);
index = nir_iadd(b, index, intrin->src[1].ssa);
is_shuffle = true;
break;
case nir_intrinsic_quad_broadcast:
assert(intrin->src[1].is_ssa);
index = nir_ior(b, nir_iand(b, index, nir_imm_int(b, ~0x3)),
intrin->src[1].ssa);
break;
case nir_intrinsic_quad_swap_horizontal:
/* For Quad operations, subgroups are divided into quads where
* (invocation % 4) is the index to a square arranged as follows:
*
* +---+---+
* | 0 | 1 |
* +---+---+
* | 2 | 3 |
* +---+---+
*/
index = nir_ixor(b, index, nir_imm_int(b, 0x1));
break;
case nir_intrinsic_quad_swap_vertical:
index = nir_ixor(b, index, nir_imm_int(b, 0x2));
break;
case nir_intrinsic_quad_swap_diagonal:
index = nir_ixor(b, index, nir_imm_int(b, 0x3));
break;
default:
unreachable("Invalid intrinsic");
}
nir_intrinsic_instr *shuffle =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_shuffle);
shuffle->num_components = intrin->num_components;
nir_src_copy(&shuffle->src[0], &intrin->src[0], &shuffle->instr);
shuffle->src[1] = nir_src_for_ssa(index);
nir_ssa_dest_init(&shuffle->instr, &shuffle->dest,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size, NULL);
bool lower_to_32bit = options->lower_shuffle_to_32bit && is_shuffle;
if (options->lower_to_scalar && shuffle->num_components > 1) {
return lower_subgroup_op_to_scalar(b, shuffle, lower_to_32bit);
} else if (lower_to_32bit && shuffle->src[0].ssa->bit_size == 64) {
return lower_subgroup_op_to_32bit(b, shuffle);
} else {
nir_builder_instr_insert(b, &shuffle->instr);
return &shuffle->dest.ssa;
}
}
static const struct glsl_type *
glsl_type_for_ssa(nir_ssa_def *def)
{
const struct glsl_type *comp_type = def->bit_size == 1 ? glsl_bool_type() :
glsl_uintN_t_type(def->bit_size);
return glsl_replace_vector_type(comp_type, def->num_components);
}
/* Lower nir_intrinsic_shuffle to a waterfall loop + nir_read_invocation.
*/
static nir_ssa_def *
lower_shuffle(nir_builder *b, nir_intrinsic_instr *intrin)
{
assert(intrin->src[0].is_ssa);
assert(intrin->src[1].is_ssa);
nir_ssa_def *val = intrin->src[0].ssa;
nir_ssa_def *id = intrin->src[1].ssa;
/* The loop is something like:
*
* while (true) {
* first_id = readFirstInvocation(gl_SubgroupInvocationID);
* first_val = readFirstInvocation(val);
* first_result = readInvocation(val, readFirstInvocation(id));
* if (id == first_id)
* result = first_val;
* if (elect()) {
* if (id > gl_SubgroupInvocationID) {
* result = first_result;
* }
* break;
* }
* }
*
* The idea is to guarantee, on each iteration of the loop, that anything
* reading from first_id gets the correct value, so that we can then kill
* it off by breaking out of the loop. Before doing that we also have to
* ensure that first_id invocation gets the correct value. It only won't be
* assigned the correct value already if the invocation it's reading from
* isn't already killed off, that is, if it's later than its own ID.
* Invocations where id <= gl_SubgroupInvocationID will be assigned their
* result in the first if, and invocations where id >
* gl_SubgroupInvocationID will be assigned their result in the second if.
*
* We do this more complicated loop rather than looping over all id's
* explicitly because at this point we don't know the "actual" subgroup
* size and at the moment there's no way to get at it, which means we may
* loop over always-inactive invocations.
*/
nir_ssa_def *subgroup_id = nir_load_subgroup_invocation(b);
nir_variable *result =
nir_local_variable_create(b->impl, glsl_type_for_ssa(val), "result");
nir_loop *loop = nir_push_loop(b); {
nir_ssa_def *first_id = nir_read_first_invocation(b, subgroup_id);
nir_ssa_def *first_val = nir_read_first_invocation(b, val);
nir_ssa_def *first_result =
nir_read_invocation(b, val, nir_read_first_invocation(b, id));
nir_if *nif = nir_push_if(b, nir_ieq(b, id, first_id)); {
nir_store_var(b, result, first_val, BITFIELD_MASK(val->num_components));
} nir_pop_if(b, nif);
nir_if *nif2 = nir_push_if(b, nir_elect(b, 1)); {
nir_if *nif3 = nir_push_if(b, nir_ult(b, subgroup_id, id)); {
nir_store_var(b, result, first_result, BITFIELD_MASK(val->num_components));
} nir_pop_if(b, nif3);
nir_jump(b, nir_jump_break);
} nir_pop_if(b, nif2);
} nir_pop_loop(b, loop);
return nir_load_var(b, result);
}
static bool
lower_subgroups_filter(const nir_instr *instr, const void *_options)
{
return instr->type == nir_instr_type_intrinsic;
}
/* Return a ballot-mask-sized value which represents "val" sign-extended and
* then shifted left by "shift". Only particular values for "val" are
* supported, see below.
*/
static nir_ssa_def *
build_ballot_imm_ishl(nir_builder *b, int64_t val, nir_ssa_def *shift,
const nir_lower_subgroups_options *options)
{
/* This only works if all the high bits are the same as bit 1. */
assert((val >> 2) == (val & 0x2 ? -1 : 0));
/* First compute the result assuming one ballot component. */
nir_ssa_def *result =
nir_ishl(b, nir_imm_intN_t(b, val, options->ballot_bit_size), shift);
if (options->ballot_components == 1)
return result;
/* Fix up the result when there is > 1 component. The idea is that nir_ishl
* masks out the high bits of the shift value already, so in case there's
* more than one component the component which 1 would be shifted into
* already has the right value and all we have to do is fixup the other
* components. Components below it should always be 0, and components above
* it must be either 0 or ~0 because of the assert above. For example, if
* the target ballot size is 2 x uint32, and we're shifting 1 by 33, then
* we'll feed 33 into ishl, which will mask it off to get 1, so we'll
* compute a single-component result of 2, which is correct for the second
* component, but the first component needs to be 0, which we get by
* comparing the high bits of the shift with 0 and selecting the original
* answer or 0 for the first component (and something similar with the
* second component). This idea is generalized here for any component count
*/
nir_const_value min_shift[4];
for (unsigned i = 0; i < options->ballot_components; i++)
min_shift[i] = nir_const_value_for_int(i * options->ballot_bit_size, 32);
nir_ssa_def *min_shift_val = nir_build_imm(b, options->ballot_components, 32, min_shift);
nir_const_value max_shift[4];
for (unsigned i = 0; i < options->ballot_components; i++)
max_shift[i] = nir_const_value_for_int((i + 1) * options->ballot_bit_size, 32);
nir_ssa_def *max_shift_val = nir_build_imm(b, options->ballot_components, 32, max_shift);
return nir_bcsel(b, nir_ult(b, shift, max_shift_val),
nir_bcsel(b, nir_ult(b, shift, min_shift_val),
nir_imm_intN_t(b, val >> 63, result->bit_size),
result),
nir_imm_intN_t(b, 0, result->bit_size));
}
static nir_ssa_def *
build_subgroup_eq_mask(nir_builder *b,
const nir_lower_subgroups_options *options)
{
nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b);
return build_ballot_imm_ishl(b, 1, subgroup_idx, options);
}
static nir_ssa_def *
build_subgroup_ge_mask(nir_builder *b,
const nir_lower_subgroups_options *options)
{
nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b);
return build_ballot_imm_ishl(b, ~0ull, subgroup_idx, options);
}
static nir_ssa_def *
build_subgroup_gt_mask(nir_builder *b,
const nir_lower_subgroups_options *options)
{
nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b);
return build_ballot_imm_ishl(b, ~1ull, subgroup_idx, options);
}
/* Return a mask which is 1 for threads up to the run-time subgroup size, i.e.
* 1 for the entire subgroup. SPIR-V requires us to return 0 for indices at or
* above the subgroup size for the masks, but gt_mask and ge_mask make them 1
* so we have to "and" with this mask.
*/
static nir_ssa_def *
build_subgroup_mask(nir_builder *b,
const nir_lower_subgroups_options *options)
{
nir_ssa_def *subgroup_size = nir_load_subgroup_size(b);
/* First compute the result assuming one ballot component. */
nir_ssa_def *result =
nir_ushr(b, nir_imm_intN_t(b, ~0ull, options->ballot_bit_size),
nir_isub_imm(b, options->ballot_bit_size,
subgroup_size));
/* Since the subgroup size and ballot bitsize are both powers of two, there
* are two possible cases to consider:
*
* (1) The subgroup size is less than the ballot bitsize. We need to return
* "result" in the first component and 0 in every other component.
* (2) The subgroup size is a multiple of the ballot bitsize. We need to
* return ~0 if the subgroup size divided by the ballot bitsize is less
* than or equal to the index in the vector and 0 otherwise. For example,
* with a target ballot type of 4 x uint32 and subgroup_size = 64 we'd need
* to return { ~0, ~0, 0, 0 }.
*
* In case (2) it turns out that "result" will be ~0, because
* "ballot_bit_size - subgroup_size" is also a multiple of
* "ballot_bit_size" and since nir_ushr masks the shift value it will
* shifted by 0. This means that the first component can just be "result"
* in all cases. The other components will also get the correct value in
* case (1) if we just use the rule in case (2), so we'll get the correct
* result if we just follow (2) and then replace the first component with
* "result".
*/
nir_const_value min_idx[4];
for (unsigned i = 0; i < options->ballot_components; i++)
min_idx[i] = nir_const_value_for_int(i * options->ballot_bit_size, 32);
nir_ssa_def *min_idx_val = nir_build_imm(b, options->ballot_components, 32, min_idx);
nir_ssa_def *result_extended =
nir_pad_vector_imm_int(b, result, ~0ull, options->ballot_components);
return nir_bcsel(b, nir_ult(b, min_idx_val, subgroup_size),
result_extended, nir_imm_intN_t(b, 0, options->ballot_bit_size));
}
static nir_ssa_def *
vec_bit_count(nir_builder *b, nir_ssa_def *value)
{
nir_ssa_def *vec_result = nir_bit_count(b, value);
nir_ssa_def *result = nir_channel(b, vec_result, 0);
for (unsigned i = 1; i < value->num_components; i++)
result = nir_iadd(b, result, nir_channel(b, vec_result, i));
return result;
}
static nir_ssa_def *
vec_find_lsb(nir_builder *b, nir_ssa_def *value)
{
nir_ssa_def *vec_result = nir_find_lsb(b, value);
nir_ssa_def *result = nir_imm_int(b, -1);
for (int i = value->num_components - 1; i >= 0; i--) {
nir_ssa_def *channel = nir_channel(b, vec_result, i);
/* result = channel >= 0 ? (i * bitsize + channel) : result */
result = nir_bcsel(b, nir_ige(b, channel, nir_imm_int(b, 0)),
nir_iadd_imm(b, channel, i * value->bit_size),
result);
}
return result;
}
static nir_ssa_def *
vec_find_msb(nir_builder *b, nir_ssa_def *value)
{
nir_ssa_def *vec_result = nir_ufind_msb(b, value);
nir_ssa_def *result = nir_imm_int(b, -1);
for (unsigned i = 0; i < value->num_components; i++) {
nir_ssa_def *channel = nir_channel(b, vec_result, i);
/* result = channel >= 0 ? (i * bitsize + channel) : result */
result = nir_bcsel(b, nir_ige(b, channel, nir_imm_int(b, 0)),
nir_iadd_imm(b, channel, i * value->bit_size),
result);
}
return result;
}
static nir_ssa_def *
lower_dynamic_quad_broadcast(nir_builder *b, nir_intrinsic_instr *intrin,
const nir_lower_subgroups_options *options)
{
if (!options->lower_quad_broadcast_dynamic_to_const)
return lower_to_shuffle(b, intrin, options);
nir_ssa_def *dst = NULL;
for (unsigned i = 0; i < 4; ++i) {
nir_intrinsic_instr *qbcst =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_quad_broadcast);
qbcst->num_components = intrin->num_components;
qbcst->src[1] = nir_src_for_ssa(nir_imm_int(b, i));
nir_src_copy(&qbcst->src[0], &intrin->src[0], &qbcst->instr);
nir_ssa_dest_init(&qbcst->instr, &qbcst->dest,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size, NULL);
nir_ssa_def *qbcst_dst = NULL;
if (options->lower_to_scalar && qbcst->num_components > 1) {
qbcst_dst = lower_subgroup_op_to_scalar(b, qbcst, false);
} else {
nir_builder_instr_insert(b, &qbcst->instr);
qbcst_dst = &qbcst->dest.ssa;
}
if (i)
dst = nir_bcsel(b, nir_ieq(b, intrin->src[1].ssa,
nir_src_for_ssa(nir_imm_int(b, i)).ssa),
qbcst_dst, dst);
else
dst = qbcst_dst;
}
return dst;
}
static nir_ssa_def *
lower_read_invocation_to_cond(nir_builder *b, nir_intrinsic_instr *intrin)
{
return nir_read_invocation_cond_ir3(b, intrin->dest.ssa.bit_size,
intrin->src[0].ssa,
nir_ieq(b, intrin->src[1].ssa,
nir_load_subgroup_invocation(b)));
}
static nir_ssa_def *
lower_subgroups_instr(nir_builder *b, nir_instr *instr, void *_options)
{
const nir_lower_subgroups_options *options = _options;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_vote_any:
case nir_intrinsic_vote_all:
if (options->lower_vote_trivial)
return nir_ssa_for_src(b, intrin->src[0], 1);
break;
case nir_intrinsic_vote_feq:
case nir_intrinsic_vote_ieq:
if (options->lower_vote_trivial)
return nir_imm_true(b);
if (options->lower_vote_eq)
return lower_vote_eq(b, intrin);
if (options->lower_to_scalar && intrin->num_components > 1)
return lower_vote_eq_to_scalar(b, intrin);
break;
case nir_intrinsic_load_subgroup_size:
if (options->subgroup_size)
return nir_imm_int(b, options->subgroup_size);
break;
case nir_intrinsic_read_invocation:
if (options->lower_to_scalar && intrin->num_components > 1)
return lower_subgroup_op_to_scalar(b, intrin, false);
if (options->lower_read_invocation_to_cond)
return lower_read_invocation_to_cond(b, intrin);
break;
case nir_intrinsic_read_first_invocation:
if (options->lower_to_scalar && intrin->num_components > 1)
return lower_subgroup_op_to_scalar(b, intrin, false);
break;
case nir_intrinsic_load_subgroup_eq_mask:
case nir_intrinsic_load_subgroup_ge_mask:
case nir_intrinsic_load_subgroup_gt_mask:
case nir_intrinsic_load_subgroup_le_mask:
case nir_intrinsic_load_subgroup_lt_mask: {
if (!options->lower_subgroup_masks)
return NULL;
nir_ssa_def *val;
switch (intrin->intrinsic) {
case nir_intrinsic_load_subgroup_eq_mask:
val = build_subgroup_eq_mask(b, options);
break;
case nir_intrinsic_load_subgroup_ge_mask:
val = nir_iand(b, build_subgroup_ge_mask(b, options),
build_subgroup_mask(b, options));
break;
case nir_intrinsic_load_subgroup_gt_mask:
val = nir_iand(b, build_subgroup_gt_mask(b, options),
build_subgroup_mask(b, options));
break;
case nir_intrinsic_load_subgroup_le_mask:
val = nir_inot(b, build_subgroup_gt_mask(b, options));
break;
case nir_intrinsic_load_subgroup_lt_mask:
val = nir_inot(b, build_subgroup_ge_mask(b, options));
break;
default:
unreachable("you seriously can't tell this is unreachable?");
}
return uint_to_ballot_type(b, val,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size);
}
case nir_intrinsic_ballot: {
if (intrin->dest.ssa.num_components == options->ballot_components &&
intrin->dest.ssa.bit_size == options->ballot_bit_size)
return NULL;
nir_ssa_def *ballot =
nir_ballot(b, options->ballot_components, options->ballot_bit_size,
intrin->src[0].ssa);
return uint_to_ballot_type(b, ballot,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size);
}
case nir_intrinsic_ballot_bitfield_extract:
case nir_intrinsic_ballot_bit_count_reduce:
case nir_intrinsic_ballot_find_lsb:
case nir_intrinsic_ballot_find_msb: {
assert(intrin->src[0].is_ssa);
nir_ssa_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa,
options);
if (intrin->intrinsic != nir_intrinsic_ballot_bitfield_extract &&
intrin->intrinsic != nir_intrinsic_ballot_find_lsb) {
/* For OpGroupNonUniformBallotFindMSB, the SPIR-V Spec says:
*
* "Find the most significant bit set to 1 in Value, considering
* only the bits in Value required to represent all bits of the
* group’s invocations. If none of the considered bits is set to
* 1, the result is undefined."
*
* It has similar text for the other three. This means that, in case
* the subgroup size is less than 32, we have to mask off the unused
* bits. If the subgroup size is fixed and greater than or equal to
* 32, the mask will be 0xffffffff and nir_opt_algebraic will delete
* the iand.
*
* We only have to worry about this for BitCount and FindMSB because
* FindLSB counts from the bottom and BitfieldExtract selects
* individual bits. In either case, if run outside the range of
* valid bits, we hit the undefined results case and we can return
* anything we want.
*/
int_val = nir_iand(b, int_val, build_subgroup_mask(b, options));
}
switch (intrin->intrinsic) {
case nir_intrinsic_ballot_bitfield_extract: {
assert(intrin->src[1].is_ssa);
nir_ssa_def *idx = intrin->src[1].ssa;
if (int_val->num_components > 1) {
/* idx will be truncated by nir_ushr, so we just need to select
* the right component using the bits of idx that are truncated in
* the shift.
*/
int_val =
nir_vector_extract(b, int_val,
nir_udiv_imm(b, idx, int_val->bit_size));
}
return nir_test_mask(b, nir_ushr(b, int_val, idx), 1);
}
case nir_intrinsic_ballot_bit_count_reduce:
return vec_bit_count(b, int_val);
case nir_intrinsic_ballot_find_lsb:
return vec_find_lsb(b, int_val);
case nir_intrinsic_ballot_find_msb:
return vec_find_msb(b, int_val);
default:
unreachable("you seriously can't tell this is unreachable?");
}
}
case nir_intrinsic_ballot_bit_count_exclusive:
case nir_intrinsic_ballot_bit_count_inclusive: {
nir_ssa_def *mask;
if (intrin->intrinsic == nir_intrinsic_ballot_bit_count_inclusive) {
mask = nir_inot(b, build_subgroup_gt_mask(b, options));
} else {
mask = nir_inot(b, build_subgroup_ge_mask(b, options));
}
assert(intrin->src[0].is_ssa);
nir_ssa_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa,
options);
return vec_bit_count(b, nir_iand(b, int_val, mask));
}
case nir_intrinsic_elect: {
if (!options->lower_elect)
return NULL;
return nir_ieq(b, nir_load_subgroup_invocation(b), nir_first_invocation(b));
}
case nir_intrinsic_shuffle:
if (options->lower_shuffle)
return lower_shuffle(b, intrin);
else if (options->lower_to_scalar && intrin->num_components > 1)
return lower_subgroup_op_to_scalar(b, intrin, options->lower_shuffle_to_32bit);
else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64)
return lower_subgroup_op_to_32bit(b, intrin);
break;
case nir_intrinsic_shuffle_xor:
case nir_intrinsic_shuffle_up:
case nir_intrinsic_shuffle_down:
if (options->lower_relative_shuffle)
return lower_to_shuffle(b, intrin, options);
else if (options->lower_to_scalar && intrin->num_components > 1)
return lower_subgroup_op_to_scalar(b, intrin, options->lower_shuffle_to_32bit);
else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64)
return lower_subgroup_op_to_32bit(b, intrin);
break;
case nir_intrinsic_quad_broadcast:
case nir_intrinsic_quad_swap_horizontal:
case nir_intrinsic_quad_swap_vertical:
case nir_intrinsic_quad_swap_diagonal:
if (options->lower_quad ||
(options->lower_quad_broadcast_dynamic &&
intrin->intrinsic == nir_intrinsic_quad_broadcast &&
!nir_src_is_const(intrin->src[1])))
return lower_dynamic_quad_broadcast(b, intrin, options);
else if (options->lower_to_scalar && intrin->num_components > 1)
return lower_subgroup_op_to_scalar(b, intrin, false);
break;
case nir_intrinsic_reduce: {
nir_ssa_def *ret = NULL;
/* A cluster size greater than the subgroup size is implemention defined */
if (options->subgroup_size &&
nir_intrinsic_cluster_size(intrin) >= options->subgroup_size) {
nir_intrinsic_set_cluster_size(intrin, 0);
ret = NIR_LOWER_INSTR_PROGRESS;
}
if (options->lower_to_scalar && intrin->num_components > 1)
ret = lower_subgroup_op_to_scalar(b, intrin, false);
return ret;
}
case nir_intrinsic_inclusive_scan:
case nir_intrinsic_exclusive_scan:
if (options->lower_to_scalar && intrin->num_components > 1)
return lower_subgroup_op_to_scalar(b, intrin, false);
break;
default:
break;
}
return NULL;
}
bool
nir_lower_subgroups(nir_shader *shader,
const nir_lower_subgroups_options *options)
{
return nir_shader_lower_instructions(shader,
lower_subgroups_filter,
lower_subgroups_instr,
(void *)options);
}