blob: 727d5d26347dce693f07ff24e23e716c885824ad [file] [log] [blame]
/*
* Copyright (C) 2019-2021 Collabora, Ltd.
* Copyright (C) 2019 Alyssa Rosenzweig
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* @file
*
* Implements the fragment pipeline (blending and writeout) in software, to be
* run as a dedicated "blend shader" stage on Midgard/Bifrost, or as a fragment
* shader variant on typical GPUs. This pass is useful if hardware lacks
* fixed-function blending in part or in full.
*/
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "compiler/nir/nir_format_convert.h"
#include "nir_lower_blend.h"
/* Given processed factors, combine them per a blend function */
static nir_ssa_def *
nir_blend_func(
nir_builder *b,
enum blend_func func,
nir_ssa_def *src, nir_ssa_def *dst)
{
switch (func) {
case BLEND_FUNC_ADD:
return nir_fadd(b, src, dst);
case BLEND_FUNC_SUBTRACT:
return nir_fsub(b, src, dst);
case BLEND_FUNC_REVERSE_SUBTRACT:
return nir_fsub(b, dst, src);
case BLEND_FUNC_MIN:
return nir_fmin(b, src, dst);
case BLEND_FUNC_MAX:
return nir_fmax(b, src, dst);
}
unreachable("Invalid blend function");
}
/* Does this blend function multiply by a blend factor? */
static bool
nir_blend_factored(enum blend_func func)
{
switch (func) {
case BLEND_FUNC_ADD:
case BLEND_FUNC_SUBTRACT:
case BLEND_FUNC_REVERSE_SUBTRACT:
return true;
default:
return false;
}
}
/* Compute a src_alpha_saturate factor */
static nir_ssa_def *
nir_alpha_saturate(
nir_builder *b,
nir_ssa_def *src, nir_ssa_def *dst,
unsigned chan)
{
nir_ssa_def *Asrc = nir_channel(b, src, 3);
nir_ssa_def *Adst = nir_channel(b, dst, 3);
nir_ssa_def *one = nir_imm_floatN_t(b, 1.0, src->bit_size);
nir_ssa_def *Adsti = nir_fsub(b, one, Adst);
return (chan < 3) ? nir_fmin(b, Asrc, Adsti) : one;
}
/* Returns a scalar single factor, unmultiplied */
static nir_ssa_def *
nir_blend_factor_value(
nir_builder *b,
nir_ssa_def *src, nir_ssa_def *src1, nir_ssa_def *dst, nir_ssa_def *bconst,
unsigned chan,
enum blend_factor factor)
{
switch (factor) {
case BLEND_FACTOR_ZERO:
return nir_imm_floatN_t(b, 0.0, src->bit_size);
case BLEND_FACTOR_SRC_COLOR:
return nir_channel(b, src, chan);
case BLEND_FACTOR_SRC1_COLOR:
return nir_channel(b, src1, chan);
case BLEND_FACTOR_DST_COLOR:
return nir_channel(b, dst, chan);
case BLEND_FACTOR_SRC_ALPHA:
return nir_channel(b, src, 3);
case BLEND_FACTOR_SRC1_ALPHA:
return nir_channel(b, src1, 3);
case BLEND_FACTOR_DST_ALPHA:
return nir_channel(b, dst, 3);
case BLEND_FACTOR_CONSTANT_COLOR:
return nir_channel(b, bconst, chan);
case BLEND_FACTOR_CONSTANT_ALPHA:
return nir_channel(b, bconst, 3);
case BLEND_FACTOR_SRC_ALPHA_SATURATE:
return nir_alpha_saturate(b, src, dst, chan);
}
unreachable("Invalid blend factor");
}
static nir_ssa_def *
nir_blend_factor(
nir_builder *b,
nir_ssa_def *raw_scalar,
nir_ssa_def *src, nir_ssa_def *src1, nir_ssa_def *dst, nir_ssa_def *bconst,
unsigned chan,
enum blend_factor factor,
bool inverted)
{
nir_ssa_def *f =
nir_blend_factor_value(b, src, src1, dst, bconst, chan, factor);
if (inverted)
f = nir_fadd_imm(b, nir_fneg(b, f), 1.0);
return nir_fmul(b, raw_scalar, f);
}
/* Given a colormask, "blend" with the destination */
static nir_ssa_def *
nir_color_mask(
nir_builder *b,
unsigned mask,
nir_ssa_def *src,
nir_ssa_def *dst)
{
return nir_vec4(b,
nir_channel(b, (mask & (1 << 0)) ? src : dst, 0),
nir_channel(b, (mask & (1 << 1)) ? src : dst, 1),
nir_channel(b, (mask & (1 << 2)) ? src : dst, 2),
nir_channel(b, (mask & (1 << 3)) ? src : dst, 3));
}
static nir_ssa_def *
nir_logicop_func(
nir_builder *b,
unsigned func,
nir_ssa_def *src, nir_ssa_def *dst)
{
switch (func) {
case PIPE_LOGICOP_CLEAR:
return nir_imm_ivec4(b, 0, 0, 0, 0);
case PIPE_LOGICOP_NOR:
return nir_inot(b, nir_ior(b, src, dst));
case PIPE_LOGICOP_AND_INVERTED:
return nir_iand(b, nir_inot(b, src), dst);
case PIPE_LOGICOP_COPY_INVERTED:
return nir_inot(b, src);
case PIPE_LOGICOP_AND_REVERSE:
return nir_iand(b, src, nir_inot(b, dst));
case PIPE_LOGICOP_INVERT:
return nir_inot(b, dst);
case PIPE_LOGICOP_XOR:
return nir_ixor(b, src, dst);
case PIPE_LOGICOP_NAND:
return nir_inot(b, nir_iand(b, src, dst));
case PIPE_LOGICOP_AND:
return nir_iand(b, src, dst);
case PIPE_LOGICOP_EQUIV:
return nir_inot(b, nir_ixor(b, src, dst));
case PIPE_LOGICOP_NOOP:
return dst;
case PIPE_LOGICOP_OR_INVERTED:
return nir_ior(b, nir_inot(b, src), dst);
case PIPE_LOGICOP_COPY:
return src;
case PIPE_LOGICOP_OR_REVERSE:
return nir_ior(b, src, nir_inot(b, dst));
case PIPE_LOGICOP_OR:
return nir_ior(b, src, dst);
case PIPE_LOGICOP_SET:
return nir_imm_ivec4(b, ~0, ~0, ~0, ~0);
}
unreachable("Invalid logciop function");
}
static nir_ssa_def *
nir_blend_logicop(
nir_builder *b,
const nir_lower_blend_options *options,
unsigned rt,
nir_ssa_def *src, nir_ssa_def *dst)
{
unsigned bit_size = src->bit_size;
enum pipe_format format = options->format[rt];
const struct util_format_description *format_desc =
util_format_description(format);
if (bit_size != 32) {
src = nir_f2f32(b, src);
dst = nir_f2f32(b, dst);
}
assert(src->num_components <= 4);
assert(dst->num_components <= 4);
unsigned bits[4];
for (int i = 0; i < 4; ++i)
bits[i] = format_desc->channel[i].size;
if (util_format_is_unorm(format)) {
src = nir_format_float_to_unorm(b, src, bits);
dst = nir_format_float_to_unorm(b, dst, bits);
} else if (util_format_is_snorm(format)) {
src = nir_format_float_to_snorm(b, src, bits);
dst = nir_format_float_to_snorm(b, dst, bits);
} else {
assert(util_format_is_pure_integer(format));
}
nir_ssa_def *out = nir_logicop_func(b, options->logicop_func, src, dst);
if (bits[0] < 32) {
nir_const_value mask[4];
for (int i = 0; i < 4; ++i)
mask[i] = nir_const_value_for_int((1u << bits[i]) - 1, 32);
out = nir_iand(b, out, nir_build_imm(b, 4, 32, mask));
}
if (util_format_is_unorm(format)) {
out = nir_format_unorm_to_float(b, out, bits);
} else if (util_format_is_snorm(format)) {
out = nir_format_snorm_to_float(b, out, bits);
} else {
assert(util_format_is_pure_integer(format));
}
if (bit_size == 16)
out = nir_f2f16(b, out);
return out;
}
static nir_ssa_def *
nir_fsat_signed(nir_builder *b, nir_ssa_def *x)
{
return nir_fclamp(b, x, nir_imm_floatN_t(b, -1.0, x->bit_size),
nir_imm_floatN_t(b, +1.0, x->bit_size));
}
/* Given a blend state, the source color, and the destination color,
* return the blended color
*/
static nir_ssa_def *
nir_blend(
nir_builder *b,
const nir_lower_blend_options *options,
unsigned rt,
nir_ssa_def *src, nir_ssa_def *src1, nir_ssa_def *dst)
{
/* Grab the blend constant ahead of time */
nir_ssa_def *bconst;
if (options->scalar_blend_const) {
bconst = nir_vec4(b,
nir_load_blend_const_color_r_float(b),
nir_load_blend_const_color_g_float(b),
nir_load_blend_const_color_b_float(b),
nir_load_blend_const_color_a_float(b));
} else {
bconst = nir_load_blend_const_color_rgba(b);
}
if (src->bit_size == 16)
bconst = nir_f2f16(b, bconst);
/* Fixed-point framebuffers require their inputs clamped. */
enum pipe_format format = options->format[rt];
/* From section 17.3.6 "Blending" of the OpenGL 4.5 spec:
*
* If the color buffer is fixed-point, the components of the source and
* destination values and blend factors are each clamped to [0, 1] or
* [-1, 1] respectively for an unsigned normalized or signed normalized
* color buffer prior to evaluating the blend equation. If the color
* buffer is floating-point, no clamping occurs.
*/
if (util_format_is_unorm(format))
src = nir_fsat(b, src);
else if (util_format_is_snorm(format))
src = nir_fsat_signed(b, src);
/* DST_ALPHA reads back 1.0 if there is no alpha channel */
const struct util_format_description *desc =
util_format_description(format);
if (desc->nr_channels < 4) {
nir_ssa_def *zero = nir_imm_floatN_t(b, 0.0, dst->bit_size);
nir_ssa_def *one = nir_imm_floatN_t(b, 1.0, dst->bit_size);
dst = nir_vec4(b, nir_channel(b, dst, 0),
desc->nr_channels > 1 ? nir_channel(b, dst, 1) : zero,
desc->nr_channels > 2 ? nir_channel(b, dst, 2) : zero,
desc->nr_channels > 3 ? nir_channel(b, dst, 3) : one);
}
/* We blend per channel and recombine later */
nir_ssa_def *channels[4];
for (unsigned c = 0; c < 4; ++c) {
/* Decide properties based on channel */
nir_lower_blend_channel chan =
(c < 3) ? options->rt[rt].rgb : options->rt[rt].alpha;
nir_ssa_def *psrc = nir_channel(b, src, c);
nir_ssa_def *pdst = nir_channel(b, dst, c);
if (nir_blend_factored(chan.func)) {
psrc = nir_blend_factor(
b, psrc,
src, src1, dst, bconst, c,
chan.src_factor, chan.invert_src_factor);
pdst = nir_blend_factor(
b, pdst,
src, src1, dst, bconst, c,
chan.dst_factor, chan.invert_dst_factor);
}
channels[c] = nir_blend_func(b, chan.func, psrc, pdst);
}
return nir_vec(b, channels, 4);
}
static int
color_index_for_var(const nir_variable *var)
{
if (var->data.location != FRAG_RESULT_COLOR &&
var->data.location < FRAG_RESULT_DATA0)
return -1;
return (var->data.location == FRAG_RESULT_COLOR) ? 0 :
(var->data.location - FRAG_RESULT_DATA0);
}
/*
* Test if the blending options for a given channel encode the "replace" blend
* mode: dest = source. In this case, blending may be specially optimized.
*/
static bool
nir_blend_replace_channel(const nir_lower_blend_channel *c)
{
return (c->func == BLEND_FUNC_ADD) &&
(c->src_factor == BLEND_FACTOR_ZERO && c->invert_src_factor) &&
(c->dst_factor == BLEND_FACTOR_ZERO && !c->invert_dst_factor);
}
static bool
nir_blend_replace_rt(const nir_lower_blend_rt *rt)
{
return nir_blend_replace_channel(&rt->rgb) &&
nir_blend_replace_channel(&rt->alpha);
}
static bool
nir_lower_blend_store(nir_builder *b, nir_intrinsic_instr *store,
const nir_lower_blend_options *options)
{
assert(store->intrinsic == nir_intrinsic_store_deref);
nir_variable *var = nir_intrinsic_get_var(store, 0);
int rt = color_index_for_var(var);
/* No blend lowering requested on this RT */
if (rt < 0 || options->format[rt] == PIPE_FORMAT_NONE)
return false;
b->cursor = nir_before_instr(&store->instr);
/* Grab the input color. We always want 4 channels during blend. Dead
* code will clean up any channels we don't need.
*/
assert(store->src[1].is_ssa);
nir_ssa_def *src = nir_pad_vector(b, store->src[1].ssa, 4);
/* Grab the previous fragment color */
var->data.fb_fetch_output = true;
b->shader->info.outputs_read |= BITFIELD64_BIT(var->data.location);
b->shader->info.fs.uses_fbfetch_output = true;
nir_ssa_def *dst = nir_pad_vector(b, nir_load_var(b, var), 4);
/* Blend the two colors per the passed options. We only call nir_blend if
* blending is enabled with a blend mode other than replace (independent of
* the color mask). That avoids unnecessary fsat instructions in the common
* case where blending is disabled at an API level, but the driver calls
* nir_blend (possibly for color masking).
*/
nir_ssa_def *blended = src;
if (options->logicop_enable) {
blended = nir_blend_logicop(b, options, rt, src, dst);
} else if (!util_format_is_pure_integer(options->format[rt]) &&
!nir_blend_replace_rt(&options->rt[rt])) {
assert(!util_format_is_scaled(options->format[rt]));
blended = nir_blend(b, options, rt, src, options->src1, dst);
}
/* Apply a colormask */
blended = nir_color_mask(b, options->rt[rt].colormask, blended, dst);
const unsigned num_components = glsl_get_vector_elements(var->type);
/* Shave off any components we don't want to store */
blended = nir_trim_vector(b, blended, num_components);
/* Grow or shrink the store destination as needed */
assert(nir_intrinsic_write_mask(store) ==
nir_component_mask(store->num_components));
store->num_components = num_components;
store->dest.ssa.num_components = num_components;
nir_intrinsic_set_write_mask(store, nir_component_mask(num_components));
/* Write out the final color instead of the input */
nir_instr_rewrite_src_ssa(&store->instr, &store->src[1], blended);
return true;
}
static bool
nir_lower_blend_instr(nir_builder *b, nir_instr *instr, void *data)
{
const nir_lower_blend_options *options = data;
switch (instr->type) {
case nir_instr_type_deref: {
/* Fix up output deref types, as needed */
nir_deref_instr *deref = nir_instr_as_deref(instr);
if (!nir_deref_mode_is(deref, nir_var_shader_out))
return false;
/* Indirects must be already lowered and output variables split */
assert(deref->deref_type == nir_deref_type_var);
if (deref->type == deref->var->type)
return false;
deref->type = deref->var->type;
return true;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_load_deref &&
intrin->intrinsic != nir_intrinsic_store_deref)
return false;
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
if (!nir_deref_mode_is(deref, nir_var_shader_out))
return false;
assert(glsl_type_is_vector_or_scalar(deref->type));
if (intrin->intrinsic == nir_intrinsic_load_deref) {
/* We need to fix up framebuffer if num_components changed */
const unsigned num_components = glsl_get_vector_elements(deref->type);
if (intrin->num_components == num_components)
return false;
b->cursor = nir_after_instr(&intrin->instr);
assert(intrin->dest.is_ssa);
nir_ssa_def *val = nir_resize_vector(b, &intrin->dest.ssa,
num_components);
intrin->num_components = num_components,
nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa, val,
val->parent_instr);
return true;
} else {
return nir_lower_blend_store(b, intrin, options);
}
}
default:
return false;
}
}
/** Lower blending to framebuffer fetch and some math
*
* This pass requires that indirects are lowered and output variables split
* so that we have a single output variable for each RT. We could go to the
* effort of handling arrays (possibly of arrays) but, given that we need
* indirects lowered anyway (we need constant indices to look up blend
* functions and formats), we may as well require variables to be split.
* This can be done by calling nir_lower_io_arrays_to_elements_no_indirect().
*/
void
nir_lower_blend(nir_shader *shader, const nir_lower_blend_options *options)
{
assert(shader->info.stage == MESA_SHADER_FRAGMENT);
/* Re-type any blended output variables to have the same number of
* components as the image format. The GL 4.6 Spec says:
*
* "If a fragment shader writes to none of gl_FragColor, gl_FragData,
* nor any user-defined output variables, the values of the fragment
* colors following shader execution are undefined, and may differ for
* each fragment color. If some, but not all elements of gl_FragData or
* of theser-defined output variables are written, the values of
* fragment colors corresponding to unwritten elements orariables are
* similarly undefined."
*
* Note the phrase "following shader execution". Those color values are
* then supposed to go into blending which may, depending on the blend
* mode, apply constraints that result in well-defined rendering. It's
* fine if we have to pad out a value with undef but we then need to blend
* that garbage value to ensure correct results.
*
* This may also, depending on output format, be a small optimization
* allowing NIR to dead-code unused calculations.
*/
nir_foreach_shader_out_variable(var, shader) {
int rt = color_index_for_var(var);
/* No blend lowering requested on this RT */
if (rt < 0 || options->format[rt] == PIPE_FORMAT_NONE)
continue;
const unsigned num_format_components =
util_format_get_nr_components(options->format[rt]);
/* Indirects must be already lowered and output variables split */
assert(glsl_type_is_vector_or_scalar(var->type));
var->type = glsl_replace_vector_type(var->type, num_format_components);
}
nir_shader_instructions_pass(shader, nir_lower_blend_instr,
nir_metadata_block_index |
nir_metadata_dominance,
(void *)options);
}