| /* |
| * Copyright © 2016 Red Hat. |
| * Copyright © 2016 Bas Nieuwenhuizen |
| * |
| * based in part on anv driver which is: |
| * Copyright © 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include "nir/nir.h" |
| #include "nir/nir_builder.h" |
| #include "spirv/nir_spirv.h" |
| #include "util/disk_cache.h" |
| #include "util/mesa-sha1.h" |
| #include "util/os_time.h" |
| #include "util/u_atomic.h" |
| #include "radv_cs.h" |
| #include "radv_debug.h" |
| #include "radv_meta.h" |
| #include "radv_private.h" |
| #include "radv_shader.h" |
| #include "radv_shader_args.h" |
| #include "vk_pipeline.h" |
| #include "vk_render_pass.h" |
| #include "vk_util.h" |
| |
| #include "util/u_debug.h" |
| #include "ac_binary.h" |
| #include "ac_nir.h" |
| #include "ac_shader_util.h" |
| #include "aco_interface.h" |
| #include "sid.h" |
| #include "vk_format.h" |
| |
| struct radv_blend_state { |
| uint32_t spi_shader_col_format; |
| uint32_t cb_shader_mask; |
| }; |
| |
| struct radv_depth_stencil_state { |
| uint32_t db_shader_control; |
| }; |
| |
| static bool |
| radv_is_static_vrs_enabled(const struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| if (!state->fsr) |
| return false; |
| |
| return state->fsr->fragment_size.width != 1 || state->fsr->fragment_size.height != 1 || |
| state->fsr->combiner_ops[0] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR || |
| state->fsr->combiner_ops[1] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR; |
| } |
| |
| static bool |
| radv_is_vrs_enabled(const struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| return radv_is_static_vrs_enabled(pipeline, state) || |
| (pipeline->dynamic_states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE); |
| } |
| |
| static bool |
| radv_pipeline_has_ds_attachments(const struct vk_render_pass_state *rp) |
| { |
| return rp->depth_attachment_format != VK_FORMAT_UNDEFINED || |
| rp->stencil_attachment_format != VK_FORMAT_UNDEFINED; |
| } |
| |
| static bool |
| radv_pipeline_has_color_attachments(const struct vk_render_pass_state *rp) |
| { |
| for (uint32_t i = 0; i < rp->color_attachment_count; ++i) { |
| if (rp->color_attachment_formats[i] != VK_FORMAT_UNDEFINED) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool |
| radv_pipeline_has_ngg(const struct radv_graphics_pipeline *pipeline) |
| { |
| struct radv_shader *shader = pipeline->base.shaders[pipeline->last_vgt_api_stage]; |
| |
| return shader->info.is_ngg; |
| } |
| |
| bool |
| radv_pipeline_has_ngg_passthrough(const struct radv_graphics_pipeline *pipeline) |
| { |
| assert(radv_pipeline_has_ngg(pipeline)); |
| |
| struct radv_shader *shader = pipeline->base.shaders[pipeline->last_vgt_api_stage]; |
| |
| return shader->info.is_ngg_passthrough; |
| } |
| |
| bool |
| radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline) |
| { |
| return !!pipeline->gs_copy_shader; |
| } |
| |
| static struct radv_pipeline_slab * |
| radv_pipeline_slab_create(struct radv_device *device, struct radv_pipeline *pipeline, |
| uint32_t code_size) |
| { |
| struct radv_pipeline_slab *slab; |
| |
| slab = calloc(1, sizeof(*slab)); |
| if (!slab) |
| return NULL; |
| |
| slab->ref_count = 1; |
| |
| slab->alloc = radv_alloc_shader_memory(device, code_size, pipeline); |
| if (!slab->alloc) { |
| free(slab); |
| return NULL; |
| } |
| |
| return slab; |
| } |
| |
| void |
| radv_pipeline_slab_destroy(struct radv_device *device, struct radv_pipeline_slab *slab) |
| { |
| if (!p_atomic_dec_zero(&slab->ref_count)) |
| return; |
| |
| radv_free_shader_memory(device, slab->alloc); |
| free(slab); |
| } |
| |
| void |
| radv_pipeline_destroy(struct radv_device *device, struct radv_pipeline *pipeline, |
| const VkAllocationCallbacks *allocator) |
| { |
| if (pipeline->type == RADV_PIPELINE_GRAPHICS) { |
| struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline); |
| |
| if (graphics_pipeline->ps_epilog) |
| radv_shader_part_unref(device, graphics_pipeline->ps_epilog); |
| |
| vk_free(&device->vk.alloc, graphics_pipeline->state_data); |
| } else if (pipeline->type == RADV_PIPELINE_RAY_TRACING) { |
| struct radv_ray_tracing_pipeline *rt_pipeline = radv_pipeline_to_ray_tracing(pipeline); |
| |
| free(rt_pipeline->group_handles); |
| free(rt_pipeline->stack_sizes); |
| } else if (pipeline->type == RADV_PIPELINE_LIBRARY) { |
| struct radv_library_pipeline *library_pipeline = radv_pipeline_to_library(pipeline); |
| |
| ralloc_free(library_pipeline->ctx); |
| } else if (pipeline->type == RADV_PIPELINE_GRAPHICS_LIB) { |
| struct radv_graphics_lib_pipeline *gfx_pipeline_lib = |
| radv_pipeline_to_graphics_lib(pipeline); |
| |
| radv_pipeline_layout_finish(device, &gfx_pipeline_lib->layout); |
| |
| for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { |
| ralloc_free(pipeline->retained_shaders[i].nir); |
| } |
| |
| if (gfx_pipeline_lib->base.ps_epilog) |
| radv_shader_part_unref(device, gfx_pipeline_lib->base.ps_epilog); |
| |
| vk_free(&device->vk.alloc, gfx_pipeline_lib->base.state_data); |
| } |
| |
| if (pipeline->slab) |
| radv_pipeline_slab_destroy(device, pipeline->slab); |
| |
| for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) |
| if (pipeline->shaders[i]) |
| radv_shader_unref(device, pipeline->shaders[i]); |
| |
| if (pipeline->gs_copy_shader) |
| radv_shader_unref(device, pipeline->gs_copy_shader); |
| |
| if (pipeline->cs.buf) |
| free(pipeline->cs.buf); |
| |
| vk_object_base_finish(&pipeline->base); |
| vk_free2(&device->vk.alloc, allocator, pipeline); |
| } |
| |
| VKAPI_ATTR void VKAPI_CALL |
| radv_DestroyPipeline(VkDevice _device, VkPipeline _pipeline, |
| const VkAllocationCallbacks *pAllocator) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline); |
| |
| if (!_pipeline) |
| return; |
| |
| radv_pipeline_destroy(device, pipeline, pAllocator); |
| } |
| |
| uint32_t |
| radv_get_hash_flags(const struct radv_device *device, bool stats) |
| { |
| uint32_t hash_flags = 0; |
| |
| if (device->physical_device->use_ngg_culling) |
| hash_flags |= RADV_HASH_SHADER_USE_NGG_CULLING; |
| if (device->instance->perftest_flags & RADV_PERFTEST_EMULATE_RT) |
| hash_flags |= RADV_HASH_SHADER_EMULATE_RT; |
| if (device->physical_device->rt_wave_size == 64) |
| hash_flags |= RADV_HASH_SHADER_RT_WAVE64; |
| if (device->physical_device->cs_wave_size == 32) |
| hash_flags |= RADV_HASH_SHADER_CS_WAVE32; |
| if (device->physical_device->ps_wave_size == 32) |
| hash_flags |= RADV_HASH_SHADER_PS_WAVE32; |
| if (device->physical_device->ge_wave_size == 32) |
| hash_flags |= RADV_HASH_SHADER_GE_WAVE32; |
| if (device->physical_device->use_llvm) |
| hash_flags |= RADV_HASH_SHADER_LLVM; |
| if (stats) |
| hash_flags |= RADV_HASH_SHADER_KEEP_STATISTICS; |
| if (device->robust_buffer_access) /* forces per-attribute vertex descriptors */ |
| hash_flags |= RADV_HASH_SHADER_ROBUST_BUFFER_ACCESS; |
| if (device->robust_buffer_access2) /* affects load/store vectorizer */ |
| hash_flags |= RADV_HASH_SHADER_ROBUST_BUFFER_ACCESS2; |
| if (device->instance->debug_flags & RADV_DEBUG_SPLIT_FMA) |
| hash_flags |= RADV_HASH_SHADER_SPLIT_FMA; |
| if (device->instance->debug_flags & RADV_DEBUG_NO_FMASK) |
| hash_flags |= RADV_HASH_SHADER_NO_FMASK; |
| return hash_flags; |
| } |
| |
| static void |
| radv_pipeline_init_scratch(const struct radv_device *device, struct radv_pipeline *pipeline) |
| { |
| unsigned scratch_bytes_per_wave = 0; |
| unsigned max_waves = 0; |
| |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { |
| if (pipeline->shaders[i] && pipeline->shaders[i]->config.scratch_bytes_per_wave) { |
| unsigned max_stage_waves = device->scratch_waves; |
| |
| scratch_bytes_per_wave = |
| MAX2(scratch_bytes_per_wave, pipeline->shaders[i]->config.scratch_bytes_per_wave); |
| |
| max_stage_waves = |
| MIN2(max_stage_waves, 4 * device->physical_device->rad_info.num_cu * |
| radv_get_max_waves(device, pipeline->shaders[i], i)); |
| max_waves = MAX2(max_waves, max_stage_waves); |
| } |
| } |
| |
| pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave; |
| pipeline->max_waves = max_waves; |
| } |
| |
| static uint32_t |
| si_translate_blend_function(VkBlendOp op) |
| { |
| switch (op) { |
| case VK_BLEND_OP_ADD: |
| return V_028780_COMB_DST_PLUS_SRC; |
| case VK_BLEND_OP_SUBTRACT: |
| return V_028780_COMB_SRC_MINUS_DST; |
| case VK_BLEND_OP_REVERSE_SUBTRACT: |
| return V_028780_COMB_DST_MINUS_SRC; |
| case VK_BLEND_OP_MIN: |
| return V_028780_COMB_MIN_DST_SRC; |
| case VK_BLEND_OP_MAX: |
| return V_028780_COMB_MAX_DST_SRC; |
| default: |
| return 0; |
| } |
| } |
| |
| static uint32_t |
| si_translate_blend_factor(enum amd_gfx_level gfx_level, VkBlendFactor factor) |
| { |
| switch (factor) { |
| case VK_BLEND_FACTOR_ZERO: |
| return V_028780_BLEND_ZERO; |
| case VK_BLEND_FACTOR_ONE: |
| return V_028780_BLEND_ONE; |
| case VK_BLEND_FACTOR_SRC_COLOR: |
| return V_028780_BLEND_SRC_COLOR; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: |
| return V_028780_BLEND_ONE_MINUS_SRC_COLOR; |
| case VK_BLEND_FACTOR_DST_COLOR: |
| return V_028780_BLEND_DST_COLOR; |
| case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR: |
| return V_028780_BLEND_ONE_MINUS_DST_COLOR; |
| case VK_BLEND_FACTOR_SRC_ALPHA: |
| return V_028780_BLEND_SRC_ALPHA; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: |
| return V_028780_BLEND_ONE_MINUS_SRC_ALPHA; |
| case VK_BLEND_FACTOR_DST_ALPHA: |
| return V_028780_BLEND_DST_ALPHA; |
| case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: |
| return V_028780_BLEND_ONE_MINUS_DST_ALPHA; |
| case VK_BLEND_FACTOR_CONSTANT_COLOR: |
| return gfx_level >= GFX11 ? V_028780_BLEND_CONSTANT_COLOR_GFX11 |
| : V_028780_BLEND_CONSTANT_COLOR_GFX6; |
| case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR: |
| return gfx_level >= GFX11 ? V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR_GFX11 |
| : V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR_GFX6; |
| case VK_BLEND_FACTOR_CONSTANT_ALPHA: |
| return gfx_level >= GFX11 ? V_028780_BLEND_CONSTANT_ALPHA_GFX11 |
| : V_028780_BLEND_CONSTANT_ALPHA_GFX6; |
| case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA: |
| return gfx_level >= GFX11 ? V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA_GFX11 |
| : V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA_GFX6; |
| case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: |
| return V_028780_BLEND_SRC_ALPHA_SATURATE; |
| case VK_BLEND_FACTOR_SRC1_COLOR: |
| return gfx_level >= GFX11 ? V_028780_BLEND_SRC1_COLOR_GFX11 : V_028780_BLEND_SRC1_COLOR_GFX6; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: |
| return gfx_level >= GFX11 ? V_028780_BLEND_INV_SRC1_COLOR_GFX11 |
| : V_028780_BLEND_INV_SRC1_COLOR_GFX6; |
| case VK_BLEND_FACTOR_SRC1_ALPHA: |
| return gfx_level >= GFX11 ? V_028780_BLEND_SRC1_ALPHA_GFX11 : V_028780_BLEND_SRC1_ALPHA_GFX6; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: |
| return gfx_level >= GFX11 ? V_028780_BLEND_INV_SRC1_ALPHA_GFX11 |
| : V_028780_BLEND_INV_SRC1_ALPHA_GFX6; |
| default: |
| return 0; |
| } |
| } |
| |
| static uint32_t |
| si_translate_blend_opt_function(VkBlendOp op) |
| { |
| switch (op) { |
| case VK_BLEND_OP_ADD: |
| return V_028760_OPT_COMB_ADD; |
| case VK_BLEND_OP_SUBTRACT: |
| return V_028760_OPT_COMB_SUBTRACT; |
| case VK_BLEND_OP_REVERSE_SUBTRACT: |
| return V_028760_OPT_COMB_REVSUBTRACT; |
| case VK_BLEND_OP_MIN: |
| return V_028760_OPT_COMB_MIN; |
| case VK_BLEND_OP_MAX: |
| return V_028760_OPT_COMB_MAX; |
| default: |
| return V_028760_OPT_COMB_BLEND_DISABLED; |
| } |
| } |
| |
| static uint32_t |
| si_translate_blend_opt_factor(VkBlendFactor factor, bool is_alpha) |
| { |
| switch (factor) { |
| case VK_BLEND_FACTOR_ZERO: |
| return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL; |
| case VK_BLEND_FACTOR_ONE: |
| return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE; |
| case VK_BLEND_FACTOR_SRC_COLOR: |
| return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0 |
| : V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: |
| return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1 |
| : V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1; |
| case VK_BLEND_FACTOR_SRC_ALPHA: |
| return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: |
| return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1; |
| case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: |
| return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE |
| : V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; |
| default: |
| return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; |
| } |
| } |
| |
| /** |
| * Get rid of DST in the blend factors by commuting the operands: |
| * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) |
| */ |
| static void |
| si_blend_remove_dst(VkBlendOp *func, VkBlendFactor *src_factor, VkBlendFactor *dst_factor, |
| VkBlendFactor expected_dst, VkBlendFactor replacement_src) |
| { |
| if (*src_factor == expected_dst && *dst_factor == VK_BLEND_FACTOR_ZERO) { |
| *src_factor = VK_BLEND_FACTOR_ZERO; |
| *dst_factor = replacement_src; |
| |
| /* Commuting the operands requires reversing subtractions. */ |
| if (*func == VK_BLEND_OP_SUBTRACT) |
| *func = VK_BLEND_OP_REVERSE_SUBTRACT; |
| else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT) |
| *func = VK_BLEND_OP_SUBTRACT; |
| } |
| } |
| |
| static bool |
| si_blend_factor_uses_dst(VkBlendFactor factor) |
| { |
| return factor == VK_BLEND_FACTOR_DST_COLOR || factor == VK_BLEND_FACTOR_DST_ALPHA || |
| factor == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || |
| factor == VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA || |
| factor == VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR; |
| } |
| |
| static bool |
| is_dual_src(VkBlendFactor factor) |
| { |
| switch (factor) { |
| case VK_BLEND_FACTOR_SRC1_COLOR: |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: |
| case VK_BLEND_FACTOR_SRC1_ALPHA: |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static unsigned |
| radv_choose_spi_color_format(const struct radv_device *device, VkFormat vk_format, |
| bool blend_enable, bool blend_need_alpha) |
| { |
| const struct util_format_description *desc = vk_format_description(vk_format); |
| bool use_rbplus = device->physical_device->rad_info.rbplus_allowed; |
| struct ac_spi_color_formats formats = {0}; |
| unsigned format, ntype, swap; |
| |
| format = radv_translate_colorformat(vk_format); |
| ntype = radv_translate_color_numformat(vk_format, desc, |
| vk_format_get_first_non_void_channel(vk_format)); |
| swap = radv_translate_colorswap(vk_format, false); |
| |
| ac_choose_spi_color_formats(format, swap, ntype, false, use_rbplus, &formats); |
| |
| if (blend_enable && blend_need_alpha) |
| return formats.blend_alpha; |
| else if (blend_need_alpha) |
| return formats.alpha; |
| else if (blend_enable) |
| return formats.blend; |
| else |
| return formats.normal; |
| } |
| |
| static bool |
| format_is_int8(VkFormat format) |
| { |
| const struct util_format_description *desc = vk_format_description(format); |
| int channel = vk_format_get_first_non_void_channel(format); |
| |
| return channel >= 0 && desc->channel[channel].pure_integer && desc->channel[channel].size == 8; |
| } |
| |
| static bool |
| format_is_int10(VkFormat format) |
| { |
| const struct util_format_description *desc = vk_format_description(format); |
| |
| if (desc->nr_channels != 4) |
| return false; |
| for (unsigned i = 0; i < 4; i++) { |
| if (desc->channel[i].pure_integer && desc->channel[i].size == 10) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool |
| format_is_float32(VkFormat format) |
| { |
| const struct util_format_description *desc = vk_format_description(format); |
| int channel = vk_format_get_first_non_void_channel(format); |
| |
| return channel >= 0 && |
| desc->channel[channel].type == UTIL_FORMAT_TYPE_FLOAT && desc->channel[channel].size == 32; |
| } |
| |
| static unsigned |
| radv_compact_spi_shader_col_format(const struct radv_shader *ps, |
| const struct radv_blend_state *blend) |
| { |
| unsigned spi_shader_col_format = blend->spi_shader_col_format; |
| unsigned value = 0, num_mrts = 0; |
| unsigned i, num_targets; |
| |
| /* Make sure to clear color attachments without exports because MRT holes are removed during |
| * compilation for optimal performance. |
| */ |
| spi_shader_col_format &= ps->info.ps.colors_written; |
| |
| /* Compute the number of MRTs. */ |
| num_targets = DIV_ROUND_UP(util_last_bit(spi_shader_col_format), 4); |
| |
| /* Remove holes in spi_shader_col_format. */ |
| for (i = 0; i < num_targets; i++) { |
| unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf; |
| |
| if (spi_format) { |
| value |= spi_format << (num_mrts * 4); |
| num_mrts++; |
| } |
| } |
| |
| return value; |
| } |
| |
| /* |
| * Ordered so that for each i, |
| * radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i. |
| */ |
| const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = { |
| VK_FORMAT_R32_SFLOAT, |
| VK_FORMAT_R32G32_SFLOAT, |
| VK_FORMAT_R8G8B8A8_UNORM, |
| VK_FORMAT_R16G16B16A16_UNORM, |
| VK_FORMAT_R16G16B16A16_SNORM, |
| VK_FORMAT_R16G16B16A16_UINT, |
| VK_FORMAT_R16G16B16A16_SINT, |
| VK_FORMAT_R32G32B32A32_SFLOAT, |
| VK_FORMAT_R8G8B8A8_UINT, |
| VK_FORMAT_R8G8B8A8_SINT, |
| VK_FORMAT_A2R10G10B10_UINT_PACK32, |
| VK_FORMAT_A2R10G10B10_SINT_PACK32, |
| }; |
| |
| unsigned |
| radv_format_meta_fs_key(struct radv_device *device, VkFormat format) |
| { |
| unsigned col_format = radv_choose_spi_color_format(device, format, false, false); |
| assert(col_format != V_028714_SPI_SHADER_32_AR); |
| |
| bool is_int8 = format_is_int8(format); |
| bool is_int10 = format_is_int10(format); |
| |
| if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int8) |
| return 8; |
| else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int8) |
| return 9; |
| else if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int10) |
| return 10; |
| else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int10) |
| return 11; |
| else { |
| if (col_format >= V_028714_SPI_SHADER_32_AR) |
| --col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */ |
| |
| --col_format; /* Skip V_028714_SPI_SHADER_ZERO */ |
| return col_format; |
| } |
| } |
| |
| static bool |
| radv_can_enable_dual_src(const struct vk_color_blend_attachment_state *att) |
| { |
| VkBlendOp eqRGB = att->color_blend_op; |
| VkBlendFactor srcRGB = att->src_color_blend_factor; |
| VkBlendFactor dstRGB = att->dst_color_blend_factor; |
| VkBlendOp eqA = att->alpha_blend_op; |
| VkBlendFactor srcA = att->src_alpha_blend_factor; |
| VkBlendFactor dstA = att->dst_alpha_blend_factor; |
| bool eqRGB_minmax = eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX; |
| bool eqA_minmax = eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX; |
| |
| if (!eqRGB_minmax && (is_dual_src(srcRGB) || is_dual_src(dstRGB))) |
| return true; |
| if (!eqA_minmax && (is_dual_src(srcA) || is_dual_src(dstA))) |
| return true; |
| return false; |
| } |
| |
| static struct radv_blend_state |
| radv_pipeline_init_blend_state(struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state, |
| const struct radv_pipeline_key *key) |
| { |
| const struct radv_device *device = pipeline->base.device; |
| struct radv_blend_state blend = {0}; |
| const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level; |
| int i; |
| |
| if (state->cb) { |
| for (i = 0; i < state->cb->attachment_count; i++) { |
| unsigned blend_cntl = 0; |
| unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt; |
| VkBlendOp eqRGB = state->cb->attachments[i].color_blend_op; |
| VkBlendFactor srcRGB = state->cb->attachments[i].src_color_blend_factor; |
| VkBlendFactor dstRGB = state->cb->attachments[i].dst_color_blend_factor; |
| VkBlendOp eqA = state->cb->attachments[i].alpha_blend_op; |
| VkBlendFactor srcA = state->cb->attachments[i].src_alpha_blend_factor; |
| VkBlendFactor dstA = state->cb->attachments[i].dst_alpha_blend_factor; |
| |
| if (!state->cb->attachments[i].write_mask) |
| continue; |
| |
| /* Ignore other blend targets if dual-source blending |
| * is enabled to prevent wrong behaviour. |
| */ |
| if (i > 0 && key->ps.epilog.mrt0_is_dual_src) |
| continue; |
| |
| if (!state->cb->attachments[i].blend_enable) { |
| pipeline->cb_blend_control[i] = blend_cntl; |
| continue; |
| } |
| |
| if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) { |
| srcRGB = VK_BLEND_FACTOR_ONE; |
| dstRGB = VK_BLEND_FACTOR_ONE; |
| } |
| if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) { |
| srcA = VK_BLEND_FACTOR_ONE; |
| dstA = VK_BLEND_FACTOR_ONE; |
| } |
| |
| /* Blending optimizations for RB+. |
| * These transformations don't change the behavior. |
| * |
| * First, get rid of DST in the blend factors: |
| * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) |
| */ |
| si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB, VK_BLEND_FACTOR_DST_COLOR, |
| VK_BLEND_FACTOR_SRC_COLOR); |
| |
| si_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_COLOR, |
| VK_BLEND_FACTOR_SRC_COLOR); |
| |
| si_blend_remove_dst(&eqA, &srcA, &dstA, VK_BLEND_FACTOR_DST_ALPHA, |
| VK_BLEND_FACTOR_SRC_ALPHA); |
| |
| /* Look up the ideal settings from tables. */ |
| srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false); |
| dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false); |
| srcA_opt = si_translate_blend_opt_factor(srcA, true); |
| dstA_opt = si_translate_blend_opt_factor(dstA, true); |
| |
| /* Handle interdependencies. */ |
| if (si_blend_factor_uses_dst(srcRGB)) |
| dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; |
| if (si_blend_factor_uses_dst(srcA)) |
| dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; |
| |
| if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE && |
| (dstRGB == VK_BLEND_FACTOR_ZERO || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE)) |
| dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; |
| |
| /* Set the final value. */ |
| pipeline->sx_mrt_blend_opt[i] = |
| S_028760_COLOR_SRC_OPT(srcRGB_opt) | S_028760_COLOR_DST_OPT(dstRGB_opt) | |
| S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) | |
| S_028760_ALPHA_SRC_OPT(srcA_opt) | S_028760_ALPHA_DST_OPT(dstA_opt) | |
| S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA)); |
| |
| blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB)); |
| blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(gfx_level, srcRGB)); |
| blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(gfx_level, dstRGB)); |
| if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) { |
| blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1); |
| blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA)); |
| blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(gfx_level, srcA)); |
| blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(gfx_level, dstA)); |
| } |
| pipeline->cb_blend_control[i] = blend_cntl; |
| } |
| } |
| |
| if (device->physical_device->rad_info.has_rbplus) { |
| /* Disable RB+ blend optimizations for dual source blending. */ |
| if (key->ps.epilog.mrt0_is_dual_src) { |
| for (i = 0; i < 8; i++) { |
| pipeline->sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) | |
| S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE); |
| } |
| } |
| } |
| |
| blend.cb_shader_mask = ac_get_cb_shader_mask(key->ps.epilog.spi_shader_col_format); |
| blend.spi_shader_col_format = key->ps.epilog.spi_shader_col_format; |
| |
| return blend; |
| } |
| |
| static void |
| radv_pipeline_init_multisample_state(struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state, |
| unsigned rast_prim) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| struct radv_multisample_state *ms = &pipeline->ms; |
| unsigned num_tile_pipes = pdevice->rad_info.num_tile_pipes; |
| bool out_of_order_rast = |
| state->rs->rasterization_order_amd == VK_RASTERIZATION_ORDER_RELAXED_AMD; |
| |
| /* From the Vulkan 1.1.129 spec, 26.7. Sample Shading: |
| * |
| * "Sample shading is enabled for a graphics pipeline: |
| * |
| * - If the interface of the fragment shader entry point of the |
| * graphics pipeline includes an input variable decorated |
| * with SampleId or SamplePosition. In this case |
| * minSampleShadingFactor takes the value 1.0. |
| * - Else if the sampleShadingEnable member of the |
| * VkPipelineMultisampleStateCreateInfo structure specified |
| * when creating the graphics pipeline is set to VK_TRUE. In |
| * this case minSampleShadingFactor takes the value of |
| * VkPipelineMultisampleStateCreateInfo::minSampleShading. |
| * |
| * Otherwise, sample shading is considered disabled." |
| */ |
| if (pipeline->base.shaders[MESA_SHADER_FRAGMENT]->info.ps.uses_sample_shading || |
| (state->ms && state->ms->sample_shading_enable)) { |
| if (pipeline->base.shaders[MESA_SHADER_FRAGMENT]->info.ps.uses_sample_shading) { |
| ms->min_sample_shading = 1.0f; |
| } else { |
| ms->min_sample_shading = state->ms->min_sample_shading; |
| } |
| |
| ms->sample_shading_enable = true; |
| } |
| |
| pipeline->pa_sc_mode_cntl_1 = |
| S_028A4C_WALK_FENCE_ENABLE(1) | // TODO linear dst fixes |
| S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) | |
| S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(out_of_order_rast) | |
| S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7) | |
| /* always 1: */ |
| S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) | S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) | |
| S_028A4C_TILE_WALK_ORDER_ENABLE(1) | S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) | |
| S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) | S_028A4C_FORCE_EOV_REZ_ENABLE(1); |
| } |
| |
| static void |
| gfx103_pipeline_init_vrs_state(struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; |
| struct radv_vrs_state *vrs = &pipeline->vrs; |
| |
| if ((state->ms && state->ms->sample_shading_enable) || |
| ps->info.ps.uses_sample_shading || ps->info.ps.reads_sample_mask_in) { |
| /* Disable VRS and use the rates from PS_ITER_SAMPLES if: |
| * |
| * 1) sample shading is enabled or per-sample interpolation is |
| * used by the fragment shader |
| * 2) the fragment shader reads gl_SampleMaskIn because the |
| * 16-bit sample coverage mask isn't enough for MSAA8x and |
| * 2x2 coarse shading isn't enough. |
| */ |
| vrs->pa_cl_vrs_cntl = S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE); |
| |
| /* Make sure sample shading is enabled even if only MSAA1x is |
| * used because the SAMPLE_ITER combiner is in passthrough |
| * mode if PS_ITER_SAMPLE is 0, and it uses the per-draw rate. |
| * The default VRS rate when sample shading is enabled is 1x1. |
| */ |
| if (!G_028A4C_PS_ITER_SAMPLE(pipeline->pa_sc_mode_cntl_1)) |
| pipeline->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(1); |
| } else { |
| vrs->pa_cl_vrs_cntl = S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_PASSTHRU); |
| } |
| } |
| |
| static uint32_t |
| si_conv_tess_prim_to_gs_out(enum tess_primitive_mode prim) |
| { |
| switch (prim) { |
| case TESS_PRIMITIVE_TRIANGLES: |
| case TESS_PRIMITIVE_QUADS: |
| return V_028A6C_TRISTRIP; |
| case TESS_PRIMITIVE_ISOLINES: |
| return V_028A6C_LINESTRIP; |
| default: |
| assert(0); |
| return 0; |
| } |
| } |
| |
| static uint32_t |
| si_conv_gl_prim_to_gs_out(unsigned gl_prim) |
| { |
| switch (gl_prim) { |
| case SHADER_PRIM_POINTS: |
| return V_028A6C_POINTLIST; |
| case SHADER_PRIM_LINES: |
| case SHADER_PRIM_LINE_STRIP: |
| case SHADER_PRIM_LINES_ADJACENCY: |
| return V_028A6C_LINESTRIP; |
| |
| case SHADER_PRIM_TRIANGLES: |
| case SHADER_PRIM_TRIANGLE_STRIP_ADJACENCY: |
| case SHADER_PRIM_TRIANGLE_STRIP: |
| case SHADER_PRIM_QUADS: |
| return V_028A6C_TRISTRIP; |
| default: |
| assert(0); |
| return 0; |
| } |
| } |
| |
| static uint64_t |
| radv_dynamic_state_mask(VkDynamicState state) |
| { |
| switch (state) { |
| case VK_DYNAMIC_STATE_VIEWPORT: |
| case VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT: |
| return RADV_DYNAMIC_VIEWPORT; |
| case VK_DYNAMIC_STATE_SCISSOR: |
| case VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT: |
| return RADV_DYNAMIC_SCISSOR; |
| case VK_DYNAMIC_STATE_LINE_WIDTH: |
| return RADV_DYNAMIC_LINE_WIDTH; |
| case VK_DYNAMIC_STATE_DEPTH_BIAS: |
| return RADV_DYNAMIC_DEPTH_BIAS; |
| case VK_DYNAMIC_STATE_BLEND_CONSTANTS: |
| return RADV_DYNAMIC_BLEND_CONSTANTS; |
| case VK_DYNAMIC_STATE_DEPTH_BOUNDS: |
| return RADV_DYNAMIC_DEPTH_BOUNDS; |
| case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK: |
| return RADV_DYNAMIC_STENCIL_COMPARE_MASK; |
| case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK: |
| return RADV_DYNAMIC_STENCIL_WRITE_MASK; |
| case VK_DYNAMIC_STATE_STENCIL_REFERENCE: |
| return RADV_DYNAMIC_STENCIL_REFERENCE; |
| case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT: |
| return RADV_DYNAMIC_DISCARD_RECTANGLE; |
| case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT: |
| return RADV_DYNAMIC_SAMPLE_LOCATIONS; |
| case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT: |
| return RADV_DYNAMIC_LINE_STIPPLE; |
| case VK_DYNAMIC_STATE_CULL_MODE: |
| return RADV_DYNAMIC_CULL_MODE; |
| case VK_DYNAMIC_STATE_FRONT_FACE: |
| return RADV_DYNAMIC_FRONT_FACE; |
| case VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY: |
| return RADV_DYNAMIC_PRIMITIVE_TOPOLOGY; |
| case VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE: |
| return RADV_DYNAMIC_DEPTH_TEST_ENABLE; |
| case VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE: |
| return RADV_DYNAMIC_DEPTH_WRITE_ENABLE; |
| case VK_DYNAMIC_STATE_DEPTH_COMPARE_OP: |
| return RADV_DYNAMIC_DEPTH_COMPARE_OP; |
| case VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE: |
| return RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE; |
| case VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE: |
| return RADV_DYNAMIC_STENCIL_TEST_ENABLE; |
| case VK_DYNAMIC_STATE_STENCIL_OP: |
| return RADV_DYNAMIC_STENCIL_OP; |
| case VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE: |
| return RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE; |
| case VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR: |
| return RADV_DYNAMIC_FRAGMENT_SHADING_RATE; |
| case VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT: |
| return RADV_DYNAMIC_PATCH_CONTROL_POINTS; |
| case VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE: |
| return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE; |
| case VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE: |
| return RADV_DYNAMIC_DEPTH_BIAS_ENABLE; |
| case VK_DYNAMIC_STATE_LOGIC_OP_EXT: |
| return RADV_DYNAMIC_LOGIC_OP; |
| case VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE: |
| return RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE; |
| case VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT: |
| return RADV_DYNAMIC_COLOR_WRITE_ENABLE; |
| case VK_DYNAMIC_STATE_VERTEX_INPUT_EXT: |
| return RADV_DYNAMIC_VERTEX_INPUT; |
| case VK_DYNAMIC_STATE_POLYGON_MODE_EXT: |
| return RADV_DYNAMIC_POLYGON_MODE; |
| case VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT: |
| return RADV_DYNAMIC_TESS_DOMAIN_ORIGIN; |
| case VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT: |
| return RADV_DYNAMIC_LOGIC_OP_ENABLE; |
| case VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT: |
| return RADV_DYNAMIC_LINE_STIPPLE_ENABLE; |
| case VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT: |
| return RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE; |
| case VK_DYNAMIC_STATE_SAMPLE_MASK_EXT: |
| return RADV_DYNAMIC_SAMPLE_MASK; |
| case VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT: |
| return RADV_DYNAMIC_DEPTH_CLIP_ENABLE; |
| case VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT: |
| return RADV_DYNAMIC_CONSERVATIVE_RAST_MODE; |
| case VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT: |
| return RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE; |
| case VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT: |
| return RADV_DYNAMIC_PROVOKING_VERTEX_MODE; |
| case VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT: |
| return RADV_DYNAMIC_DEPTH_CLAMP_ENABLE; |
| case VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT: |
| return RADV_DYNAMIC_COLOR_WRITE_MASK; |
| case VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT: |
| return RADV_DYNAMIC_COLOR_BLEND_ENABLE; |
| case VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT: |
| return RADV_DYNAMIC_RASTERIZATION_SAMPLES; |
| case VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT: |
| return RADV_DYNAMIC_LINE_RASTERIZATION_MODE; |
| default: |
| unreachable("Unhandled dynamic state"); |
| } |
| } |
| |
| static bool |
| radv_pipeline_is_blend_enabled(const struct radv_graphics_pipeline *pipeline, |
| const struct vk_color_blend_state *cb) |
| { |
| if (cb) { |
| for (uint32_t i = 0; i < cb->attachment_count; i++) { |
| if (cb->attachments[i].write_mask && cb->attachments[i].blend_enable) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static uint64_t |
| radv_pipeline_needed_dynamic_state(const struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| bool has_color_att = radv_pipeline_has_color_attachments(state->rp); |
| bool raster_enabled = !state->rs->rasterizer_discard_enable || |
| (pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE); |
| uint64_t states = RADV_DYNAMIC_ALL; |
| |
| /* Disable dynamic states that are useless to mesh shading. */ |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) { |
| if (!raster_enabled) |
| return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE; |
| |
| states &= ~(RADV_DYNAMIC_VERTEX_INPUT | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE | |
| RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY); |
| } |
| |
| /* Disable dynamic states that are useless when rasterization is disabled. */ |
| if (!raster_enabled) { |
| states = RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE | |
| RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE | |
| RADV_DYNAMIC_VERTEX_INPUT; |
| |
| if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) |
| states |= RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN; |
| |
| return states; |
| } |
| |
| if (!state->rs->depth_bias.enable && |
| !(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE)) |
| states &= ~RADV_DYNAMIC_DEPTH_BIAS; |
| |
| if (!(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) && |
| (!state->ds || !state->ds->depth.bounds_test.enable)) |
| states &= ~RADV_DYNAMIC_DEPTH_BOUNDS; |
| |
| if (!(pipeline->dynamic_states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) && |
| (!state->ds || !state->ds->stencil.test_enable)) |
| states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK | RADV_DYNAMIC_STENCIL_WRITE_MASK | |
| RADV_DYNAMIC_STENCIL_REFERENCE | RADV_DYNAMIC_STENCIL_OP); |
| |
| if (!state->dr->rectangle_count) |
| states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE; |
| |
| if (!state->ms || !state->ms->sample_locations_enable) |
| states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS; |
| |
| if (!(pipeline->dynamic_states & RADV_DYNAMIC_LINE_STIPPLE_ENABLE) && |
| !state->rs->line.stipple.enable) |
| states &= ~RADV_DYNAMIC_LINE_STIPPLE; |
| |
| if (!radv_is_vrs_enabled(pipeline, state)) |
| states &= ~RADV_DYNAMIC_FRAGMENT_SHADING_RATE; |
| |
| if (!has_color_att || !radv_pipeline_is_blend_enabled(pipeline, state->cb)) |
| states &= ~RADV_DYNAMIC_BLEND_CONSTANTS; |
| |
| if (!has_color_att) |
| states &= ~RADV_DYNAMIC_COLOR_WRITE_ENABLE; |
| |
| if (!(pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT)) |
| states &= ~(RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN); |
| |
| return states; |
| } |
| |
| static struct radv_ia_multi_vgt_param_helpers |
| radv_compute_ia_multi_vgt_param_helpers(struct radv_graphics_pipeline *pipeline) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0}; |
| |
| ia_multi_vgt_param.ia_switch_on_eoi = false; |
| if (pipeline->base.shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input) |
| ia_multi_vgt_param.ia_switch_on_eoi = true; |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) && pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id) |
| ia_multi_vgt_param.ia_switch_on_eoi = true; |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) { |
| /* SWITCH_ON_EOI must be set if PrimID is used. */ |
| if (pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id || |
| radv_get_shader(&pipeline->base, MESA_SHADER_TESS_EVAL)->info.uses_prim_id) |
| ia_multi_vgt_param.ia_switch_on_eoi = true; |
| } |
| |
| ia_multi_vgt_param.partial_vs_wave = false; |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) { |
| /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */ |
| if ((pdevice->rad_info.family == CHIP_TAHITI || |
| pdevice->rad_info.family == CHIP_PITCAIRN || |
| pdevice->rad_info.family == CHIP_BONAIRE) && |
| radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) |
| ia_multi_vgt_param.partial_vs_wave = true; |
| /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */ |
| if (pdevice->rad_info.has_distributed_tess) { |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { |
| if (pdevice->rad_info.gfx_level <= GFX8) |
| ia_multi_vgt_param.partial_es_wave = true; |
| } else { |
| ia_multi_vgt_param.partial_vs_wave = true; |
| } |
| } |
| } |
| |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { |
| /* On these chips there is the possibility of a hang if the |
| * pipeline uses a GS and partial_vs_wave is not set. |
| * |
| * This mostly does not hit 4-SE chips, as those typically set |
| * ia_switch_on_eoi and then partial_vs_wave is set for pipelines |
| * with GS due to another workaround. |
| * |
| * Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242 |
| */ |
| if (pdevice->rad_info.family == CHIP_TONGA || |
| pdevice->rad_info.family == CHIP_FIJI || |
| pdevice->rad_info.family == CHIP_POLARIS10 || |
| pdevice->rad_info.family == CHIP_POLARIS11 || |
| pdevice->rad_info.family == CHIP_POLARIS12 || |
| pdevice->rad_info.family == CHIP_VEGAM) { |
| ia_multi_vgt_param.partial_vs_wave = true; |
| } |
| } |
| |
| ia_multi_vgt_param.base = |
| /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */ |
| S_028AA8_MAX_PRIMGRP_IN_WAVE(pdevice->rad_info.gfx_level == GFX8 ? 2 : 0) | |
| S_030960_EN_INST_OPT_BASIC(pdevice->rad_info.gfx_level >= GFX9) | |
| S_030960_EN_INST_OPT_ADV(pdevice->rad_info.gfx_level >= GFX9); |
| |
| return ia_multi_vgt_param; |
| } |
| |
| static uint32_t |
| radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *vi, uint32_t attrib_binding) |
| { |
| for (uint32_t i = 0; i < vi->vertexBindingDescriptionCount; i++) { |
| const VkVertexInputBindingDescription *input_binding = &vi->pVertexBindingDescriptions[i]; |
| |
| if (input_binding->binding == attrib_binding) |
| return input_binding->stride; |
| } |
| |
| return 0; |
| } |
| |
| #define ALL_GRAPHICS_LIB_FLAGS \ |
| (VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT | \ |
| VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT | \ |
| VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT | \ |
| VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT) |
| |
| static VkGraphicsPipelineLibraryFlagBitsEXT |
| shader_stage_to_pipeline_library_flags(VkShaderStageFlagBits stage) |
| { |
| assert(util_bitcount(stage) == 1); |
| switch (stage) { |
| case VK_SHADER_STAGE_VERTEX_BIT: |
| case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT: |
| case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT: |
| case VK_SHADER_STAGE_GEOMETRY_BIT: |
| case VK_SHADER_STAGE_TASK_BIT_EXT: |
| case VK_SHADER_STAGE_MESH_BIT_EXT: |
| return VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT; |
| case VK_SHADER_STAGE_FRAGMENT_BIT: |
| return VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT; |
| default: |
| unreachable("Invalid shader stage"); |
| } |
| } |
| |
| static VkResult |
| radv_pipeline_import_graphics_info(struct radv_graphics_pipeline *pipeline, |
| struct vk_graphics_pipeline_state *state, |
| struct radv_pipeline_layout *layout, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| VkGraphicsPipelineLibraryFlagBitsEXT lib_flags) |
| { |
| RADV_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->layout); |
| struct radv_device *device = pipeline->base.device; |
| VkResult result; |
| |
| /* Mark all states declared dynamic at pipeline creation. */ |
| if (pCreateInfo->pDynamicState) { |
| uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount; |
| for (uint32_t s = 0; s < count; s++) { |
| pipeline->dynamic_states |= |
| radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]); |
| } |
| } |
| |
| /* Mark all active stages at pipeline creation. */ |
| for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { |
| const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i]; |
| |
| /* Ignore shader stages that don't need to be imported. */ |
| if (!(shader_stage_to_pipeline_library_flags(sinfo->stage) & lib_flags)) |
| continue; |
| |
| pipeline->active_stages |= sinfo->stage; |
| } |
| |
| result = vk_graphics_pipeline_state_fill(&device->vk, state, pCreateInfo, NULL, NULL, NULL, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT, |
| &pipeline->state_data); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| if (lib_flags == ALL_GRAPHICS_LIB_FLAGS) { |
| radv_pipeline_layout_finish(device, layout); |
| radv_pipeline_layout_init(device, layout, false /* independent_sets */); |
| } |
| |
| if (pipeline_layout) { |
| /* As explained in the specification, the application can provide a non |
| * compatible pipeline layout when doing optimized linking : |
| * |
| * "However, in the specific case that a final link is being |
| * performed between stages and |
| * `VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT` is specified, |
| * the application can override the pipeline layout with one that is |
| * compatible with that union but does not have the |
| * `VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT` flag set, |
| * allowing a more optimal pipeline layout to be used when |
| * generating the final pipeline." |
| * |
| * In that case discard whatever was imported before. |
| */ |
| if (pCreateInfo->flags & VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT && |
| !pipeline_layout->independent_sets) { |
| radv_pipeline_layout_finish(device, layout); |
| radv_pipeline_layout_init(device, layout, false /* independent_sets */); |
| } else { |
| /* Otherwise if we include a layout that had independent_sets, |
| * propagate that property. |
| */ |
| layout->independent_sets |= pipeline_layout->independent_sets; |
| } |
| |
| for (uint32_t s = 0; s < pipeline_layout->num_sets; s++) { |
| if (pipeline_layout->set[s].layout == NULL) |
| continue; |
| |
| radv_pipeline_layout_add_set(layout, s, pipeline_layout->set[s].layout); |
| } |
| |
| layout->push_constant_size = pipeline_layout->push_constant_size; |
| } |
| |
| return result; |
| } |
| |
| static void |
| radv_graphics_pipeline_import_lib(struct radv_graphics_pipeline *pipeline, |
| struct vk_graphics_pipeline_state *state, |
| struct radv_pipeline_layout *layout, |
| struct radv_graphics_lib_pipeline *lib, |
| bool link_optimize) |
| { |
| /* There should be no common blocks between a lib we import and the current |
| * pipeline we're building. |
| */ |
| assert((pipeline->active_stages & lib->base.active_stages) == 0); |
| |
| pipeline->dynamic_states |= lib->base.dynamic_states; |
| pipeline->active_stages |= lib->base.active_stages; |
| |
| vk_graphics_pipeline_state_merge(state, &lib->graphics_state); |
| |
| /* Import the NIR shaders (after SPIRV->NIR). */ |
| for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.base.shaders); s++) { |
| if (!lib->base.base.retained_shaders[s].nir) |
| continue; |
| |
| pipeline->base.retained_shaders[s] = lib->base.base.retained_shaders[s]; |
| } |
| |
| if (!link_optimize) { |
| /* Import the compiled shaders. */ |
| for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.base.shaders); s++) { |
| if (!lib->base.base.shaders[s]) |
| continue; |
| |
| pipeline->base.shaders[s] = radv_shader_ref(lib->base.base.shaders[s]); |
| |
| /* Hold a pointer to the slab BO to indicate the shader is already uploaded. */ |
| pipeline->base.shaders[s]->bo = lib->base.base.slab_bo; |
| } |
| |
| /* Import the GS copy shader if present. */ |
| if (lib->base.base.gs_copy_shader) { |
| assert(!pipeline->base.gs_copy_shader); |
| pipeline->base.gs_copy_shader = radv_shader_ref(lib->base.base.gs_copy_shader); |
| |
| /* Hold a pointer to the slab BO to indicate the shader is already uploaded. */ |
| pipeline->base.gs_copy_shader->bo = lib->base.base.slab_bo; |
| } |
| |
| /* Refcount the slab BO to make sure it's not freed when the library is destroyed. */ |
| if (lib->base.base.slab) { |
| p_atomic_inc(&lib->base.base.slab->ref_count); |
| } |
| |
| /* Import the PS epilog if present. */ |
| if (lib->base.ps_epilog) { |
| assert(!pipeline->ps_epilog); |
| pipeline->ps_epilog = radv_shader_part_ref(lib->base.ps_epilog); |
| } |
| } |
| |
| /* Import the pipeline layout. */ |
| struct radv_pipeline_layout *lib_layout = &lib->layout; |
| for (uint32_t s = 0; s < lib_layout->num_sets; s++) { |
| if (!lib_layout->set[s].layout) |
| continue; |
| |
| radv_pipeline_layout_add_set(layout, s, lib_layout->set[s].layout); |
| } |
| |
| layout->independent_sets = lib_layout->independent_sets; |
| layout->push_constant_size = MAX2(layout->push_constant_size, lib_layout->push_constant_size); |
| } |
| |
| static void |
| radv_pipeline_init_input_assembly_state(struct radv_graphics_pipeline *pipeline) |
| { |
| pipeline->ia_multi_vgt_param = radv_compute_ia_multi_vgt_param_helpers(pipeline); |
| } |
| |
| static void |
| radv_pipeline_init_dynamic_state(struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| uint64_t needed_states = radv_pipeline_needed_dynamic_state(pipeline, state); |
| uint64_t states = needed_states; |
| |
| pipeline->dynamic_state = default_dynamic_state; |
| pipeline->needed_dynamic_state = needed_states; |
| |
| states &= ~pipeline->dynamic_states; |
| |
| struct radv_dynamic_state *dynamic = &pipeline->dynamic_state; |
| |
| if (needed_states & RADV_DYNAMIC_VIEWPORT) { |
| dynamic->vk.vp.viewport_count = state->vp->viewport_count; |
| if (states & RADV_DYNAMIC_VIEWPORT) { |
| typed_memcpy(dynamic->vk.vp.viewports, state->vp->viewports, state->vp->viewport_count); |
| for (unsigned i = 0; i < dynamic->vk.vp.viewport_count; i++) |
| radv_get_viewport_xform(&dynamic->vk.vp.viewports[i], dynamic->hw_vp.xform[i].scale, |
| dynamic->hw_vp.xform[i].translate); |
| } |
| } |
| |
| if (needed_states & RADV_DYNAMIC_SCISSOR) { |
| dynamic->vk.vp.scissor_count = state->vp->scissor_count; |
| if (states & RADV_DYNAMIC_SCISSOR) { |
| typed_memcpy(dynamic->vk.vp.scissors, state->vp->scissors, state->vp->scissor_count); |
| } |
| } |
| |
| if (states & RADV_DYNAMIC_LINE_WIDTH) { |
| dynamic->vk.rs.line.width = state->rs->line.width; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_BIAS) { |
| dynamic->vk.rs.depth_bias.constant = state->rs->depth_bias.constant; |
| dynamic->vk.rs.depth_bias.clamp = state->rs->depth_bias.clamp; |
| dynamic->vk.rs.depth_bias.slope = state->rs->depth_bias.slope; |
| } |
| |
| /* Section 9.2 of the Vulkan 1.0.15 spec says: |
| * |
| * pColorBlendState is [...] NULL if the pipeline has rasterization |
| * disabled or if the subpass of the render pass the pipeline is |
| * created against does not use any color attachments. |
| */ |
| if (states & RADV_DYNAMIC_BLEND_CONSTANTS) { |
| typed_memcpy(dynamic->vk.cb.blend_constants, state->cb->blend_constants, 4); |
| } |
| |
| if (states & RADV_DYNAMIC_CULL_MODE) { |
| dynamic->vk.rs.cull_mode = state->rs->cull_mode; |
| } |
| |
| if (states & RADV_DYNAMIC_FRONT_FACE) { |
| dynamic->vk.rs.front_face = state->rs->front_face; |
| } |
| |
| if (states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) { |
| dynamic->vk.ia.primitive_topology = si_translate_prim(state->ia->primitive_topology); |
| } |
| |
| /* If there is no depthstencil attachment, then don't read |
| * pDepthStencilState. The Vulkan spec states that pDepthStencilState may |
| * be NULL in this case. Even if pDepthStencilState is non-NULL, there is |
| * no need to override the depthstencil defaults in |
| * radv_pipeline::dynamic_state when there is no depthstencil attachment. |
| * |
| * Section 9.2 of the Vulkan 1.0.15 spec says: |
| * |
| * pDepthStencilState is [...] NULL if the pipeline has rasterization |
| * disabled or if the subpass of the render pass the pipeline is created |
| * against does not use a depth/stencil attachment. |
| */ |
| if (needed_states && radv_pipeline_has_ds_attachments(state->rp)) { |
| if (states & RADV_DYNAMIC_DEPTH_BOUNDS) { |
| dynamic->vk.ds.depth.bounds_test.min = state->ds->depth.bounds_test.min; |
| dynamic->vk.ds.depth.bounds_test.max = state->ds->depth.bounds_test.max; |
| } |
| |
| if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) { |
| dynamic->vk.ds.stencil.front.compare_mask = state->ds->stencil.front.compare_mask; |
| dynamic->vk.ds.stencil.back.compare_mask = state->ds->stencil.back.compare_mask; |
| } |
| |
| if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) { |
| dynamic->vk.ds.stencil.front.write_mask = state->ds->stencil.front.write_mask; |
| dynamic->vk.ds.stencil.back.write_mask = state->ds->stencil.back.write_mask; |
| } |
| |
| if (states & RADV_DYNAMIC_STENCIL_REFERENCE) { |
| dynamic->vk.ds.stencil.front.reference = state->ds->stencil.front.reference; |
| dynamic->vk.ds.stencil.back.reference = state->ds->stencil.back.reference; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_TEST_ENABLE) { |
| dynamic->vk.ds.depth.test_enable = state->ds->depth.test_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_WRITE_ENABLE) { |
| dynamic->vk.ds.depth.write_enable = state->ds->depth.write_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_COMPARE_OP) { |
| dynamic->vk.ds.depth.compare_op = state->ds->depth.compare_op; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) { |
| dynamic->vk.ds.depth.bounds_test.enable = state->ds->depth.bounds_test.enable; |
| } |
| |
| if (states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) { |
| dynamic->vk.ds.stencil.test_enable = state->ds->stencil.test_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_STENCIL_OP) { |
| dynamic->vk.ds.stencil.front.op.compare = state->ds->stencil.front.op.compare; |
| dynamic->vk.ds.stencil.front.op.fail = state->ds->stencil.front.op.fail; |
| dynamic->vk.ds.stencil.front.op.pass = state->ds->stencil.front.op.pass; |
| dynamic->vk.ds.stencil.front.op.depth_fail = state->ds->stencil.front.op.depth_fail; |
| |
| dynamic->vk.ds.stencil.back.op.compare = state->ds->stencil.back.op.compare; |
| dynamic->vk.ds.stencil.back.op.fail = state->ds->stencil.back.op.fail; |
| dynamic->vk.ds.stencil.back.op.pass = state->ds->stencil.back.op.pass; |
| dynamic->vk.ds.stencil.back.op.depth_fail = state->ds->stencil.back.op.depth_fail; |
| } |
| } |
| |
| if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) { |
| dynamic->vk.dr.rectangle_count = state->dr->rectangle_count; |
| if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) { |
| typed_memcpy(dynamic->vk.dr.rectangles, state->dr->rectangles, state->dr->rectangle_count); |
| } |
| } |
| |
| if (states & RADV_DYNAMIC_SAMPLE_LOCATIONS) { |
| unsigned count = state->ms->sample_locations->per_pixel * |
| state->ms->sample_locations->grid_size.width * |
| state->ms->sample_locations->grid_size.height; |
| |
| dynamic->sample_location.per_pixel = state->ms->sample_locations->per_pixel; |
| dynamic->sample_location.grid_size = state->ms->sample_locations->grid_size; |
| dynamic->sample_location.count = count; |
| typed_memcpy(&dynamic->sample_location.locations[0], state->ms->sample_locations->locations, |
| count); |
| } |
| |
| if (states & RADV_DYNAMIC_LINE_STIPPLE) { |
| dynamic->vk.rs.line.stipple.factor = state->rs->line.stipple.factor; |
| dynamic->vk.rs.line.stipple.pattern = state->rs->line.stipple.pattern; |
| } |
| |
| if (states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE) { |
| dynamic->vk.fsr = *state->fsr; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE) { |
| dynamic->vk.rs.depth_bias.enable = state->rs->depth_bias.enable; |
| } |
| |
| if (states & RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE) { |
| dynamic->vk.ia.primitive_restart_enable = state->ia->primitive_restart_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE) { |
| dynamic->vk.rs.rasterizer_discard_enable = state->rs->rasterizer_discard_enable; |
| } |
| |
| if (radv_pipeline_has_color_attachments(state->rp) && states & RADV_DYNAMIC_LOGIC_OP) { |
| if ((pipeline->dynamic_states & RADV_DYNAMIC_LOGIC_OP_ENABLE) || state->cb->logic_op_enable) { |
| dynamic->vk.cb.logic_op = si_translate_blend_logic_op(state->cb->logic_op); |
| } |
| } |
| |
| if (states & RADV_DYNAMIC_COLOR_WRITE_ENABLE) { |
| dynamic->vk.cb.color_write_enables = state->cb->color_write_enables; |
| } |
| |
| if (states & RADV_DYNAMIC_PATCH_CONTROL_POINTS) { |
| dynamic->vk.ts.patch_control_points = state->ts->patch_control_points; |
| } |
| |
| if (states & RADV_DYNAMIC_POLYGON_MODE) { |
| dynamic->vk.rs.polygon_mode = si_translate_fill(state->rs->polygon_mode); |
| } |
| |
| if (states & RADV_DYNAMIC_TESS_DOMAIN_ORIGIN) { |
| dynamic->vk.ts.domain_origin = state->ts->domain_origin; |
| } |
| |
| if (radv_pipeline_has_color_attachments(state->rp) && states & RADV_DYNAMIC_LOGIC_OP_ENABLE) { |
| dynamic->vk.cb.logic_op_enable = state->cb->logic_op_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_LINE_STIPPLE_ENABLE) { |
| dynamic->vk.rs.line.stipple.enable = state->rs->line.stipple.enable; |
| } |
| |
| if (states & RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE) { |
| dynamic->vk.ms.alpha_to_coverage_enable = state->ms->alpha_to_coverage_enable; |
| } |
| |
| if (states & RADV_DYNAMIC_SAMPLE_MASK) { |
| dynamic->vk.ms.sample_mask = state->ms->sample_mask & 0xffff; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_CLIP_ENABLE) { |
| dynamic->vk.rs.depth_clip_enable = |
| state->rs->depth_clip_enable == VK_MESA_DEPTH_CLIP_ENABLE_TRUE; |
| } |
| |
| if (states & RADV_DYNAMIC_CONSERVATIVE_RAST_MODE) { |
| dynamic->vk.rs.conservative_mode = state->rs->conservative_mode; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE) { |
| dynamic->vk.vp.depth_clip_negative_one_to_one = state->vp->depth_clip_negative_one_to_one; |
| } |
| |
| if (states & RADV_DYNAMIC_PROVOKING_VERTEX_MODE) { |
| dynamic->vk.rs.provoking_vertex = state->rs->provoking_vertex; |
| } |
| |
| if (states & RADV_DYNAMIC_DEPTH_CLAMP_ENABLE) { |
| dynamic->vk.rs.depth_clamp_enable = state->rs->depth_clamp_enable; |
| } |
| |
| if (radv_pipeline_has_color_attachments(state->rp) && states & RADV_DYNAMIC_COLOR_WRITE_MASK) { |
| for (unsigned i = 0; i < state->cb->attachment_count; i++) { |
| dynamic->vk.cb.attachments[i].write_mask = state->cb->attachments[i].write_mask; |
| } |
| } |
| |
| if (radv_pipeline_has_color_attachments(state->rp) && states & RADV_DYNAMIC_COLOR_BLEND_ENABLE) { |
| for (unsigned i = 0; i < state->cb->attachment_count; i++) { |
| dynamic->vk.cb.attachments[i].blend_enable = state->cb->attachments[i].blend_enable; |
| } |
| } |
| |
| if (states & RADV_DYNAMIC_RASTERIZATION_SAMPLES) { |
| dynamic->vk.ms.rasterization_samples = state->ms->rasterization_samples; |
| } |
| |
| if (states & RADV_DYNAMIC_LINE_RASTERIZATION_MODE) { |
| dynamic->vk.rs.line.mode = state->rs->line.mode; |
| } |
| |
| pipeline->dynamic_state.mask = states; |
| } |
| |
| static bool |
| radv_pipeline_uses_ds_feedback_loop(const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| VK_FROM_HANDLE(vk_render_pass, render_pass, state->rp->render_pass); |
| |
| if (render_pass) { |
| uint32_t subpass_idx = state->rp->subpass; |
| struct vk_subpass *subpass = &render_pass->subpasses[subpass_idx]; |
| struct vk_subpass_attachment *ds_att = subpass->depth_stencil_attachment; |
| |
| for (uint32_t i = 0; i < subpass->input_count; i++) { |
| if (ds_att && ds_att->attachment == subpass->input_attachments[i].attachment) { |
| return true; |
| } |
| } |
| } |
| |
| return (pCreateInfo->flags & VK_PIPELINE_CREATE_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT) != 0; |
| } |
| |
| static uint32_t |
| radv_compute_db_shader_control(const struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| bool uses_ds_feedback_loop = radv_pipeline_uses_ds_feedback_loop(pCreateInfo, state); |
| struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; |
| unsigned conservative_z_export = V_02880C_EXPORT_ANY_Z; |
| unsigned z_order; |
| |
| /* When a depth/stencil attachment is used inside feedback loops, use LATE_Z to make sure shader |
| * invocations read the correct value. |
| */ |
| if (!uses_ds_feedback_loop && (ps->info.ps.early_fragment_test || !ps->info.ps.writes_memory)) |
| z_order = V_02880C_EARLY_Z_THEN_LATE_Z; |
| else |
| z_order = V_02880C_LATE_Z; |
| |
| if (ps->info.ps.depth_layout == FRAG_DEPTH_LAYOUT_GREATER) |
| conservative_z_export = V_02880C_EXPORT_GREATER_THAN_Z; |
| else if (ps->info.ps.depth_layout == FRAG_DEPTH_LAYOUT_LESS) |
| conservative_z_export = V_02880C_EXPORT_LESS_THAN_Z; |
| |
| bool disable_rbplus = pdevice->rad_info.has_rbplus && !pdevice->rad_info.rbplus_allowed; |
| |
| /* It shouldn't be needed to export gl_SampleMask when MSAA is disabled |
| * but this appears to break Project Cars (DXVK). See |
| * https://bugs.freedesktop.org/show_bug.cgi?id=109401 |
| */ |
| bool mask_export_enable = ps->info.ps.writes_sample_mask; |
| |
| bool export_conflict_wa = |
| pipeline->base.device->physical_device->rad_info.has_export_conflict_bug && |
| radv_pipeline_is_blend_enabled(pipeline, state->cb) && |
| (!state->ms || state->ms->rasterization_samples <= 1 || |
| (pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZATION_SAMPLES)); |
| |
| return S_02880C_Z_EXPORT_ENABLE(ps->info.ps.writes_z) | |
| S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.ps.writes_stencil) | |
| S_02880C_KILL_ENABLE(!!ps->info.ps.can_discard) | |
| S_02880C_MASK_EXPORT_ENABLE(mask_export_enable) | |
| S_02880C_CONSERVATIVE_Z_EXPORT(conservative_z_export) | S_02880C_Z_ORDER(z_order) | |
| S_02880C_DEPTH_BEFORE_SHADER(ps->info.ps.early_fragment_test) | |
| S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(ps->info.ps.post_depth_coverage) | |
| S_02880C_EXEC_ON_HIER_FAIL(ps->info.ps.writes_memory) | |
| S_02880C_EXEC_ON_NOOP(ps->info.ps.writes_memory) | |
| S_02880C_DUAL_QUAD_DISABLE(disable_rbplus) | |
| S_02880C_OVERRIDE_INTRINSIC_RATE_ENABLE(export_conflict_wa) | |
| S_02880C_OVERRIDE_INTRINSIC_RATE(export_conflict_wa ? 2 : 0); |
| } |
| |
| static struct radv_depth_stencil_state |
| radv_pipeline_init_depth_stencil_state(struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| struct radv_depth_stencil_state ds_state = {0}; |
| |
| ds_state.db_shader_control = radv_compute_db_shader_control(pipeline, state, pCreateInfo); |
| |
| return ds_state; |
| } |
| |
| static void |
| gfx10_emit_ge_pc_alloc(struct radeon_cmdbuf *cs, enum amd_gfx_level gfx_level, |
| uint32_t oversub_pc_lines) |
| { |
| radeon_set_uconfig_reg( |
| cs, R_030980_GE_PC_ALLOC, |
| S_030980_OVERSUB_EN(oversub_pc_lines > 0) | S_030980_NUM_PC_LINES(oversub_pc_lines - 1)); |
| } |
| |
| static void |
| radv_pipeline_init_gs_ring_state(struct radv_graphics_pipeline *pipeline, const struct gfx9_gs_info *gs) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| unsigned num_se = pdevice->rad_info.max_se; |
| unsigned wave_size = 64; |
| unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */ |
| /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16. |
| * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2). |
| */ |
| unsigned gs_vertex_reuse = (pdevice->rad_info.gfx_level >= GFX8 ? 32 : 16) * num_se; |
| unsigned alignment = 256 * num_se; |
| /* The maximum size is 63.999 MB per SE. */ |
| unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se; |
| struct radv_shader_info *gs_info = &pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info; |
| |
| /* Calculate the minimum size. */ |
| unsigned min_esgs_ring_size = |
| align(gs->vgt_esgs_ring_itemsize * 4 * gs_vertex_reuse * wave_size, alignment); |
| /* These are recommended sizes, not minimum sizes. */ |
| unsigned esgs_ring_size = |
| max_gs_waves * 2 * wave_size * gs->vgt_esgs_ring_itemsize * 4 * gs_info->gs.vertices_in; |
| unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs_info->gs.max_gsvs_emit_size; |
| |
| min_esgs_ring_size = align(min_esgs_ring_size, alignment); |
| esgs_ring_size = align(esgs_ring_size, alignment); |
| gsvs_ring_size = align(gsvs_ring_size, alignment); |
| |
| if (pdevice->rad_info.gfx_level <= GFX8) |
| pipeline->esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size); |
| |
| pipeline->gsvs_ring_size = MIN2(gsvs_ring_size, max_size); |
| } |
| |
| struct radv_shader * |
| radv_get_shader(const struct radv_pipeline *pipeline, gl_shader_stage stage) |
| { |
| if (stage == MESA_SHADER_VERTEX) { |
| if (pipeline->shaders[MESA_SHADER_VERTEX]) |
| return pipeline->shaders[MESA_SHADER_VERTEX]; |
| if (pipeline->shaders[MESA_SHADER_TESS_CTRL]) |
| return pipeline->shaders[MESA_SHADER_TESS_CTRL]; |
| if (pipeline->shaders[MESA_SHADER_GEOMETRY]) |
| return pipeline->shaders[MESA_SHADER_GEOMETRY]; |
| } else if (stage == MESA_SHADER_TESS_EVAL) { |
| if (!pipeline->shaders[MESA_SHADER_TESS_CTRL]) |
| return NULL; |
| if (pipeline->shaders[MESA_SHADER_TESS_EVAL]) |
| return pipeline->shaders[MESA_SHADER_TESS_EVAL]; |
| if (pipeline->shaders[MESA_SHADER_GEOMETRY]) |
| return pipeline->shaders[MESA_SHADER_GEOMETRY]; |
| } |
| return pipeline->shaders[stage]; |
| } |
| |
| static const struct radv_vs_output_info * |
| get_vs_output_info(const struct radv_graphics_pipeline *pipeline) |
| { |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) |
| if (radv_pipeline_has_ngg(pipeline)) |
| return &pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.outinfo; |
| else |
| return &pipeline->base.gs_copy_shader->info.outinfo; |
| else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) |
| return &pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.outinfo; |
| else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) |
| return &pipeline->base.shaders[MESA_SHADER_MESH]->info.outinfo; |
| else |
| return &pipeline->base.shaders[MESA_SHADER_VERTEX]->info.outinfo; |
| } |
| |
| static bool |
| radv_lower_viewport_to_zero(nir_shader *nir) |
| { |
| nir_function_impl *impl = nir_shader_get_entrypoint(nir); |
| bool progress = false; |
| |
| nir_builder b; |
| nir_builder_init(&b, impl); |
| |
| /* There should be only one deref load for VIEWPORT after lower_io_to_temporaries. */ |
| nir_foreach_block(block, impl) { |
| nir_foreach_instr(instr, block) { |
| if (instr->type != nir_instr_type_intrinsic) |
| continue; |
| |
| nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); |
| if (intr->intrinsic != nir_intrinsic_load_deref) |
| continue; |
| |
| nir_variable *var = nir_intrinsic_get_var(intr, 0); |
| if (var->data.mode != nir_var_shader_in || |
| var->data.location != VARYING_SLOT_VIEWPORT) |
| continue; |
| |
| b.cursor = nir_before_instr(instr); |
| |
| nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_imm_zero(&b, 1, 32)); |
| progress = true; |
| break; |
| } |
| if (progress) |
| break; |
| } |
| |
| if (progress) |
| nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); |
| else |
| nir_metadata_preserve(impl, nir_metadata_all); |
| |
| return progress; |
| } |
| |
| static nir_variable * |
| find_layer_out_var(nir_shader *nir) |
| { |
| nir_variable *var = nir_find_variable_with_location(nir, nir_var_shader_out, VARYING_SLOT_LAYER); |
| if (var != NULL) |
| return var; |
| |
| var = nir_variable_create(nir, nir_var_shader_out, glsl_int_type(), "layer id"); |
| var->data.location = VARYING_SLOT_LAYER; |
| var->data.interpolation = INTERP_MODE_NONE; |
| |
| return var; |
| } |
| |
| static bool |
| radv_should_export_multiview(const struct radv_pipeline_stage *producer, |
| const struct radv_pipeline_stage *consumer, |
| const struct radv_pipeline_key *pipeline_key) |
| { |
| /* Export the layer in the last VGT stage if multiview is used. When the next stage is unknown |
| * (with graphics pipeline library), the layer is exported unconditionally. |
| */ |
| return pipeline_key->has_multiview_view_index && |
| (!consumer || consumer->stage == MESA_SHADER_FRAGMENT) && |
| !(producer->nir->info.outputs_written & VARYING_BIT_LAYER); |
| } |
| |
| static bool |
| radv_export_multiview(nir_shader *nir) |
| { |
| nir_function_impl *impl = nir_shader_get_entrypoint(nir); |
| bool progress = false; |
| |
| nir_builder b; |
| nir_builder_init(&b, impl); |
| |
| /* This pass is not suitable for mesh shaders, because it can't know the mapping between API mesh |
| * shader invocations and output primitives. Needs to be handled in ac_nir_lower_ngg. |
| */ |
| assert(nir->info.stage == MESA_SHADER_VERTEX || |
| nir->info.stage == MESA_SHADER_TESS_EVAL || |
| nir->info.stage == MESA_SHADER_GEOMETRY); |
| |
| /* Iterate in reverse order since there should be only one deref store to POS after |
| * lower_io_to_temporaries for vertex shaders and inject the layer there. For geometry shaders, |
| * the layer is injected right before every emit_vertex_with_counter. |
| */ |
| nir_variable *layer = NULL; |
| nir_foreach_block_reverse(block, impl) { |
| nir_foreach_instr_reverse(instr, block) { |
| if (instr->type != nir_instr_type_intrinsic) |
| continue; |
| |
| if (nir->info.stage == MESA_SHADER_GEOMETRY) { |
| nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); |
| if (intr->intrinsic != nir_intrinsic_emit_vertex_with_counter) |
| continue; |
| |
| b.cursor = nir_before_instr(instr); |
| } else { |
| nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); |
| if (intr->intrinsic != nir_intrinsic_store_deref) |
| continue; |
| |
| nir_variable *var = nir_intrinsic_get_var(intr, 0); |
| if (var->data.mode != nir_var_shader_out || var->data.location != VARYING_SLOT_POS) |
| continue; |
| |
| b.cursor = nir_after_instr(instr); |
| } |
| |
| if (!layer) |
| layer = find_layer_out_var(nir); |
| |
| nir_store_var(&b, layer, nir_load_view_index(&b), 1); |
| |
| /* Update outputs_written to reflect that the pass added a new output. */ |
| nir->info.outputs_written |= BITFIELD64_BIT(VARYING_SLOT_LAYER); |
| |
| progress = true; |
| if (nir->info.stage == MESA_SHADER_VERTEX) |
| break; |
| } |
| if (nir->info.stage == MESA_SHADER_VERTEX && progress) |
| break; |
| } |
| |
| if (progress) |
| nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); |
| else |
| nir_metadata_preserve(impl, nir_metadata_all); |
| |
| return progress; |
| } |
| |
| static void |
| radv_remove_point_size(const struct radv_pipeline_key *pipeline_key, |
| nir_shader *producer, nir_shader *consumer) |
| { |
| if ((consumer->info.inputs_read & VARYING_BIT_PSIZ) || |
| !(producer->info.outputs_written & VARYING_BIT_PSIZ)) |
| return; |
| |
| /* Do not remove PSIZ if the shader uses XFB because it might be stored. */ |
| if (producer->xfb_info) |
| return; |
| |
| /* Do not remove PSIZ if the rasterization primitive uses points. */ |
| if (consumer->info.stage == MESA_SHADER_FRAGMENT && |
| ((producer->info.stage == MESA_SHADER_TESS_EVAL && producer->info.tess.point_mode) || |
| (producer->info.stage == MESA_SHADER_GEOMETRY && |
| producer->info.gs.output_primitive == SHADER_PRIM_POINTS) || |
| (producer->info.stage == MESA_SHADER_MESH && |
| producer->info.mesh.primitive_type == SHADER_PRIM_POINTS))) |
| return; |
| |
| nir_variable *var = |
| nir_find_variable_with_location(producer, nir_var_shader_out, VARYING_SLOT_PSIZ); |
| assert(var); |
| |
| /* Change PSIZ to a global variable which allows it to be DCE'd. */ |
| var->data.location = 0; |
| var->data.mode = nir_var_shader_temp; |
| |
| producer->info.outputs_written &= ~VARYING_BIT_PSIZ; |
| NIR_PASS_V(producer, nir_fixup_deref_modes); |
| NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_temp, NULL); |
| NIR_PASS(_, producer, nir_opt_dce); |
| } |
| |
| static void |
| radv_remove_color_exports(const struct radv_pipeline_key *pipeline_key, nir_shader *nir) |
| { |
| bool fixup_derefs = false; |
| |
| /* Do not remove color exports when a PS epilog is used because the format isn't known. */ |
| if (pipeline_key->ps.has_epilog) |
| return; |
| |
| /* Do not remove color exports when the write mask is dynamic. */ |
| if (pipeline_key->dynamic_color_write_mask) |
| return; |
| |
| nir_foreach_shader_out_variable(var, nir) { |
| int idx = var->data.location; |
| idx -= FRAG_RESULT_DATA0; |
| |
| if (idx < 0) |
| continue; |
| |
| unsigned col_format = (pipeline_key->ps.epilog.spi_shader_col_format >> (4 * idx)) & 0xf; |
| |
| if (col_format == V_028714_SPI_SHADER_ZERO) { |
| /* Remove the color export if it's unused or in presence of holes. */ |
| nir->info.outputs_written &= ~BITFIELD64_BIT(var->data.location); |
| var->data.location = 0; |
| var->data.mode = nir_var_shader_temp; |
| fixup_derefs = true; |
| } |
| } |
| |
| if (fixup_derefs) { |
| NIR_PASS_V(nir, nir_fixup_deref_modes); |
| NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_shader_temp, NULL); |
| NIR_PASS(_, nir, nir_opt_dce); |
| } |
| } |
| |
| static void |
| merge_tess_info(struct shader_info *tes_info, struct shader_info *tcs_info) |
| { |
| /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says: |
| * |
| * "PointMode. Controls generation of points rather than triangles |
| * or lines. This functionality defaults to disabled, and is |
| * enabled if either shader stage includes the execution mode. |
| * |
| * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw, |
| * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd, |
| * and OutputVertices, it says: |
| * |
| * "One mode must be set in at least one of the tessellation |
| * shader stages." |
| * |
| * So, the fields can be set in either the TCS or TES, but they must |
| * agree if set in both. Our backend looks at TES, so bitwise-or in |
| * the values from the TCS. |
| */ |
| assert(tcs_info->tess.tcs_vertices_out == 0 || tes_info->tess.tcs_vertices_out == 0 || |
| tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out); |
| tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out; |
| |
| assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED || |
| tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED || |
| tcs_info->tess.spacing == tes_info->tess.spacing); |
| tes_info->tess.spacing |= tcs_info->tess.spacing; |
| |
| assert(tcs_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED || |
| tes_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED || |
| tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode); |
| tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode; |
| tes_info->tess.ccw |= tcs_info->tess.ccw; |
| tes_info->tess.point_mode |= tcs_info->tess.point_mode; |
| |
| /* Copy the merged info back to the TCS */ |
| tcs_info->tess.tcs_vertices_out = tes_info->tess.tcs_vertices_out; |
| tcs_info->tess.spacing = tes_info->tess.spacing; |
| tcs_info->tess._primitive_mode = tes_info->tess._primitive_mode; |
| tcs_info->tess.ccw = tes_info->tess.ccw; |
| tcs_info->tess.point_mode = tes_info->tess.point_mode; |
| } |
| |
| static void |
| radv_lower_io_to_scalar_early(nir_shader *nir, nir_variable_mode mask) |
| { |
| bool progress = false; |
| |
| NIR_PASS(progress, nir, nir_lower_io_to_scalar_early, mask); |
| if (progress) { |
| /* Optimize the new vector code and then remove dead vars */ |
| NIR_PASS(_, nir, nir_copy_prop); |
| NIR_PASS(_, nir, nir_opt_shrink_vectors); |
| |
| if (mask & nir_var_shader_out) { |
| /* Optimize swizzled movs of load_const for nir_link_opt_varyings's constant propagation. */ |
| NIR_PASS(_, nir, nir_opt_constant_folding); |
| |
| /* For nir_link_opt_varyings's duplicate input opt */ |
| NIR_PASS(_, nir, nir_opt_cse); |
| } |
| |
| /* Run copy-propagation to help remove dead output variables (some shaders have useless copies |
| * to/from an output), so compaction later will be more effective. |
| * |
| * This will have been done earlier but it might not have worked because the outputs were |
| * vector. |
| */ |
| if (nir->info.stage == MESA_SHADER_TESS_CTRL) |
| NIR_PASS(_, nir, nir_opt_copy_prop_vars); |
| |
| NIR_PASS(_, nir, nir_opt_dce); |
| NIR_PASS(_, nir, nir_remove_dead_variables, |
| nir_var_function_temp | nir_var_shader_in | nir_var_shader_out, NULL); |
| } |
| } |
| |
| static void |
| radv_pipeline_link_shaders(const struct radv_device *device, |
| nir_shader *producer, nir_shader *consumer, |
| const struct radv_pipeline_key *pipeline_key) |
| { |
| const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level; |
| bool progress; |
| |
| if (consumer->info.stage == MESA_SHADER_FRAGMENT) { |
| /* Lower the viewport index to zero when the last vertex stage doesn't export it. */ |
| if ((consumer->info.inputs_read & VARYING_BIT_VIEWPORT) && |
| !(producer->info.outputs_written & VARYING_BIT_VIEWPORT)) { |
| NIR_PASS(_, consumer, radv_lower_viewport_to_zero); |
| } |
| |
| /* Lower the view index to map on the layer. */ |
| NIR_PASS(_, consumer, radv_lower_view_index, producer->info.stage == MESA_SHADER_MESH); |
| } |
| |
| if (pipeline_key->optimisations_disabled) |
| return; |
| |
| if (consumer->info.stage == MESA_SHADER_FRAGMENT && |
| producer->info.has_transform_feedback_varyings) { |
| nir_link_xfb_varyings(producer, consumer); |
| } |
| |
| nir_lower_io_arrays_to_elements(producer, consumer); |
| nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements"); |
| nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements"); |
| |
| radv_lower_io_to_scalar_early(producer, nir_var_shader_out); |
| radv_lower_io_to_scalar_early(consumer, nir_var_shader_in); |
| |
| /* Remove PSIZ from shaders when it's not needed. |
| * This is typically produced by translation layers like Zink or D9VK. |
| */ |
| if (pipeline_key->enable_remove_point_size) |
| radv_remove_point_size(pipeline_key, producer, consumer); |
| |
| if (nir_link_opt_varyings(producer, consumer)) { |
| nir_validate_shader(producer, "after nir_link_opt_varyings"); |
| nir_validate_shader(consumer, "after nir_link_opt_varyings"); |
| |
| NIR_PASS(_, consumer, nir_opt_constant_folding); |
| NIR_PASS(_, consumer, nir_opt_algebraic); |
| NIR_PASS(_, consumer, nir_opt_dce); |
| } |
| |
| NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_out, NULL); |
| NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_in, NULL); |
| |
| progress = nir_remove_unused_varyings(producer, consumer); |
| |
| nir_compact_varyings(producer, consumer, true); |
| |
| /* nir_compact_varyings changes deleted varyings into shader_temp. |
| * We need to remove these otherwise we risk them being lowered to scratch. |
| * This can especially happen to arrayed outputs. |
| */ |
| NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_temp, NULL); |
| NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_temp, NULL); |
| |
| nir_validate_shader(producer, "after nir_compact_varyings"); |
| nir_validate_shader(consumer, "after nir_compact_varyings"); |
| |
| if (producer->info.stage == MESA_SHADER_MESH) { |
| /* nir_compact_varyings can change the location of per-vertex and per-primitive outputs */ |
| nir_shader_gather_info(producer, nir_shader_get_entrypoint(producer)); |
| } |
| |
| const bool has_geom_or_tess = consumer->info.stage == MESA_SHADER_GEOMETRY || |
| consumer->info.stage == MESA_SHADER_TESS_CTRL; |
| const bool merged_gs = consumer->info.stage == MESA_SHADER_GEOMETRY && gfx_level >= GFX9; |
| |
| if (producer->info.stage == MESA_SHADER_TESS_CTRL || |
| producer->info.stage == MESA_SHADER_MESH || |
| (producer->info.stage == MESA_SHADER_VERTEX && has_geom_or_tess) || |
| (producer->info.stage == MESA_SHADER_TESS_EVAL && merged_gs)) { |
| NIR_PASS(_, producer, nir_lower_io_to_vector, nir_var_shader_out); |
| |
| if (producer->info.stage == MESA_SHADER_TESS_CTRL) |
| NIR_PASS(_, producer, nir_vectorize_tess_levels); |
| |
| NIR_PASS(_, producer, nir_opt_combine_stores, nir_var_shader_out); |
| } |
| |
| if (consumer->info.stage == MESA_SHADER_GEOMETRY || |
| consumer->info.stage == MESA_SHADER_TESS_CTRL || |
| consumer->info.stage == MESA_SHADER_TESS_EVAL) { |
| NIR_PASS(_, consumer, nir_lower_io_to_vector, nir_var_shader_in); |
| } |
| |
| if (progress) { |
| progress = false; |
| NIR_PASS(progress, producer, nir_lower_global_vars_to_local); |
| if (progress) { |
| ac_nir_lower_indirect_derefs(producer, gfx_level); |
| /* remove dead writes, which can remove input loads */ |
| NIR_PASS(_, producer, nir_lower_vars_to_ssa); |
| NIR_PASS(_, producer, nir_opt_dce); |
| } |
| |
| progress = false; |
| NIR_PASS(progress, consumer, nir_lower_global_vars_to_local); |
| if (progress) { |
| ac_nir_lower_indirect_derefs(consumer, gfx_level); |
| } |
| } |
| } |
| |
| static const gl_shader_stage graphics_shader_order[] = { |
| MESA_SHADER_VERTEX, |
| MESA_SHADER_TESS_CTRL, |
| MESA_SHADER_TESS_EVAL, |
| MESA_SHADER_GEOMETRY, |
| |
| MESA_SHADER_TASK, |
| MESA_SHADER_MESH, |
| |
| MESA_SHADER_FRAGMENT, |
| }; |
| |
| static void |
| radv_pipeline_link_vs(const struct radv_device *device, struct radv_pipeline_stage *vs_stage, |
| struct radv_pipeline_stage *next_stage, |
| const struct radv_pipeline_key *pipeline_key) |
| { |
| assert(vs_stage->nir->info.stage == MESA_SHADER_VERTEX); |
| |
| if (radv_should_export_multiview(vs_stage, next_stage, pipeline_key)) { |
| NIR_PASS(_, vs_stage->nir, radv_export_multiview); |
| } |
| |
| if (next_stage) { |
| assert(next_stage->nir->info.stage == MESA_SHADER_TESS_CTRL || |
| next_stage->nir->info.stage == MESA_SHADER_GEOMETRY || |
| next_stage->nir->info.stage == MESA_SHADER_FRAGMENT); |
| |
| radv_pipeline_link_shaders(device, vs_stage->nir, next_stage->nir, pipeline_key); |
| } |
| |
| nir_foreach_shader_in_variable(var, vs_stage->nir) { |
| var->data.driver_location = var->data.location; |
| } |
| |
| if (next_stage && next_stage->nir->info.stage == MESA_SHADER_TESS_CTRL) { |
| nir_linked_io_var_info vs2tcs = |
| nir_assign_linked_io_var_locations(vs_stage->nir, next_stage->nir); |
| |
| vs_stage->info.vs.num_linked_outputs = vs2tcs.num_linked_io_vars; |
| next_stage->info.tcs.num_linked_inputs = vs2tcs.num_linked_io_vars; |
| } else if (next_stage && next_stage->nir->info.stage == MESA_SHADER_GEOMETRY) { |
| nir_linked_io_var_info vs2gs = |
| nir_assign_linked_io_var_locations(vs_stage->nir, next_stage->nir); |
| |
| vs_stage->info.vs.num_linked_outputs = vs2gs.num_linked_io_vars; |
| next_stage->info.gs.num_linked_inputs = vs2gs.num_linked_io_vars; |
| } else { |
| nir_foreach_shader_out_variable(var, vs_stage->nir) { |
| var->data.driver_location = var->data.location; |
| } |
| } |
| } |
| |
| static void |
| radv_pipeline_link_tcs(const struct radv_device *device, struct radv_pipeline_stage *tcs_stage, |
| struct radv_pipeline_stage *tes_stage, |
| const struct radv_pipeline_key *pipeline_key) |
| { |
| assert(tcs_stage->nir->info.stage == MESA_SHADER_TESS_CTRL); |
| assert(tes_stage->nir->info.stage == MESA_SHADER_TESS_EVAL); |
| |
| radv_pipeline_link_shaders(device, tcs_stage->nir, tes_stage->nir, pipeline_key); |
| |
| nir_lower_patch_vertices(tes_stage->nir, tcs_stage->nir->info.tess.tcs_vertices_out, NULL); |
| |
| /* Copy TCS info into the TES info */ |
| merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info); |
| |
| nir_linked_io_var_info tcs2tes = |
| nir_assign_linked_io_var_locations(tcs_stage->nir, tes_stage->nir); |
| |
| tcs_stage->info.tcs.num_linked_outputs = tcs2tes.num_linked_io_vars; |
| tcs_stage->info.tcs.num_linked_patch_outputs = tcs2tes.num_linked_patch_io_vars; |
| tes_stage->info.tes.num_linked_inputs = tcs2tes.num_linked_io_vars; |
| tes_stage->info.tes.num_linked_patch_inputs = tcs2tes.num_linked_patch_io_vars; |
| } |
| |
| static void |
| radv_pipeline_link_tes(const struct radv_device *device, struct radv_pipeline_stage *tes_stage, |
| struct radv_pipeline_stage *next_stage, |
| const struct radv_pipeline_key *pipeline_key) |
| { |
| assert(tes_stage->nir->info.stage == MESA_SHADER_TESS_EVAL); |
| |
| if (radv_should_export_multiview(tes_stage, next_stage, pipeline_key)) { |
| NIR_PASS(_, tes_stage->nir, radv_export_multiview); |
| } |
| |
| if (next_stage) { |
| assert(next_stage->nir->info.stage == MESA_SHADER_GEOMETRY || |
| next_stage->nir->info.stage == MESA_SHADER_FRAGMENT); |
| |
| radv_pipeline_link_shaders(device, tes_stage->nir, next_stage->nir, pipeline_key); |
| } |
| |
| if (next_stage && next_stage->nir->info.stage == MESA_SHADER_GEOMETRY) { |
| nir_linked_io_var_info tes2gs = |
| nir_assign_linked_io_var_locations(tes_stage->nir, next_stage->nir); |
| |
| tes_stage->info.tes.num_linked_outputs = tes2gs.num_linked_io_vars; |
| next_stage->info.gs.num_linked_inputs = tes2gs.num_linked_io_vars; |
| } else { |
| nir_foreach_shader_out_variable(var, tes_stage->nir) { |
| var->data.driver_location = var->data.location; |
| } |
| } |
| } |
| |
| static void |
| radv_pipeline_link_gs(const struct radv_device *device, struct radv_pipeline_stage *gs_stage, |
| struct radv_pipeline_stage *fs_stage, |
| const struct radv_pipeline_key *pipeline_key) |
| { |
| assert(gs_stage->nir->info.stage == MESA_SHADER_GEOMETRY); |
| |
| if (radv_should_export_multiview(gs_stage, fs_stage, pipeline_key)) { |
| NIR_PASS(_, gs_stage->nir, radv_export_multiview); |
| } |
| |
| if (fs_stage) { |
| assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT); |
| |
| radv_pipeline_link_shaders(device, gs_stage->nir, fs_stage->nir, pipeline_key); |
| } |
| |
| nir_foreach_shader_out_variable(var, gs_stage->nir) { |
| var->data.driver_location = var->data.location; |
| } |
| } |
| |
| static void |
| radv_pipeline_link_task(const struct radv_device *device, struct radv_pipeline_stage *task_stage, |
| struct radv_pipeline_stage *mesh_stage, |
| const struct radv_pipeline_key *pipeline_key) |
| { |
| assert(task_stage->nir->info.stage == MESA_SHADER_TASK); |
| assert(mesh_stage->nir->info.stage == MESA_SHADER_MESH); |
| |
| /* Linking task and mesh shaders shouldn't do anything for now but keep it for consistency. */ |
| radv_pipeline_link_shaders(device, task_stage->nir, mesh_stage->nir, pipeline_key); |
| } |
| |
| static void |
| radv_pipeline_link_mesh(const struct radv_device *device, struct radv_pipeline_stage *mesh_stage, |
| struct radv_pipeline_stage *fs_stage, |
| const struct radv_pipeline_key *pipeline_key) |
| { |
| assert(mesh_stage->nir->info.stage == MESA_SHADER_MESH); |
| |
| if (fs_stage) { |
| assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT); |
| |
| nir_foreach_shader_in_variable(var, fs_stage->nir) { |
| /* These variables are per-primitive when used with a mesh shader. */ |
| if (var->data.location == VARYING_SLOT_PRIMITIVE_ID || |
| var->data.location == VARYING_SLOT_VIEWPORT || |
| var->data.location == VARYING_SLOT_LAYER) { |
| var->data.per_primitive = true; |
| } |
| } |
| |
| radv_pipeline_link_shaders(device, mesh_stage->nir, fs_stage->nir, pipeline_key); |
| } |
| |
| /* ac_nir_lower_ngg ignores driver locations for mesh shaders, but set them to all zero just to |
| * be on the safe side. |
| */ |
| nir_foreach_shader_out_variable(var, mesh_stage->nir) { |
| var->data.driver_location = 0; |
| } |
| } |
| |
| static void |
| radv_pipeline_link_fs(struct radv_pipeline_stage *fs_stage, |
| const struct radv_pipeline_key *pipeline_key) |
| { |
| assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT); |
| |
| radv_remove_color_exports(pipeline_key, fs_stage->nir); |
| |
| nir_foreach_shader_out_variable(var, fs_stage->nir) { |
| var->data.driver_location = var->data.location + var->data.index; |
| } |
| } |
| |
| static void |
| radv_graphics_pipeline_link(const struct radv_pipeline *pipeline, |
| const struct radv_pipeline_key *pipeline_key, |
| struct radv_pipeline_stage *stages) |
| { |
| const struct radv_device *device = pipeline->device; |
| |
| /* Walk backwards to link */ |
| struct radv_pipeline_stage *next_stage = NULL; |
| for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) { |
| gl_shader_stage s = graphics_shader_order[i]; |
| if (!stages[s].nir) |
| continue; |
| |
| switch (s) { |
| case MESA_SHADER_VERTEX: |
| radv_pipeline_link_vs(device, &stages[s], next_stage, pipeline_key); |
| break; |
| case MESA_SHADER_TESS_CTRL: |
| radv_pipeline_link_tcs(device, &stages[s], next_stage, pipeline_key); |
| break; |
| case MESA_SHADER_TESS_EVAL: |
| radv_pipeline_link_tes(device, &stages[s], next_stage, pipeline_key); |
| break; |
| case MESA_SHADER_GEOMETRY: |
| radv_pipeline_link_gs(device, &stages[s], next_stage, pipeline_key); |
| break; |
| case MESA_SHADER_TASK: |
| radv_pipeline_link_task(device, &stages[s], next_stage, pipeline_key); |
| break; |
| case MESA_SHADER_MESH: |
| radv_pipeline_link_mesh(device, &stages[s], next_stage, pipeline_key); |
| break; |
| case MESA_SHADER_FRAGMENT: |
| radv_pipeline_link_fs(&stages[s], pipeline_key); |
| break; |
| default: |
| unreachable("Invalid graphics shader stage"); |
| } |
| |
| next_stage = &stages[s]; |
| } |
| } |
| |
| struct radv_pipeline_key |
| radv_generate_pipeline_key(const struct radv_pipeline *pipeline, VkPipelineCreateFlags flags) |
| { |
| struct radv_device *device = pipeline->device; |
| struct radv_pipeline_key key; |
| |
| memset(&key, 0, sizeof(key)); |
| |
| if (flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT) |
| key.optimisations_disabled = 1; |
| |
| key.disable_aniso_single_level = device->instance->disable_aniso_single_level && |
| device->physical_device->rad_info.gfx_level < GFX8; |
| |
| key.image_2d_view_of_3d = device->image_2d_view_of_3d && |
| device->physical_device->rad_info.gfx_level == GFX9; |
| |
| key.tex_non_uniform = device->instance->tex_non_uniform; |
| |
| return key; |
| } |
| |
| struct radv_ps_epilog_state |
| { |
| uint8_t color_attachment_count; |
| VkFormat color_attachment_formats[MAX_RTS]; |
| |
| uint32_t color_write_mask; |
| uint32_t color_blend_enable; |
| |
| bool mrt0_is_dual_src; |
| uint8_t need_src_alpha; |
| }; |
| |
| static struct radv_ps_epilog_key |
| radv_generate_ps_epilog_key(const struct radv_graphics_pipeline *pipeline, |
| const struct radv_ps_epilog_state *state, |
| bool disable_mrt_compaction) |
| { |
| unsigned col_format = 0, is_int8 = 0, is_int10 = 0, is_float32 = 0; |
| struct radv_device *device = pipeline->base.device; |
| struct radv_ps_epilog_key key; |
| |
| memset(&key, 0, sizeof(key)); |
| |
| for (unsigned i = 0; i < state->color_attachment_count; ++i) { |
| unsigned cf; |
| VkFormat fmt = state->color_attachment_formats[i]; |
| |
| if (fmt == VK_FORMAT_UNDEFINED || !(state->color_write_mask & (0xfu << (i * 4)))) { |
| cf = V_028714_SPI_SHADER_ZERO; |
| } else { |
| bool blend_enable = state->color_blend_enable & (0xfu << (i * 4)); |
| |
| cf = radv_choose_spi_color_format(pipeline->base.device, fmt, blend_enable, |
| state->need_src_alpha & (1 << i)); |
| |
| if (format_is_int8(fmt)) |
| is_int8 |= 1 << i; |
| if (format_is_int10(fmt)) |
| is_int10 |= 1 << i; |
| if (format_is_float32(fmt)) |
| is_float32 |= 1 << i; |
| } |
| |
| col_format |= cf << (4 * i); |
| } |
| |
| if (!(col_format & 0xf) && state->need_src_alpha & (1 << 0)) { |
| /* When a subpass doesn't have any color attachments, write the alpha channel of MRT0 when |
| * alpha coverage is enabled because the depth attachment needs it. |
| */ |
| col_format |= V_028714_SPI_SHADER_32_AR; |
| } |
| |
| if (disable_mrt_compaction) { |
| /* Do not compact MRTs when the pipeline uses a PS epilog because we can't detect color |
| * attachments without exports. Without compaction and if the i-th target format is set, all |
| * previous target formats must be non-zero to avoid hangs. |
| */ |
| unsigned num_targets = (util_last_bit(col_format) + 3) / 4; |
| for (unsigned i = 0; i < num_targets; i++) { |
| if (!(col_format & (0xfu << (i * 4)))) { |
| col_format |= V_028714_SPI_SHADER_32_R << (i * 4); |
| } |
| } |
| } |
| |
| /* The output for dual source blending should have the same format as the first output. */ |
| if (state->mrt0_is_dual_src) { |
| assert(!(col_format >> 4)); |
| col_format |= (col_format & 0xf) << 4; |
| } |
| |
| key.spi_shader_col_format = col_format; |
| key.color_is_int8 = device->physical_device->rad_info.gfx_level < GFX8 ? is_int8 : 0; |
| key.color_is_int10 = device->physical_device->rad_info.gfx_level < GFX8 ? is_int10 : 0; |
| key.enable_mrt_output_nan_fixup = device->instance->enable_mrt_output_nan_fixup ? is_float32 : 0; |
| key.mrt0_is_dual_src = state->mrt0_is_dual_src; |
| |
| return key; |
| } |
| |
| static struct radv_ps_epilog_key |
| radv_pipeline_generate_ps_epilog_key(const struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state, |
| bool disable_mrt_compaction) |
| { |
| struct radv_ps_epilog_state ps_epilog = {0}; |
| |
| if (state->ms && ((pipeline->dynamic_states & RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE) || |
| state->ms->alpha_to_coverage_enable)) { |
| /* When alpha to coverage is enabled, the driver needs to select a color export format with |
| * alpha. When this state is dynamic, always select a format with alpha because it's hard to |
| * change color export formats dynamically (note that it's suboptimal). |
| */ |
| ps_epilog.need_src_alpha |= 0x1; |
| } |
| |
| if (state->cb) { |
| for (uint32_t i = 0; i < state->cb->attachment_count; i++) { |
| VkBlendOp eqRGB = state->cb->attachments[i].color_blend_op; |
| VkBlendFactor srcRGB = state->cb->attachments[i].src_color_blend_factor; |
| VkBlendFactor dstRGB = state->cb->attachments[i].dst_color_blend_factor; |
| |
| /* Ignore other blend targets if dual-source blending is enabled to prevent wrong |
| * behaviour. |
| */ |
| if (i > 0 && ps_epilog.mrt0_is_dual_src) |
| continue; |
| |
| ps_epilog.color_write_mask |= (unsigned)state->cb->attachments[i].write_mask << (4 * i); |
| if (!((ps_epilog.color_write_mask >> (i * 4)) & 0xf)) |
| continue; |
| |
| if (state->cb->attachments[i].blend_enable) |
| ps_epilog.color_blend_enable |= 0xfu << (i * 4); |
| |
| if (!((ps_epilog.color_blend_enable >> (i * 4)) & 0xf)) |
| continue; |
| |
| if (i == 0 && radv_can_enable_dual_src(&state->cb->attachments[i])) { |
| ps_epilog.mrt0_is_dual_src = true; |
| } |
| |
| if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) { |
| srcRGB = VK_BLEND_FACTOR_ONE; |
| dstRGB = VK_BLEND_FACTOR_ONE; |
| } |
| |
| if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || |
| srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || |
| srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || |
| dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) |
| ps_epilog.need_src_alpha |= 1 << i; |
| } |
| } |
| |
| if (state->rp) { |
| ps_epilog.color_attachment_count = state->rp->color_attachment_count; |
| |
| for (uint32_t i = 0; i < ps_epilog.color_attachment_count; i++) { |
| ps_epilog.color_attachment_formats[i] = state->rp->color_attachment_formats[i]; |
| } |
| } |
| |
| return radv_generate_ps_epilog_key(pipeline, &ps_epilog, disable_mrt_compaction); |
| } |
| |
| static struct radv_pipeline_key |
| radv_generate_graphics_pipeline_key(const struct radv_graphics_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| struct radv_device *device = pipeline->base.device; |
| const struct radv_physical_device *pdevice = device->physical_device; |
| struct radv_pipeline_key key = radv_generate_pipeline_key(&pipeline->base, pCreateInfo->flags); |
| |
| key.has_multiview_view_index = state->rp ? !!state->rp->view_mask : 0; |
| |
| if (pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT) { |
| key.vs.has_prolog = true; |
| } |
| |
| /* Vertex input state */ |
| if (state->vi) { |
| u_foreach_bit(i, state->vi->attributes_valid) { |
| uint32_t binding = state->vi->attributes[i].binding; |
| uint32_t offset = state->vi->attributes[i].offset; |
| enum pipe_format format = vk_format_to_pipe_format(state->vi->attributes[i].format); |
| |
| key.vs.vertex_attribute_formats[i] = format; |
| key.vs.vertex_attribute_bindings[i] = binding; |
| key.vs.vertex_attribute_offsets[i] = offset; |
| key.vs.instance_rate_divisors[i] = state->vi->bindings[binding].divisor; |
| |
| if (!(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE)) { |
| /* From the Vulkan spec 1.2.157: |
| * |
| * "If the bound pipeline state object was created with the |
| * VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE dynamic state enabled then pStrides[i] |
| * specifies the distance in bytes between two consecutive elements within the |
| * corresponding buffer. In this case the VkVertexInputBindingDescription::stride state |
| * from the pipeline state object is ignored." |
| * |
| * Make sure the vertex attribute stride is zero to avoid computing a wrong offset if |
| * it's initialized to something else than zero. |
| */ |
| key.vs.vertex_attribute_strides[i] = state->vi->bindings[binding].stride; |
| } |
| |
| if (state->vi->bindings[binding].input_rate) { |
| key.vs.instance_rate_inputs |= 1u << i; |
| } |
| |
| const struct ac_vtx_format_info *vtx_info = |
| ac_get_vtx_format_info(pdevice->rad_info.gfx_level, pdevice->rad_info.family, format); |
| unsigned attrib_align = |
| vtx_info->chan_byte_size ? vtx_info->chan_byte_size : vtx_info->element_size; |
| |
| /* If offset is misaligned, then the buffer offset must be too. Just skip updating |
| * vertex_binding_align in this case. |
| */ |
| if (offset % attrib_align == 0) { |
| key.vs.vertex_binding_align[binding] = |
| MAX2(key.vs.vertex_binding_align[binding], attrib_align); |
| } |
| } |
| } |
| |
| if (state->ts) |
| key.tcs.tess_input_vertices = state->ts->patch_control_points; |
| |
| if (state->ms) { |
| key.ps.sample_shading_enable = state->ms->sample_shading_enable; |
| if (!(pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZATION_SAMPLES) && |
| state->ms->rasterization_samples > 1) { |
| key.ps.num_samples = state->ms->rasterization_samples; |
| } |
| } |
| |
| key.ps.epilog = radv_pipeline_generate_ps_epilog_key(pipeline, state, pipeline->ps_epilog); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX11 && state->ms) { |
| key.ps.alpha_to_coverage_via_mrtz = state->ms->alpha_to_coverage_enable; |
| } |
| |
| if (state->ia) { |
| key.vs.topology = si_translate_prim(state->ia->primitive_topology); |
| } |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX10 && state->rs) { |
| key.vs.provoking_vtx_last = |
| state->rs->provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT; |
| } |
| |
| if (device->instance->debug_flags & RADV_DEBUG_DISCARD_TO_DEMOTE) |
| key.ps.lower_discard_to_demote = true; |
| |
| key.ps.force_vrs_enabled = device->force_vrs_enabled; |
| |
| if (device->instance->debug_flags & RADV_DEBUG_INVARIANT_GEOM) |
| key.invariant_geom = true; |
| |
| key.use_ngg = device->physical_device->use_ngg; |
| |
| if ((radv_is_vrs_enabled(pipeline, state) || device->force_vrs_enabled) && |
| (device->physical_device->rad_info.family == CHIP_NAVI21 || |
| device->physical_device->rad_info.family == CHIP_NAVI22 || |
| device->physical_device->rad_info.family == CHIP_VANGOGH)) |
| key.adjust_frag_coord_z = true; |
| |
| if (device->instance->disable_sinking_load_input_fs) |
| key.disable_sinking_load_input_fs = true; |
| |
| if (device->primitives_generated_query) |
| key.primitives_generated_query = true; |
| |
| key.ps.has_epilog = |
| !!(pipeline->active_stages & VK_SHADER_STAGE_FRAGMENT_BIT) && !!pipeline->ps_epilog; |
| |
| key.dynamic_patch_control_points = |
| !!(pipeline->dynamic_states & RADV_DYNAMIC_PATCH_CONTROL_POINTS); |
| |
| key.dynamic_rasterization_samples = |
| !!(pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZATION_SAMPLES) || |
| (!!(pipeline->active_stages & VK_SHADER_STAGE_FRAGMENT_BIT) && !state->ms); |
| |
| key.dynamic_color_write_mask = !!(pipeline->dynamic_states & RADV_DYNAMIC_COLOR_WRITE_MASK); |
| |
| if (device->physical_device->use_ngg) { |
| VkShaderStageFlags ngg_stage; |
| |
| if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT) { |
| ngg_stage = VK_SHADER_STAGE_GEOMETRY_BIT; |
| } else if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) { |
| ngg_stage = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT; |
| } else { |
| ngg_stage = VK_SHADER_STAGE_VERTEX_BIT; |
| } |
| |
| key.dynamic_provoking_vtx_mode = |
| !!(pipeline->dynamic_states & RADV_DYNAMIC_PROVOKING_VERTEX_MODE) && |
| (ngg_stage == VK_SHADER_STAGE_VERTEX_BIT || ngg_stage == VK_SHADER_STAGE_GEOMETRY_BIT); |
| } |
| |
| if (!(pipeline->dynamic_states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) && |
| state->ia && state->ia->primitive_topology != VK_PRIMITIVE_TOPOLOGY_POINT_LIST && |
| !(pipeline->dynamic_states & RADV_DYNAMIC_POLYGON_MODE) && |
| state->rs && state->rs->polygon_mode != VK_POLYGON_MODE_POINT) { |
| key.enable_remove_point_size = true; |
| } |
| |
| return key; |
| } |
| |
| static void |
| radv_fill_shader_info_ngg(struct radv_pipeline *pipeline, |
| const struct radv_pipeline_key *pipeline_key, |
| struct radv_pipeline_stage *stages) |
| { |
| struct radv_device *device = pipeline->device; |
| |
| if (pipeline_key->use_ngg) { |
| if (stages[MESA_SHADER_TESS_CTRL].nir) { |
| stages[MESA_SHADER_TESS_EVAL].info.is_ngg = true; |
| } else if (stages[MESA_SHADER_VERTEX].nir) { |
| stages[MESA_SHADER_VERTEX].info.is_ngg = true; |
| } else if (stages[MESA_SHADER_MESH].nir) { |
| stages[MESA_SHADER_MESH].info.is_ngg = true; |
| } |
| |
| if (device->physical_device->rad_info.gfx_level < GFX11 && |
| stages[MESA_SHADER_TESS_CTRL].nir && stages[MESA_SHADER_GEOMETRY].nir && |
| stages[MESA_SHADER_GEOMETRY].nir->info.gs.invocations * |
| stages[MESA_SHADER_GEOMETRY].nir->info.gs.vertices_out > |
| 256) { |
| /* Fallback to the legacy path if tessellation is |
| * enabled with extreme geometry because |
| * EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it |
| * might hang. |
| */ |
| stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false; |
| } |
| |
| gl_shader_stage last_xfb_stage = MESA_SHADER_VERTEX; |
| |
| for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { |
| if (stages[i].nir) |
| last_xfb_stage = i; |
| } |
| |
| bool uses_xfb = stages[last_xfb_stage].nir && |
| stages[last_xfb_stage].nir->xfb_info; |
| |
| if (!device->physical_device->use_ngg_streamout && uses_xfb) { |
| /* GFX11+ requires NGG. */ |
| assert(device->physical_device->rad_info.gfx_level < GFX11); |
| |
| if (stages[MESA_SHADER_TESS_CTRL].nir) |
| stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false; |
| else |
| stages[MESA_SHADER_VERTEX].info.is_ngg = false; |
| } |
| } |
| } |
| |
| static void |
| radv_fill_shader_info(struct radv_pipeline *pipeline, |
| struct radv_pipeline_layout *pipeline_layout, |
| const struct radv_pipeline_key *pipeline_key, |
| struct radv_pipeline_stage *stages) |
| { |
| struct radv_device *device = pipeline->device; |
| |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { |
| if (!stages[i].nir) |
| continue; |
| |
| radv_nir_shader_info_init(&stages[i].info); |
| radv_nir_shader_info_pass(device, stages[i].nir, pipeline_layout, pipeline_key, |
| &stages[i].info); |
| } |
| |
| radv_nir_shader_info_link(device, pipeline_key, stages); |
| } |
| |
| static void |
| radv_declare_pipeline_args(struct radv_device *device, struct radv_pipeline_stage *stages, |
| const struct radv_pipeline_key *pipeline_key) |
| { |
| enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level; |
| unsigned active_stages = 0; |
| |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { |
| if (stages[i].nir) |
| active_stages |= (1 << i); |
| } |
| |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { |
| stages[i].args.is_gs_copy_shader = false; |
| stages[i].args.explicit_scratch_args = !radv_use_llvm_for_stage(device, i); |
| stages[i].args.remap_spi_ps_input = !radv_use_llvm_for_stage(device, i); |
| stages[i].args.load_grid_size_from_user_sgpr = device->load_grid_size_from_user_sgpr; |
| } |
| |
| if (gfx_level >= GFX9 && stages[MESA_SHADER_TESS_CTRL].nir) { |
| radv_declare_shader_args(gfx_level, pipeline_key, &stages[MESA_SHADER_TESS_CTRL].info, |
| MESA_SHADER_TESS_CTRL, true, MESA_SHADER_VERTEX, |
| &stages[MESA_SHADER_TESS_CTRL].args); |
| stages[MESA_SHADER_TESS_CTRL].info.user_sgprs_locs = stages[MESA_SHADER_TESS_CTRL].args.user_sgprs_locs; |
| stages[MESA_SHADER_TESS_CTRL].info.inline_push_constant_mask = |
| stages[MESA_SHADER_TESS_CTRL].args.ac.inline_push_const_mask; |
| |
| stages[MESA_SHADER_VERTEX].info.user_sgprs_locs = stages[MESA_SHADER_TESS_CTRL].info.user_sgprs_locs; |
| stages[MESA_SHADER_VERTEX].info.inline_push_constant_mask = stages[MESA_SHADER_TESS_CTRL].info.inline_push_constant_mask; |
| stages[MESA_SHADER_VERTEX].args = stages[MESA_SHADER_TESS_CTRL].args; |
| |
| active_stages &= ~(1 << MESA_SHADER_VERTEX); |
| active_stages &= ~(1 << MESA_SHADER_TESS_CTRL); |
| } |
| |
| if (gfx_level >= GFX9 && stages[MESA_SHADER_GEOMETRY].nir) { |
| gl_shader_stage pre_stage = |
| stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; |
| radv_declare_shader_args(gfx_level, pipeline_key, &stages[MESA_SHADER_GEOMETRY].info, |
| MESA_SHADER_GEOMETRY, true, pre_stage, |
| &stages[MESA_SHADER_GEOMETRY].args); |
| stages[MESA_SHADER_GEOMETRY].info.user_sgprs_locs = stages[MESA_SHADER_GEOMETRY].args.user_sgprs_locs; |
| stages[MESA_SHADER_GEOMETRY].info.inline_push_constant_mask = |
| stages[MESA_SHADER_GEOMETRY].args.ac.inline_push_const_mask; |
| |
| stages[pre_stage].info.user_sgprs_locs = stages[MESA_SHADER_GEOMETRY].info.user_sgprs_locs; |
| stages[pre_stage].info.inline_push_constant_mask = stages[MESA_SHADER_GEOMETRY].info.inline_push_constant_mask; |
| stages[pre_stage].args = stages[MESA_SHADER_GEOMETRY].args; |
| active_stages &= ~(1 << pre_stage); |
| active_stages &= ~(1 << MESA_SHADER_GEOMETRY); |
| } |
| |
| u_foreach_bit(i, active_stages) { |
| radv_declare_shader_args(gfx_level, pipeline_key, &stages[i].info, i, false, |
| MESA_SHADER_VERTEX, &stages[i].args); |
| stages[i].info.user_sgprs_locs = stages[i].args.user_sgprs_locs; |
| stages[i].info.inline_push_constant_mask = stages[i].args.ac.inline_push_const_mask; |
| } |
| } |
| |
| bool |
| radv_mem_vectorize_callback(unsigned align_mul, unsigned align_offset, unsigned bit_size, |
| unsigned num_components, nir_intrinsic_instr *low, nir_intrinsic_instr *high, |
| void *data) |
| { |
| if (num_components > 4) |
| return false; |
| |
| /* >128 bit loads are split except with SMEM */ |
| if (bit_size * num_components > 128) |
| return false; |
| |
| uint32_t align; |
| if (align_offset) |
| align = 1 << (ffs(align_offset) - 1); |
| else |
| align = align_mul; |
| |
| switch (low->intrinsic) { |
| case nir_intrinsic_load_global: |
| case nir_intrinsic_store_global: |
| case nir_intrinsic_store_ssbo: |
| case nir_intrinsic_load_ssbo: |
| case nir_intrinsic_load_ubo: |
| case nir_intrinsic_load_push_constant: { |
| unsigned max_components; |
| if (align % 4 == 0) |
| max_components = NIR_MAX_VEC_COMPONENTS; |
| else if (align % 2 == 0) |
| max_components = 16u / bit_size; |
| else |
| max_components = 8u / bit_size; |
| return (align % (bit_size / 8u)) == 0 && num_components <= max_components; |
| } |
| case nir_intrinsic_load_deref: |
| case nir_intrinsic_store_deref: |
| assert(nir_deref_mode_is(nir_src_as_deref(low->src[0]), nir_var_mem_shared)); |
| FALLTHROUGH; |
| case nir_intrinsic_load_shared: |
| case nir_intrinsic_store_shared: |
| if (bit_size * num_components == |
| 96) { /* 96 bit loads require 128 bit alignment and are split otherwise */ |
| return align % 16 == 0; |
| } else if (bit_size == 16 && (align % 4)) { |
| /* AMD hardware can't do 2-byte aligned f16vec2 loads, but they are useful for ALU |
| * vectorization, because our vectorizer requires the scalar IR to already contain vectors. |
| */ |
| return (align % 2 == 0) && num_components <= 2; |
| } else { |
| if (num_components == 3) { |
| /* AMD hardware can't do 3-component loads except for 96-bit loads, handled above. */ |
| return false; |
| } |
| unsigned req = bit_size * num_components; |
| if (req == 64 || req == 128) /* 64-bit and 128-bit loads can use ds_read2_b{32,64} */ |
| req /= 2u; |
| return align % (req / 8u) == 0; |
| } |
| default: |
| return false; |
| } |
| return false; |
| } |
| |
| static unsigned |
| lower_bit_size_callback(const nir_instr *instr, void *_) |
| { |
| struct radv_device *device = _; |
| enum amd_gfx_level chip = device->physical_device->rad_info.gfx_level; |
| |
| if (instr->type != nir_instr_type_alu) |
| return 0; |
| nir_alu_instr *alu = nir_instr_as_alu(instr); |
| |
| /* If an instruction is not scalarized by this point, |
| * it can be emitted as packed instruction */ |
| if (alu->dest.dest.ssa.num_components > 1) |
| return 0; |
| |
| if (alu->dest.dest.ssa.bit_size & (8 | 16)) { |
| unsigned bit_size = alu->dest.dest.ssa.bit_size; |
| switch (alu->op) { |
| case nir_op_bitfield_select: |
| case nir_op_imul_high: |
| case nir_op_umul_high: |
| case nir_op_uadd_carry: |
| case nir_op_usub_borrow: |
| return 32; |
| case nir_op_iabs: |
| case nir_op_imax: |
| case nir_op_umax: |
| case nir_op_imin: |
| case nir_op_umin: |
| case nir_op_ishr: |
| case nir_op_ushr: |
| case nir_op_ishl: |
| case nir_op_isign: |
| case nir_op_uadd_sat: |
| case nir_op_usub_sat: |
| return (bit_size == 8 || !(chip >= GFX8 && nir_dest_is_divergent(alu->dest.dest))) ? 32 |
| : 0; |
| case nir_op_iadd_sat: |
| case nir_op_isub_sat: |
| return bit_size == 8 || !nir_dest_is_divergent(alu->dest.dest) ? 32 : 0; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| if (nir_src_bit_size(alu->src[0].src) & (8 | 16)) { |
| unsigned bit_size = nir_src_bit_size(alu->src[0].src); |
| switch (alu->op) { |
| case nir_op_bit_count: |
| case nir_op_find_lsb: |
| case nir_op_ufind_msb: |
| return 32; |
| case nir_op_ilt: |
| case nir_op_ige: |
| case nir_op_ieq: |
| case nir_op_ine: |
| case nir_op_ult: |
| case nir_op_uge: |
| return (bit_size == 8 || !(chip >= GFX8 && nir_dest_is_divergent(alu->dest.dest))) ? 32 |
| : 0; |
| default: |
| return 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static uint8_t |
| opt_vectorize_callback(const nir_instr *instr, const void *_) |
| { |
| if (instr->type != nir_instr_type_alu) |
| return 0; |
| |
| const struct radv_device *device = _; |
| enum amd_gfx_level chip = device->physical_device->rad_info.gfx_level; |
| if (chip < GFX9) |
| return 1; |
| |
| const nir_alu_instr *alu = nir_instr_as_alu(instr); |
| const unsigned bit_size = alu->dest.dest.ssa.bit_size; |
| if (bit_size != 16) |
| return 1; |
| |
| switch (alu->op) { |
| case nir_op_fadd: |
| case nir_op_fsub: |
| case nir_op_fmul: |
| case nir_op_ffma: |
| case nir_op_fdiv: |
| case nir_op_flrp: |
| case nir_op_fabs: |
| case nir_op_fneg: |
| case nir_op_fsat: |
| case nir_op_fmin: |
| case nir_op_fmax: |
| case nir_op_iabs: |
| case nir_op_iadd: |
| case nir_op_iadd_sat: |
| case nir_op_uadd_sat: |
| case nir_op_isub: |
| case nir_op_isub_sat: |
| case nir_op_usub_sat: |
| case nir_op_ineg: |
| case nir_op_imul: |
| case nir_op_imin: |
| case nir_op_imax: |
| case nir_op_umin: |
| case nir_op_umax: |
| return 2; |
| case nir_op_ishl: /* TODO: in NIR, these have 32bit shift operands */ |
| case nir_op_ishr: /* while Radeon needs 16bit operands when vectorized */ |
| case nir_op_ushr: |
| default: |
| return 1; |
| } |
| } |
| |
| static nir_component_mask_t |
| non_uniform_access_callback(const nir_src *src, void *_) |
| { |
| if (src->ssa->num_components == 1) |
| return 0x1; |
| return nir_chase_binding(*src).success ? 0x2 : 0x3; |
| } |
| |
| |
| VkResult |
| radv_upload_shaders(struct radv_device *device, struct radv_pipeline *pipeline, |
| struct radv_shader_binary **binaries, struct radv_shader_binary *gs_copy_binary) |
| { |
| uint32_t code_size = 0; |
| |
| /* Compute the total code size. */ |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { |
| struct radv_shader *shader = pipeline->shaders[i]; |
| if (!shader) |
| continue; |
| |
| if (shader->bo) |
| continue; |
| |
| code_size += align(shader->code_size, RADV_SHADER_ALLOC_ALIGNMENT); |
| } |
| |
| if (pipeline->gs_copy_shader && !pipeline->gs_copy_shader->bo) { |
| code_size += align(pipeline->gs_copy_shader->code_size, RADV_SHADER_ALLOC_ALIGNMENT); |
| } |
| |
| /* Allocate memory for all shader binaries. */ |
| pipeline->slab = radv_pipeline_slab_create(device, pipeline, code_size); |
| if (!pipeline->slab) |
| return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| |
| pipeline->slab_bo = pipeline->slab->alloc->arena->bo; |
| |
| /* Upload shader binaries. */ |
| uint64_t slab_va = radv_buffer_get_va(pipeline->slab_bo); |
| uint32_t slab_offset = pipeline->slab->alloc->offset; |
| char *slab_ptr = pipeline->slab->alloc->arena->ptr; |
| |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { |
| struct radv_shader *shader = pipeline->shaders[i]; |
| if (!shader) |
| continue; |
| |
| if (shader->bo) |
| continue; |
| |
| shader->va = slab_va + slab_offset; |
| |
| void *dest_ptr = slab_ptr + slab_offset; |
| if (!radv_shader_binary_upload(device, binaries[i], shader, dest_ptr)) |
| return VK_ERROR_OUT_OF_HOST_MEMORY; |
| |
| slab_offset += align(shader->code_size, RADV_SHADER_ALLOC_ALIGNMENT); |
| } |
| |
| if (pipeline->gs_copy_shader && !pipeline->gs_copy_shader->bo) { |
| pipeline->gs_copy_shader->va = slab_va + slab_offset; |
| |
| void *dest_ptr = slab_ptr + slab_offset; |
| if (!radv_shader_binary_upload(device, gs_copy_binary, pipeline->gs_copy_shader, dest_ptr)) |
| return VK_ERROR_OUT_OF_HOST_MEMORY; |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| static bool |
| radv_consider_force_vrs(const struct radv_pipeline *pipeline, bool noop_fs, |
| const struct radv_pipeline_stage *stages, |
| gl_shader_stage last_vgt_api_stage) |
| { |
| struct radv_device *device = pipeline->device; |
| |
| if (!device->force_vrs_enabled) |
| return false; |
| |
| if (last_vgt_api_stage != MESA_SHADER_VERTEX && |
| last_vgt_api_stage != MESA_SHADER_TESS_EVAL && |
| last_vgt_api_stage != MESA_SHADER_GEOMETRY) |
| return false; |
| |
| nir_shader *last_vgt_shader = stages[last_vgt_api_stage].nir; |
| if (last_vgt_shader->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE)) |
| return false; |
| |
| /* VRS has no effect if there is no pixel shader. */ |
| if (noop_fs) |
| return false; |
| |
| /* Do not enable if the PS uses gl_FragCoord because it breaks postprocessing in some games. */ |
| nir_shader *fs_shader = stages[MESA_SHADER_FRAGMENT].nir; |
| if (fs_shader && |
| BITSET_TEST(fs_shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static nir_ssa_def * |
| radv_adjust_vertex_fetch_alpha(nir_builder *b, enum ac_vs_input_alpha_adjust alpha_adjust, |
| nir_ssa_def *alpha) |
| { |
| if (alpha_adjust == AC_ALPHA_ADJUST_SSCALED) |
| alpha = nir_f2u32(b, alpha); |
| |
| /* For the integer-like cases, do a natural sign extension. |
| * |
| * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0 and happen to contain 0, 1, 2, 3 as |
| * the two LSBs of the exponent. |
| */ |
| unsigned offset = alpha_adjust == AC_ALPHA_ADJUST_SNORM ? 23u : 0u; |
| |
| alpha = nir_ibfe_imm(b, alpha, offset, 2u); |
| |
| /* Convert back to the right type. */ |
| if (alpha_adjust == AC_ALPHA_ADJUST_SNORM) { |
| alpha = nir_i2f32(b, alpha); |
| alpha = nir_fmax(b, alpha, nir_imm_float(b, -1.0f)); |
| } else if (alpha_adjust == AC_ALPHA_ADJUST_SSCALED) { |
| alpha = nir_i2f32(b, alpha); |
| } |
| |
| return alpha; |
| } |
| |
| static bool |
| radv_lower_vs_input(nir_shader *nir, const struct radv_physical_device *pdevice, |
| const struct radv_pipeline_key *pipeline_key) |
| { |
| nir_function_impl *impl = nir_shader_get_entrypoint(nir); |
| bool progress = false; |
| |
| if (pipeline_key->vs.has_prolog) |
| return false; |
| |
| nir_builder b; |
| nir_builder_init(&b, impl); |
| |
| nir_foreach_block(block, impl) { |
| nir_foreach_instr(instr, block) { |
| if (instr->type != nir_instr_type_intrinsic) |
| continue; |
| |
| nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); |
| if (intrin->intrinsic != nir_intrinsic_load_input) |
| continue; |
| |
| unsigned location = nir_intrinsic_base(intrin) - VERT_ATTRIB_GENERIC0; |
| |
| unsigned component = nir_intrinsic_component(intrin); |
| unsigned num_components = intrin->dest.ssa.num_components; |
| |
| enum pipe_format attrib_format = pipeline_key->vs.vertex_attribute_formats[location]; |
| const struct ac_vtx_format_info *desc = ac_get_vtx_format_info( |
| pdevice->rad_info.gfx_level, pdevice->rad_info.family, attrib_format); |
| bool is_float = |
| nir_alu_type_get_base_type(nir_intrinsic_dest_type(intrin)) == nir_type_float; |
| |
| unsigned mask = nir_ssa_def_components_read(&intrin->dest.ssa) << component; |
| unsigned num_channels = MIN2(util_last_bit(mask), desc->num_channels); |
| |
| static const unsigned swizzle_normal[4] = {0, 1, 2, 3}; |
| static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3}; |
| bool post_shuffle = G_008F0C_DST_SEL_X(desc->dst_sel) == V_008F0C_SQ_SEL_Z; |
| const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal; |
| |
| b.cursor = nir_after_instr(instr); |
| nir_ssa_def *channels[4]; |
| |
| if (post_shuffle) { |
| /* Expand to load 3 components because it's shuffled like X<->Z. */ |
| intrin->num_components = MAX2(component + num_components, 3); |
| intrin->dest.ssa.num_components = intrin->num_components; |
| |
| nir_intrinsic_set_component(intrin, 0); |
| |
| num_channels = MAX2(num_channels, 3); |
| } |
| |
| for (uint32_t i = 0; i < num_components; i++) { |
| unsigned idx = i + (post_shuffle ? component : 0); |
| |
| if (swizzle[i + component] < num_channels) { |
| channels[i] = nir_channel(&b, &intrin->dest.ssa, swizzle[idx]); |
| } else if (i + component == 3) { |
| channels[i] = is_float ? nir_imm_floatN_t(&b, 1.0f, intrin->dest.ssa.bit_size) |
| : nir_imm_intN_t(&b, 1u, intrin->dest.ssa.bit_size); |
| } else { |
| channels[i] = nir_imm_zero(&b, 1, intrin->dest.ssa.bit_size); |
| } |
| } |
| |
| if (desc->alpha_adjust != AC_ALPHA_ADJUST_NONE && component + num_components == 4) { |
| unsigned idx = num_components - 1; |
| channels[idx] = radv_adjust_vertex_fetch_alpha(&b, desc->alpha_adjust, channels[idx]); |
| } |
| |
| nir_ssa_def *new_dest = nir_vec(&b, channels, num_components); |
| |
| nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa, new_dest, |
| new_dest->parent_instr); |
| |
| progress = true; |
| } |
| } |
| |
| if (progress) |
| nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); |
| else |
| nir_metadata_preserve(impl, nir_metadata_all); |
| |
| return progress; |
| } |
| |
| void |
| radv_pipeline_stage_init(const VkPipelineShaderStageCreateInfo *sinfo, |
| struct radv_pipeline_stage *out_stage, gl_shader_stage stage) |
| { |
| const VkShaderModuleCreateInfo *minfo = |
| vk_find_struct_const(sinfo->pNext, SHADER_MODULE_CREATE_INFO); |
| const VkPipelineShaderStageModuleIdentifierCreateInfoEXT *iinfo = |
| vk_find_struct_const(sinfo->pNext, PIPELINE_SHADER_STAGE_MODULE_IDENTIFIER_CREATE_INFO_EXT); |
| |
| if (sinfo->module == VK_NULL_HANDLE && !minfo && !iinfo) |
| return; |
| |
| memset(out_stage, 0, sizeof(*out_stage)); |
| |
| out_stage->stage = stage; |
| out_stage->entrypoint = sinfo->pName; |
| out_stage->spec_info = sinfo->pSpecializationInfo; |
| out_stage->feedback.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT; |
| |
| if (sinfo->module != VK_NULL_HANDLE) { |
| struct vk_shader_module *module = vk_shader_module_from_handle(sinfo->module); |
| STATIC_ASSERT(sizeof(out_stage->spirv.sha1) == sizeof(module->sha1)); |
| |
| out_stage->spirv.data = module->data; |
| out_stage->spirv.size = module->size; |
| out_stage->spirv.object = &module->base; |
| |
| if (module->nir) |
| out_stage->internal_nir = module->nir; |
| } else if (minfo) { |
| out_stage->spirv.data = (const char *) minfo->pCode; |
| out_stage->spirv.size = minfo->codeSize; |
| } |
| |
| vk_pipeline_hash_shader_stage(sinfo, NULL, out_stage->shader_sha1); |
| } |
| |
| static struct radv_shader * |
| radv_pipeline_create_gs_copy_shader(struct radv_pipeline *pipeline, |
| struct radv_pipeline_stage *stages, |
| const struct radv_pipeline_key *pipeline_key, |
| const struct radv_pipeline_layout *pipeline_layout, |
| bool keep_executable_info, bool keep_statistic_info, |
| struct radv_shader_binary **gs_copy_binary) |
| { |
| struct radv_device *device = pipeline->device; |
| |
| const struct radv_shader_info *gs_info = &stages[MESA_SHADER_GEOMETRY].info; |
| ac_nir_gs_output_info output_info = { |
| .streams = gs_info->gs.output_streams, |
| .usage_mask = gs_info->gs.output_usage_mask, |
| }; |
| nir_shader *nir = |
| ac_nir_create_gs_copy_shader(stages[MESA_SHADER_GEOMETRY].nir, false, &output_info); |
| nir_validate_shader(nir, "after ac_nir_create_gs_copy_shader"); |
| nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir)); |
| |
| struct radv_shader_info info = {0}; |
| radv_nir_shader_info_pass(device, nir, pipeline_layout, pipeline_key, &info); |
| info.wave_size = 64; /* Wave32 not supported. */ |
| info.workgroup_size = 64; /* HW VS: separate waves, no workgroups */ |
| info.so = gs_info->so; |
| |
| if (gs_info->outinfo.export_clip_dists) { |
| if (stages[MESA_SHADER_GEOMETRY].nir->info.outputs_written & VARYING_BIT_CLIP_DIST0) |
| info.outinfo.vs_output_param_offset[VARYING_SLOT_CLIP_DIST0] = info.outinfo.param_exports++; |
| if (stages[MESA_SHADER_GEOMETRY].nir->info.outputs_written & VARYING_BIT_CLIP_DIST1) |
| info.outinfo.vs_output_param_offset[VARYING_SLOT_CLIP_DIST1] = info.outinfo.param_exports++; |
| |
| info.outinfo.export_clip_dists = true; |
| } |
| |
| struct radv_shader_args gs_copy_args = {0}; |
| gs_copy_args.is_gs_copy_shader = true; |
| gs_copy_args.explicit_scratch_args = !radv_use_llvm_for_stage(device, MESA_SHADER_VERTEX); |
| radv_declare_shader_args(device->physical_device->rad_info.gfx_level, pipeline_key, &info, |
| MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX, &gs_copy_args); |
| info.user_sgprs_locs = gs_copy_args.user_sgprs_locs; |
| info.inline_push_constant_mask = gs_copy_args.ac.inline_push_const_mask; |
| |
| NIR_PASS_V(nir, radv_nir_lower_abi, device->physical_device->rad_info.gfx_level, &info, |
| &gs_copy_args, pipeline_key, radv_use_llvm_for_stage(device, MESA_SHADER_VERTEX), |
| device->physical_device->rad_info.address32_hi); |
| |
| return radv_create_gs_copy_shader(device, nir, &info, &gs_copy_args, gs_copy_binary, |
| keep_executable_info, keep_statistic_info, |
| pipeline_key->optimisations_disabled); |
| } |
| |
| static void |
| radv_pipeline_nir_to_asm(struct radv_pipeline *pipeline, struct radv_pipeline_stage *stages, |
| const struct radv_pipeline_key *pipeline_key, |
| const struct radv_pipeline_layout *pipeline_layout, |
| bool keep_executable_info, bool keep_statistic_info, |
| gl_shader_stage last_vgt_api_stage, |
| struct radv_shader_binary **binaries, |
| struct radv_shader_binary **gs_copy_binary) |
| { |
| struct radv_device *device = pipeline->device; |
| unsigned active_stages = 0; |
| |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { |
| if (stages[i].nir) |
| active_stages |= (1 << i); |
| } |
| |
| bool pipeline_has_ngg = last_vgt_api_stage != MESA_SHADER_NONE && |
| stages[last_vgt_api_stage].info.is_ngg; |
| |
| for (int s = MESA_VULKAN_SHADER_STAGES - 1; s >= 0; s--) { |
| if (!(active_stages & (1 << s)) || pipeline->shaders[s]) |
| continue; |
| |
| nir_shader *shaders[2] = { stages[s].nir, NULL }; |
| unsigned shader_count = 1; |
| |
| /* On GFX9+, TES is merged with GS and VS is merged with TCS or GS. */ |
| if (device->physical_device->rad_info.gfx_level >= GFX9 && |
| (s == MESA_SHADER_TESS_CTRL || s == MESA_SHADER_GEOMETRY)) { |
| gl_shader_stage pre_stage; |
| |
| if (s == MESA_SHADER_GEOMETRY && stages[MESA_SHADER_TESS_EVAL].nir) { |
| pre_stage = MESA_SHADER_TESS_EVAL; |
| } else { |
| pre_stage = MESA_SHADER_VERTEX; |
| } |
| |
| shaders[0] = stages[pre_stage].nir; |
| shaders[1] = stages[s].nir; |
| shader_count = 2; |
| } |
| |
| int64_t stage_start = os_time_get_nano(); |
| |
| pipeline->shaders[s] = radv_shader_nir_to_asm(device, &stages[s], shaders, shader_count, |
| pipeline_key, keep_executable_info, |
| keep_statistic_info, &binaries[s]); |
| |
| if (s == MESA_SHADER_GEOMETRY && !pipeline_has_ngg) { |
| pipeline->gs_copy_shader = radv_pipeline_create_gs_copy_shader( |
| pipeline, stages, pipeline_key, pipeline_layout, keep_executable_info, |
| keep_statistic_info, gs_copy_binary); |
| } |
| |
| stages[s].feedback.duration += os_time_get_nano() - stage_start; |
| |
| active_stages &= ~(1 << shaders[0]->info.stage); |
| if (shaders[1]) |
| active_stages &= ~(1 << shaders[1]->info.stage); |
| } |
| } |
| |
| static void |
| radv_pipeline_stage_retain_shader(struct radv_pipeline *pipeline, struct radv_pipeline_stage *stage) |
| { |
| gl_shader_stage s = stage->stage; |
| |
| pipeline->retained_shaders[s].nir = stage->nir; |
| } |
| |
| static void |
| radv_pipeline_get_nir(struct radv_pipeline *pipeline, struct radv_pipeline_stage *stages, |
| const struct radv_pipeline_key *pipeline_key, bool retain_shaders) |
| { |
| struct radv_device *device = pipeline->device; |
| |
| for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) { |
| if (!stages[s].entrypoint) |
| continue; |
| |
| /* Do not try to get the NIR when we already have the assembly. */ |
| if (pipeline->shaders[s]) |
| continue; |
| |
| int64_t stage_start = os_time_get_nano(); |
| |
| assert(retain_shaders || pipeline->shaders[s] == NULL); |
| |
| if (pipeline->retained_shaders[s].nir) { |
| stages[s].nir = nir_shader_clone(NULL, pipeline->retained_shaders[s].nir); |
| } else { |
| stages[s].nir = radv_shader_spirv_to_nir(device, &stages[s], pipeline_key); |
| } |
| |
| if (retain_shaders) |
| radv_pipeline_stage_retain_shader(pipeline, &stages[s]); |
| |
| stages[s].feedback.duration += os_time_get_nano() - stage_start; |
| } |
| } |
| |
| static void |
| radv_pipeline_load_retained_shaders(struct radv_pipeline *pipeline, |
| struct radv_pipeline_stage *stages) |
| { |
| for (uint32_t s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) { |
| if (!pipeline->retained_shaders[s].nir) |
| continue; |
| |
| int64_t stage_start = os_time_get_nano(); |
| |
| assert(pipeline->shaders[s] == NULL); |
| |
| stages[s].stage = s; |
| stages[s].entrypoint = |
| nir_shader_get_entrypoint(pipeline->retained_shaders[s].nir)->function->name; |
| |
| stages[s].feedback.duration += os_time_get_nano() - stage_start; |
| stages[s].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT; |
| } |
| } |
| |
| static void |
| radv_postprocess_nir(struct radv_pipeline *pipeline, |
| const struct radv_pipeline_layout *pipeline_layout, |
| const struct radv_pipeline_key *pipeline_key, |
| bool pipeline_has_ngg, unsigned last_vgt_api_stage, |
| struct radv_pipeline_stage *stage) |
| { |
| struct radv_device *device = pipeline->device; |
| enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level; |
| |
| /* Wave and workgroup size should already be filled. */ |
| assert(stage->info.wave_size && stage->info.workgroup_size); |
| |
| if (stage->stage == MESA_SHADER_FRAGMENT) { |
| if (!pipeline_key->optimisations_disabled) { |
| NIR_PASS(_, stage->nir, nir_opt_cse); |
| } |
| NIR_PASS(_, stage->nir, radv_lower_fs_intrinsics, stage, pipeline_key); |
| } |
| |
| enum nir_lower_non_uniform_access_type lower_non_uniform_access_types = |
| nir_lower_non_uniform_ubo_access | nir_lower_non_uniform_ssbo_access | |
| nir_lower_non_uniform_texture_access | nir_lower_non_uniform_image_access; |
| |
| /* In practice, most shaders do not have non-uniform-qualified |
| * accesses (see |
| * https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17558#note_1475069) |
| * thus a cheaper and likely to fail check is run first. |
| */ |
| if (nir_has_non_uniform_access(stage->nir, lower_non_uniform_access_types)) { |
| if (!pipeline_key->optimisations_disabled) { |
| NIR_PASS(_, stage->nir, nir_opt_non_uniform_access); |
| } |
| |
| if (!radv_use_llvm_for_stage(device, stage->stage)) { |
| nir_lower_non_uniform_access_options options = { |
| .types = lower_non_uniform_access_types, |
| .callback = &non_uniform_access_callback, |
| .callback_data = NULL, |
| }; |
| NIR_PASS(_, stage->nir, nir_lower_non_uniform_access, &options); |
| } |
| } |
| NIR_PASS(_, stage->nir, nir_lower_memory_model); |
| |
| nir_load_store_vectorize_options vectorize_opts = { |
| .modes = nir_var_mem_ssbo | nir_var_mem_ubo | nir_var_mem_push_const | |
| nir_var_mem_shared | nir_var_mem_global, |
| .callback = radv_mem_vectorize_callback, |
| .robust_modes = 0, |
| /* On GFX6, read2/write2 is out-of-bounds if the offset register is negative, even if |
| * the final offset is not. |
| */ |
| .has_shared2_amd = gfx_level >= GFX7, |
| }; |
| |
| if (device->robust_buffer_access2) { |
| vectorize_opts.robust_modes = |
| nir_var_mem_ubo | nir_var_mem_ssbo | nir_var_mem_push_const; |
| } |
| |
| if (!pipeline_key->optimisations_disabled) { |
| bool progress = false; |
| NIR_PASS(progress, stage->nir, nir_opt_load_store_vectorize, &vectorize_opts); |
| if (progress) { |
| NIR_PASS(_, stage->nir, nir_copy_prop); |
| NIR_PASS(_, stage->nir, nir_opt_shrink_stores, |
| !device->instance->disable_shrink_image_store); |
| |
| /* Gather info again, to update whether 8/16-bit are used. */ |
| nir_shader_gather_info(stage->nir, nir_shader_get_entrypoint(stage->nir)); |
| } |
| } |
| |
| NIR_PASS(_, stage->nir, radv_nir_lower_ycbcr_textures, pipeline_layout); |
| |
| if (stage->nir->info.uses_resource_info_query) |
| NIR_PASS(_, stage->nir, ac_nir_lower_resinfo, gfx_level); |
| |
| NIR_PASS_V(stage->nir, radv_nir_apply_pipeline_layout, device, pipeline_layout, |
| &stage->info, &stage->args); |
| |
| if (!pipeline_key->optimisations_disabled) { |
| NIR_PASS(_, stage->nir, nir_opt_shrink_vectors); |
| } |
| |
| NIR_PASS(_, stage->nir, nir_lower_alu_width, opt_vectorize_callback, device); |
| |
| /* lower ALU operations */ |
| NIR_PASS(_, stage->nir, nir_lower_int64); |
| |
| nir_move_options sink_opts = nir_move_const_undef | nir_move_copies; |
| |
| if (!pipeline_key->optimisations_disabled) { |
| if (stage->stage != MESA_SHADER_FRAGMENT || !pipeline_key->disable_sinking_load_input_fs) |
| sink_opts |= nir_move_load_input; |
| |
| NIR_PASS(_, stage->nir, nir_opt_sink, sink_opts); |
| NIR_PASS(_, stage->nir, nir_opt_move, |
| nir_move_load_input | nir_move_const_undef | nir_move_copies); |
| } |
| |
| /* Lower I/O intrinsics to memory instructions. */ |
| bool io_to_mem = radv_lower_io_to_mem(device, stage); |
| bool lowered_ngg = pipeline_has_ngg && stage->stage == last_vgt_api_stage; |
| if (lowered_ngg) |
| radv_lower_ngg(device, stage, pipeline_key); |
| |
| if (stage->stage == last_vgt_api_stage && stage->stage != MESA_SHADER_GEOMETRY && !lowered_ngg) |
| NIR_PASS_V(stage->nir, ac_nir_lower_legacy_vs, |
| stage->info.outinfo.export_prim_id ? VARYING_SLOT_PRIMITIVE_ID : -1, false); |
| |
| NIR_PASS(_, stage->nir, nir_opt_idiv_const, 8); |
| |
| NIR_PASS(_, stage->nir, nir_lower_idiv, |
| &(nir_lower_idiv_options){ |
| .allow_fp16 = gfx_level >= GFX9, |
| }); |
| |
| NIR_PASS(_, stage->nir, ac_nir_lower_global_access); |
| NIR_PASS_V(stage->nir, radv_nir_lower_abi, gfx_level, &stage->info, &stage->args, pipeline_key, |
| radv_use_llvm_for_stage(device, stage->stage), |
| device->physical_device->rad_info.address32_hi); |
| radv_optimize_nir_algebraic( |
| stage->nir, io_to_mem || lowered_ngg || stage->stage == MESA_SHADER_COMPUTE || |
| stage->stage == MESA_SHADER_TASK); |
| |
| if (stage->nir->info.bit_sizes_int & (8 | 16)) { |
| if (gfx_level >= GFX8) { |
| NIR_PASS(_, stage->nir, nir_convert_to_lcssa, true, true); |
| nir_divergence_analysis(stage->nir); |
| } |
| |
| if (nir_lower_bit_size(stage->nir, lower_bit_size_callback, device)) { |
| NIR_PASS(_, stage->nir, nir_opt_constant_folding); |
| } |
| |
| if (gfx_level >= GFX8) |
| NIR_PASS(_, stage->nir, nir_opt_remove_phis); /* cleanup LCSSA phis */ |
| } |
| if (((stage->nir->info.bit_sizes_int | stage->nir->info.bit_sizes_float) & 16) && |
| gfx_level >= GFX9) { |
| bool separate_g16 = gfx_level >= GFX10; |
| struct nir_fold_tex_srcs_options fold_srcs_options[] = { |
| { |
| .sampler_dims = |
| ~(BITFIELD_BIT(GLSL_SAMPLER_DIM_CUBE) | BITFIELD_BIT(GLSL_SAMPLER_DIM_BUF)), |
| .src_types = (1 << nir_tex_src_coord) | (1 << nir_tex_src_lod) | |
| (1 << nir_tex_src_bias) | (1 << nir_tex_src_min_lod) | |
| (1 << nir_tex_src_ms_index) | |
| (separate_g16 ? 0 : (1 << nir_tex_src_ddx) | (1 << nir_tex_src_ddy)), |
| }, |
| { |
| .sampler_dims = ~BITFIELD_BIT(GLSL_SAMPLER_DIM_CUBE), |
| .src_types = (1 << nir_tex_src_ddx) | (1 << nir_tex_src_ddy), |
| }, |
| }; |
| struct nir_fold_16bit_tex_image_options fold_16bit_options = { |
| .rounding_mode = nir_rounding_mode_rtne, |
| .fold_tex_dest_types = nir_type_float | nir_type_uint | nir_type_int, |
| .fold_image_load_store_data = true, |
| .fold_image_srcs = !radv_use_llvm_for_stage(device, stage->stage), |
| .fold_srcs_options_count = separate_g16 ? 2 : 1, |
| .fold_srcs_options = fold_srcs_options, |
| }; |
| NIR_PASS(_, stage->nir, nir_fold_16bit_tex_image, &fold_16bit_options); |
| |
| if (!pipeline_key->optimisations_disabled) { |
| NIR_PASS(_, stage->nir, nir_opt_vectorize, opt_vectorize_callback, device); |
| } |
| } |
| |
| /* cleanup passes */ |
| NIR_PASS(_, stage->nir, nir_lower_alu_width, opt_vectorize_callback, device); |
| NIR_PASS(_, stage->nir, nir_lower_load_const_to_scalar); |
| NIR_PASS(_, stage->nir, nir_copy_prop); |
| NIR_PASS(_, stage->nir, nir_opt_dce); |
| |
| if (!pipeline_key->optimisations_disabled) { |
| sink_opts |= nir_move_comparisons | nir_move_load_ubo | nir_move_load_ssbo; |
| NIR_PASS(_, stage->nir, nir_opt_sink, sink_opts); |
| |
| nir_move_options move_opts = nir_move_const_undef | nir_move_load_ubo | |
| nir_move_load_input | nir_move_comparisons | nir_move_copies; |
| NIR_PASS(_, stage->nir, nir_opt_move, move_opts); |
| } |
| } |
| |
| static bool |
| radv_pipeline_create_ps_epilog(struct radv_graphics_pipeline *pipeline, |
| const struct radv_pipeline_key *pipeline_key) |
| { |
| struct radv_device *device = pipeline->base.device; |
| |
| if (pipeline->base.shaders[MESA_SHADER_FRAGMENT] && |
| pipeline->base.shaders[MESA_SHADER_FRAGMENT]->info.ps.has_epilog && !pipeline->ps_epilog) { |
| pipeline->ps_epilog = radv_create_ps_epilog(device, &pipeline_key->ps.epilog); |
| if (!pipeline->ps_epilog) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| VkResult |
| radv_create_shaders(struct radv_pipeline *pipeline, struct radv_pipeline_layout *pipeline_layout, |
| struct radv_device *device, struct radv_pipeline_cache *cache, |
| const struct radv_pipeline_key *pipeline_key, |
| const VkPipelineShaderStageCreateInfo *pStages, |
| uint32_t stageCount, |
| const VkPipelineCreateFlags flags, const uint8_t *custom_hash, |
| const VkPipelineCreationFeedbackCreateInfo *creation_feedback, |
| struct radv_pipeline_shader_stack_size **stack_sizes, |
| uint32_t *num_stack_sizes, |
| gl_shader_stage *last_vgt_api_stage) |
| { |
| const char *noop_fs_entrypoint = "noop_fs"; |
| struct radv_shader_binary *binaries[MESA_VULKAN_SHADER_STAGES] = {NULL}; |
| struct radv_shader_binary *gs_copy_binary = NULL; |
| unsigned char hash[20]; |
| bool keep_executable_info = |
| (flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR) || |
| device->keep_shader_info; |
| bool keep_statistic_info = (flags & VK_PIPELINE_CREATE_CAPTURE_STATISTICS_BIT_KHR) || |
| (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) || |
| device->keep_shader_info; |
| struct radv_pipeline_stage stages[MESA_VULKAN_SHADER_STAGES] = {0}; |
| VkPipelineCreationFeedback pipeline_feedback = { |
| .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT, |
| }; |
| bool noop_fs = false; |
| VkResult result = VK_SUCCESS; |
| const bool retain_shaders = |
| !!(flags & VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT); |
| |
| int64_t pipeline_start = os_time_get_nano(); |
| |
| for (uint32_t i = 0; i < stageCount; i++) { |
| const VkPipelineShaderStageCreateInfo *sinfo = &pStages[i]; |
| gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage); |
| |
| radv_pipeline_stage_init(sinfo, &stages[stage], stage); |
| } |
| |
| radv_pipeline_load_retained_shaders(pipeline, stages); |
| |
| if (pipeline->type == RADV_PIPELINE_GRAPHICS || |
| pipeline->type == RADV_PIPELINE_GRAPHICS_LIB) { |
| VkShaderStageFlags active_stages; |
| |
| if (pipeline->type == RADV_PIPELINE_GRAPHICS) { |
| active_stages = radv_pipeline_to_graphics(pipeline)->active_stages; |
| } else { |
| active_stages = radv_pipeline_to_graphics_lib(pipeline)->base.active_stages; |
| } |
| |
| radv_foreach_stage(s, active_stages) { |
| if (s < MESA_SHADER_FRAGMENT || s == MESA_SHADER_MESH) |
| *last_vgt_api_stage = s; |
| } |
| } |
| |
| ASSERTED bool primitive_shading = |
| stages[MESA_SHADER_VERTEX].entrypoint || stages[MESA_SHADER_TESS_CTRL].entrypoint || |
| stages[MESA_SHADER_TESS_EVAL].entrypoint || stages[MESA_SHADER_GEOMETRY].entrypoint; |
| ASSERTED bool mesh_shading = |
| stages[MESA_SHADER_MESH].entrypoint; |
| |
| /* Primitive and mesh shading must not be mixed in the same pipeline. */ |
| assert(!primitive_shading || !mesh_shading); |
| /* Mesh shaders are mandatory in mesh shading pipelines. */ |
| assert(mesh_shading == !!stages[MESA_SHADER_MESH].entrypoint); |
| /* Mesh shaders always need NGG. */ |
| assert(!mesh_shading || pipeline_key->use_ngg); |
| |
| if (custom_hash) |
| memcpy(hash, custom_hash, 20); |
| else { |
| radv_hash_shaders(hash, stages, pipeline_layout, pipeline_key, |
| radv_get_hash_flags(device, keep_statistic_info)); |
| } |
| |
| pipeline->pipeline_hash = *(uint64_t *)hash; |
| |
| bool found_in_application_cache = true; |
| if (!keep_executable_info && |
| radv_create_shaders_from_pipeline_cache(device, cache, hash, pipeline, |
| stack_sizes, num_stack_sizes, |
| &found_in_application_cache)) { |
| if (found_in_application_cache) |
| pipeline_feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT; |
| result = VK_SUCCESS; |
| goto done; |
| } |
| |
| if (flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT) { |
| if (found_in_application_cache) |
| pipeline_feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT; |
| result = VK_PIPELINE_COMPILE_REQUIRED; |
| goto done; |
| } |
| |
| if (pipeline->type == RADV_PIPELINE_GRAPHICS && |
| !(radv_pipeline_to_graphics(pipeline)->active_stages & VK_SHADER_STAGE_FRAGMENT_BIT)) { |
| nir_builder fs_b = radv_meta_init_shader(device, MESA_SHADER_FRAGMENT, "noop_fs"); |
| |
| stages[MESA_SHADER_FRAGMENT] = (struct radv_pipeline_stage) { |
| .stage = MESA_SHADER_FRAGMENT, |
| .internal_nir = fs_b.shader, |
| .entrypoint = noop_fs_entrypoint, |
| .feedback = { |
| .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT, |
| }, |
| }; |
| |
| noop_fs = true; |
| } |
| |
| radv_pipeline_get_nir(pipeline, stages, pipeline_key, retain_shaders); |
| |
| if (retain_shaders) { |
| result = VK_SUCCESS; |
| goto done; |
| } |
| |
| /* Force per-vertex VRS. */ |
| if (radv_consider_force_vrs(pipeline, noop_fs, stages, *last_vgt_api_stage)) { |
| assert(*last_vgt_api_stage == MESA_SHADER_VERTEX || |
| *last_vgt_api_stage == MESA_SHADER_TESS_EVAL || |
| *last_vgt_api_stage == MESA_SHADER_GEOMETRY); |
| nir_shader *last_vgt_shader = stages[*last_vgt_api_stage].nir; |
| NIR_PASS(_, last_vgt_shader, radv_force_primitive_shading_rate, device); |
| } |
| |
| bool optimize_conservatively = pipeline_key->optimisations_disabled; |
| |
| /* Determine if shaders uses NGG before linking because it's needed for some NIR pass. */ |
| radv_fill_shader_info_ngg(pipeline, pipeline_key, stages); |
| |
| bool pipeline_has_ngg = (stages[MESA_SHADER_VERTEX].nir && stages[MESA_SHADER_VERTEX].info.is_ngg) || |
| (stages[MESA_SHADER_TESS_EVAL].nir && stages[MESA_SHADER_TESS_EVAL].info.is_ngg) || |
| (stages[MESA_SHADER_MESH].nir && stages[MESA_SHADER_MESH].info.is_ngg); |
| |
| if (stages[MESA_SHADER_GEOMETRY].nir) { |
| unsigned nir_gs_flags = nir_lower_gs_intrinsics_per_stream; |
| |
| if (pipeline_has_ngg) { |
| nir_gs_flags |= nir_lower_gs_intrinsics_count_primitives | |
| nir_lower_gs_intrinsics_count_vertices_per_primitive | |
| nir_lower_gs_intrinsics_overwrite_incomplete; |
| } |
| |
| NIR_PASS(_, stages[MESA_SHADER_GEOMETRY].nir, nir_lower_gs_intrinsics, nir_gs_flags); |
| } |
| |
| radv_graphics_pipeline_link(pipeline, pipeline_key, stages); |
| |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { |
| if (stages[i].nir) { |
| int64_t stage_start = os_time_get_nano(); |
| |
| radv_optimize_nir(stages[i].nir, optimize_conservatively, false); |
| |
| /* Gather info again, information such as outputs_read can be out-of-date. */ |
| nir_shader_gather_info(stages[i].nir, nir_shader_get_entrypoint(stages[i].nir)); |
| radv_lower_io(device, stages[i].nir); |
| |
| stages[i].feedback.duration += os_time_get_nano() - stage_start; |
| } |
| } |
| |
| if (stages[MESA_SHADER_VERTEX].nir) { |
| NIR_PASS(_, stages[MESA_SHADER_VERTEX].nir, radv_lower_vs_input, device->physical_device, |
| pipeline_key); |
| } |
| |
| radv_fill_shader_info(pipeline, pipeline_layout, pipeline_key, stages); |
| |
| radv_declare_pipeline_args(device, stages, pipeline_key); |
| |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { |
| if (!stages[i].nir) |
| continue; |
| |
| int64_t stage_start = os_time_get_nano(); |
| |
| radv_postprocess_nir(pipeline, pipeline_layout, pipeline_key, pipeline_has_ngg, |
| *last_vgt_api_stage, &stages[i]); |
| |
| stages[i].feedback.duration += os_time_get_nano() - stage_start; |
| |
| if (radv_can_dump_shader(device, stages[i].nir, false)) |
| nir_print_shader(stages[i].nir, stderr); |
| } |
| |
| /* Compile NIR shaders to AMD assembly. */ |
| radv_pipeline_nir_to_asm(pipeline, stages, pipeline_key, pipeline_layout, keep_executable_info, |
| keep_statistic_info, *last_vgt_api_stage, binaries, &gs_copy_binary); |
| |
| if (keep_executable_info) { |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { |
| struct radv_shader *shader = pipeline->shaders[i]; |
| if (!shader) |
| continue; |
| |
| if (!stages[i].spirv.size) |
| continue; |
| |
| shader->spirv = malloc(stages[i].spirv.size); |
| memcpy(shader->spirv, stages[i].spirv.data, stages[i].spirv.size); |
| shader->spirv_size = stages[i].spirv.size; |
| } |
| } |
| |
| if (pipeline->type == RADV_PIPELINE_GRAPHICS) { |
| struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline); |
| |
| if (noop_fs && graphics_pipeline->ps_epilog) { |
| /* Discard the PS epilog when the pipeline doesn't use a FS because it makes no sense. */ |
| radv_shader_part_unref(device, graphics_pipeline->ps_epilog); |
| graphics_pipeline->ps_epilog = NULL; |
| } else { |
| /* When the main FS is compiled inside a library, we need to compile a PS epilog if it |
| * hasn't been already imported. |
| */ |
| if (!radv_pipeline_create_ps_epilog(graphics_pipeline, pipeline_key)) |
| return result; |
| } |
| } |
| |
| /* Upload shader binaries. */ |
| radv_upload_shaders(device, pipeline, binaries, gs_copy_binary); |
| |
| if (!keep_executable_info) { |
| if (pipeline->gs_copy_shader) { |
| assert(!binaries[MESA_SHADER_COMPUTE] && !pipeline->shaders[MESA_SHADER_COMPUTE]); |
| binaries[MESA_SHADER_COMPUTE] = gs_copy_binary; |
| pipeline->shaders[MESA_SHADER_COMPUTE] = pipeline->gs_copy_shader; |
| } |
| |
| radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline, binaries, |
| stack_sizes ? *stack_sizes : NULL, |
| num_stack_sizes ? *num_stack_sizes : 0); |
| |
| if (pipeline->gs_copy_shader) { |
| pipeline->gs_copy_shader = pipeline->shaders[MESA_SHADER_COMPUTE]; |
| pipeline->shaders[MESA_SHADER_COMPUTE] = NULL; |
| binaries[MESA_SHADER_COMPUTE] = NULL; |
| } |
| } |
| |
| free(gs_copy_binary); |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { |
| free(binaries[i]); |
| if (stages[i].nir) { |
| if (radv_can_dump_shader_stats(device, stages[i].nir) && pipeline->shaders[i]) { |
| radv_dump_shader_stats(device, pipeline, i, stderr); |
| } |
| |
| ralloc_free(stages[i].nir); |
| } |
| } |
| |
| done: |
| pipeline_feedback.duration = os_time_get_nano() - pipeline_start; |
| |
| if (creation_feedback) { |
| *creation_feedback->pPipelineCreationFeedback = pipeline_feedback; |
| |
| uint32_t stage_count = creation_feedback->pipelineStageCreationFeedbackCount; |
| assert(stage_count == 0 || stageCount == stage_count); |
| for (uint32_t i = 0; i < stage_count; i++) { |
| gl_shader_stage s = vk_to_mesa_shader_stage(pStages[i].stage); |
| creation_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback; |
| } |
| } |
| |
| return result; |
| } |
| |
| static uint32_t |
| radv_pipeline_stage_to_user_data_0(struct radv_graphics_pipeline *pipeline, gl_shader_stage stage, |
| enum amd_gfx_level gfx_level) |
| { |
| bool has_gs = radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY); |
| bool has_tess = radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL); |
| bool has_ngg = radv_pipeline_has_ngg(pipeline); |
| |
| switch (stage) { |
| case MESA_SHADER_FRAGMENT: |
| return R_00B030_SPI_SHADER_USER_DATA_PS_0; |
| case MESA_SHADER_VERTEX: |
| if (has_tess) { |
| if (gfx_level >= GFX10) { |
| return R_00B430_SPI_SHADER_USER_DATA_HS_0; |
| } else if (gfx_level == GFX9) { |
| return R_00B430_SPI_SHADER_USER_DATA_LS_0; |
| } else { |
| return R_00B530_SPI_SHADER_USER_DATA_LS_0; |
| } |
| } |
| |
| if (has_gs) { |
| if (gfx_level >= GFX10) { |
| return R_00B230_SPI_SHADER_USER_DATA_GS_0; |
| } else { |
| return R_00B330_SPI_SHADER_USER_DATA_ES_0; |
| } |
| } |
| |
| if (has_ngg) |
| return R_00B230_SPI_SHADER_USER_DATA_GS_0; |
| |
| return R_00B130_SPI_SHADER_USER_DATA_VS_0; |
| case MESA_SHADER_GEOMETRY: |
| return gfx_level == GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0 |
| : R_00B230_SPI_SHADER_USER_DATA_GS_0; |
| case MESA_SHADER_COMPUTE: |
| case MESA_SHADER_TASK: |
| return R_00B900_COMPUTE_USER_DATA_0; |
| case MESA_SHADER_TESS_CTRL: |
| return gfx_level == GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0 |
| : R_00B430_SPI_SHADER_USER_DATA_HS_0; |
| case MESA_SHADER_TESS_EVAL: |
| if (has_gs) { |
| return gfx_level >= GFX10 ? R_00B230_SPI_SHADER_USER_DATA_GS_0 |
| : R_00B330_SPI_SHADER_USER_DATA_ES_0; |
| } else if (has_ngg) { |
| return R_00B230_SPI_SHADER_USER_DATA_GS_0; |
| } else { |
| return R_00B130_SPI_SHADER_USER_DATA_VS_0; |
| } |
| case MESA_SHADER_MESH: |
| assert(has_ngg); |
| return R_00B230_SPI_SHADER_USER_DATA_GS_0; |
| default: |
| unreachable("unknown shader"); |
| } |
| } |
| |
| static void |
| radv_pipeline_emit_depth_stencil_state(struct radeon_cmdbuf *ctx_cs, |
| const struct radv_depth_stencil_state *ds_state) |
| { |
| radeon_set_context_reg(ctx_cs, R_02880C_DB_SHADER_CONTROL, ds_state->db_shader_control); |
| } |
| |
| static void |
| radv_pipeline_emit_blend_state(struct radeon_cmdbuf *ctx_cs, |
| const struct radv_graphics_pipeline *pipeline, |
| const struct radv_blend_state *blend) |
| { |
| radeon_set_context_reg(ctx_cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format); |
| |
| radeon_set_context_reg(ctx_cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask); |
| } |
| |
| static void |
| radv_pipeline_emit_vgt_gs_mode(struct radeon_cmdbuf *ctx_cs, |
| const struct radv_graphics_pipeline *pipeline) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); |
| const struct radv_shader *vs = pipeline->base.shaders[MESA_SHADER_TESS_EVAL] |
| ? pipeline->base.shaders[MESA_SHADER_TESS_EVAL] |
| : pipeline->base.shaders[MESA_SHADER_VERTEX]; |
| unsigned vgt_primitiveid_en = 0; |
| uint32_t vgt_gs_mode = 0; |
| |
| if (radv_pipeline_has_ngg(pipeline)) |
| return; |
| |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { |
| const struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY]; |
| |
| vgt_gs_mode = ac_vgt_gs_mode(gs->info.gs.vertices_out, pdevice->rad_info.gfx_level); |
| } else if (outinfo->export_prim_id || vs->info.uses_prim_id) { |
| vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A); |
| vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1); |
| } |
| |
| radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, vgt_primitiveid_en); |
| radeon_set_context_reg(ctx_cs, R_028A40_VGT_GS_MODE, vgt_gs_mode); |
| } |
| |
| static void |
| radv_pipeline_emit_hw_vs(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, |
| const struct radv_graphics_pipeline *pipeline, const struct radv_shader *shader) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| uint64_t va = radv_shader_get_va(shader); |
| |
| radeon_set_sh_reg_seq(cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B124_MEM_BASE(va >> 40)); |
| radeon_emit(cs, shader->config.rsrc1); |
| radeon_emit(cs, shader->config.rsrc2); |
| |
| const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); |
| unsigned clip_dist_mask, cull_dist_mask, total_mask; |
| clip_dist_mask = outinfo->clip_dist_mask; |
| cull_dist_mask = outinfo->cull_dist_mask; |
| total_mask = clip_dist_mask | cull_dist_mask; |
| |
| bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer || |
| outinfo->writes_viewport_index || outinfo->writes_primitive_shading_rate; |
| unsigned spi_vs_out_config, nparams; |
| |
| /* VS is required to export at least one param. */ |
| nparams = MAX2(outinfo->param_exports, 1); |
| spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1); |
| |
| if (pdevice->rad_info.gfx_level >= GFX10) { |
| spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0); |
| } |
| |
| radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, spi_vs_out_config); |
| |
| radeon_set_context_reg( |
| ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT, |
| S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) | |
| S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP |
| : V_02870C_SPI_SHADER_NONE) | |
| S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP |
| : V_02870C_SPI_SHADER_NONE) | |
| S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP |
| : V_02870C_SPI_SHADER_NONE)); |
| |
| radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL, |
| S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) | |
| S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) | |
| S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) | |
| S_02881C_USE_VTX_VRS_RATE(outinfo->writes_primitive_shading_rate) | |
| S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) | |
| S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) | |
| S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) | |
| S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | |
| total_mask << 8 | clip_dist_mask); |
| |
| if (pdevice->rad_info.gfx_level <= GFX8) |
| radeon_set_context_reg(ctx_cs, R_028AB4_VGT_REUSE_OFF, outinfo->writes_viewport_index); |
| |
| unsigned late_alloc_wave64, cu_mask; |
| ac_compute_late_alloc(&pdevice->rad_info, false, false, shader->config.scratch_bytes_per_wave > 0, |
| &late_alloc_wave64, &cu_mask); |
| |
| if (pdevice->rad_info.gfx_level >= GFX7) { |
| if (pdevice->rad_info.gfx_level >= GFX10) { |
| ac_set_reg_cu_en(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, |
| S_00B118_CU_EN(cu_mask) | S_00B118_WAVE_LIMIT(0x3F), |
| C_00B118_CU_EN, 0, &pdevice->rad_info, |
| (void*)gfx10_set_sh_reg_idx3); |
| } else { |
| radeon_set_sh_reg_idx(pdevice, cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, 3, |
| S_00B118_CU_EN(cu_mask) | S_00B118_WAVE_LIMIT(0x3F)); |
| } |
| radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(late_alloc_wave64)); |
| } |
| if (pdevice->rad_info.gfx_level >= GFX10) { |
| uint32_t oversub_pc_lines = late_alloc_wave64 ? pdevice->rad_info.pc_lines / 4 : 0; |
| gfx10_emit_ge_pc_alloc(cs, pdevice->rad_info.gfx_level, oversub_pc_lines); |
| } |
| } |
| |
| static void |
| radv_pipeline_emit_hw_es(struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline, |
| const struct radv_shader *shader) |
| { |
| uint64_t va = radv_shader_get_va(shader); |
| |
| radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B324_MEM_BASE(va >> 40)); |
| radeon_emit(cs, shader->config.rsrc1); |
| radeon_emit(cs, shader->config.rsrc2); |
| } |
| |
| static void |
| radv_pipeline_emit_hw_ls(struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline, |
| const struct radv_shader *shader) |
| { |
| uint64_t va = radv_shader_get_va(shader); |
| |
| radeon_set_sh_reg(cs, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8); |
| |
| radeon_set_sh_reg(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, shader->config.rsrc1); |
| } |
| |
| static void |
| radv_pipeline_emit_hw_ngg(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, |
| const struct radv_graphics_pipeline *pipeline, |
| const struct radv_shader *shader) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| uint64_t va = radv_shader_get_va(shader); |
| gl_shader_stage es_type = |
| radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH) ? MESA_SHADER_MESH : |
| radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; |
| struct radv_shader *es = pipeline->base.shaders[es_type]; |
| const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info; |
| |
| radeon_set_sh_reg(cs, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8); |
| |
| radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2); |
| radeon_emit(cs, shader->config.rsrc1); |
| radeon_emit(cs, shader->config.rsrc2); |
| |
| const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); |
| unsigned clip_dist_mask, cull_dist_mask, total_mask; |
| clip_dist_mask = outinfo->clip_dist_mask; |
| cull_dist_mask = outinfo->cull_dist_mask; |
| total_mask = clip_dist_mask | cull_dist_mask; |
| |
| bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer || |
| outinfo->writes_viewport_index || outinfo->writes_primitive_shading_rate; |
| bool es_enable_prim_id = outinfo->export_prim_id || (es && es->info.uses_prim_id); |
| bool break_wave_at_eoi = false; |
| unsigned ge_cntl; |
| |
| if (es_type == MESA_SHADER_TESS_EVAL) { |
| struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY]; |
| |
| if (es_enable_prim_id || (gs && gs->info.uses_prim_id)) |
| break_wave_at_eoi = true; |
| } |
| |
| bool no_pc_export = outinfo->param_exports == 0 && outinfo->prim_param_exports == 0; |
| unsigned num_params = MAX2(outinfo->param_exports, 1); |
| unsigned num_prim_params = outinfo->prim_param_exports; |
| radeon_set_context_reg( |
| ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, |
| S_0286C4_VS_EXPORT_COUNT(num_params - 1) | |
| S_0286C4_PRIM_EXPORT_COUNT(num_prim_params) | |
| S_0286C4_NO_PC_EXPORT(no_pc_export)); |
| |
| unsigned idx_format = V_028708_SPI_SHADER_1COMP; |
| if (outinfo->writes_layer_per_primitive || |
| outinfo->writes_viewport_index_per_primitive || |
| outinfo->writes_primitive_shading_rate_per_primitive) |
| idx_format = V_028708_SPI_SHADER_2COMP; |
| |
| radeon_set_context_reg(ctx_cs, R_028708_SPI_SHADER_IDX_FORMAT, |
| S_028708_IDX0_EXPORT_FORMAT(idx_format)); |
| radeon_set_context_reg( |
| ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT, |
| S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) | |
| S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP |
| : V_02870C_SPI_SHADER_NONE) | |
| S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP |
| : V_02870C_SPI_SHADER_NONE) | |
| S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP |
| : V_02870C_SPI_SHADER_NONE)); |
| |
| radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL, |
| S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) | |
| S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) | |
| S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) | |
| S_02881C_USE_VTX_VRS_RATE(outinfo->writes_primitive_shading_rate) | |
| S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) | |
| S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) | |
| S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) | |
| S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | |
| total_mask << 8 | clip_dist_mask); |
| |
| radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, |
| S_028A84_PRIMITIVEID_EN(es_enable_prim_id) | |
| S_028A84_NGG_DISABLE_PROVOK_REUSE(outinfo->export_prim_id)); |
| |
| radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE, |
| ngg_state->vgt_esgs_ring_itemsize); |
| |
| /* NGG specific registers. */ |
| struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY]; |
| uint32_t gs_num_invocations = gs ? gs->info.gs.invocations : 1; |
| |
| if (pdevice->rad_info.gfx_level < GFX11) { |
| radeon_set_context_reg( |
| ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, |
| S_028A44_ES_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) | |
| S_028A44_GS_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) | |
| S_028A44_GS_INST_PRIMS_IN_SUBGRP(ngg_state->max_gsprims * gs_num_invocations)); |
| } |
| |
| radeon_set_context_reg(ctx_cs, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP, |
| S_0287FC_MAX_VERTS_PER_SUBGROUP(ngg_state->max_out_verts)); |
| radeon_set_context_reg(ctx_cs, R_028B4C_GE_NGG_SUBGRP_CNTL, |
| S_028B4C_PRIM_AMP_FACTOR(ngg_state->prim_amp_factor) | |
| S_028B4C_THDS_PER_SUBGRP(0)); /* for fast launch */ |
| radeon_set_context_reg( |
| ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT, |
| S_028B90_CNT(gs_num_invocations) | S_028B90_ENABLE(gs_num_invocations > 1) | |
| S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(ngg_state->max_vert_out_per_gs_instance)); |
| |
| if (pdevice->rad_info.gfx_level >= GFX11) { |
| ge_cntl = S_03096C_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) | |
| S_03096C_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) | |
| S_03096C_BREAK_PRIMGRP_AT_EOI(break_wave_at_eoi) | |
| S_03096C_PRIM_GRP_SIZE_GFX11(252); |
| } else { |
| ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(ngg_state->max_gsprims) | |
| S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts) | |
| S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi); |
| } |
| |
| /* Bug workaround for a possible hang with non-tessellation cases. |
| * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0 |
| * |
| * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5 |
| */ |
| if (pdevice->rad_info.gfx_level == GFX10 && |
| !radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) && ngg_state->hw_max_esverts != 256) { |
| ge_cntl &= C_03096C_VERT_GRP_SIZE; |
| |
| if (ngg_state->hw_max_esverts > 5) { |
| ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5); |
| } |
| } |
| |
| radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, ge_cntl); |
| |
| unsigned late_alloc_wave64, cu_mask; |
| ac_compute_late_alloc(&pdevice->rad_info, true, shader->info.has_ngg_culling, |
| shader->config.scratch_bytes_per_wave > 0, &late_alloc_wave64, &cu_mask); |
| |
| if (pdevice->rad_info.gfx_level >= GFX11) { |
| /* TODO: figure out how S_00B204_CU_EN_GFX11 interacts with ac_set_reg_cu_en */ |
| gfx10_set_sh_reg_idx3(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, |
| S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F)); |
| gfx10_set_sh_reg_idx3( |
| cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, |
| S_00B204_CU_EN_GFX11(0x1) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64)); |
| } else if (pdevice->rad_info.gfx_level >= GFX10) { |
| ac_set_reg_cu_en(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, |
| S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F), |
| C_00B21C_CU_EN, 0, &pdevice->rad_info, (void*)gfx10_set_sh_reg_idx3); |
| ac_set_reg_cu_en(cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, |
| S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64), |
| C_00B204_CU_EN_GFX10, 16, &pdevice->rad_info, |
| (void*)gfx10_set_sh_reg_idx3); |
| } else { |
| radeon_set_sh_reg_idx( |
| pdevice, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3, |
| S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F)); |
| radeon_set_sh_reg_idx( |
| pdevice, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3, |
| S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64)); |
| } |
| |
| uint32_t oversub_pc_lines = late_alloc_wave64 ? pdevice->rad_info.pc_lines / 4 : 0; |
| if (shader->info.has_ngg_culling) { |
| unsigned oversub_factor = 2; |
| |
| if (outinfo->param_exports > 4) |
| oversub_factor = 4; |
| else if (outinfo->param_exports > 2) |
| oversub_factor = 3; |
| |
| oversub_pc_lines *= oversub_factor; |
| } |
| |
| gfx10_emit_ge_pc_alloc(cs, pdevice->rad_info.gfx_level, oversub_pc_lines); |
| } |
| |
| static void |
| radv_pipeline_emit_hw_hs(struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline, |
| const struct radv_shader *shader) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| uint64_t va = radv_shader_get_va(shader); |
| |
| if (pdevice->rad_info.gfx_level >= GFX9) { |
| if (pdevice->rad_info.gfx_level >= GFX10) { |
| radeon_set_sh_reg(cs, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8); |
| } else { |
| radeon_set_sh_reg(cs, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8); |
| } |
| |
| radeon_set_sh_reg(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, shader->config.rsrc1); |
| } else { |
| radeon_set_sh_reg_seq(cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B424_MEM_BASE(va >> 40)); |
| radeon_emit(cs, shader->config.rsrc1); |
| radeon_emit(cs, shader->config.rsrc2); |
| } |
| } |
| |
| static void |
| radv_pipeline_emit_vertex_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, |
| const struct radv_graphics_pipeline *pipeline) |
| { |
| struct radv_shader *vs; |
| |
| /* Skip shaders merged into HS/GS */ |
| vs = pipeline->base.shaders[MESA_SHADER_VERTEX]; |
| if (!vs) |
| return; |
| |
| if (vs->info.vs.as_ls) |
| radv_pipeline_emit_hw_ls(cs, pipeline, vs); |
| else if (vs->info.vs.as_es) |
| radv_pipeline_emit_hw_es(cs, pipeline, vs); |
| else if (vs->info.is_ngg) |
| radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, vs); |
| else |
| radv_pipeline_emit_hw_vs(ctx_cs, cs, pipeline, vs); |
| } |
| |
| static void |
| radv_pipeline_emit_tess_shaders(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, |
| const struct radv_graphics_pipeline *pipeline) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| struct radv_shader *tes, *tcs; |
| |
| tcs = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]; |
| tes = pipeline->base.shaders[MESA_SHADER_TESS_EVAL]; |
| |
| if (tes) { |
| if (tes->info.is_ngg) { |
| radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, tes); |
| } else if (tes->info.tes.as_es) |
| radv_pipeline_emit_hw_es(cs, pipeline, tes); |
| else |
| radv_pipeline_emit_hw_vs(ctx_cs, cs, pipeline, tes); |
| } |
| |
| radv_pipeline_emit_hw_hs(cs, pipeline, tcs); |
| |
| if (pdevice->rad_info.gfx_level >= GFX10 && |
| !radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) && !radv_pipeline_has_ngg(pipeline)) { |
| radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, |
| S_028A44_ES_VERTS_PER_SUBGRP(250) | S_028A44_GS_PRIMS_PER_SUBGRP(126) | |
| S_028A44_GS_INST_PRIMS_IN_SUBGRP(126)); |
| } |
| } |
| |
| static void |
| radv_pipeline_emit_hw_gs(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, |
| const struct radv_graphics_pipeline *pipeline, const struct radv_shader *gs) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| const struct gfx9_gs_info *gs_state = &gs->info.gs_ring_info; |
| unsigned gs_max_out_vertices; |
| const uint8_t *num_components; |
| uint8_t max_stream; |
| unsigned offset; |
| uint64_t va; |
| |
| gs_max_out_vertices = gs->info.gs.vertices_out; |
| max_stream = gs->info.gs.max_stream; |
| num_components = gs->info.gs.num_stream_output_components; |
| |
| offset = num_components[0] * gs_max_out_vertices; |
| |
| radeon_set_context_reg_seq(ctx_cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3); |
| radeon_emit(ctx_cs, offset); |
| if (max_stream >= 1) |
| offset += num_components[1] * gs_max_out_vertices; |
| radeon_emit(ctx_cs, offset); |
| if (max_stream >= 2) |
| offset += num_components[2] * gs_max_out_vertices; |
| radeon_emit(ctx_cs, offset); |
| if (max_stream >= 3) |
| offset += num_components[3] * gs_max_out_vertices; |
| radeon_set_context_reg(ctx_cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset); |
| |
| radeon_set_context_reg_seq(ctx_cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4); |
| radeon_emit(ctx_cs, num_components[0]); |
| radeon_emit(ctx_cs, (max_stream >= 1) ? num_components[1] : 0); |
| radeon_emit(ctx_cs, (max_stream >= 2) ? num_components[2] : 0); |
| radeon_emit(ctx_cs, (max_stream >= 3) ? num_components[3] : 0); |
| |
| uint32_t gs_num_invocations = gs->info.gs.invocations; |
| radeon_set_context_reg( |
| ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT, |
| S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0)); |
| |
| radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE, |
| gs_state->vgt_esgs_ring_itemsize); |
| |
| va = radv_shader_get_va(gs); |
| |
| if (pdevice->rad_info.gfx_level >= GFX9) { |
| if (pdevice->rad_info.gfx_level >= GFX10) { |
| radeon_set_sh_reg(cs, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8); |
| } else { |
| radeon_set_sh_reg(cs, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8); |
| } |
| |
| radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2); |
| radeon_emit(cs, gs->config.rsrc1); |
| radeon_emit(cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size)); |
| |
| radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, gs_state->vgt_gs_onchip_cntl); |
| radeon_set_context_reg(ctx_cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, |
| gs_state->vgt_gs_max_prims_per_subgroup); |
| } else { |
| radeon_set_sh_reg_seq(cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B224_MEM_BASE(va >> 40)); |
| radeon_emit(cs, gs->config.rsrc1); |
| radeon_emit(cs, gs->config.rsrc2); |
| } |
| |
| if (pdevice->rad_info.gfx_level >= GFX10) { |
| ac_set_reg_cu_en(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, |
| S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F), |
| C_00B21C_CU_EN, 0, &pdevice->rad_info, |
| (void*)gfx10_set_sh_reg_idx3); |
| ac_set_reg_cu_en(cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, |
| S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0), |
| C_00B204_CU_EN_GFX10, 16, &pdevice->rad_info, |
| (void*)gfx10_set_sh_reg_idx3); |
| } else if (pdevice->rad_info.gfx_level >= GFX7) { |
| radeon_set_sh_reg_idx( |
| pdevice, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3, |
| S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F)); |
| |
| if (pdevice->rad_info.gfx_level >= GFX10) { |
| radeon_set_sh_reg_idx( |
| pdevice, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3, |
| S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0)); |
| } |
| } |
| |
| radv_pipeline_emit_hw_vs(ctx_cs, cs, pipeline, pipeline->base.gs_copy_shader); |
| } |
| |
| static void |
| radv_pipeline_emit_geometry_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, |
| const struct radv_graphics_pipeline *pipeline) |
| { |
| struct radv_shader *gs; |
| |
| gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY]; |
| if (!gs) |
| return; |
| |
| if (gs->info.is_ngg) |
| radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, gs); |
| else |
| radv_pipeline_emit_hw_gs(ctx_cs, cs, pipeline, gs); |
| |
| radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT, gs->info.gs.vertices_out); |
| } |
| |
| static void |
| radv_pipeline_emit_mesh_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, |
| const struct radv_graphics_pipeline *pipeline) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| struct radv_shader *ms = pipeline->base.shaders[MESA_SHADER_MESH]; |
| if (!ms) |
| return; |
| |
| radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, ms); |
| radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT, ms->info.workgroup_size); |
| radeon_set_uconfig_reg_idx(pdevice, ctx_cs, |
| R_030908_VGT_PRIMITIVE_TYPE, 1, V_008958_DI_PT_POINTLIST); |
| } |
| |
| static uint32_t |
| offset_to_ps_input(uint32_t offset, bool flat_shade, bool explicit, bool float16) |
| { |
| uint32_t ps_input_cntl; |
| if (offset <= AC_EXP_PARAM_OFFSET_31) { |
| ps_input_cntl = S_028644_OFFSET(offset); |
| if (flat_shade || explicit) |
| ps_input_cntl |= S_028644_FLAT_SHADE(1); |
| if (explicit) { |
| /* Force parameter cache to be read in passthrough |
| * mode. |
| */ |
| ps_input_cntl |= S_028644_OFFSET(1 << 5); |
| } |
| if (float16) { |
| ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) | S_028644_ATTR0_VALID(1); |
| } |
| } else { |
| /* The input is a DEFAULT_VAL constant. */ |
| assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111); |
| offset -= AC_EXP_PARAM_DEFAULT_VAL_0000; |
| ps_input_cntl = S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset); |
| } |
| return ps_input_cntl; |
| } |
| |
| static void |
| single_slot_to_ps_input(const struct radv_vs_output_info *outinfo, |
| unsigned slot, uint32_t *ps_input_cntl, unsigned *ps_offset, |
| bool skip_undef, bool use_default_0, bool flat_shade) |
| { |
| unsigned vs_offset = outinfo->vs_output_param_offset[slot]; |
| |
| if (vs_offset == AC_EXP_PARAM_UNDEFINED) { |
| if (skip_undef) |
| return; |
| else if (use_default_0) |
| vs_offset = AC_EXP_PARAM_DEFAULT_VAL_0000; |
| else |
| unreachable("vs_offset should not be AC_EXP_PARAM_UNDEFINED."); |
| } |
| |
| ps_input_cntl[*ps_offset] = offset_to_ps_input(vs_offset, flat_shade, false, false); |
| ++(*ps_offset); |
| } |
| |
| static void |
| input_mask_to_ps_inputs(const struct radv_vs_output_info *outinfo, const struct radv_shader *ps, |
| uint32_t input_mask, uint32_t *ps_input_cntl, unsigned *ps_offset) |
| { |
| u_foreach_bit(i, input_mask) { |
| unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i]; |
| if (vs_offset == AC_EXP_PARAM_UNDEFINED) { |
| ps_input_cntl[*ps_offset] = S_028644_OFFSET(0x20); |
| ++(*ps_offset); |
| continue; |
| } |
| |
| bool flat_shade = !!(ps->info.ps.flat_shaded_mask & (1u << *ps_offset)); |
| bool explicit = !!(ps->info.ps.explicit_shaded_mask & (1u << *ps_offset)); |
| bool float16 = !!(ps->info.ps.float16_shaded_mask & (1u << *ps_offset)); |
| |
| ps_input_cntl[*ps_offset] = offset_to_ps_input(vs_offset, flat_shade, explicit, float16); |
| ++(*ps_offset); |
| } |
| } |
| |
| static void |
| radv_pipeline_emit_ps_inputs(struct radeon_cmdbuf *ctx_cs, |
| const struct radv_graphics_pipeline *pipeline) |
| { |
| struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; |
| const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); |
| bool mesh = radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH); |
| uint32_t ps_input_cntl[32]; |
| |
| unsigned ps_offset = 0; |
| |
| if (ps->info.ps.prim_id_input && !mesh) |
| single_slot_to_ps_input(outinfo, VARYING_SLOT_PRIMITIVE_ID, ps_input_cntl, &ps_offset, |
| true, false, true); |
| |
| if (ps->info.ps.layer_input && !mesh) |
| single_slot_to_ps_input(outinfo, VARYING_SLOT_LAYER, ps_input_cntl, &ps_offset, |
| false, true, true); |
| |
| if (ps->info.ps.viewport_index_input && !mesh) |
| single_slot_to_ps_input(outinfo, VARYING_SLOT_VIEWPORT, ps_input_cntl, &ps_offset, |
| false, true, true); |
| |
| if (ps->info.ps.has_pcoord) |
| ps_input_cntl[ps_offset++] = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20); |
| |
| if (ps->info.ps.num_input_clips_culls) { |
| single_slot_to_ps_input(outinfo, VARYING_SLOT_CLIP_DIST0, ps_input_cntl, &ps_offset, |
| true, false, false); |
| |
| if (ps->info.ps.num_input_clips_culls > 4) |
| single_slot_to_ps_input(outinfo, VARYING_SLOT_CLIP_DIST1, ps_input_cntl, &ps_offset, |
| true, false, false); |
| } |
| |
| input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_mask, |
| ps_input_cntl, &ps_offset); |
| |
| /* Per-primitive PS inputs: the HW needs these to be last. */ |
| |
| if (ps->info.ps.prim_id_input && mesh) |
| single_slot_to_ps_input(outinfo, VARYING_SLOT_PRIMITIVE_ID, ps_input_cntl, &ps_offset, |
| true, false, false); |
| |
| if (ps->info.ps.layer_input && mesh) |
| single_slot_to_ps_input(outinfo, VARYING_SLOT_LAYER, ps_input_cntl, &ps_offset, |
| false, true, false); |
| |
| if (ps->info.ps.viewport_index_input && mesh) |
| single_slot_to_ps_input(outinfo, VARYING_SLOT_VIEWPORT, ps_input_cntl, &ps_offset, |
| false, true, false); |
| |
| input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_per_primitive_mask, |
| ps_input_cntl, &ps_offset); |
| |
| if (ps_offset) { |
| radeon_set_context_reg_seq(ctx_cs, R_028644_SPI_PS_INPUT_CNTL_0, ps_offset); |
| for (unsigned i = 0; i < ps_offset; i++) { |
| radeon_emit(ctx_cs, ps_input_cntl[i]); |
| } |
| } |
| } |
| |
| static void |
| radv_pipeline_emit_fragment_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, |
| const struct radv_graphics_pipeline *pipeline) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| struct radv_shader *ps; |
| bool param_gen; |
| uint64_t va; |
| assert(pipeline->base.shaders[MESA_SHADER_FRAGMENT]); |
| |
| ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; |
| va = radv_shader_get_va(ps); |
| |
| radeon_set_sh_reg_seq(cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4); |
| radeon_emit(cs, va >> 8); |
| radeon_emit(cs, S_00B024_MEM_BASE(va >> 40)); |
| radeon_emit(cs, ps->config.rsrc1); |
| radeon_emit(cs, ps->config.rsrc2); |
| |
| radeon_set_context_reg_seq(ctx_cs, R_0286CC_SPI_PS_INPUT_ENA, 2); |
| radeon_emit(ctx_cs, ps->config.spi_ps_input_ena); |
| radeon_emit(ctx_cs, ps->config.spi_ps_input_addr); |
| |
| /* Workaround when there are no PS inputs but LDS is used. */ |
| param_gen = pdevice->rad_info.gfx_level >= GFX11 && |
| !ps->info.ps.num_interp && ps->config.lds_size; |
| |
| radeon_set_context_reg( |
| ctx_cs, R_0286D8_SPI_PS_IN_CONTROL, |
| S_0286D8_NUM_INTERP(ps->info.ps.num_interp) | |
| S_0286D8_NUM_PRIM_INTERP(ps->info.ps.num_prim_interp) | |
| S_0286D8_PS_W32_EN(ps->info.wave_size == 32) | |
| S_0286D8_PARAM_GEN(param_gen)); |
| |
| radeon_set_context_reg( |
| ctx_cs, R_028710_SPI_SHADER_Z_FORMAT, |
| ac_get_spi_shader_z_format(ps->info.ps.writes_z, ps->info.ps.writes_stencil, |
| ps->info.ps.writes_sample_mask, ps->info.ps.writes_mrt0_alpha)); |
| } |
| |
| static void |
| radv_pipeline_emit_vgt_vertex_reuse(struct radeon_cmdbuf *ctx_cs, |
| const struct radv_graphics_pipeline *pipeline) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| |
| if (pdevice->rad_info.family < CHIP_POLARIS10 || pdevice->rad_info.gfx_level >= GFX10) |
| return; |
| |
| unsigned vtx_reuse_depth = 30; |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) && |
| radv_get_shader(&pipeline->base, MESA_SHADER_TESS_EVAL)->info.tes.spacing == |
| TESS_SPACING_FRACTIONAL_ODD) { |
| vtx_reuse_depth = 14; |
| } |
| radeon_set_context_reg(ctx_cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, |
| S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth)); |
| } |
| |
| static void |
| radv_pipeline_emit_vgt_shader_config(struct radeon_cmdbuf *ctx_cs, |
| const struct radv_graphics_pipeline *pipeline) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| uint32_t stages = 0; |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) { |
| stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1); |
| |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1); |
| else if (radv_pipeline_has_ngg(pipeline)) |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS); |
| else |
| stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS); |
| } else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1); |
| } else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) { |
| assert(!radv_pipeline_has_ngg_passthrough(pipeline)); |
| stages |= S_028B54_GS_EN(1) | S_028B54_GS_FAST_LAUNCH(1); |
| |
| if (pipeline->base.shaders[MESA_SHADER_MESH]->info.ms.needs_ms_scratch_ring) |
| stages |= S_028B54_NGG_WAVE_ID_EN(1); |
| } else if (radv_pipeline_has_ngg(pipeline)) { |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL); |
| } |
| |
| if (radv_pipeline_has_ngg(pipeline)) { |
| stages |= S_028B54_PRIMGEN_EN(1); |
| if (pipeline->streamout_shader) |
| stages |= S_028B54_NGG_WAVE_ID_EN(1); |
| if (radv_pipeline_has_ngg_passthrough(pipeline)) { |
| stages |= S_028B54_PRIMGEN_PASSTHRU_EN(1); |
| if (pdevice->rad_info.family >= CHIP_NAVI23) |
| stages |= S_028B54_PRIMGEN_PASSTHRU_NO_MSG(1); |
| } |
| } else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { |
| stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); |
| } |
| |
| if (pdevice->rad_info.gfx_level >= GFX9) |
| stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2); |
| |
| if (pdevice->rad_info.gfx_level >= GFX10) { |
| uint8_t hs_size = 64, gs_size = 64, vs_size = 64; |
| |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) |
| hs_size = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.wave_size; |
| |
| if (pipeline->base.shaders[MESA_SHADER_GEOMETRY]) { |
| vs_size = gs_size = pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.wave_size; |
| if (radv_pipeline_has_gs_copy_shader(&pipeline->base)) |
| vs_size = pipeline->base.gs_copy_shader->info.wave_size; |
| } else if (pipeline->base.shaders[MESA_SHADER_TESS_EVAL]) |
| vs_size = pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.wave_size; |
| else if (pipeline->base.shaders[MESA_SHADER_VERTEX]) |
| vs_size = pipeline->base.shaders[MESA_SHADER_VERTEX]->info.wave_size; |
| else if (pipeline->base.shaders[MESA_SHADER_MESH]) |
| vs_size = gs_size = pipeline->base.shaders[MESA_SHADER_MESH]->info.wave_size; |
| |
| if (radv_pipeline_has_ngg(pipeline)) { |
| assert(!radv_pipeline_has_gs_copy_shader(&pipeline->base)); |
| gs_size = vs_size; |
| } |
| |
| /* legacy GS only supports Wave64 */ |
| stages |= S_028B54_HS_W32_EN(hs_size == 32 ? 1 : 0) | |
| S_028B54_GS_W32_EN(gs_size == 32 ? 1 : 0) | |
| S_028B54_VS_W32_EN(vs_size == 32 ? 1 : 0); |
| } |
| |
| radeon_set_context_reg(ctx_cs, R_028B54_VGT_SHADER_STAGES_EN, stages); |
| } |
| |
| static void |
| radv_pipeline_emit_cliprect_rule(struct radeon_cmdbuf *ctx_cs, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| uint32_t cliprect_rule = 0; |
| |
| if (!state->dr->rectangle_count) { |
| cliprect_rule = 0xffff; |
| } else { |
| for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) { |
| /* Interpret i as a bitmask, and then set the bit in |
| * the mask if that combination of rectangles in which |
| * the pixel is contained should pass the cliprect |
| * test. |
| */ |
| unsigned relevant_subset = i & ((1u << state->dr->rectangle_count) - 1); |
| |
| if (state->dr->mode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT && !relevant_subset) |
| continue; |
| |
| if (state->dr->mode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT && relevant_subset) |
| continue; |
| |
| cliprect_rule |= 1u << i; |
| } |
| } |
| |
| radeon_set_context_reg(ctx_cs, R_02820C_PA_SC_CLIPRECT_RULE, cliprect_rule); |
| } |
| |
| static void |
| radv_pipeline_emit_vgt_gs_out(struct radeon_cmdbuf *ctx_cs, |
| const struct radv_graphics_pipeline *pipeline, |
| uint32_t vgt_gs_out_prim_type) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| |
| if (pdevice->rad_info.gfx_level >= GFX11) { |
| radeon_set_uconfig_reg(ctx_cs, R_030998_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type); |
| } else { |
| radeon_set_context_reg(ctx_cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type); |
| } |
| } |
| |
| static void |
| gfx103_pipeline_emit_vgt_draw_payload_cntl(struct radeon_cmdbuf *ctx_cs, |
| const struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); |
| |
| bool enable_vrs = radv_is_vrs_enabled(pipeline, state); |
| |
| /* Enables the second channel of the primitive export instruction. |
| * This channel contains: VRS rate x, y, viewport and layer. |
| */ |
| bool enable_prim_payload = |
| outinfo && |
| (outinfo->writes_viewport_index_per_primitive || |
| outinfo->writes_layer_per_primitive || |
| outinfo->writes_primitive_shading_rate_per_primitive); |
| |
| radeon_set_context_reg(ctx_cs, R_028A98_VGT_DRAW_PAYLOAD_CNTL, |
| S_028A98_EN_VRS_RATE(enable_vrs) | |
| S_028A98_EN_PRIM_PAYLOAD(enable_prim_payload)); |
| } |
| |
| static bool |
| gfx103_pipeline_vrs_coarse_shading(const struct radv_graphics_pipeline *pipeline) |
| { |
| struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; |
| struct radv_device *device = pipeline->base.device; |
| |
| if (device->physical_device->rad_info.gfx_level != GFX10_3) |
| return false; |
| |
| if (device->instance->debug_flags & RADV_DEBUG_NO_VRS_FLAT_SHADING) |
| return false; |
| |
| if (!ps->info.ps.allow_flat_shading) |
| return false; |
| |
| return true; |
| } |
| |
| static void |
| gfx103_pipeline_emit_vrs_state(struct radeon_cmdbuf *ctx_cs, |
| const struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| uint32_t mode = V_028064_VRS_COMB_MODE_PASSTHRU; |
| uint8_t rate_x = 0, rate_y = 0; |
| bool enable_vrs = radv_is_vrs_enabled(pipeline, state); |
| |
| if (!enable_vrs && gfx103_pipeline_vrs_coarse_shading(pipeline)) { |
| /* When per-draw VRS is not enabled at all, try enabling VRS coarse shading 2x2 if the driver |
| * determined that it's safe to enable. |
| */ |
| mode = V_028064_VRS_COMB_MODE_OVERRIDE; |
| rate_x = rate_y = 1; |
| } else if (!radv_is_static_vrs_enabled(pipeline, state) && pipeline->force_vrs_per_vertex && |
| get_vs_output_info(pipeline)->writes_primitive_shading_rate) { |
| /* Otherwise, if per-draw VRS is not enabled statically, try forcing per-vertex VRS if |
| * requested by the user. Note that vkd3d-proton always has to declare VRS as dynamic because |
| * in DX12 it's fully dynamic. |
| */ |
| radeon_set_context_reg(ctx_cs, R_028848_PA_CL_VRS_CNTL, |
| S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE) | |
| S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE)); |
| |
| /* If the shader is using discard, turn off coarse shading because discard at 2x2 pixel |
| * granularity degrades quality too much. MIN allows sample shading but not coarse shading. |
| */ |
| struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; |
| |
| mode = ps->info.ps.can_discard ? V_028064_VRS_COMB_MODE_MIN : V_028064_VRS_COMB_MODE_PASSTHRU; |
| } |
| |
| if (pdevice->rad_info.gfx_level >= GFX11) { |
| radeon_set_context_reg(ctx_cs, R_0283D0_PA_SC_VRS_OVERRIDE_CNTL, |
| S_0283D0_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) | |
| S_0283D0_VRS_RATE((rate_x << 2) | rate_y)); |
| } else { |
| radeon_set_context_reg(ctx_cs, R_028064_DB_VRS_OVERRIDE_CNTL, |
| S_028064_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) | |
| S_028064_VRS_OVERRIDE_RATE_X(rate_x) | |
| S_028064_VRS_OVERRIDE_RATE_Y(rate_y)); |
| } |
| } |
| |
| static void |
| radv_pipeline_emit_pm4(struct radv_graphics_pipeline *pipeline, |
| const struct radv_blend_state *blend, |
| const struct radv_depth_stencil_state *ds_state, |
| uint32_t vgt_gs_out_prim_type, |
| const struct vk_graphics_pipeline_state *state) |
| |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| struct radeon_cmdbuf *ctx_cs = &pipeline->base.ctx_cs; |
| struct radeon_cmdbuf *cs = &pipeline->base.cs; |
| |
| cs->max_dw = 64; |
| ctx_cs->max_dw = 256; |
| cs->buf = malloc(4 * (cs->max_dw + ctx_cs->max_dw)); |
| ctx_cs->buf = cs->buf + cs->max_dw; |
| |
| radv_pipeline_emit_depth_stencil_state(ctx_cs, ds_state); |
| radv_pipeline_emit_blend_state(ctx_cs, pipeline, blend); |
| radv_pipeline_emit_vgt_gs_mode(ctx_cs, pipeline); |
| radv_pipeline_emit_vertex_shader(ctx_cs, cs, pipeline); |
| radv_pipeline_emit_mesh_shader(ctx_cs, cs, pipeline); |
| |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) { |
| radv_pipeline_emit_tess_shaders(ctx_cs, cs, pipeline); |
| } |
| |
| radv_pipeline_emit_geometry_shader(ctx_cs, cs, pipeline); |
| radv_pipeline_emit_fragment_shader(ctx_cs, cs, pipeline); |
| radv_pipeline_emit_ps_inputs(ctx_cs, pipeline); |
| radv_pipeline_emit_vgt_vertex_reuse(ctx_cs, pipeline); |
| radv_pipeline_emit_vgt_shader_config(ctx_cs, pipeline); |
| radv_pipeline_emit_cliprect_rule(ctx_cs, state); |
| radv_pipeline_emit_vgt_gs_out(ctx_cs, pipeline, vgt_gs_out_prim_type); |
| |
| if (pdevice->rad_info.gfx_level >= GFX10_3) { |
| gfx103_pipeline_emit_vgt_draw_payload_cntl(ctx_cs, pipeline, state); |
| gfx103_pipeline_emit_vrs_state(ctx_cs, pipeline, state); |
| } |
| |
| pipeline->base.ctx_cs_hash = _mesa_hash_data(ctx_cs->buf, ctx_cs->cdw * 4); |
| |
| assert(ctx_cs->cdw <= ctx_cs->max_dw); |
| assert(cs->cdw <= cs->max_dw); |
| } |
| |
| static void |
| radv_pipeline_init_vertex_input_state(struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| const struct radv_shader_info *vs_info = &radv_get_shader(&pipeline->base, MESA_SHADER_VERTEX)->info; |
| |
| if (state->vi) { |
| u_foreach_bit(i, state->vi->attributes_valid) { |
| uint32_t binding = state->vi->attributes[i].binding; |
| uint32_t offset = state->vi->attributes[i].offset; |
| VkFormat format = state->vi->attributes[i].format; |
| |
| pipeline->attrib_ends[i] = offset + vk_format_get_blocksize(format); |
| pipeline->attrib_bindings[i] = binding; |
| |
| if (state->vi->bindings[binding].stride) { |
| pipeline->attrib_index_offset[i] = offset / state->vi->bindings[binding].stride; |
| } |
| } |
| |
| u_foreach_bit(i, state->vi->bindings_valid) { |
| pipeline->binding_stride[i] = state->vi->bindings[i].stride; |
| } |
| } |
| |
| pipeline->use_per_attribute_vb_descs = vs_info->vs.use_per_attribute_vb_descs; |
| pipeline->last_vertex_attrib_bit = util_last_bit(vs_info->vs.vb_desc_usage_mask); |
| if (pipeline->base.shaders[MESA_SHADER_VERTEX]) |
| pipeline->next_vertex_stage = MESA_SHADER_VERTEX; |
| else if (pipeline->base.shaders[MESA_SHADER_TESS_CTRL]) |
| pipeline->next_vertex_stage = MESA_SHADER_TESS_CTRL; |
| else |
| pipeline->next_vertex_stage = MESA_SHADER_GEOMETRY; |
| if (pipeline->next_vertex_stage == MESA_SHADER_VERTEX) { |
| const struct radv_shader *vs_shader = pipeline->base.shaders[MESA_SHADER_VERTEX]; |
| pipeline->can_use_simple_input = vs_shader->info.is_ngg == pdevice->use_ngg && |
| vs_shader->info.wave_size == pdevice->ge_wave_size; |
| } else { |
| pipeline->can_use_simple_input = false; |
| } |
| if (vs_info->vs.dynamic_inputs) |
| pipeline->vb_desc_usage_mask = BITFIELD_MASK(pipeline->last_vertex_attrib_bit); |
| else |
| pipeline->vb_desc_usage_mask = vs_info->vs.vb_desc_usage_mask; |
| pipeline->vb_desc_alloc_size = util_bitcount(pipeline->vb_desc_usage_mask) * 16; |
| |
| /* Prepare the VS input state for prologs created inside a library. */ |
| if (vs_info->vs.has_prolog && !(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT)) { |
| const enum amd_gfx_level gfx_level = pdevice->rad_info.gfx_level; |
| const enum radeon_family family = pdevice->rad_info.family; |
| const struct ac_vtx_format_info *vtx_info_table = ac_get_vtx_format_info_table(gfx_level, family); |
| |
| pipeline->vs_input_state.bindings_match_attrib = true; |
| |
| u_foreach_bit(i, state->vi->attributes_valid) { |
| uint32_t binding = state->vi->attributes[i].binding; |
| uint32_t offset = state->vi->attributes[i].offset; |
| |
| pipeline->vs_input_state.attribute_mask |= BITFIELD_BIT(i); |
| pipeline->vs_input_state.bindings[i] = binding; |
| pipeline->vs_input_state.bindings_match_attrib &= binding == i; |
| |
| if (state->vi->bindings[binding].input_rate) { |
| pipeline->vs_input_state.instance_rate_inputs |= BITFIELD_BIT(i); |
| pipeline->vs_input_state.divisors[i] = state->vi->bindings[binding].divisor; |
| |
| if (state->vi->bindings[binding].divisor == 0) { |
| pipeline->vs_input_state.zero_divisors |= BITFIELD_BIT(i); |
| } else if (state->vi->bindings[binding].divisor > 1) { |
| pipeline->vs_input_state.nontrivial_divisors |= BITFIELD_BIT(i); |
| } |
| } |
| |
| pipeline->vs_input_state.offsets[i] = offset; |
| |
| enum pipe_format format = vk_format_to_pipe_format(state->vi->attributes[i].format); |
| const struct ac_vtx_format_info *vtx_info = &vtx_info_table[format]; |
| |
| pipeline->vs_input_state.formats[i] = format; |
| uint8_t align_req_minus_1 = vtx_info->chan_byte_size >= 4 ? 3 : (vtx_info->element_size - 1); |
| pipeline->vs_input_state.format_align_req_minus_1[i] = align_req_minus_1; |
| pipeline->vs_input_state.format_sizes[i] = vtx_info->element_size; |
| pipeline->vs_input_state.alpha_adjust_lo |= (vtx_info->alpha_adjust & 0x1) << i; |
| pipeline->vs_input_state.alpha_adjust_hi |= (vtx_info->alpha_adjust >> 1) << i; |
| if (G_008F0C_DST_SEL_X(vtx_info->dst_sel) == V_008F0C_SQ_SEL_Z) { |
| pipeline->vs_input_state.post_shuffle |= BITFIELD_BIT(i); |
| } |
| |
| if (!(vtx_info->has_hw_format & BITFIELD_BIT(vtx_info->num_channels - 1))) { |
| pipeline->vs_input_state.nontrivial_formats |= BITFIELD_BIT(i); |
| } |
| } |
| } |
| } |
| |
| static struct radv_shader * |
| radv_pipeline_get_streamout_shader(struct radv_graphics_pipeline *pipeline) |
| { |
| int i; |
| |
| for (i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) { |
| struct radv_shader *shader = radv_get_shader(&pipeline->base, i); |
| |
| if (shader && shader->info.so.num_outputs > 0) |
| return shader; |
| } |
| |
| return NULL; |
| } |
| |
| static bool |
| radv_shader_need_indirect_descriptor_sets(struct radv_pipeline *pipeline, gl_shader_stage stage) |
| { |
| struct radv_userdata_info *loc = |
| radv_lookup_user_sgpr(pipeline, stage, AC_UD_INDIRECT_DESCRIPTOR_SETS); |
| return loc->sgpr_idx != -1; |
| } |
| |
| static void |
| radv_pipeline_init_shader_stages_state(struct radv_graphics_pipeline *pipeline) |
| { |
| struct radv_device *device = pipeline->base.device; |
| |
| for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { |
| bool shader_exists = !!pipeline->base.shaders[i]; |
| if (shader_exists || i < MESA_SHADER_COMPUTE) { |
| /* We need this info for some stages even when the shader doesn't exist. */ |
| pipeline->base.user_data_0[i] = radv_pipeline_stage_to_user_data_0( |
| pipeline, i, device->physical_device->rad_info.gfx_level); |
| |
| if (shader_exists) |
| pipeline->base.need_indirect_descriptor_sets |= |
| radv_shader_need_indirect_descriptor_sets(&pipeline->base, i); |
| } |
| } |
| |
| gl_shader_stage first_stage = |
| radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH) ? MESA_SHADER_MESH : MESA_SHADER_VERTEX; |
| |
| struct radv_userdata_info *loc = |
| radv_lookup_user_sgpr(&pipeline->base, first_stage, AC_UD_VS_BASE_VERTEX_START_INSTANCE); |
| if (loc->sgpr_idx != -1) { |
| pipeline->vtx_base_sgpr = pipeline->base.user_data_0[first_stage]; |
| pipeline->vtx_base_sgpr += loc->sgpr_idx * 4; |
| pipeline->vtx_emit_num = loc->num_sgprs; |
| pipeline->uses_drawid = |
| radv_get_shader(&pipeline->base, first_stage)->info.vs.needs_draw_id; |
| pipeline->uses_baseinstance = |
| radv_get_shader(&pipeline->base, first_stage)->info.vs.needs_base_instance; |
| |
| assert(first_stage != MESA_SHADER_MESH || !pipeline->uses_baseinstance); |
| } |
| } |
| |
| static uint32_t |
| radv_pipeline_init_vgt_gs_out(struct radv_graphics_pipeline *pipeline, |
| const struct vk_graphics_pipeline_state *state) |
| { |
| uint32_t gs_out; |
| |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { |
| gs_out = |
| si_conv_gl_prim_to_gs_out(pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim); |
| } else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) { |
| if (pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode) { |
| gs_out = V_028A6C_POINTLIST; |
| } else { |
| gs_out = si_conv_tess_prim_to_gs_out( |
| pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.tes._primitive_mode); |
| } |
| } else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) { |
| gs_out = |
| si_conv_gl_prim_to_gs_out(pipeline->base.shaders[MESA_SHADER_MESH]->info.ms.output_prim); |
| } else { |
| gs_out = si_conv_prim_to_gs_out(si_translate_prim(state->ia->primitive_topology)); |
| } |
| |
| return gs_out; |
| } |
| |
| static void |
| radv_pipeline_init_extra(struct radv_graphics_pipeline *pipeline, |
| const struct radv_graphics_pipeline_create_info *extra, |
| struct radv_blend_state *blend_state, |
| const struct vk_graphics_pipeline_state *state, |
| uint32_t *vgt_gs_out_prim_type) |
| { |
| if (extra->custom_blend_mode == V_028808_CB_ELIMINATE_FAST_CLEAR || |
| extra->custom_blend_mode == V_028808_CB_FMASK_DECOMPRESS || |
| extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX8 || |
| extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX11 || |
| extra->custom_blend_mode == V_028808_CB_RESOLVE) { |
| /* According to the CB spec states, CB_SHADER_MASK should be set to enable writes to all four |
| * channels of MRT0. |
| */ |
| blend_state->cb_shader_mask = 0xf; |
| |
| pipeline->custom_blend_mode = extra->custom_blend_mode; |
| } |
| |
| if (extra->use_rectlist) { |
| struct radv_dynamic_state *dynamic = &pipeline->dynamic_state; |
| dynamic->vk.ia.primitive_topology = V_008958_DI_PT_RECTLIST; |
| |
| *vgt_gs_out_prim_type = V_028A6C_TRISTRIP; |
| if (radv_pipeline_has_ngg(pipeline)) |
| *vgt_gs_out_prim_type = V_028A6C_RECTLIST; |
| |
| pipeline->rast_prim = *vgt_gs_out_prim_type; |
| } |
| |
| if (radv_pipeline_has_ds_attachments(state->rp)) { |
| pipeline->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear); |
| pipeline->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear); |
| pipeline->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->resummarize_enable); |
| pipeline->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->depth_compress_disable); |
| pipeline->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->stencil_compress_disable); |
| } |
| } |
| |
| void |
| radv_pipeline_init(struct radv_device *device, struct radv_pipeline *pipeline, |
| enum radv_pipeline_type type) |
| { |
| vk_object_base_init(&device->vk, &pipeline->base, VK_OBJECT_TYPE_PIPELINE); |
| |
| pipeline->device = device; |
| pipeline->type = type; |
| } |
| |
| static VkResult |
| radv_graphics_pipeline_init(struct radv_graphics_pipeline *pipeline, struct radv_device *device, |
| struct radv_pipeline_cache *cache, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra) |
| { |
| struct radv_pipeline_layout pipeline_layout = {0}; |
| struct vk_graphics_pipeline_state state = {0}; |
| VkResult result; |
| |
| pipeline->last_vgt_api_stage = MESA_SHADER_NONE; |
| |
| const VkPipelineLibraryCreateInfoKHR *libs_info = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR); |
| VkGraphicsPipelineLibraryFlagBitsEXT imported_flags = 0; |
| |
| radv_pipeline_layout_init(device, &pipeline_layout, false); |
| |
| /* If we have libraries, import them first. */ |
| if (libs_info) { |
| const bool link_optimize = |
| (pCreateInfo->flags & VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0; |
| |
| for (uint32_t i = 0; i < libs_info->libraryCount; i++) { |
| RADV_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]); |
| struct radv_graphics_lib_pipeline *gfx_pipeline_lib = |
| radv_pipeline_to_graphics_lib(pipeline_lib); |
| |
| assert(pipeline_lib->type == RADV_PIPELINE_GRAPHICS_LIB); |
| |
| /* If we have link time optimization, all libraries must be created with |
| * VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT. |
| */ |
| assert(!link_optimize || gfx_pipeline_lib->base.base.retain_shaders); |
| |
| radv_graphics_pipeline_import_lib(pipeline, &state, &pipeline_layout, gfx_pipeline_lib, |
| link_optimize); |
| |
| imported_flags |= gfx_pipeline_lib->lib_flags; |
| } |
| } |
| |
| /* Import graphics pipeline info that was not included in the libraries. */ |
| result = radv_pipeline_import_graphics_info(pipeline, &state, &pipeline_layout, pCreateInfo, |
| (~imported_flags) & ALL_GRAPHICS_LIB_FLAGS); |
| if (result != VK_SUCCESS) { |
| radv_pipeline_layout_finish(device, &pipeline_layout); |
| return result; |
| } |
| |
| radv_pipeline_layout_hash(&pipeline_layout); |
| |
| const VkPipelineCreationFeedbackCreateInfo *creation_feedback = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO); |
| |
| struct radv_pipeline_key key = radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, &state); |
| |
| result = radv_create_shaders(&pipeline->base, &pipeline_layout, device, cache, &key, pCreateInfo->pStages, |
| pCreateInfo->stageCount, pCreateInfo->flags, NULL, |
| creation_feedback, NULL, NULL, &pipeline->last_vgt_api_stage); |
| if (result != VK_SUCCESS) { |
| radv_pipeline_layout_finish(device, &pipeline_layout); |
| return result; |
| } |
| |
| uint32_t vgt_gs_out_prim_type = radv_pipeline_init_vgt_gs_out(pipeline, &state); |
| |
| radv_pipeline_init_multisample_state(pipeline, &state, vgt_gs_out_prim_type); |
| |
| if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) |
| radv_pipeline_init_input_assembly_state(pipeline); |
| radv_pipeline_init_dynamic_state(pipeline, &state); |
| |
| struct radv_depth_stencil_state ds_state = |
| radv_pipeline_init_depth_stencil_state(pipeline, &state, pCreateInfo); |
| |
| if (device->physical_device->rad_info.gfx_level >= GFX10_3) |
| gfx103_pipeline_init_vrs_state(pipeline, &state); |
| |
| struct radv_blend_state blend = radv_pipeline_init_blend_state(pipeline, &state, &key); |
| |
| /* Copy the non-compacted SPI_SHADER_COL_FORMAT which is used to emit RBPLUS state. */ |
| pipeline->col_format_non_compacted = blend.spi_shader_col_format; |
| |
| pipeline->mrt0_is_dual_src = key.ps.epilog.mrt0_is_dual_src; |
| |
| struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; |
| bool enable_mrt_compaction = !key.ps.epilog.mrt0_is_dual_src && !ps->info.ps.has_epilog; |
| if (enable_mrt_compaction) { |
| blend.spi_shader_col_format = radv_compact_spi_shader_col_format(ps, &blend); |
| |
| /* In presense of MRT holes (ie. the FS exports MRT1 but not MRT0), the compiler will remap |
| * them, so that only MRT0 is exported and the driver will compact SPI_SHADER_COL_FORMAT to |
| * match what the FS actually exports. Though, to make sure the hw remapping works as |
| * expected, we should also clear color attachments without exports in CB_SHADER_MASK. |
| */ |
| blend.cb_shader_mask &= ps->info.ps.colors_written; |
| } |
| |
| /* Ensure that some export memory is always allocated, for two reasons: |
| * |
| * 1) Correctness: The hardware ignores the EXEC mask if no export |
| * memory is allocated, so KILL and alpha test do not work correctly |
| * without this. |
| * 2) Performance: Every shader needs at least a NULL export, even when |
| * it writes no color/depth output. The NULL export instruction |
| * stalls without this setting. |
| * |
| * Don't add this to CB_SHADER_MASK. |
| * |
| * GFX10 supports pixel shaders without exports by setting both the |
| * color and Z formats to SPI_SHADER_ZERO. The hw will skip export |
| * instructions if any are present. |
| */ |
| if ((device->physical_device->rad_info.gfx_level <= GFX9 || ps->info.ps.can_discard) && |
| !blend.spi_shader_col_format) { |
| if (!ps->info.ps.writes_z && !ps->info.ps.writes_stencil && !ps->info.ps.writes_sample_mask) { |
| blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R; |
| pipeline->col_format_non_compacted = V_028714_SPI_SHADER_32_R; |
| } |
| } |
| |
| if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) && !radv_pipeline_has_ngg(pipeline)) { |
| struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY]; |
| |
| radv_pipeline_init_gs_ring_state(pipeline, &gs->info.gs_ring_info); |
| } |
| |
| if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) |
| radv_pipeline_init_vertex_input_state(pipeline, &state); |
| |
| radv_pipeline_init_shader_stages_state(pipeline); |
| radv_pipeline_init_scratch(device, &pipeline->base); |
| |
| /* Find the last vertex shader stage that eventually uses streamout. */ |
| pipeline->streamout_shader = radv_pipeline_get_streamout_shader(pipeline); |
| |
| pipeline->is_ngg = radv_pipeline_has_ngg(pipeline); |
| pipeline->has_ngg_culling = |
| pipeline->is_ngg && |
| pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.has_ngg_culling; |
| pipeline->force_vrs_per_vertex = |
| pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.force_vrs_per_vertex; |
| pipeline->uses_user_sample_locations = state.ms && state.ms->sample_locations_enable; |
| pipeline->rast_prim = vgt_gs_out_prim_type; |
| pipeline->last_vgt_api_stage_locs = pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.user_sgprs_locs.shader_data; |
| |
| pipeline->base.push_constant_size = pipeline_layout.push_constant_size; |
| pipeline->base.dynamic_offset_count = pipeline_layout.dynamic_offset_count; |
| |
| if (extra) { |
| radv_pipeline_init_extra(pipeline, extra, &blend, &state, &vgt_gs_out_prim_type); |
| } |
| |
| radv_pipeline_emit_pm4(pipeline, &blend, &ds_state, vgt_gs_out_prim_type, &state); |
| |
| radv_pipeline_layout_finish(device, &pipeline_layout); |
| return result; |
| } |
| |
| VkResult |
| radv_graphics_pipeline_create(VkDevice _device, VkPipelineCache _cache, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra, |
| const VkAllocationCallbacks *pAllocator, |
| VkPipeline *pPipeline) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); |
| struct radv_graphics_pipeline *pipeline; |
| VkResult result; |
| |
| pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (pipeline == NULL) |
| return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| radv_pipeline_init(device, &pipeline->base, RADV_PIPELINE_GRAPHICS); |
| |
| result = radv_graphics_pipeline_init(pipeline, device, cache, pCreateInfo, extra); |
| if (result != VK_SUCCESS) { |
| radv_pipeline_destroy(device, &pipeline->base, pAllocator); |
| return result; |
| } |
| |
| *pPipeline = radv_pipeline_to_handle(&pipeline->base); |
| |
| return VK_SUCCESS; |
| } |
| |
| static VkResult |
| radv_graphics_lib_pipeline_init(struct radv_graphics_lib_pipeline *pipeline, |
| struct radv_device *device, struct radv_pipeline_cache *cache, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| VkResult result; |
| |
| const VkGraphicsPipelineLibraryCreateInfoEXT *lib_info = |
| vk_find_struct_const(pCreateInfo->pNext, GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT); |
| const VkGraphicsPipelineLibraryFlagBitsEXT lib_flags = lib_info ? lib_info->flags : 0; |
| const VkPipelineLibraryCreateInfoKHR *libs_info = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR); |
| VkGraphicsPipelineLibraryFlagBitsEXT imported_flags = lib_flags; |
| |
| struct vk_graphics_pipeline_state *state = &pipeline->graphics_state; |
| struct radv_pipeline_layout *pipeline_layout = &pipeline->layout; |
| |
| pipeline->base.last_vgt_api_stage = MESA_SHADER_NONE; |
| pipeline->base.base.retain_shaders = |
| (pCreateInfo->flags & VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT) != 0; |
| pipeline->lib_flags = lib_flags; |
| |
| radv_pipeline_layout_init(device, pipeline_layout, false); |
| |
| /* If we have libraries, import them first. */ |
| if (libs_info) { |
| const bool link_optimize = |
| (pCreateInfo->flags & VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0; |
| |
| for (uint32_t i = 0; i < libs_info->libraryCount; i++) { |
| RADV_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]); |
| struct radv_graphics_lib_pipeline *gfx_pipeline_lib = |
| radv_pipeline_to_graphics_lib(pipeline_lib); |
| |
| radv_graphics_pipeline_import_lib(&pipeline->base, state, pipeline_layout, |
| gfx_pipeline_lib, link_optimize); |
| |
| pipeline->lib_flags |= gfx_pipeline_lib->lib_flags; |
| |
| imported_flags &= ~gfx_pipeline_lib->lib_flags; |
| } |
| } |
| |
| result = radv_pipeline_import_graphics_info(&pipeline->base, state, pipeline_layout, pCreateInfo, |
| imported_flags); |
| if (result != VK_SUCCESS) |
| return result; |
| |
| radv_pipeline_layout_hash(pipeline_layout); |
| |
| /* Compile a PS epilog if the fragment shader output interface is present without the main |
| * fragment shader. |
| */ |
| if ((imported_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT) && |
| !(imported_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT)) { |
| struct radv_ps_epilog_key key = radv_pipeline_generate_ps_epilog_key(&pipeline->base, state, true); |
| |
| pipeline->base.ps_epilog = radv_create_ps_epilog(device, &key); |
| if (!pipeline->base.ps_epilog) |
| return VK_ERROR_OUT_OF_HOST_MEMORY; |
| } |
| |
| if (pipeline->base.active_stages != 0) { |
| const VkPipelineCreationFeedbackCreateInfo *creation_feedback = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO); |
| |
| struct radv_pipeline_key key = |
| radv_generate_graphics_pipeline_key(&pipeline->base, pCreateInfo, state); |
| |
| /* Compile the main FS only when the fragment shader output interface is missing. */ |
| if ((imported_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT) && |
| !(imported_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT)) { |
| key.ps.has_epilog = true; |
| } |
| |
| /* Compile the pre-rasterization stages only when the vertex input interface is missing. */ |
| if ((imported_flags & VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT) && |
| !(imported_flags & VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT)) { |
| key.vs.has_prolog = true; |
| } |
| |
| result = radv_create_shaders(&pipeline->base.base, pipeline_layout, device, cache, &key, |
| pCreateInfo->pStages, pCreateInfo->stageCount, pCreateInfo->flags, |
| NULL, creation_feedback, NULL, NULL, |
| &pipeline->base.last_vgt_api_stage); |
| |
| if (result != VK_SUCCESS) |
| return result; |
| } |
| |
| return VK_SUCCESS; |
| } |
| |
| static VkResult |
| radv_graphics_lib_pipeline_create(VkDevice _device, VkPipelineCache _cache, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline) |
| { |
| RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| struct radv_graphics_lib_pipeline *pipeline; |
| VkResult result; |
| |
| pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (pipeline == NULL) |
| return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| radv_pipeline_init(device, &pipeline->base.base, RADV_PIPELINE_GRAPHICS_LIB); |
| |
| result = radv_graphics_lib_pipeline_init(pipeline, device, cache, pCreateInfo); |
| if (result != VK_SUCCESS) { |
| radv_pipeline_destroy(device, &pipeline->base.base, pAllocator); |
| return result; |
| } |
| |
| *pPipeline = radv_pipeline_to_handle(&pipeline->base.base); |
| |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR VkResult VKAPI_CALL |
| radv_CreateGraphicsPipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count, |
| const VkGraphicsPipelineCreateInfo *pCreateInfos, |
| const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) |
| { |
| VkResult result = VK_SUCCESS; |
| unsigned i = 0; |
| |
| for (; i < count; i++) { |
| VkResult r; |
| if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_LIBRARY_BIT_KHR) { |
| r = radv_graphics_lib_pipeline_create(_device, pipelineCache, &pCreateInfos[i], |
| pAllocator, &pPipelines[i]); |
| } else { |
| r = radv_graphics_pipeline_create(_device, pipelineCache, &pCreateInfos[i], NULL, |
| pAllocator, &pPipelines[i]); |
| } |
| if (r != VK_SUCCESS) { |
| result = r; |
| pPipelines[i] = VK_NULL_HANDLE; |
| |
| if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT) |
| break; |
| } |
| } |
| |
| for (; i < count; ++i) |
| pPipelines[i] = VK_NULL_HANDLE; |
| |
| return result; |
| } |
| |
| void |
| radv_pipeline_emit_hw_cs(const struct radv_physical_device *pdevice, struct radeon_cmdbuf *cs, |
| const struct radv_shader *shader) |
| { |
| uint64_t va = radv_shader_get_va(shader); |
| |
| radeon_set_sh_reg(cs, R_00B830_COMPUTE_PGM_LO, va >> 8); |
| |
| radeon_set_sh_reg_seq(cs, R_00B848_COMPUTE_PGM_RSRC1, 2); |
| radeon_emit(cs, shader->config.rsrc1); |
| radeon_emit(cs, shader->config.rsrc2); |
| if (pdevice->rad_info.gfx_level >= GFX10) { |
| radeon_set_sh_reg(cs, R_00B8A0_COMPUTE_PGM_RSRC3, shader->config.rsrc3); |
| } |
| } |
| |
| void |
| radv_pipeline_emit_compute_state(const struct radv_physical_device *pdevice, |
| struct radeon_cmdbuf *cs, const struct radv_shader *shader) |
| { |
| unsigned threads_per_threadgroup; |
| unsigned threadgroups_per_cu = 1; |
| unsigned waves_per_threadgroup; |
| unsigned max_waves_per_sh = 0; |
| |
| /* Calculate best compute resource limits. */ |
| threads_per_threadgroup = |
| shader->info.cs.block_size[0] * shader->info.cs.block_size[1] * shader->info.cs.block_size[2]; |
| waves_per_threadgroup = DIV_ROUND_UP(threads_per_threadgroup, shader->info.wave_size); |
| |
| if (pdevice->rad_info.gfx_level >= GFX10 && waves_per_threadgroup == 1) |
| threadgroups_per_cu = 2; |
| |
| radeon_set_sh_reg( |
| cs, R_00B854_COMPUTE_RESOURCE_LIMITS, |
| ac_get_compute_resource_limits(&pdevice->rad_info, waves_per_threadgroup, |
| max_waves_per_sh, threadgroups_per_cu)); |
| |
| radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3); |
| radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[0])); |
| radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[1])); |
| radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[2])); |
| } |
| |
| static void |
| radv_compute_generate_pm4(struct radv_compute_pipeline *pipeline) |
| { |
| struct radv_physical_device *pdevice = pipeline->base.device->physical_device; |
| struct radv_shader *shader = pipeline->base.shaders[MESA_SHADER_COMPUTE]; |
| struct radeon_cmdbuf *cs = &pipeline->base.cs; |
| |
| cs->max_dw = pdevice->rad_info.gfx_level >= GFX10 ? 19 : 16; |
| cs->buf = malloc(cs->max_dw * 4); |
| |
| radv_pipeline_emit_hw_cs(pdevice, cs, shader); |
| radv_pipeline_emit_compute_state(pdevice, cs, shader); |
| |
| assert(pipeline->base.cs.cdw <= pipeline->base.cs.max_dw); |
| } |
| |
| static struct radv_pipeline_key |
| radv_generate_compute_pipeline_key(struct radv_compute_pipeline *pipeline, |
| const VkComputePipelineCreateInfo *pCreateInfo) |
| { |
| const VkPipelineShaderStageCreateInfo *stage = &pCreateInfo->stage; |
| struct radv_pipeline_key key = radv_generate_pipeline_key(&pipeline->base, pCreateInfo->flags); |
| |
| const VkPipelineShaderStageRequiredSubgroupSizeCreateInfo *subgroup_size = |
| vk_find_struct_const(stage->pNext, |
| PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO); |
| |
| if (subgroup_size) { |
| assert(subgroup_size->requiredSubgroupSize == 32 || |
| subgroup_size->requiredSubgroupSize == 64); |
| key.cs.compute_subgroup_size = subgroup_size->requiredSubgroupSize; |
| } else if (stage->flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT) { |
| key.cs.require_full_subgroups = true; |
| } |
| |
| return key; |
| } |
| |
| void |
| radv_compute_pipeline_init(struct radv_compute_pipeline *pipeline, |
| const struct radv_pipeline_layout *layout) |
| { |
| const struct radv_device *device = pipeline->base.device; |
| |
| pipeline->base.user_data_0[MESA_SHADER_COMPUTE] = R_00B900_COMPUTE_USER_DATA_0; |
| pipeline->base.need_indirect_descriptor_sets |= |
| radv_shader_need_indirect_descriptor_sets(&pipeline->base, MESA_SHADER_COMPUTE); |
| radv_pipeline_init_scratch(device, &pipeline->base); |
| |
| pipeline->base.push_constant_size = layout->push_constant_size; |
| pipeline->base.dynamic_offset_count = layout->dynamic_offset_count; |
| |
| if (device->physical_device->rad_info.has_cs_regalloc_hang_bug) { |
| struct radv_shader *compute_shader = pipeline->base.shaders[MESA_SHADER_COMPUTE]; |
| unsigned *cs_block_size = compute_shader->info.cs.block_size; |
| |
| pipeline->cs_regalloc_hang_bug = cs_block_size[0] * cs_block_size[1] * cs_block_size[2] > 256; |
| } |
| |
| radv_compute_generate_pm4(pipeline); |
| } |
| |
| VkResult |
| radv_compute_pipeline_create(VkDevice _device, VkPipelineCache _cache, |
| const VkComputePipelineCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); |
| RADV_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->layout); |
| struct radv_compute_pipeline *pipeline; |
| VkResult result; |
| |
| pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (pipeline == NULL) { |
| return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); |
| } |
| |
| radv_pipeline_init(device, &pipeline->base, RADV_PIPELINE_COMPUTE); |
| |
| const VkPipelineCreationFeedbackCreateInfo *creation_feedback = |
| vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO); |
| |
| struct radv_pipeline_key key = radv_generate_compute_pipeline_key(pipeline, pCreateInfo); |
| |
| UNUSED gl_shader_stage last_vgt_api_stage = MESA_SHADER_NONE; |
| result = radv_create_shaders(&pipeline->base, pipeline_layout, device, cache, &key, |
| &pCreateInfo->stage, 1, pCreateInfo->flags, NULL, creation_feedback, |
| NULL, NULL, &last_vgt_api_stage); |
| if (result != VK_SUCCESS) { |
| radv_pipeline_destroy(device, &pipeline->base, pAllocator); |
| return result; |
| } |
| |
| radv_compute_pipeline_init(pipeline, pipeline_layout); |
| |
| *pPipeline = radv_pipeline_to_handle(&pipeline->base); |
| |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR VkResult VKAPI_CALL |
| radv_CreateComputePipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count, |
| const VkComputePipelineCreateInfo *pCreateInfos, |
| const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) |
| { |
| VkResult result = VK_SUCCESS; |
| |
| unsigned i = 0; |
| for (; i < count; i++) { |
| VkResult r; |
| r = radv_compute_pipeline_create(_device, pipelineCache, &pCreateInfos[i], pAllocator, |
| &pPipelines[i]); |
| if (r != VK_SUCCESS) { |
| result = r; |
| pPipelines[i] = VK_NULL_HANDLE; |
| |
| if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT) |
| break; |
| } |
| } |
| |
| for (; i < count; ++i) |
| pPipelines[i] = VK_NULL_HANDLE; |
| |
| return result; |
| } |
| |
| static uint32_t |
| radv_get_executable_count(struct radv_pipeline *pipeline) |
| { |
| uint32_t ret = 0; |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { |
| if (!pipeline->shaders[i]) |
| continue; |
| |
| if (i == MESA_SHADER_GEOMETRY && |
| !radv_pipeline_has_ngg(radv_pipeline_to_graphics(pipeline))) { |
| ret += 2u; |
| } else { |
| ret += 1u; |
| } |
| } |
| return ret; |
| } |
| |
| static struct radv_shader * |
| radv_get_shader_from_executable_index(struct radv_pipeline *pipeline, int index, |
| gl_shader_stage *stage) |
| { |
| for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { |
| if (!pipeline->shaders[i]) |
| continue; |
| if (!index) { |
| *stage = i; |
| return pipeline->shaders[i]; |
| } |
| |
| --index; |
| |
| if (i == MESA_SHADER_GEOMETRY && |
| !radv_pipeline_has_ngg(radv_pipeline_to_graphics(pipeline))) { |
| if (!index) { |
| *stage = i; |
| return pipeline->gs_copy_shader; |
| } |
| --index; |
| } |
| } |
| |
| *stage = -1; |
| return NULL; |
| } |
| |
| /* Basically strlcpy (which does not exist on linux) specialized for |
| * descriptions. */ |
| static void |
| desc_copy(char *desc, const char *src) |
| { |
| int len = strlen(src); |
| assert(len < VK_MAX_DESCRIPTION_SIZE); |
| memcpy(desc, src, len); |
| memset(desc + len, 0, VK_MAX_DESCRIPTION_SIZE - len); |
| } |
| |
| VKAPI_ATTR VkResult VKAPI_CALL |
| radv_GetPipelineExecutablePropertiesKHR(VkDevice _device, const VkPipelineInfoKHR *pPipelineInfo, |
| uint32_t *pExecutableCount, |
| VkPipelineExecutablePropertiesKHR *pProperties) |
| { |
| RADV_FROM_HANDLE(radv_pipeline, pipeline, pPipelineInfo->pipeline); |
| const uint32_t total_count = radv_get_executable_count(pipeline); |
| |
| if (!pProperties) { |
| *pExecutableCount = total_count; |
| return VK_SUCCESS; |
| } |
| |
| const uint32_t count = MIN2(total_count, *pExecutableCount); |
| for (unsigned i = 0, executable_idx = 0; i < MESA_VULKAN_SHADER_STAGES && executable_idx < count; ++i) { |
| if (!pipeline->shaders[i]) |
| continue; |
| pProperties[executable_idx].stages = mesa_to_vk_shader_stage(i); |
| const char *name = NULL; |
| const char *description = NULL; |
| switch (i) { |
| case MESA_SHADER_VERTEX: |
| name = "Vertex Shader"; |
| description = "Vulkan Vertex Shader"; |
| break; |
| case MESA_SHADER_TESS_CTRL: |
| if (!pipeline->shaders[MESA_SHADER_VERTEX]) { |
| pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT; |
| name = "Vertex + Tessellation Control Shaders"; |
| description = "Combined Vulkan Vertex and Tessellation Control Shaders"; |
| } else { |
| name = "Tessellation Control Shader"; |
| description = "Vulkan Tessellation Control Shader"; |
| } |
| break; |
| case MESA_SHADER_TESS_EVAL: |
| name = "Tessellation Evaluation Shader"; |
| description = "Vulkan Tessellation Evaluation Shader"; |
| break; |
| case MESA_SHADER_GEOMETRY: |
| if (pipeline->shaders[MESA_SHADER_TESS_CTRL] && !pipeline->shaders[MESA_SHADER_TESS_EVAL]) { |
| pProperties[executable_idx].stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT; |
| name = "Tessellation Evaluation + Geometry Shaders"; |
| description = "Combined Vulkan Tessellation Evaluation and Geometry Shaders"; |
| } else if (!pipeline->shaders[MESA_SHADER_TESS_CTRL] && !pipeline->shaders[MESA_SHADER_VERTEX]) { |
| pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT; |
| name = "Vertex + Geometry Shader"; |
| description = "Combined Vulkan Vertex and Geometry Shaders"; |
| } else { |
| name = "Geometry Shader"; |
| description = "Vulkan Geometry Shader"; |
| } |
| break; |
| case MESA_SHADER_FRAGMENT: |
| name = "Fragment Shader"; |
| description = "Vulkan Fragment Shader"; |
| break; |
| case MESA_SHADER_COMPUTE: |
| name = "Compute Shader"; |
| description = "Vulkan Compute Shader"; |
| break; |
| case MESA_SHADER_MESH: |
| name = "Mesh Shader"; |
| description = "Vulkan Mesh Shader"; |
| break; |
| case MESA_SHADER_TASK: |
| name = "Task Shader"; |
| description = "Vulkan Task Shader"; |
| break; |
| } |
| |
| pProperties[executable_idx].subgroupSize = pipeline->shaders[i]->info.wave_size; |
| desc_copy(pProperties[executable_idx].name, name); |
| desc_copy(pProperties[executable_idx].description, description); |
| |
| ++executable_idx; |
| if (i == MESA_SHADER_GEOMETRY && |
| !radv_pipeline_has_ngg(radv_pipeline_to_graphics(pipeline))) { |
| assert(pipeline->gs_copy_shader); |
| if (executable_idx >= count) |
| break; |
| |
| pProperties[executable_idx].stages = VK_SHADER_STAGE_GEOMETRY_BIT; |
| pProperties[executable_idx].subgroupSize = 64; |
| desc_copy(pProperties[executable_idx].name, "GS Copy Shader"); |
| desc_copy(pProperties[executable_idx].description, |
| "Extra shader stage that loads the GS output ringbuffer into the rasterizer"); |
| |
| ++executable_idx; |
| } |
| } |
| |
| VkResult result = *pExecutableCount < total_count ? VK_INCOMPLETE : VK_SUCCESS; |
| *pExecutableCount = count; |
| return result; |
| } |
| |
| VKAPI_ATTR VkResult VKAPI_CALL |
| radv_GetPipelineExecutableStatisticsKHR(VkDevice _device, |
| const VkPipelineExecutableInfoKHR *pExecutableInfo, |
| uint32_t *pStatisticCount, |
| VkPipelineExecutableStatisticKHR *pStatistics) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline); |
| gl_shader_stage stage; |
| struct radv_shader *shader = |
| radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage); |
| |
| const struct radv_physical_device *pdevice = device->physical_device; |
| |
| unsigned lds_increment = pdevice->rad_info.gfx_level >= GFX11 && stage == MESA_SHADER_FRAGMENT |
| ? 1024 : pdevice->rad_info.lds_encode_granularity; |
| unsigned max_waves = radv_get_max_waves(device, shader, stage); |
| |
| VkPipelineExecutableStatisticKHR *s = pStatistics; |
| VkPipelineExecutableStatisticKHR *end = s + (pStatistics ? *pStatisticCount : 0); |
| VkResult result = VK_SUCCESS; |
| |
| if (s < end) { |
| desc_copy(s->name, "Driver pipeline hash"); |
| desc_copy(s->description, "Driver pipeline hash used by RGP"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = pipeline->pipeline_hash; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "SGPRs"); |
| desc_copy(s->description, "Number of SGPR registers allocated per subgroup"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->config.num_sgprs; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "VGPRs"); |
| desc_copy(s->description, "Number of VGPR registers allocated per subgroup"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->config.num_vgprs; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "Spilled SGPRs"); |
| desc_copy(s->description, "Number of SGPR registers spilled per subgroup"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->config.spilled_sgprs; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "Spilled VGPRs"); |
| desc_copy(s->description, "Number of VGPR registers spilled per subgroup"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->config.spilled_vgprs; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "Code size"); |
| desc_copy(s->description, "Code size in bytes"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->exec_size; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "LDS size"); |
| desc_copy(s->description, "LDS size in bytes per workgroup"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->config.lds_size * lds_increment; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "Scratch size"); |
| desc_copy(s->description, "Private memory in bytes per subgroup"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->config.scratch_bytes_per_wave; |
| } |
| ++s; |
| |
| if (s < end) { |
| desc_copy(s->name, "Subgroups per SIMD"); |
| desc_copy(s->description, "The maximum number of subgroups in flight on a SIMD unit"); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = max_waves; |
| } |
| ++s; |
| |
| if (shader->statistics) { |
| for (unsigned i = 0; i < aco_num_statistics; i++) { |
| const struct aco_compiler_statistic_info *info = &aco_statistic_infos[i]; |
| if (s < end) { |
| desc_copy(s->name, info->name); |
| desc_copy(s->description, info->desc); |
| s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; |
| s->value.u64 = shader->statistics[i]; |
| } |
| ++s; |
| } |
| } |
| |
| if (!pStatistics) |
| *pStatisticCount = s - pStatistics; |
| else if (s > end) { |
| *pStatisticCount = end - pStatistics; |
| result = VK_INCOMPLETE; |
| } else { |
| *pStatisticCount = s - pStatistics; |
| } |
| |
| return result; |
| } |
| |
| static VkResult |
| radv_copy_representation(void *data, size_t *data_size, const char *src) |
| { |
| size_t total_size = strlen(src) + 1; |
| |
| if (!data) { |
| *data_size = total_size; |
| return VK_SUCCESS; |
| } |
| |
| size_t size = MIN2(total_size, *data_size); |
| |
| memcpy(data, src, size); |
| if (size) |
| *((char *)data + size - 1) = 0; |
| return size < total_size ? VK_INCOMPLETE : VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR VkResult VKAPI_CALL |
| radv_GetPipelineExecutableInternalRepresentationsKHR( |
| VkDevice _device, const VkPipelineExecutableInfoKHR *pExecutableInfo, |
| uint32_t *pInternalRepresentationCount, |
| VkPipelineExecutableInternalRepresentationKHR *pInternalRepresentations) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline); |
| gl_shader_stage stage; |
| struct radv_shader *shader = |
| radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage); |
| |
| VkPipelineExecutableInternalRepresentationKHR *p = pInternalRepresentations; |
| VkPipelineExecutableInternalRepresentationKHR *end = |
| p + (pInternalRepresentations ? *pInternalRepresentationCount : 0); |
| VkResult result = VK_SUCCESS; |
| /* optimized NIR */ |
| if (p < end) { |
| p->isText = true; |
| desc_copy(p->name, "NIR Shader(s)"); |
| desc_copy(p->description, "The optimized NIR shader(s)"); |
| if (radv_copy_representation(p->pData, &p->dataSize, shader->nir_string) != VK_SUCCESS) |
| result = VK_INCOMPLETE; |
| } |
| ++p; |
| |
| /* backend IR */ |
| if (p < end) { |
| p->isText = true; |
| if (radv_use_llvm_for_stage(device, stage)) { |
| desc_copy(p->name, "LLVM IR"); |
| desc_copy(p->description, "The LLVM IR after some optimizations"); |
| } else { |
| desc_copy(p->name, "ACO IR"); |
| desc_copy(p->description, "The ACO IR after some optimizations"); |
| } |
| if (radv_copy_representation(p->pData, &p->dataSize, shader->ir_string) != VK_SUCCESS) |
| result = VK_INCOMPLETE; |
| } |
| ++p; |
| |
| /* Disassembler */ |
| if (p < end && shader->disasm_string) { |
| p->isText = true; |
| desc_copy(p->name, "Assembly"); |
| desc_copy(p->description, "Final Assembly"); |
| if (radv_copy_representation(p->pData, &p->dataSize, shader->disasm_string) != VK_SUCCESS) |
| result = VK_INCOMPLETE; |
| } |
| ++p; |
| |
| if (!pInternalRepresentations) |
| *pInternalRepresentationCount = p - pInternalRepresentations; |
| else if (p > end) { |
| result = VK_INCOMPLETE; |
| *pInternalRepresentationCount = end - pInternalRepresentations; |
| } else { |
| *pInternalRepresentationCount = p - pInternalRepresentations; |
| } |
| |
| return result; |
| } |