blob: e22fef1e68be64a95b9b1ffe01ab2050c731ffeb [file] [log] [blame]
/*
* Copyright (C) 2015-2018 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include "ir3_compiler.h"
#include "ir3_context.h"
#include "ir3_image.h"
#include "ir3_shader.h"
#include "ir3_nir.h"
struct ir3_context *
ir3_context_init(struct ir3_compiler *compiler,
struct ir3_shader_variant *so)
{
struct ir3_context *ctx = rzalloc(NULL, struct ir3_context);
if (compiler->gpu_id >= 400) {
if (so->type == MESA_SHADER_VERTEX) {
ctx->astc_srgb = so->key.vastc_srgb;
} else if (so->type == MESA_SHADER_FRAGMENT) {
ctx->astc_srgb = so->key.fastc_srgb;
}
} else {
if (so->type == MESA_SHADER_VERTEX) {
ctx->samples = so->key.vsamples;
} else if (so->type == MESA_SHADER_FRAGMENT) {
ctx->samples = so->key.fsamples;
}
}
if (compiler->gpu_id >= 600) {
ctx->funcs = &ir3_a6xx_funcs;
} else if (compiler->gpu_id >= 400) {
ctx->funcs = &ir3_a4xx_funcs;
}
ctx->compiler = compiler;
ctx->so = so;
ctx->def_ht = _mesa_hash_table_create(ctx,
_mesa_hash_pointer, _mesa_key_pointer_equal);
ctx->block_ht = _mesa_hash_table_create(ctx,
_mesa_hash_pointer, _mesa_key_pointer_equal);
ctx->sel_cond_conversions = _mesa_hash_table_create(ctx,
_mesa_hash_pointer, _mesa_key_pointer_equal);
/* TODO: maybe generate some sort of bitmask of what key
* lowers vs what shader has (ie. no need to lower
* texture clamp lowering if no texture sample instrs)..
* although should be done further up the stack to avoid
* creating duplicate variants..
*/
ctx->s = nir_shader_clone(ctx, so->shader->nir);
ir3_nir_lower_variant(so, ctx->s);
/* this needs to be the last pass run, so do this here instead of
* in ir3_optimize_nir():
*/
bool progress = false;
NIR_PASS(progress, ctx->s, nir_lower_locals_to_regs);
/* we could need cleanup after lower_locals_to_regs */
while (progress) {
progress = false;
NIR_PASS(progress, ctx->s, nir_opt_algebraic);
NIR_PASS(progress, ctx->s, nir_opt_constant_folding);
}
/* We want to lower nir_op_imul as late as possible, to catch also
* those generated by earlier passes (e.g, nir_lower_locals_to_regs).
* However, we want a final swing of a few passes to have a chance
* at optimizing the result.
*/
progress = false;
NIR_PASS(progress, ctx->s, ir3_nir_lower_imul);
while (progress) {
progress = false;
NIR_PASS(progress, ctx->s, nir_opt_algebraic);
NIR_PASS(progress, ctx->s, nir_opt_copy_prop_vars);
NIR_PASS(progress, ctx->s, nir_opt_dead_write_vars);
NIR_PASS(progress, ctx->s, nir_opt_dce);
NIR_PASS(progress, ctx->s, nir_opt_constant_folding);
}
/* Enable the texture pre-fetch feature only a4xx onwards. But
* only enable it on generations that have been tested:
*/
if ((so->type == MESA_SHADER_FRAGMENT) && (compiler->gpu_id >= 600))
NIR_PASS_V(ctx->s, ir3_nir_lower_tex_prefetch);
NIR_PASS_V(ctx->s, nir_convert_from_ssa, true);
/* Super crude heuristic to limit # of tex prefetch in small
* shaders. This completely ignores loops.. but that's really
* not the worst of it's problems. (A frag shader that has
* loops is probably going to be big enough to not trigger a
* lower threshold.)
*
* 1) probably want to do this in terms of ir3 instructions
* 2) probably really want to decide this after scheduling
* (or at least pre-RA sched) so we have a rough idea about
* nops, and don't count things that get cp'd away
* 3) blob seems to use higher thresholds with a mix of more
* SFU instructions. Which partly makes sense, more SFU
* instructions probably means you want to get the real
* shader started sooner, but that considers where in the
* shader the SFU instructions are, which blob doesn't seem
* to do.
*
* This uses more conservative thresholds assuming a more alu
* than sfu heavy instruction mix.
*/
if (so->type == MESA_SHADER_FRAGMENT) {
nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s);
unsigned instruction_count = 0;
nir_foreach_block (block, fxn) {
instruction_count += exec_list_length(&block->instr_list);
}
if (instruction_count < 50) {
ctx->prefetch_limit = 2;
} else if (instruction_count < 70) {
ctx->prefetch_limit = 3;
} else {
ctx->prefetch_limit = IR3_MAX_SAMPLER_PREFETCH;
}
}
if (shader_debug_enabled(so->type)) {
fprintf(stdout, "NIR (final form) for %s shader %s:\n",
ir3_shader_stage(so), so->shader->nir->info.name);
nir_print_shader(ctx->s, stdout);
}
ir3_ibo_mapping_init(&so->image_mapping, ctx->s->info.num_textures);
return ctx;
}
void
ir3_context_free(struct ir3_context *ctx)
{
ralloc_free(ctx);
}
/*
* Misc helpers
*/
/* allocate a n element value array (to be populated by caller) and
* insert in def_ht
*/
struct ir3_instruction **
ir3_get_dst_ssa(struct ir3_context *ctx, nir_ssa_def *dst, unsigned n)
{
struct ir3_instruction **value =
ralloc_array(ctx->def_ht, struct ir3_instruction *, n);
_mesa_hash_table_insert(ctx->def_ht, dst, value);
return value;
}
struct ir3_instruction **
ir3_get_dst(struct ir3_context *ctx, nir_dest *dst, unsigned n)
{
struct ir3_instruction **value;
if (dst->is_ssa) {
value = ir3_get_dst_ssa(ctx, &dst->ssa, n);
} else {
value = ralloc_array(ctx, struct ir3_instruction *, n);
}
/* NOTE: in non-ssa case, we don't really need to store last_dst
* but this helps us catch cases where put_dst() call is forgotten
*/
compile_assert(ctx, !ctx->last_dst);
ctx->last_dst = value;
ctx->last_dst_n = n;
return value;
}
struct ir3_instruction * const *
ir3_get_src(struct ir3_context *ctx, nir_src *src)
{
if (src->is_ssa) {
struct hash_entry *entry;
entry = _mesa_hash_table_search(ctx->def_ht, src->ssa);
compile_assert(ctx, entry);
return entry->data;
} else {
nir_register *reg = src->reg.reg;
struct ir3_array *arr = ir3_get_array(ctx, reg);
unsigned num_components = arr->r->num_components;
struct ir3_instruction *addr = NULL;
struct ir3_instruction **value =
ralloc_array(ctx, struct ir3_instruction *, num_components);
if (src->reg.indirect)
addr = ir3_get_addr0(ctx, ir3_get_src(ctx, src->reg.indirect)[0],
reg->num_components);
for (unsigned i = 0; i < num_components; i++) {
unsigned n = src->reg.base_offset * reg->num_components + i;
compile_assert(ctx, n < arr->length);
value[i] = ir3_create_array_load(ctx, arr, n, addr);
}
return value;
}
}
void
ir3_put_dst(struct ir3_context *ctx, nir_dest *dst)
{
unsigned bit_size = nir_dest_bit_size(*dst);
/* add extra mov if dst value is HIGH reg.. in some cases not all
* instructions can read from HIGH regs, in cases where they can
* ir3_cp will clean up the extra mov:
*/
for (unsigned i = 0; i < ctx->last_dst_n; i++) {
if (!ctx->last_dst[i])
continue;
if (ctx->last_dst[i]->regs[0]->flags & IR3_REG_HIGH) {
ctx->last_dst[i] = ir3_MOV(ctx->block, ctx->last_dst[i], TYPE_U32);
}
}
/* Note: 1-bit bools are stored in 32-bit regs */
if (bit_size == 16) {
for (unsigned i = 0; i < ctx->last_dst_n; i++) {
struct ir3_instruction *dst = ctx->last_dst[i];
ir3_set_dst_type(dst, true);
ir3_fixup_src_type(dst);
if (dst->opc == OPC_META_SPLIT) {
ir3_set_dst_type(ssa(dst->regs[1]), true);
ir3_fixup_src_type(ssa(dst->regs[1]));
dst->regs[1]->flags |= IR3_REG_HALF;
}
}
}
if (!dst->is_ssa) {
nir_register *reg = dst->reg.reg;
struct ir3_array *arr = ir3_get_array(ctx, reg);
unsigned num_components = ctx->last_dst_n;
struct ir3_instruction *addr = NULL;
if (dst->reg.indirect)
addr = ir3_get_addr0(ctx, ir3_get_src(ctx, dst->reg.indirect)[0],
reg->num_components);
for (unsigned i = 0; i < num_components; i++) {
unsigned n = dst->reg.base_offset * reg->num_components + i;
compile_assert(ctx, n < arr->length);
if (!ctx->last_dst[i])
continue;
ir3_create_array_store(ctx, arr, n, ctx->last_dst[i], addr);
}
ralloc_free(ctx->last_dst);
}
ctx->last_dst = NULL;
ctx->last_dst_n = 0;
}
static unsigned
dest_flags(struct ir3_instruction *instr)
{
return instr->regs[0]->flags & (IR3_REG_HALF | IR3_REG_HIGH);
}
struct ir3_instruction *
ir3_create_collect(struct ir3_context *ctx, struct ir3_instruction *const *arr,
unsigned arrsz)
{
struct ir3_block *block = ctx->block;
struct ir3_instruction *collect;
if (arrsz == 0)
return NULL;
unsigned flags = dest_flags(arr[0]);
collect = ir3_instr_create2(block, OPC_META_COLLECT, 1 + arrsz);
__ssa_dst(collect)->flags |= flags;
for (unsigned i = 0; i < arrsz; i++) {
struct ir3_instruction *elem = arr[i];
/* Since arrays are pre-colored in RA, we can't assume that
* things will end up in the right place. (Ie. if a collect
* joins elements from two different arrays.) So insert an
* extra mov.
*
* We could possibly skip this if all the collected elements
* are contiguous elements in a single array.. not sure how
* likely that is to happen.
*
* Fixes a problem with glamor shaders, that in effect do
* something like:
*
* if (foo)
* texcoord = ..
* else
* texcoord = ..
* color = texture2D(tex, texcoord);
*
* In this case, texcoord will end up as nir registers (which
* translate to ir3 array's of length 1. And we can't assume
* the two (or more) arrays will get allocated in consecutive
* scalar registers.
*
*/
if (elem->regs[0]->flags & IR3_REG_ARRAY) {
type_t type = (flags & IR3_REG_HALF) ? TYPE_U16 : TYPE_U32;
elem = ir3_MOV(block, elem, type);
}
compile_assert(ctx, dest_flags(elem) == flags);
__ssa_src(collect, elem, flags);
}
collect->regs[0]->wrmask = MASK(arrsz);
return collect;
}
/* helper for instructions that produce multiple consecutive scalar
* outputs which need to have a split meta instruction inserted
*/
void
ir3_split_dest(struct ir3_block *block, struct ir3_instruction **dst,
struct ir3_instruction *src, unsigned base, unsigned n)
{
struct ir3_instruction *prev = NULL;
if ((n == 1) && (src->regs[0]->wrmask == 0x1) &&
/* setup_input needs ir3_split_dest to generate a SPLIT instruction */
src->opc != OPC_META_INPUT) {
dst[0] = src;
return;
}
if (src->opc == OPC_META_COLLECT) {
debug_assert((base + n) < src->regs_count);
for (int i = 0; i < n; i++) {
dst[i] = ssa(src->regs[i + base + 1]);
}
return;
}
unsigned flags = dest_flags(src);
for (int i = 0, j = 0; i < n; i++) {
struct ir3_instruction *split =
ir3_instr_create(block, OPC_META_SPLIT);
__ssa_dst(split)->flags |= flags;
__ssa_src(split, src, flags);
split->split.off = i + base;
if (prev) {
split->cp.left = prev;
split->cp.left_cnt++;
prev->cp.right = split;
prev->cp.right_cnt++;
}
prev = split;
if (src->regs[0]->wrmask & (1 << (i + base)))
dst[j++] = split;
}
}
NORETURN void
ir3_context_error(struct ir3_context *ctx, const char *format, ...)
{
struct hash_table *errors = NULL;
va_list ap;
va_start(ap, format);
if (ctx->cur_instr) {
errors = _mesa_hash_table_create(NULL,
_mesa_hash_pointer,
_mesa_key_pointer_equal);
char *msg = ralloc_vasprintf(errors, format, ap);
_mesa_hash_table_insert(errors, ctx->cur_instr, msg);
} else {
_debug_vprintf(format, ap);
}
va_end(ap);
nir_print_shader_annotated(ctx->s, stdout, errors);
ralloc_free(errors);
ctx->error = true;
unreachable("");
}
static struct ir3_instruction *
create_addr0(struct ir3_block *block, struct ir3_instruction *src, int align)
{
struct ir3_instruction *instr, *immed;
instr = ir3_COV(block, src, TYPE_U32, TYPE_S16);
switch(align){
case 1:
/* src *= 1: */
break;
case 2:
/* src *= 2 => src <<= 1: */
immed = create_immed_typed(block, 1, TYPE_S16);
instr = ir3_SHL_B(block, instr, 0, immed, 0);
break;
case 3:
/* src *= 3: */
immed = create_immed_typed(block, 3, TYPE_S16);
instr = ir3_MULL_U(block, instr, 0, immed, 0);
break;
case 4:
/* src *= 4 => src <<= 2: */
immed = create_immed_typed(block, 2, TYPE_S16);
instr = ir3_SHL_B(block, instr, 0, immed, 0);
break;
default:
unreachable("bad align");
return NULL;
}
instr->regs[0]->flags |= IR3_REG_HALF;
instr = ir3_MOV(block, instr, TYPE_S16);
instr->regs[0]->num = regid(REG_A0, 0);
instr->regs[0]->flags &= ~IR3_REG_SSA;
return instr;
}
static struct ir3_instruction *
create_addr1(struct ir3_block *block, unsigned const_val)
{
struct ir3_instruction *immed = create_immed_typed(block, const_val, TYPE_S16);
struct ir3_instruction *instr = ir3_MOV(block, immed, TYPE_S16);
instr->regs[0]->num = regid(REG_A0, 1);
instr->regs[0]->flags &= ~IR3_REG_SSA;
return instr;
}
/* caches addr values to avoid generating multiple cov/shl/mova
* sequences for each use of a given NIR level src as address
*/
struct ir3_instruction *
ir3_get_addr0(struct ir3_context *ctx, struct ir3_instruction *src, int align)
{
struct ir3_instruction *addr;
unsigned idx = align - 1;
compile_assert(ctx, idx < ARRAY_SIZE(ctx->addr0_ht));
if (!ctx->addr0_ht[idx]) {
ctx->addr0_ht[idx] = _mesa_hash_table_create(ctx,
_mesa_hash_pointer, _mesa_key_pointer_equal);
} else {
struct hash_entry *entry;
entry = _mesa_hash_table_search(ctx->addr0_ht[idx], src);
if (entry)
return entry->data;
}
addr = create_addr0(ctx->block, src, align);
_mesa_hash_table_insert(ctx->addr0_ht[idx], src, addr);
return addr;
}
/* Similar to ir3_get_addr0, but for a1.x. */
struct ir3_instruction *
ir3_get_addr1(struct ir3_context *ctx, unsigned const_val)
{
struct ir3_instruction *addr;
if (!ctx->addr1_ht) {
ctx->addr1_ht = _mesa_hash_table_u64_create(ctx);
} else {
addr = _mesa_hash_table_u64_search(ctx->addr1_ht, const_val);
if (addr)
return addr;
}
addr = create_addr1(ctx->block, const_val);
_mesa_hash_table_u64_insert(ctx->addr1_ht, const_val, addr);
return addr;
}
struct ir3_instruction *
ir3_get_predicate(struct ir3_context *ctx, struct ir3_instruction *src)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction *cond;
/* NOTE: only cmps.*.* can write p0.x: */
cond = ir3_CMPS_S(b, src, 0, create_immed(b, 0), 0);
cond->cat2.condition = IR3_COND_NE;
/* condition always goes in predicate register: */
cond->regs[0]->num = regid(REG_P0, 0);
cond->regs[0]->flags &= ~IR3_REG_SSA;
return cond;
}
/*
* Array helpers
*/
void
ir3_declare_array(struct ir3_context *ctx, nir_register *reg)
{
struct ir3_array *arr = rzalloc(ctx, struct ir3_array);
arr->id = ++ctx->num_arrays;
/* NOTE: sometimes we get non array regs, for example for arrays of
* length 1. See fs-const-array-of-struct-of-array.shader_test. So
* treat a non-array as if it was an array of length 1.
*
* It would be nice if there was a nir pass to convert arrays of
* length 1 to ssa.
*/
arr->length = reg->num_components * MAX2(1, reg->num_array_elems);
compile_assert(ctx, arr->length > 0);
arr->r = reg;
arr->half = reg->bit_size <= 16;
// HACK one-bit bools still end up as 32b:
if (reg->bit_size == 1)
arr->half = false;
list_addtail(&arr->node, &ctx->ir->array_list);
}
struct ir3_array *
ir3_get_array(struct ir3_context *ctx, nir_register *reg)
{
foreach_array (arr, &ctx->ir->array_list) {
if (arr->r == reg)
return arr;
}
ir3_context_error(ctx, "bogus reg: %s\n", reg->name);
return NULL;
}
/* relative (indirect) if address!=NULL */
struct ir3_instruction *
ir3_create_array_load(struct ir3_context *ctx, struct ir3_array *arr, int n,
struct ir3_instruction *address)
{
struct ir3_block *block = ctx->block;
struct ir3_instruction *mov;
struct ir3_register *src;
unsigned flags = 0;
mov = ir3_instr_create(block, OPC_MOV);
if (arr->half) {
mov->cat1.src_type = TYPE_U16;
mov->cat1.dst_type = TYPE_U16;
flags |= IR3_REG_HALF;
} else {
mov->cat1.src_type = TYPE_U32;
mov->cat1.dst_type = TYPE_U32;
}
mov->barrier_class = IR3_BARRIER_ARRAY_R;
mov->barrier_conflict = IR3_BARRIER_ARRAY_W;
__ssa_dst(mov)->flags |= flags;
src = ir3_reg_create(mov, 0, IR3_REG_ARRAY |
COND(address, IR3_REG_RELATIV) | flags);
src->instr = arr->last_write;
src->size = arr->length;
src->array.id = arr->id;
src->array.offset = n;
if (address)
ir3_instr_set_address(mov, address);
return mov;
}
/* relative (indirect) if address!=NULL */
void
ir3_create_array_store(struct ir3_context *ctx, struct ir3_array *arr, int n,
struct ir3_instruction *src, struct ir3_instruction *address)
{
struct ir3_block *block = ctx->block;
struct ir3_instruction *mov;
struct ir3_register *dst;
unsigned flags = 0;
/* if not relative store, don't create an extra mov, since that
* ends up being difficult for cp to remove.
*
* Also, don't skip the mov if the src is meta (like fanout/split),
* since that creates a situation that RA can't really handle properly.
*/
if (!address && !is_meta(src)) {
dst = src->regs[0];
src->barrier_class |= IR3_BARRIER_ARRAY_W;
src->barrier_conflict |= IR3_BARRIER_ARRAY_R | IR3_BARRIER_ARRAY_W;
dst->flags |= IR3_REG_ARRAY;
dst->instr = arr->last_write;
dst->size = arr->length;
dst->array.id = arr->id;
dst->array.offset = n;
arr->last_write = src;
array_insert(block, block->keeps, src);
return;
}
mov = ir3_instr_create(block, OPC_MOV);
if (arr->half) {
mov->cat1.src_type = TYPE_U16;
mov->cat1.dst_type = TYPE_U16;
flags |= IR3_REG_HALF;
} else {
mov->cat1.src_type = TYPE_U32;
mov->cat1.dst_type = TYPE_U32;
}
mov->barrier_class = IR3_BARRIER_ARRAY_W;
mov->barrier_conflict = IR3_BARRIER_ARRAY_R | IR3_BARRIER_ARRAY_W;
dst = ir3_reg_create(mov, 0, IR3_REG_ARRAY |
flags |
COND(address, IR3_REG_RELATIV));
dst->instr = arr->last_write;
dst->size = arr->length;
dst->array.id = arr->id;
dst->array.offset = n;
ir3_reg_create(mov, 0, IR3_REG_SSA | flags)->instr = src;
if (address)
ir3_instr_set_address(mov, address);
arr->last_write = mov;
/* the array store may only matter to something in an earlier
* block (ie. loops), but since arrays are not in SSA, depth
* pass won't know this.. so keep all array stores:
*/
array_insert(block, block->keeps, mov);
}