blob: 486bb38e049381b56c350158651ec0c75ac0a8c6 [file] [log] [blame]
/*
* Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "compiler.h"
#include "midgard_ops.h"
#include "util/u_memory.h"
#include "util/register_allocate.h"
/* Create a mask of accessed components from a swizzle to figure out vector
* dependencies */
static unsigned
swizzle_to_access_mask(unsigned swizzle)
{
unsigned component_mask = 0;
for (int i = 0; i < 4; ++i) {
unsigned c = (swizzle >> (2 * i)) & 3;
component_mask |= (1 << c);
}
return component_mask;
}
/* Does the mask cover more than a scalar? */
static bool
is_single_component_mask(unsigned mask)
{
int components = 0;
for (int c = 0; c < 8; ++c) {
if (mask & (1 << c))
components++;
}
return components == 1;
}
/* Checks for an SSA data hazard between two adjacent instructions, keeping in
* mind that we are a vector architecture and we can write to different
* components simultaneously */
static bool
can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
{
/* Each instruction reads some registers and writes to a register. See
* where the first writes */
/* Figure out where exactly we wrote to */
int source = first->ssa_args.dest;
int source_mask = first->mask;
/* As long as the second doesn't read from the first, we're okay */
for (unsigned i = 0; i < ARRAY_SIZE(second->ssa_args.src); ++i) {
if (second->ssa_args.src[i] != source)
continue;
if (first->type != TAG_ALU_4)
return false;
/* Figure out which components we just read from */
int q = (i == 0) ? second->alu.src1 : second->alu.src2;
midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
/* Check if there are components in common, and fail if so */
if (swizzle_to_access_mask(m->swizzle) & source_mask)
return false;
}
/* Otherwise, it's safe in that regard. Another data hazard is both
* writing to the same place, of course */
if (second->ssa_args.dest == source) {
/* ...but only if the components overlap */
if (second->mask & source_mask)
return false;
}
/* ...That's it */
return true;
}
static bool
midgard_has_hazard(
midgard_instruction **segment, unsigned segment_size,
midgard_instruction *ains)
{
for (int s = 0; s < segment_size; ++s)
if (!can_run_concurrent_ssa(segment[s], ains))
return true;
return false;
}
/* Fragment writeout (of r0) is allowed when:
*
* - All components of r0 are written in the bundle
* - No components of r0 are written in VLUT
* - Non-pipelined dependencies of r0 are not written in the bundle
*
* This function checks if these requirements are satisfied given the content
* of a scheduled bundle.
*/
static bool
can_writeout_fragment(compiler_context *ctx, midgard_instruction **bundle, unsigned count, unsigned node_count)
{
/* First scan for which components of r0 are written out. Initially
* none are written */
uint8_t r0_written_mask = 0x0;
/* Simultaneously we scan for the set of dependencies */
BITSET_WORD *dependencies = calloc(sizeof(BITSET_WORD), BITSET_WORDS(node_count));
for (unsigned i = 0; i < count; ++i) {
midgard_instruction *ins = bundle[i];
if (ins->ssa_args.dest != SSA_FIXED_REGISTER(0))
continue;
/* Record written out mask */
r0_written_mask |= ins->mask;
/* Record dependencies, but only if they won't become pipeline
* registers. We know we can't be live after this, because
* we're writeout at the very end of the shader. So check if
* they were written before us. */
unsigned src0 = ins->ssa_args.src[0];
unsigned src1 = ins->ssa_args.src[1];
if (!mir_is_written_before(ctx, bundle[0], src0))
src0 = -1;
if (!mir_is_written_before(ctx, bundle[0], src1))
src1 = -1;
if ((src0 > 0) && (src0 < node_count))
BITSET_SET(dependencies, src0);
if ((src1 > 0) && (src1 < node_count))
BITSET_SET(dependencies, src1);
/* Requirement 2 */
if (ins->unit == UNIT_VLUT)
return false;
}
/* Requirement 1 */
if ((r0_written_mask & 0xF) != 0xF)
return false;
/* Requirement 3 */
for (unsigned i = 0; i < count; ++i) {
unsigned dest = bundle[i]->ssa_args.dest;
if (dest < node_count && BITSET_TEST(dependencies, dest))
return false;
}
/* Otherwise, we're good to go */
return true;
}
/* Schedules, but does not emit, a single basic block. After scheduling, the
* final tag and size of the block are known, which are necessary for branching
* */
static midgard_bundle
schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
{
int instructions_emitted = 0, packed_idx = 0;
midgard_bundle bundle = { 0 };
midgard_instruction *scheduled[5] = { NULL };
uint8_t tag = ins->type;
/* Default to the instruction's tag */
bundle.tag = tag;
switch (ins->type) {
case TAG_ALU_4: {
uint32_t control = 0;
size_t bytes_emitted = sizeof(control);
/* TODO: Constant combining */
int index = 0, last_unit = 0;
/* Previous instructions, for the purpose of parallelism */
midgard_instruction *segment[4] = {0};
int segment_size = 0;
instructions_emitted = -1;
midgard_instruction *pins = ins;
unsigned constant_count = 0;
for (;;) {
midgard_instruction *ains = pins;
/* Advance instruction pointer */
if (index) {
ains = mir_next_op(pins);
pins = ains;
}
/* Out-of-work condition */
if ((struct list_head *) ains == &block->instructions)
break;
/* Ensure that the chain can continue */
if (ains->type != TAG_ALU_4) break;
/* If there's already something in the bundle and we
* have weird scheduler constraints, break now */
if (ains->precede_break && index) break;
/* According to the presentation "The ARM
* Mali-T880 Mobile GPU" from HotChips 27,
* there are two pipeline stages. Branching
* position determined experimentally. Lines
* are executed in parallel:
*
* [ VMUL ] [ SADD ]
* [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
*
* Verify that there are no ordering dependencies here.
*
* TODO: Allow for parallelism!!!
*/
/* Pick a unit for it if it doesn't force a particular unit */
int unit = ains->unit;
if (!unit) {
int op = ains->alu.op;
int units = alu_opcode_props[op].props;
bool scalarable = units & UNITS_SCALAR;
bool could_scalar = is_single_component_mask(ains->mask);
/* Only 16/32-bit can run on a scalar unit */
could_scalar &= ains->alu.reg_mode != midgard_reg_mode_8;
could_scalar &= ains->alu.reg_mode != midgard_reg_mode_64;
could_scalar &= ains->alu.dest_override == midgard_dest_override_none;
if (ains->alu.reg_mode == midgard_reg_mode_16) {
/* If we're running in 16-bit mode, we
* can't have any 8-bit sources on the
* scalar unit (since the scalar unit
* doesn't understand 8-bit) */
midgard_vector_alu_src s1 =
vector_alu_from_unsigned(ains->alu.src1);
could_scalar &= !s1.half;
midgard_vector_alu_src s2 =
vector_alu_from_unsigned(ains->alu.src2);
could_scalar &= !s2.half;
}
bool scalar = could_scalar && scalarable;
/* TODO: Check ahead-of-time for other scalar
* hazards that otherwise get aborted out */
if (scalar)
assert(units & UNITS_SCALAR);
if (!scalar) {
if (last_unit >= UNIT_VADD) {
if (units & UNIT_VLUT)
unit = UNIT_VLUT;
else
break;
} else {
if ((units & UNIT_VMUL) && last_unit < UNIT_VMUL)
unit = UNIT_VMUL;
else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
unit = UNIT_VADD;
else if (units & UNIT_VLUT)
unit = UNIT_VLUT;
else
break;
}
} else {
if (last_unit >= UNIT_VADD) {
if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
unit = UNIT_SMUL;
else if (units & UNIT_VLUT)
unit = UNIT_VLUT;
else
break;
} else {
if ((units & UNIT_VMUL) && (last_unit < UNIT_VMUL))
unit = UNIT_VMUL;
else if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
unit = UNIT_SADD;
else if (units & UNIT_VADD)
unit = UNIT_VADD;
else if (units & UNIT_SMUL)
unit = UNIT_SMUL;
else if (units & UNIT_VLUT)
unit = UNIT_VLUT;
else
break;
}
}
assert(unit & units);
}
/* Late unit check, this time for encoding (not parallelism) */
if (unit <= last_unit) break;
/* Clear the segment */
if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
segment_size = 0;
if (midgard_has_hazard(segment, segment_size, ains))
break;
/* We're good to go -- emit the instruction */
ains->unit = unit;
segment[segment_size++] = ains;
/* We try to reuse constants if possible, by adjusting
* the swizzle */
if (ains->has_blend_constant) {
/* Everything conflicts with the blend constant */
if (bundle.has_embedded_constants)
break;
bundle.has_blend_constant = 1;
bundle.has_embedded_constants = 1;
} else if (ains->has_constants && ains->alu.reg_mode == midgard_reg_mode_16) {
/* TODO: DRY with the analysis pass */
if (bundle.has_blend_constant)
break;
if (constant_count)
break;
/* TODO: Fix packing XXX */
uint16_t *bundles = (uint16_t *) bundle.constants;
uint32_t *constants = (uint32_t *) ains->constants;
/* Copy them wholesale */
for (unsigned i = 0; i < 4; ++i)
bundles[i] = constants[i];
bundle.has_embedded_constants = true;
constant_count = 4;
} else if (ains->has_constants) {
/* By definition, blend constants conflict with
* everything, so if there are already
* constants we break the bundle *now* */
if (bundle.has_blend_constant)
break;
/* For anything but blend constants, we can do
* proper analysis, however */
/* TODO: Mask by which are used */
uint32_t *constants = (uint32_t *) ains->constants;
uint32_t *bundles = (uint32_t *) bundle.constants;
uint32_t indices[4] = { 0 };
bool break_bundle = false;
for (unsigned i = 0; i < 4; ++i) {
uint32_t cons = constants[i];
bool constant_found = false;
/* Search for the constant */
for (unsigned j = 0; j < constant_count; ++j) {
if (bundles[j] != cons)
continue;
/* We found it, reuse */
indices[i] = j;
constant_found = true;
break;
}
if (constant_found)
continue;
/* We didn't find it, so allocate it */
unsigned idx = constant_count++;
if (idx >= 4) {
/* Uh-oh, out of space */
break_bundle = true;
break;
}
/* We have space, copy it in! */
bundles[idx] = cons;
indices[i] = idx;
}
if (break_bundle)
break;
/* Cool, we have it in. So use indices as a
* swizzle */
unsigned swizzle = SWIZZLE_FROM_ARRAY(indices);
unsigned r_constant = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
if (ains->ssa_args.src[0] == r_constant)
ains->alu.src1 = vector_alu_apply_swizzle(ains->alu.src1, swizzle);
if (ains->ssa_args.src[1] == r_constant)
ains->alu.src2 = vector_alu_apply_swizzle(ains->alu.src2, swizzle);
bundle.has_embedded_constants = true;
}
if (ains->unit & UNITS_ANY_VECTOR) {
bytes_emitted += sizeof(midgard_reg_info);
bytes_emitted += sizeof(midgard_vector_alu);
} else if (ains->compact_branch) {
/* All of r0 has to be written out along with
* the branch writeout */
if (ains->writeout && !can_writeout_fragment(ctx, scheduled, index, ctx->temp_count)) {
/* We only work on full moves
* at the beginning. We could
* probably do better */
if (index != 0)
break;
/* Inject a move */
midgard_instruction ins = v_mov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
ins.unit = UNIT_VMUL;
control |= ins.unit;
/* TODO don't leak */
midgard_instruction *move =
mem_dup(&ins, sizeof(midgard_instruction));
bytes_emitted += sizeof(midgard_reg_info);
bytes_emitted += sizeof(midgard_vector_alu);
bundle.instructions[packed_idx++] = move;
}
if (ains->unit == ALU_ENAB_BRANCH) {
bytes_emitted += sizeof(midgard_branch_extended);
} else {
bytes_emitted += sizeof(ains->br_compact);
}
} else {
bytes_emitted += sizeof(midgard_reg_info);
bytes_emitted += sizeof(midgard_scalar_alu);
}
/* Defer marking until after writing to allow for break */
scheduled[index] = ains;
control |= ains->unit;
last_unit = ains->unit;
++instructions_emitted;
++index;
}
int padding = 0;
/* Pad ALU op to nearest word */
if (bytes_emitted & 15) {
padding = 16 - (bytes_emitted & 15);
bytes_emitted += padding;
}
/* Constants must always be quadwords */
if (bundle.has_embedded_constants)
bytes_emitted += 16;
/* Size ALU instruction for tag */
bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
bundle.padding = padding;
bundle.control = bundle.tag | control;
break;
}
case TAG_LOAD_STORE_4: {
/* Load store instructions have two words at once. If
* we only have one queued up, we need to NOP pad.
* Otherwise, we store both in succession to save space
* and cycles -- letting them go in parallel -- skip
* the next. The usefulness of this optimisation is
* greatly dependent on the quality of the instruction
* scheduler.
*/
midgard_instruction *next_op = mir_next_op(ins);
if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
/* TODO: Concurrency check */
instructions_emitted++;
}
break;
}
case TAG_TEXTURE_4: {
/* Which tag we use depends on the shader stage */
bool in_frag = ctx->stage == MESA_SHADER_FRAGMENT;
bundle.tag = in_frag ? TAG_TEXTURE_4 : TAG_TEXTURE_4_VTX;
break;
}
default:
unreachable("Unknown tag");
break;
}
/* Copy the instructions into the bundle */
bundle.instruction_count = instructions_emitted + 1 + packed_idx;
midgard_instruction *uins = ins;
for (; packed_idx < bundle.instruction_count; ++packed_idx) {
bundle.instructions[packed_idx] = uins;
uins = mir_next_op(uins);
}
*skip = instructions_emitted;
return bundle;
}
/* Schedule a single block by iterating its instruction to create bundles.
* While we go, tally about the bundle sizes to compute the block size. */
static void
schedule_block(compiler_context *ctx, midgard_block *block)
{
util_dynarray_init(&block->bundles, NULL);
block->quadword_count = 0;
mir_foreach_instr_in_block(block, ins) {
int skip;
midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
util_dynarray_append(&block->bundles, midgard_bundle, bundle);
if (bundle.has_blend_constant) {
/* TODO: Multiblock? */
int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
ctx->blend_constant_offset = quadwords_within_block * 0x10;
}
while(skip--)
ins = mir_next_op(ins);
block->quadword_count += quadword_size(bundle.tag);
}
block->is_scheduled = true;
}
/* The following passes reorder MIR instructions to enable better scheduling */
static void
midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
{
mir_foreach_instr_in_block_safe(block, ins) {
if (ins->type != TAG_LOAD_STORE_4) continue;
/* We've found a load/store op. Check if next is also load/store. */
midgard_instruction *next_op = mir_next_op(ins);
if (&next_op->link != &block->instructions) {
if (next_op->type == TAG_LOAD_STORE_4) {
/* If so, we're done since we're a pair */
ins = mir_next_op(ins);
continue;
}
/* Maximum search distance to pair, to avoid register pressure disasters */
int search_distance = 8;
/* Otherwise, we have an orphaned load/store -- search for another load */
mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
/* Terminate search if necessary */
if (!(search_distance--)) break;
if (c->type != TAG_LOAD_STORE_4) continue;
/* We can only reorder if there are no sources */
bool deps = false;
for (unsigned s = 0; s < ARRAY_SIZE(ins->ssa_args.src); ++s)
deps |= (c->ssa_args.src[s] != -1);
if (deps)
continue;
/* We found one! Move it up to pair and remove it from the old location */
mir_insert_instruction_before(ins, *c);
mir_remove_instruction(c);
break;
}
}
}
}
/* When we're 'squeezing down' the values in the IR, we maintain a hash
* as such */
static unsigned
find_or_allocate_temp(compiler_context *ctx, unsigned hash)
{
if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
return hash;
unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(
ctx->hash_to_temp, hash + 1);
if (temp)
return temp - 1;
/* If no temp is find, allocate one */
temp = ctx->temp_count++;
ctx->max_hash = MAX2(ctx->max_hash, hash);
_mesa_hash_table_u64_insert(ctx->hash_to_temp,
hash + 1, (void *) ((uintptr_t) temp + 1));
return temp;
}
/* Reassigns numbering to get rid of gaps in the indices */
static void
mir_squeeze_index(compiler_context *ctx)
{
/* Reset */
ctx->temp_count = 0;
/* TODO don't leak old hash_to_temp */
ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
mir_foreach_instr_global(ctx, ins) {
ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
for (unsigned i = 0; i < ARRAY_SIZE(ins->ssa_args.src); ++i)
ins->ssa_args.src[i] = find_or_allocate_temp(ctx, ins->ssa_args.src[i]);
}
}
static midgard_instruction
v_load_store_scratch(
unsigned srcdest,
unsigned index,
bool is_store,
unsigned mask)
{
/* We index by 32-bit vec4s */
unsigned byte = (index * 4 * 4);
midgard_instruction ins = {
.type = TAG_LOAD_STORE_4,
.mask = mask,
.ssa_args = {
.dest = -1,
.src = { -1, -1, -1 },
},
.load_store = {
.op = is_store ? midgard_op_st_int4 : midgard_op_ld_int4,
.swizzle = SWIZZLE_XYZW,
/* For register spilling - to thread local storage */
.arg_1 = 0xEA,
.arg_2 = 0x1E,
/* Splattered across, TODO combine logically */
.varying_parameters = (byte & 0x1FF) << 1,
.address = (byte >> 9)
},
/* If we spill an unspill, RA goes into an infinite loop */
.no_spill = true
};
if (is_store) {
/* r0 = r26, r1 = r27 */
assert(srcdest == SSA_FIXED_REGISTER(26) || srcdest == SSA_FIXED_REGISTER(27));
ins.ssa_args.src[0] = srcdest;
} else {
ins.ssa_args.dest = srcdest;
}
return ins;
}
/* If register allocation fails, find the best spill node and spill it to fix
* whatever the issue was. This spill node could be a work register (spilling
* to thread local storage), but it could also simply be a special register
* that needs to spill to become a work register. */
static void mir_spill_register(
compiler_context *ctx,
struct ra_graph *g,
unsigned *spill_count)
{
unsigned spill_index = ctx->temp_count;
/* Our first step is to calculate spill cost to figure out the best
* spill node. All nodes are equal in spill cost, but we can't spill
* nodes written to from an unspill */
for (unsigned i = 0; i < ctx->temp_count; ++i) {
ra_set_node_spill_cost(g, i, 1.0);
}
mir_foreach_instr_global(ctx, ins) {
if (ins->no_spill &&
ins->ssa_args.dest >= 0 &&
ins->ssa_args.dest < ctx->temp_count)
ra_set_node_spill_cost(g, ins->ssa_args.dest, -1.0);
}
int spill_node = ra_get_best_spill_node(g);
if (spill_node < 0) {
mir_print_shader(ctx);
assert(0);
}
/* We have a spill node, so check the class. Work registers
* legitimately spill to TLS, but special registers just spill to work
* registers */
unsigned class = ra_get_node_class(g, spill_node);
bool is_special = (class >> 2) != REG_CLASS_WORK;
bool is_special_w = (class >> 2) == REG_CLASS_TEXW;
/* Allocate TLS slot (maybe) */
unsigned spill_slot = !is_special ? (*spill_count)++ : 0;
midgard_instruction *spill_move = NULL;
/* For TLS, replace all stores to the spilled node. For
* special reads, just keep as-is; the class will be demoted
* implicitly. For special writes, spill to a work register */
if (!is_special || is_special_w) {
mir_foreach_instr_global_safe(ctx, ins) {
if (ins->ssa_args.dest != spill_node) continue;
midgard_instruction st;
if (is_special_w) {
spill_slot = spill_index++;
st = v_mov(spill_node, blank_alu_src, spill_slot);
st.no_spill = true;
} else {
ins->ssa_args.dest = SSA_FIXED_REGISTER(26);
st = v_load_store_scratch(ins->ssa_args.dest, spill_slot, true, ins->mask);
}
spill_move = mir_insert_instruction_before(mir_next_op(ins), st);
if (!is_special)
ctx->spills++;
}
}
/* For special reads, figure out how many components we need */
unsigned read_mask = 0;
mir_foreach_instr_global_safe(ctx, ins) {
read_mask |= mir_mask_of_read_components(ins, spill_node);
}
/* Insert a load from TLS before the first consecutive
* use of the node, rewriting to use spilled indices to
* break up the live range. Or, for special, insert a
* move. Ironically the latter *increases* register
* pressure, but the two uses of the spilling mechanism
* are somewhat orthogonal. (special spilling is to use
* work registers to back special registers; TLS
* spilling is to use memory to back work registers) */
mir_foreach_block(ctx, block) {
bool consecutive_skip = false;
unsigned consecutive_index = 0;
mir_foreach_instr_in_block(block, ins) {
/* We can't rewrite the move used to spill in the first place */
if (ins == spill_move) continue;
if (!mir_has_arg(ins, spill_node)) {
consecutive_skip = false;
continue;
}
if (consecutive_skip) {
/* Rewrite */
mir_rewrite_index_src_single(ins, spill_node, consecutive_index);
continue;
}
if (!is_special_w) {
consecutive_index = ++spill_index;
midgard_instruction *before = ins;
/* For a csel, go back one more not to break up the bundle */
if (ins->type == TAG_ALU_4 && OP_IS_CSEL(ins->alu.op))
before = mir_prev_op(before);
midgard_instruction st;
if (is_special) {
/* Move */
st = v_mov(spill_node, blank_alu_src, consecutive_index);
st.no_spill = true;
} else {
/* TLS load */
st = v_load_store_scratch(consecutive_index, spill_slot, false, 0xF);
}
/* Mask the load based on the component count
* actually needed to prvent RA loops */
st.mask = read_mask;
mir_insert_instruction_before(before, st);
// consecutive_skip = true;
} else {
/* Special writes already have their move spilled in */
consecutive_index = spill_slot;
}
/* Rewrite to use */
mir_rewrite_index_src_single(ins, spill_node, consecutive_index);
if (!is_special)
ctx->fills++;
}
}
}
void
schedule_program(compiler_context *ctx)
{
struct ra_graph *g = NULL;
bool spilled = false;
int iter_count = 1000; /* max iterations */
/* Number of 128-bit slots in memory we've spilled into */
unsigned spill_count = 0;
midgard_promote_uniforms(ctx, 16);
mir_foreach_block(ctx, block) {
midgard_pair_load_store(ctx, block);
}
/* Must be lowered right before RA */
mir_squeeze_index(ctx);
mir_lower_special_reads(ctx);
/* Lowering can introduce some dead moves */
mir_foreach_block(ctx, block) {
midgard_opt_dead_move_eliminate(ctx, block);
}
do {
if (spilled)
mir_spill_register(ctx, g, &spill_count);
mir_squeeze_index(ctx);
g = NULL;
g = allocate_registers(ctx, &spilled);
} while(spilled && ((iter_count--) > 0));
/* We can simplify a bit after RA */
mir_foreach_block(ctx, block) {
midgard_opt_post_move_eliminate(ctx, block, g);
}
/* After RA finishes, we schedule all at once */
mir_foreach_block(ctx, block) {
schedule_block(ctx, block);
}
/* Finally, we create pipeline registers as a peephole pass after
* scheduling. This isn't totally optimal, since there are cases where
* the usage of pipeline registers can eliminate spills, but it does
* save some power */
mir_create_pipeline_registers(ctx);
if (iter_count <= 0) {
fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n");
assert(0);
}
/* Report spilling information. spill_count is in 128-bit slots (vec4 x
* fp32), but tls_size is in bytes, so multiply by 16 */
ctx->tls_size = spill_count * 16;
install_registers(ctx, g);
}