blob: d059760edf1034c3e9fd50ad32640c45c7937d81 [file] [log] [blame]
/*
* Copyright © 2016 Dave Airlie
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include "radv_meta.h"
#include "radv_private.h"
#include "nir/nir_builder.h"
#include "sid.h"
#include "vk_format.h"
static nir_shader *
build_nir_vertex_shader(void)
{
const struct glsl_type *vec4 = glsl_vec4_type();
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
b.shader->info.name = ralloc_strdup(b.shader, "meta_resolve_vs");
nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
vec4, "gl_Position");
pos_out->data.location = VARYING_SLOT_POS;
nir_ssa_def *outvec = radv_meta_gen_rect_vertices(&b);
nir_store_var(&b, pos_out, outvec, 0xf);
return b.shader;
}
static nir_shader *
build_resolve_fragment_shader(struct radv_device *dev, bool is_integer, int samples)
{
nir_builder b;
char name[64];
const struct glsl_type *vec2 = glsl_vector_type(GLSL_TYPE_FLOAT, 2);
const struct glsl_type *vec4 = glsl_vec4_type();
const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS,
false,
false,
GLSL_TYPE_FLOAT);
snprintf(name, 64, "meta_resolve_fs-%d-%s", samples, is_integer ? "int" : "float");
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
b.shader->info.name = ralloc_strdup(b.shader, name);
nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform,
sampler_type, "s_tex");
input_img->data.descriptor_set = 0;
input_img->data.binding = 0;
nir_variable *fs_pos_in = nir_variable_create(b.shader, nir_var_shader_in, vec2, "fs_pos_in");
fs_pos_in->data.location = VARYING_SLOT_POS;
nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
vec4, "f_color");
color_out->data.location = FRAG_RESULT_DATA0;
nir_ssa_def *pos_in = nir_load_var(&b, fs_pos_in);
nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
nir_intrinsic_set_base(src_offset, 0);
nir_intrinsic_set_range(src_offset, 8);
src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
src_offset->num_components = 2;
nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, 2, 32, "src_offset");
nir_builder_instr_insert(&b, &src_offset->instr);
nir_ssa_def *pos_int = nir_f2i32(&b, pos_in);
nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, pos_int, &src_offset->dest.ssa), 0x3);
nir_variable *color = nir_local_variable_create(b.impl, glsl_vec4_type(), "color");
radv_meta_build_resolve_shader_core(&b, is_integer, samples, input_img,
color, img_coord);
nir_ssa_def *outval = nir_load_var(&b, color);
nir_store_var(&b, color_out, outval, 0xf);
return b.shader;
}
static VkResult
create_layout(struct radv_device *device)
{
VkResult result;
/*
* one descriptors for the image being sampled
*/
VkDescriptorSetLayoutCreateInfo ds_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
.bindingCount = 1,
.pBindings = (VkDescriptorSetLayoutBinding[]) {
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
.pImmutableSamplers = NULL
},
}
};
result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device),
&ds_create_info,
&device->meta_state.alloc,
&device->meta_state.resolve_fragment.ds_layout);
if (result != VK_SUCCESS)
goto fail;
VkPipelineLayoutCreateInfo pl_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.resolve_fragment.ds_layout,
.pushConstantRangeCount = 1,
.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 8},
};
result = radv_CreatePipelineLayout(radv_device_to_handle(device),
&pl_create_info,
&device->meta_state.alloc,
&device->meta_state.resolve_fragment.p_layout);
if (result != VK_SUCCESS)
goto fail;
return VK_SUCCESS;
fail:
return result;
}
static const VkPipelineVertexInputStateCreateInfo normal_vi_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 0,
.vertexAttributeDescriptionCount = 0,
};
static VkResult
create_resolve_pipeline(struct radv_device *device,
int samples_log2,
VkFormat format)
{
mtx_lock(&device->meta_state.mtx);
unsigned fs_key = radv_format_meta_fs_key(format);
VkPipeline *pipeline = &device->meta_state.resolve_fragment.rc[samples_log2].pipeline[fs_key];
if (*pipeline) {
mtx_unlock(&device->meta_state.mtx);
return VK_SUCCESS;
}
VkResult result;
bool is_integer = false;
uint32_t samples = 1 << samples_log2;
const VkPipelineVertexInputStateCreateInfo *vi_create_info;
vi_create_info = &normal_vi_create_info;
if (vk_format_is_int(format))
is_integer = true;
struct radv_shader_module fs = { .nir = NULL };
fs.nir = build_resolve_fragment_shader(device, is_integer, samples);
struct radv_shader_module vs = {
.nir = build_nir_vertex_shader(),
};
VkRenderPass *rp = &device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key][0];
assert(!*rp);
VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = radv_shader_module_to_handle(&vs),
.pName = "main",
.pSpecializationInfo = NULL
}, {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = radv_shader_module_to_handle(&fs),
.pName = "main",
.pSpecializationInfo = NULL
},
};
for (unsigned dst_layout = 0; dst_layout < RADV_META_DST_LAYOUT_COUNT; ++dst_layout) {
VkImageLayout layout = radv_meta_dst_layout_to_layout(dst_layout);
result = radv_CreateRenderPass(radv_device_to_handle(device),
&(VkRenderPassCreateInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = &(VkAttachmentDescription) {
.format = format,
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.initialLayout = layout,
.finalLayout = layout,
},
.subpassCount = 1,
.pSubpasses = &(VkSubpassDescription) {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.colorAttachmentCount = 1,
.pColorAttachments = &(VkAttachmentReference) {
.attachment = 0,
.layout = layout,
},
.pResolveAttachments = NULL,
.pDepthStencilAttachment = &(VkAttachmentReference) {
.attachment = VK_ATTACHMENT_UNUSED,
.layout = VK_IMAGE_LAYOUT_GENERAL,
},
.preserveAttachmentCount = 0,
.pPreserveAttachments = NULL,
},
.dependencyCount = 0,
}, &device->meta_state.alloc, rp + dst_layout);
}
const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = ARRAY_SIZE(pipeline_shader_stages),
.pStages = pipeline_shader_stages,
.pVertexInputState = vi_create_info,
.pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = false,
},
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.rasterizerDiscardEnable = false,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
},
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
.sampleShadingEnable = false,
.pSampleMask = (VkSampleMask[]) { UINT32_MAX },
},
.pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = (VkPipelineColorBlendAttachmentState []) {
{ .colorWriteMask =
VK_COLOR_COMPONENT_A_BIT |
VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT },
}
},
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 9,
.pDynamicStates = (VkDynamicState[]) {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_LINE_WIDTH,
VK_DYNAMIC_STATE_DEPTH_BIAS,
VK_DYNAMIC_STATE_BLEND_CONSTANTS,
VK_DYNAMIC_STATE_DEPTH_BOUNDS,
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
VK_DYNAMIC_STATE_STENCIL_REFERENCE,
},
},
.flags = 0,
.layout = device->meta_state.resolve_fragment.p_layout,
.renderPass = *rp,
.subpass = 0,
};
const struct radv_graphics_pipeline_create_info radv_pipeline_info = {
.use_rectlist = true
};
result = radv_graphics_pipeline_create(radv_device_to_handle(device),
radv_pipeline_cache_to_handle(&device->meta_state.cache),
&vk_pipeline_info, &radv_pipeline_info,
&device->meta_state.alloc,
pipeline);
ralloc_free(vs.nir);
ralloc_free(fs.nir);
mtx_unlock(&device->meta_state.mtx);
return result;
}
VkResult
radv_device_init_meta_resolve_fragment_state(struct radv_device *device, bool on_demand)
{
VkResult res;
res = create_layout(device);
if (res != VK_SUCCESS)
goto fail;
if (on_demand)
return VK_SUCCESS;
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) {
res = create_resolve_pipeline(device, i, radv_fs_key_format_exemplars[j]);
if (res != VK_SUCCESS)
goto fail;
}
}
return VK_SUCCESS;
fail:
radv_device_finish_meta_resolve_fragment_state(device);
return res;
}
void
radv_device_finish_meta_resolve_fragment_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
for (unsigned j = 0; j < NUM_META_FS_KEYS; ++j) {
for(unsigned k =0; k < RADV_META_DST_LAYOUT_COUNT; ++k) {
radv_DestroyRenderPass(radv_device_to_handle(device),
state->resolve_fragment.rc[i].render_pass[j][k],
&state->alloc);
}
radv_DestroyPipeline(radv_device_to_handle(device),
state->resolve_fragment.rc[i].pipeline[j],
&state->alloc);
}
}
radv_DestroyDescriptorSetLayout(radv_device_to_handle(device),
state->resolve_fragment.ds_layout,
&state->alloc);
radv_DestroyPipelineLayout(radv_device_to_handle(device),
state->resolve_fragment.p_layout,
&state->alloc);
}
static VkPipeline *
radv_get_resolve_pipeline(struct radv_cmd_buffer *cmd_buffer,
struct radv_image_view *src_iview,
struct radv_image_view *dst_iview)
{
struct radv_device *device = cmd_buffer->device;
unsigned fs_key = radv_format_meta_fs_key(dst_iview->vk_format);
const uint32_t samples = src_iview->image->info.samples;
const uint32_t samples_log2 = ffs(samples) - 1;
VkPipeline *pipeline;
pipeline = &device->meta_state.resolve_fragment.rc[samples_log2].pipeline[fs_key];
if (!*pipeline ) {
VkResult ret;
ret = create_resolve_pipeline(device, samples_log2,
radv_fs_key_format_exemplars[fs_key]);
if (ret != VK_SUCCESS) {
cmd_buffer->record_result = ret;
return NULL;
}
}
return pipeline;
}
static void
emit_resolve(struct radv_cmd_buffer *cmd_buffer,
struct radv_image_view *src_iview,
struct radv_image_view *dest_iview,
const VkOffset2D *src_offset,
const VkOffset2D *dest_offset,
const VkExtent2D *resolve_extent)
{
struct radv_device *device = cmd_buffer->device;
VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
VkPipeline *pipeline;
radv_meta_push_descriptor_set(cmd_buffer,
VK_PIPELINE_BIND_POINT_GRAPHICS,
cmd_buffer->device->meta_state.resolve_fragment.p_layout,
0, /* set */
1, /* descriptorWriteCount */
(VkWriteDescriptorSet[]) {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = VK_NULL_HANDLE,
.imageView = radv_image_view_to_handle(src_iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}
},
});
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
unsigned push_constants[2] = {
src_offset->x - dest_offset->x,
src_offset->y - dest_offset->y,
};
radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
device->meta_state.resolve_fragment.p_layout,
VK_SHADER_STAGE_FRAGMENT_BIT, 0, 8,
push_constants);
pipeline = radv_get_resolve_pipeline(cmd_buffer, src_iview, dest_iview);
radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS,
*pipeline);
radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) {
.x = dest_offset->x,
.y = dest_offset->y,
.width = resolve_extent->width,
.height = resolve_extent->height,
.minDepth = 0.0f,
.maxDepth = 1.0f
});
radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D) {
.offset = *dest_offset,
.extent = *resolve_extent,
});
radv_CmdDraw(cmd_buffer_h, 3, 1, 0, 0);
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
}
void radv_meta_resolve_fragment_image(struct radv_cmd_buffer *cmd_buffer,
struct radv_image *src_image,
VkImageLayout src_image_layout,
struct radv_image *dest_image,
VkImageLayout dest_image_layout,
uint32_t region_count,
const VkImageResolve *regions)
{
struct radv_device *device = cmd_buffer->device;
struct radv_meta_saved_state saved_state;
const uint32_t samples = src_image->info.samples;
const uint32_t samples_log2 = ffs(samples) - 1;
unsigned fs_key = radv_format_meta_fs_key(dest_image->vk_format);
unsigned dst_layout = radv_meta_dst_layout_from_layout(dest_image_layout);
VkRenderPass rp;
radv_decompress_resolve_src(cmd_buffer, src_image, src_image_layout,
region_count, regions);
if (!device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key][dst_layout]) {
VkResult ret = create_resolve_pipeline(device, samples_log2, radv_fs_key_format_exemplars[fs_key]);
if (ret != VK_SUCCESS) {
cmd_buffer->record_result = ret;
return;
}
}
rp = device->meta_state.resolve_fragment.rc[samples_log2].render_pass[fs_key][dst_layout];
radv_meta_save(&saved_state, cmd_buffer,
RADV_META_SAVE_GRAPHICS_PIPELINE |
RADV_META_SAVE_CONSTANTS |
RADV_META_SAVE_DESCRIPTORS);
for (uint32_t r = 0; r < region_count; ++r) {
const VkImageResolve *region = &regions[r];
assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount);
const uint32_t src_base_layer =
radv_meta_get_iview_layer(src_image, &region->srcSubresource,
&region->srcOffset);
const uint32_t dest_base_layer =
radv_meta_get_iview_layer(dest_image, &region->dstSubresource,
&region->dstOffset);
const struct VkExtent3D extent =
radv_sanitize_image_extent(src_image->type, region->extent);
const struct VkOffset3D srcOffset =
radv_sanitize_image_offset(src_image->type, region->srcOffset);
const struct VkOffset3D dstOffset =
radv_sanitize_image_offset(dest_image->type, region->dstOffset);
for (uint32_t layer = 0; layer < region->srcSubresource.layerCount;
++layer) {
struct radv_image_view src_iview;
radv_image_view_init(&src_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(src_image),
.viewType = radv_meta_get_view_type(src_image),
.format = src_image->vk_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = region->srcSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = src_base_layer + layer,
.layerCount = 1,
},
});
struct radv_image_view dest_iview;
radv_image_view_init(&dest_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = radv_image_to_handle(dest_image),
.viewType = radv_meta_get_view_type(dest_image),
.format = dest_image->vk_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = region->dstSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = dest_base_layer + layer,
.layerCount = 1,
},
});
VkFramebuffer fb;
radv_CreateFramebuffer(radv_device_to_handle(cmd_buffer->device),
&(VkFramebufferCreateInfo) {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = (VkImageView[]) {
radv_image_view_to_handle(&dest_iview),
},
.width = extent.width + dstOffset.x,
.height = extent.height + dstOffset.y,
.layers = 1
}, &cmd_buffer->pool->alloc, &fb);
radv_CmdBeginRenderPass(radv_cmd_buffer_to_handle(cmd_buffer),
&(VkRenderPassBeginInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = rp,
.framebuffer = fb,
.renderArea = {
.offset = { dstOffset.x, dstOffset.y, },
.extent = { extent.width, extent.height },
},
.clearValueCount = 0,
.pClearValues = NULL,
}, VK_SUBPASS_CONTENTS_INLINE);
emit_resolve(cmd_buffer,
&src_iview,
&dest_iview,
&(VkOffset2D) { srcOffset.x, srcOffset.y },
&(VkOffset2D) { dstOffset.x, dstOffset.y },
&(VkExtent2D) { extent.width, extent.height });
radv_CmdEndRenderPass(radv_cmd_buffer_to_handle(cmd_buffer));
radv_DestroyFramebuffer(radv_device_to_handle(cmd_buffer->device), fb, &cmd_buffer->pool->alloc);
}
}
radv_meta_restore(&saved_state, cmd_buffer);
}
/**
* Emit any needed resolves for the current subpass.
*/
void
radv_cmd_buffer_resolve_subpass_fs(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
struct radv_meta_saved_state saved_state;
struct radv_subpass_barrier barrier;
/* Resolves happen before the end-of-subpass barriers get executed,
* so we have to make the attachment shader-readable */
barrier.src_stage_mask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
barrier.src_access_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
barrier.dst_access_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
radv_subpass_barrier(cmd_buffer, &barrier);
radv_decompress_resolve_subpass_src(cmd_buffer);
radv_meta_save(&saved_state, cmd_buffer,
RADV_META_SAVE_GRAPHICS_PIPELINE |
RADV_META_SAVE_CONSTANTS |
RADV_META_SAVE_DESCRIPTORS);
for (uint32_t i = 0; i < subpass->color_count; ++i) {
struct radv_subpass_attachment src_att = subpass->color_attachments[i];
struct radv_subpass_attachment dest_att = subpass->resolve_attachments[i];
if (dest_att.attachment == VK_ATTACHMENT_UNUSED)
continue;
struct radv_image_view *dest_iview = cmd_buffer->state.framebuffer->attachments[dest_att.attachment].attachment;
struct radv_image_view *src_iview = cmd_buffer->state.framebuffer->attachments[src_att.attachment].attachment;
struct radv_subpass resolve_subpass = {
.color_count = 1,
.color_attachments = (struct radv_subpass_attachment[]) { dest_att },
.depth_stencil_attachment = NULL,
};
radv_cmd_buffer_set_subpass(cmd_buffer, &resolve_subpass);
emit_resolve(cmd_buffer,
src_iview,
dest_iview,
&(VkOffset2D) { 0, 0 },
&(VkOffset2D) { 0, 0 },
&(VkExtent2D) { fb->width, fb->height });
}
radv_cmd_buffer_set_subpass(cmd_buffer, subpass);
radv_meta_restore(&saved_state, cmd_buffer);
}