blob: 578156459240b7c7ff9ba2aabf8edee8659a402d [file] [log] [blame]
/*
* Copyright 2003 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "main/bufferobj.h"
#include "main/context.h"
#include "main/enums.h"
#include "main/macros.h"
#include "main/glformats.h"
#include "brw_draw.h"
#include "brw_defines.h"
#include "brw_context.h"
#include "brw_state.h"
#include "intel_batchbuffer.h"
#include "intel_buffer_objects.h"
static const GLuint double_types_float[5] = {
0,
BRW_SURFACEFORMAT_R64_FLOAT,
BRW_SURFACEFORMAT_R64G64_FLOAT,
BRW_SURFACEFORMAT_R64G64B64_FLOAT,
BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
};
static const GLuint double_types_passthru[5] = {
0,
BRW_SURFACEFORMAT_R64_PASSTHRU,
BRW_SURFACEFORMAT_R64G64_PASSTHRU,
BRW_SURFACEFORMAT_R64G64B64_PASSTHRU,
BRW_SURFACEFORMAT_R64G64B64A64_PASSTHRU
};
static const GLuint float_types[5] = {
0,
BRW_SURFACEFORMAT_R32_FLOAT,
BRW_SURFACEFORMAT_R32G32_FLOAT,
BRW_SURFACEFORMAT_R32G32B32_FLOAT,
BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
};
static const GLuint half_float_types[5] = {
0,
BRW_SURFACEFORMAT_R16_FLOAT,
BRW_SURFACEFORMAT_R16G16_FLOAT,
BRW_SURFACEFORMAT_R16G16B16_FLOAT,
BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
};
static const GLuint fixed_point_types[5] = {
0,
BRW_SURFACEFORMAT_R32_SFIXED,
BRW_SURFACEFORMAT_R32G32_SFIXED,
BRW_SURFACEFORMAT_R32G32B32_SFIXED,
BRW_SURFACEFORMAT_R32G32B32A32_SFIXED,
};
static const GLuint uint_types_direct[5] = {
0,
BRW_SURFACEFORMAT_R32_UINT,
BRW_SURFACEFORMAT_R32G32_UINT,
BRW_SURFACEFORMAT_R32G32B32_UINT,
BRW_SURFACEFORMAT_R32G32B32A32_UINT
};
static const GLuint uint_types_norm[5] = {
0,
BRW_SURFACEFORMAT_R32_UNORM,
BRW_SURFACEFORMAT_R32G32_UNORM,
BRW_SURFACEFORMAT_R32G32B32_UNORM,
BRW_SURFACEFORMAT_R32G32B32A32_UNORM
};
static const GLuint uint_types_scale[5] = {
0,
BRW_SURFACEFORMAT_R32_USCALED,
BRW_SURFACEFORMAT_R32G32_USCALED,
BRW_SURFACEFORMAT_R32G32B32_USCALED,
BRW_SURFACEFORMAT_R32G32B32A32_USCALED
};
static const GLuint int_types_direct[5] = {
0,
BRW_SURFACEFORMAT_R32_SINT,
BRW_SURFACEFORMAT_R32G32_SINT,
BRW_SURFACEFORMAT_R32G32B32_SINT,
BRW_SURFACEFORMAT_R32G32B32A32_SINT
};
static const GLuint int_types_norm[5] = {
0,
BRW_SURFACEFORMAT_R32_SNORM,
BRW_SURFACEFORMAT_R32G32_SNORM,
BRW_SURFACEFORMAT_R32G32B32_SNORM,
BRW_SURFACEFORMAT_R32G32B32A32_SNORM
};
static const GLuint int_types_scale[5] = {
0,
BRW_SURFACEFORMAT_R32_SSCALED,
BRW_SURFACEFORMAT_R32G32_SSCALED,
BRW_SURFACEFORMAT_R32G32B32_SSCALED,
BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
};
static const GLuint ushort_types_direct[5] = {
0,
BRW_SURFACEFORMAT_R16_UINT,
BRW_SURFACEFORMAT_R16G16_UINT,
BRW_SURFACEFORMAT_R16G16B16_UINT,
BRW_SURFACEFORMAT_R16G16B16A16_UINT
};
static const GLuint ushort_types_norm[5] = {
0,
BRW_SURFACEFORMAT_R16_UNORM,
BRW_SURFACEFORMAT_R16G16_UNORM,
BRW_SURFACEFORMAT_R16G16B16_UNORM,
BRW_SURFACEFORMAT_R16G16B16A16_UNORM
};
static const GLuint ushort_types_scale[5] = {
0,
BRW_SURFACEFORMAT_R16_USCALED,
BRW_SURFACEFORMAT_R16G16_USCALED,
BRW_SURFACEFORMAT_R16G16B16_USCALED,
BRW_SURFACEFORMAT_R16G16B16A16_USCALED
};
static const GLuint short_types_direct[5] = {
0,
BRW_SURFACEFORMAT_R16_SINT,
BRW_SURFACEFORMAT_R16G16_SINT,
BRW_SURFACEFORMAT_R16G16B16_SINT,
BRW_SURFACEFORMAT_R16G16B16A16_SINT
};
static const GLuint short_types_norm[5] = {
0,
BRW_SURFACEFORMAT_R16_SNORM,
BRW_SURFACEFORMAT_R16G16_SNORM,
BRW_SURFACEFORMAT_R16G16B16_SNORM,
BRW_SURFACEFORMAT_R16G16B16A16_SNORM
};
static const GLuint short_types_scale[5] = {
0,
BRW_SURFACEFORMAT_R16_SSCALED,
BRW_SURFACEFORMAT_R16G16_SSCALED,
BRW_SURFACEFORMAT_R16G16B16_SSCALED,
BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
};
static const GLuint ubyte_types_direct[5] = {
0,
BRW_SURFACEFORMAT_R8_UINT,
BRW_SURFACEFORMAT_R8G8_UINT,
BRW_SURFACEFORMAT_R8G8B8_UINT,
BRW_SURFACEFORMAT_R8G8B8A8_UINT
};
static const GLuint ubyte_types_norm[5] = {
0,
BRW_SURFACEFORMAT_R8_UNORM,
BRW_SURFACEFORMAT_R8G8_UNORM,
BRW_SURFACEFORMAT_R8G8B8_UNORM,
BRW_SURFACEFORMAT_R8G8B8A8_UNORM
};
static const GLuint ubyte_types_scale[5] = {
0,
BRW_SURFACEFORMAT_R8_USCALED,
BRW_SURFACEFORMAT_R8G8_USCALED,
BRW_SURFACEFORMAT_R8G8B8_USCALED,
BRW_SURFACEFORMAT_R8G8B8A8_USCALED
};
static const GLuint byte_types_direct[5] = {
0,
BRW_SURFACEFORMAT_R8_SINT,
BRW_SURFACEFORMAT_R8G8_SINT,
BRW_SURFACEFORMAT_R8G8B8_SINT,
BRW_SURFACEFORMAT_R8G8B8A8_SINT
};
static const GLuint byte_types_norm[5] = {
0,
BRW_SURFACEFORMAT_R8_SNORM,
BRW_SURFACEFORMAT_R8G8_SNORM,
BRW_SURFACEFORMAT_R8G8B8_SNORM,
BRW_SURFACEFORMAT_R8G8B8A8_SNORM
};
static const GLuint byte_types_scale[5] = {
0,
BRW_SURFACEFORMAT_R8_SSCALED,
BRW_SURFACEFORMAT_R8G8_SSCALED,
BRW_SURFACEFORMAT_R8G8B8_SSCALED,
BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
};
static GLuint
double_types(struct brw_context *brw,
int size,
GLboolean doubles)
{
/* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
* "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
* 64-bit components are stored in the URB without any conversion."
* Also included on BDW PRM, Volume 7, page 470, table "Source Element
* Formats Supported in VF Unit"
* Previous PRMs don't include those references.
*/
return (brw->gen >= 8 && doubles
? double_types_passthru[size]
: double_types_float[size]);
}
/**
* Given vertex array type/size/format/normalized info, return
* the appopriate hardware surface type.
* Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
*/
unsigned
brw_get_vertex_surface_type(struct brw_context *brw,
const struct gl_vertex_array *glarray)
{
int size = glarray->Size;
const bool is_ivybridge_or_older =
brw->gen <= 7 && !brw->is_baytrail && !brw->is_haswell;
if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
fprintf(stderr, "type %s size %d normalized %d\n",
_mesa_enum_to_string(glarray->Type),
glarray->Size, glarray->Normalized);
if (glarray->Integer) {
assert(glarray->Format == GL_RGBA); /* sanity check */
switch (glarray->Type) {
case GL_INT: return int_types_direct[size];
case GL_SHORT:
if (is_ivybridge_or_older && size == 3)
return short_types_direct[4];
else
return short_types_direct[size];
case GL_BYTE:
if (is_ivybridge_or_older && size == 3)
return byte_types_direct[4];
else
return byte_types_direct[size];
case GL_UNSIGNED_INT: return uint_types_direct[size];
case GL_UNSIGNED_SHORT:
if (is_ivybridge_or_older && size == 3)
return ushort_types_direct[4];
else
return ushort_types_direct[size];
case GL_UNSIGNED_BYTE:
if (is_ivybridge_or_older && size == 3)
return ubyte_types_direct[4];
else
return ubyte_types_direct[size];
default: unreachable("not reached");
}
} else if (glarray->Type == GL_UNSIGNED_INT_10F_11F_11F_REV) {
return BRW_SURFACEFORMAT_R11G11B10_FLOAT;
} else if (glarray->Normalized) {
switch (glarray->Type) {
case GL_DOUBLE: return double_types(brw, size, glarray->Doubles);
case GL_FLOAT: return float_types[size];
case GL_HALF_FLOAT:
case GL_HALF_FLOAT_OES:
if (brw->gen < 6 && size == 3)
return half_float_types[4];
else
return half_float_types[size];
case GL_INT: return int_types_norm[size];
case GL_SHORT: return short_types_norm[size];
case GL_BYTE: return byte_types_norm[size];
case GL_UNSIGNED_INT: return uint_types_norm[size];
case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
case GL_UNSIGNED_BYTE:
if (glarray->Format == GL_BGRA) {
/* See GL_EXT_vertex_array_bgra */
assert(size == 4);
return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
}
else {
return ubyte_types_norm[size];
}
case GL_FIXED:
if (brw->gen >= 8 || brw->is_haswell)
return fixed_point_types[size];
/* This produces GL_FIXED inputs as values between INT32_MIN and
* INT32_MAX, which will be scaled down by 1/65536 by the VS.
*/
return int_types_scale[size];
/* See GL_ARB_vertex_type_2_10_10_10_rev.
* W/A: Pre-Haswell, the hardware doesn't really support the formats we'd
* like to use here, so upload everything as UINT and fix
* it in the shader
*/
case GL_INT_2_10_10_10_REV:
assert(size == 4);
if (brw->gen >= 8 || brw->is_haswell) {
return glarray->Format == GL_BGRA
? BRW_SURFACEFORMAT_B10G10R10A2_SNORM
: BRW_SURFACEFORMAT_R10G10B10A2_SNORM;
}
return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
case GL_UNSIGNED_INT_2_10_10_10_REV:
assert(size == 4);
if (brw->gen >= 8 || brw->is_haswell) {
return glarray->Format == GL_BGRA
? BRW_SURFACEFORMAT_B10G10R10A2_UNORM
: BRW_SURFACEFORMAT_R10G10B10A2_UNORM;
}
return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
default: unreachable("not reached");
}
}
else {
/* See GL_ARB_vertex_type_2_10_10_10_rev.
* W/A: the hardware doesn't really support the formats we'd
* like to use here, so upload everything as UINT and fix
* it in the shader
*/
if (glarray->Type == GL_INT_2_10_10_10_REV) {
assert(size == 4);
if (brw->gen >= 8 || brw->is_haswell) {
return glarray->Format == GL_BGRA
? BRW_SURFACEFORMAT_B10G10R10A2_SSCALED
: BRW_SURFACEFORMAT_R10G10B10A2_SSCALED;
}
return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
} else if (glarray->Type == GL_UNSIGNED_INT_2_10_10_10_REV) {
assert(size == 4);
if (brw->gen >= 8 || brw->is_haswell) {
return glarray->Format == GL_BGRA
? BRW_SURFACEFORMAT_B10G10R10A2_USCALED
: BRW_SURFACEFORMAT_R10G10B10A2_USCALED;
}
return BRW_SURFACEFORMAT_R10G10B10A2_UINT;
}
assert(glarray->Format == GL_RGBA); /* sanity check */
switch (glarray->Type) {
case GL_DOUBLE: return double_types(brw, size, glarray->Doubles);
case GL_FLOAT: return float_types[size];
case GL_HALF_FLOAT:
case GL_HALF_FLOAT_OES:
if (brw->gen < 6 && size == 3)
return half_float_types[4];
else
return half_float_types[size];
case GL_INT: return int_types_scale[size];
case GL_SHORT: return short_types_scale[size];
case GL_BYTE: return byte_types_scale[size];
case GL_UNSIGNED_INT: return uint_types_scale[size];
case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
case GL_FIXED:
if (brw->gen >= 8 || brw->is_haswell)
return fixed_point_types[size];
/* This produces GL_FIXED inputs as values between INT32_MIN and
* INT32_MAX, which will be scaled down by 1/65536 by the VS.
*/
return int_types_scale[size];
default: unreachable("not reached");
}
}
}
static void
copy_array_to_vbo_array(struct brw_context *brw,
struct brw_vertex_element *element,
int min, int max,
struct brw_vertex_buffer *buffer,
GLuint dst_stride)
{
const int src_stride = element->glarray->StrideB;
/* If the source stride is zero, we just want to upload the current
* attribute once and set the buffer's stride to 0. There's no need
* to replicate it out.
*/
if (src_stride == 0) {
intel_upload_data(brw, element->glarray->Ptr,
element->glarray->_ElementSize,
element->glarray->_ElementSize,
&buffer->bo, &buffer->offset);
buffer->stride = 0;
buffer->size = element->glarray->_ElementSize;
return;
}
const unsigned char *src = element->glarray->Ptr + min * src_stride;
int count = max - min + 1;
GLuint size = count * dst_stride;
uint8_t *dst = intel_upload_space(brw, size, dst_stride,
&buffer->bo, &buffer->offset);
/* The GL 4.5 spec says:
* "If any enabled array’s buffer binding is zero when DrawArrays or
* one of the other drawing commands defined in section 10.4 is called,
* the result is undefined."
*
* In this case, let's the dst with undefined values
*/
if (src != NULL) {
if (dst_stride == src_stride) {
memcpy(dst, src, size);
} else {
while (count--) {
memcpy(dst, src, dst_stride);
src += src_stride;
dst += dst_stride;
}
}
}
buffer->stride = dst_stride;
buffer->size = size;
}
void
brw_prepare_vertices(struct brw_context *brw)
{
struct gl_context *ctx = &brw->ctx;
/* BRW_NEW_VS_PROG_DATA */
const struct brw_vs_prog_data *vs_prog_data =
brw_vs_prog_data(brw->vs.base.prog_data);
GLbitfield64 vs_inputs = vs_prog_data->inputs_read;
const unsigned char *ptr = NULL;
GLuint interleaved = 0;
unsigned int min_index = brw->vb.min_index + brw->basevertex;
unsigned int max_index = brw->vb.max_index + brw->basevertex;
unsigned i;
int delta, j;
struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
GLuint nr_uploads = 0;
/* _NEW_POLYGON
*
* On gen6+, edge flags don't end up in the VUE (either in or out of the
* VS). Instead, they're uploaded as the last vertex element, and the data
* is passed sideband through the fixed function units. So, we need to
* prepare the vertex buffer for it, but it's not present in inputs_read.
*/
if (brw->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
ctx->Polygon.BackMode != GL_FILL)) {
vs_inputs |= VERT_BIT_EDGEFLAG;
}
if (0)
fprintf(stderr, "%s %d..%d\n", __func__, min_index, max_index);
/* Accumulate the list of enabled arrays. */
brw->vb.nr_enabled = 0;
while (vs_inputs) {
GLuint index = ffsll(vs_inputs) - 1;
struct brw_vertex_element *input = &brw->vb.inputs[index];
input->is_dual_slot = brw->gen >= 8 &&
(vs_prog_data->double_inputs_read & BITFIELD64_BIT(index)) != 0;
vs_inputs &= ~BITFIELD64_BIT(index);
brw->vb.enabled[brw->vb.nr_enabled++] = input;
}
if (brw->vb.nr_enabled == 0)
return;
if (brw->vb.nr_buffers)
return;
/* The range of data in a given buffer represented as [min, max) */
struct intel_buffer_object *enabled_buffer[VERT_ATTRIB_MAX];
uint32_t buffer_range_start[VERT_ATTRIB_MAX];
uint32_t buffer_range_end[VERT_ATTRIB_MAX];
for (i = j = 0; i < brw->vb.nr_enabled; i++) {
struct brw_vertex_element *input = brw->vb.enabled[i];
const struct gl_vertex_array *glarray = input->glarray;
if (_mesa_is_bufferobj(glarray->BufferObj)) {
struct intel_buffer_object *intel_buffer =
intel_buffer_object(glarray->BufferObj);
const uint32_t offset = (uintptr_t)glarray->Ptr;
/* Start with the worst case */
uint32_t start = 0;
uint32_t range = intel_buffer->Base.Size;
if (glarray->InstanceDivisor) {
if (brw->num_instances) {
start = offset + glarray->StrideB * brw->baseinstance;
range = (glarray->StrideB * ((brw->num_instances - 1) /
glarray->InstanceDivisor) +
glarray->_ElementSize);
}
} else {
if (brw->vb.index_bounds_valid) {
start = offset + min_index * glarray->StrideB;
range = (glarray->StrideB * (max_index - min_index) +
glarray->_ElementSize);
}
}
/* If we have a VB set to be uploaded for this buffer object
* already, reuse that VB state so that we emit fewer
* relocations.
*/
unsigned k;
for (k = 0; k < i; k++) {
const struct gl_vertex_array *other = brw->vb.enabled[k]->glarray;
if (glarray->BufferObj == other->BufferObj &&
glarray->StrideB == other->StrideB &&
glarray->InstanceDivisor == other->InstanceDivisor &&
(uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
{
input->buffer = brw->vb.enabled[k]->buffer;
input->offset = glarray->Ptr - other->Ptr;
buffer_range_start[input->buffer] =
MIN2(buffer_range_start[input->buffer], start);
buffer_range_end[input->buffer] =
MAX2(buffer_range_end[input->buffer], start + range);
break;
}
}
if (k == i) {
struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
/* Named buffer object: Just reference its contents directly. */
buffer->offset = offset;
buffer->stride = glarray->StrideB;
buffer->step_rate = glarray->InstanceDivisor;
buffer->size = glarray->BufferObj->Size - offset;
enabled_buffer[j] = intel_buffer;
buffer_range_start[j] = start;
buffer_range_end[j] = start + range;
input->buffer = j++;
input->offset = 0;
}
} else {
/* Queue the buffer object up to be uploaded in the next pass,
* when we've decided if we're doing interleaved or not.
*/
if (nr_uploads == 0) {
interleaved = glarray->StrideB;
ptr = glarray->Ptr;
}
else if (interleaved != glarray->StrideB ||
glarray->Ptr < ptr ||
(uintptr_t)(glarray->Ptr - ptr) + glarray->_ElementSize > interleaved)
{
/* If our stride is different from the first attribute's stride,
* or if the first attribute's stride didn't cover our element,
* disable the interleaved upload optimization. The second case
* can most commonly occur in cases where there is a single vertex
* and, for example, the data is stored on the application's
* stack.
*
* NOTE: This will also disable the optimization in cases where
* the data is in a different order than the array indices.
* Something like:
*
* float data[...];
* glVertexAttribPointer(0, 4, GL_FLOAT, 32, &data[4]);
* glVertexAttribPointer(1, 4, GL_FLOAT, 32, &data[0]);
*/
interleaved = 0;
}
upload[nr_uploads++] = input;
}
}
/* Now that we've set up all of the buffers, we walk through and reference
* each of them. We do this late so that we get the right size in each
* buffer and don't reference too little data.
*/
for (i = 0; i < j; i++) {
struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
if (buffer->bo)
continue;
const uint32_t start = buffer_range_start[i];
const uint32_t range = buffer_range_end[i] - buffer_range_start[i];
buffer->bo = intel_bufferobj_buffer(brw, enabled_buffer[i], start, range);
drm_intel_bo_reference(buffer->bo);
}
/* If we need to upload all the arrays, then we can trim those arrays to
* only the used elements [min_index, max_index] so long as we adjust all
* the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
*/
brw->vb.start_vertex_bias = 0;
delta = min_index;
if (nr_uploads == brw->vb.nr_enabled) {
brw->vb.start_vertex_bias = -delta;
delta = 0;
}
/* Handle any arrays to be uploaded. */
if (nr_uploads > 1) {
if (interleaved) {
struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
/* All uploads are interleaved, so upload the arrays together as
* interleaved. First, upload the contents and set up upload[0].
*/
copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
buffer, interleaved);
buffer->offset -= delta * interleaved;
buffer->size += delta * interleaved;
for (i = 0; i < nr_uploads; i++) {
/* Then, just point upload[i] at upload[0]'s buffer. */
upload[i]->offset =
((const unsigned char *)upload[i]->glarray->Ptr - ptr);
upload[i]->buffer = j;
}
j++;
nr_uploads = 0;
}
}
/* Upload non-interleaved arrays */
for (i = 0; i < nr_uploads; i++) {
struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
if (upload[i]->glarray->InstanceDivisor == 0) {
copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
buffer, upload[i]->glarray->_ElementSize);
} else {
/* This is an instanced attribute, since its InstanceDivisor
* is not zero. Therefore, its data will be stepped after the
* instanced draw has been run InstanceDivisor times.
*/
uint32_t instanced_attr_max_index =
(brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
buffer, upload[i]->glarray->_ElementSize);
}
buffer->offset -= delta * buffer->stride;
buffer->size += delta * buffer->stride;
buffer->step_rate = upload[i]->glarray->InstanceDivisor;
upload[i]->buffer = j++;
upload[i]->offset = 0;
}
brw->vb.nr_buffers = j;
}
void
brw_prepare_shader_draw_parameters(struct brw_context *brw)
{
const struct brw_vs_prog_data *vs_prog_data =
brw_vs_prog_data(brw->vs.base.prog_data);
/* For non-indirect draws, upload gl_BaseVertex. */
if ((vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance) &&
brw->draw.draw_params_bo == NULL) {
intel_upload_data(brw, &brw->draw.params, sizeof(brw->draw.params), 4,
&brw->draw.draw_params_bo,
&brw->draw.draw_params_offset);
}
if (vs_prog_data->uses_drawid) {
intel_upload_data(brw, &brw->draw.gl_drawid, sizeof(brw->draw.gl_drawid), 4,
&brw->draw.draw_id_bo,
&brw->draw.draw_id_offset);
}
}
/**
* Emit a VERTEX_BUFFER_STATE entry (part of 3DSTATE_VERTEX_BUFFERS).
*/
uint32_t *
brw_emit_vertex_buffer_state(struct brw_context *brw,
unsigned buffer_nr,
drm_intel_bo *bo,
unsigned start_offset,
unsigned end_offset,
unsigned stride,
unsigned step_rate,
uint32_t *__map)
{
struct gl_context *ctx = &brw->ctx;
uint32_t dw0;
if (brw->gen >= 8) {
dw0 = buffer_nr << GEN6_VB0_INDEX_SHIFT;
} else if (brw->gen >= 6) {
dw0 = (buffer_nr << GEN6_VB0_INDEX_SHIFT) |
(step_rate ? GEN6_VB0_ACCESS_INSTANCEDATA
: GEN6_VB0_ACCESS_VERTEXDATA);
} else {
dw0 = (buffer_nr << BRW_VB0_INDEX_SHIFT) |
(step_rate ? BRW_VB0_ACCESS_INSTANCEDATA
: BRW_VB0_ACCESS_VERTEXDATA);
}
if (brw->gen >= 7)
dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE;
switch (brw->gen) {
case 7:
dw0 |= GEN7_MOCS_L3 << 16;
break;
case 8:
dw0 |= BDW_MOCS_WB << 16;
break;
case 9:
dw0 |= SKL_MOCS_WB << 16;
break;
}
WARN_ONCE(stride >= (brw->gen >= 5 ? 2048 : 2047),
"VBO stride %d too large, bad rendering may occur\n",
stride);
OUT_BATCH(dw0 | (stride << BRW_VB0_PITCH_SHIFT));
if (brw->gen >= 8) {
OUT_RELOC64(bo, I915_GEM_DOMAIN_VERTEX, 0, start_offset);
/* From the BSpec: 3D Pipeline Stages - 3D Pipeline Geometry -
* Vertex Fetch (VF) Stage - State
*
* Instead of "VBState.StartingBufferAddress + VBState.MaxIndex x
* VBState.BufferPitch", the address of the byte immediately beyond the
* last valid byte of the buffer is determined by
* "VBState.StartingBufferAddress + VBState.BufferSize".
*/
OUT_BATCH(end_offset - start_offset);
} else if (brw->gen >= 5) {
OUT_RELOC(bo, I915_GEM_DOMAIN_VERTEX, 0, start_offset);
/* From the BSpec: 3D Pipeline Stages - 3D Pipeline Geometry -
* Vertex Fetch (VF) Stage - State
*
* Instead of "VBState.StartingBufferAddress + VBState.MaxIndex x
* VBState.BufferPitch", the address of the byte immediately beyond the
* last valid byte of the buffer is determined by
* "VBState.EndAddress + 1".
*/
OUT_RELOC(bo, I915_GEM_DOMAIN_VERTEX, 0, end_offset - 1);
OUT_BATCH(step_rate);
} else {
OUT_RELOC(bo, I915_GEM_DOMAIN_VERTEX, 0, start_offset);
OUT_BATCH(0);
OUT_BATCH(step_rate);
}
return __map;
}
static void
brw_emit_vertices(struct brw_context *brw)
{
GLuint i;
brw_prepare_vertices(brw);
brw_prepare_shader_draw_parameters(brw);
brw_emit_query_begin(brw);
const struct brw_vs_prog_data *vs_prog_data =
brw_vs_prog_data(brw->vs.base.prog_data);
unsigned nr_elements = brw->vb.nr_enabled;
if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid ||
vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
++nr_elements;
if (vs_prog_data->uses_drawid)
nr_elements++;
/* If the VS doesn't read any inputs (calculating vertex position from
* a state variable for some reason, for example), emit a single pad
* VERTEX_ELEMENT struct and bail.
*
* The stale VB state stays in place, but they don't do anything unless
* a VE loads from them.
*/
if (nr_elements == 0) {
BEGIN_BATCH(3);
OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1);
if (brw->gen >= 6) {
OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
GEN6_VE0_VALID |
(BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
(0 << BRW_VE0_SRC_OFFSET_SHIFT));
} else {
OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
BRW_VE0_VALID |
(BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
(0 << BRW_VE0_SRC_OFFSET_SHIFT));
}
OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
(BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
ADVANCE_BATCH();
return;
}
/* Now emit VB and VEP state packets.
*/
const bool uses_draw_params =
vs_prog_data->uses_basevertex ||
vs_prog_data->uses_baseinstance;
const unsigned nr_buffers = brw->vb.nr_buffers +
uses_draw_params + vs_prog_data->uses_drawid;
if (nr_buffers) {
if (brw->gen >= 6) {
assert(nr_buffers <= 33);
} else {
assert(nr_buffers <= 17);
}
BEGIN_BATCH(1 + 4 * nr_buffers);
OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4 * nr_buffers - 1));
for (i = 0; i < brw->vb.nr_buffers; i++) {
struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
/* Prior to Haswell and Bay Trail we have to use 4-component formats
* to fake 3-component ones. In particular, we do this for
* half-float and 8 and 16-bit integer formats. This means that the
* vertex element may poke over the end of the buffer by 2 bytes.
*/
unsigned padding =
(brw->gen <= 7 && !brw->is_baytrail && !brw->is_haswell) * 2;
EMIT_VERTEX_BUFFER_STATE(brw, i, buffer->bo, buffer->offset,
buffer->offset + buffer->size + padding,
buffer->stride, buffer->step_rate);
}
if (uses_draw_params) {
EMIT_VERTEX_BUFFER_STATE(brw, brw->vb.nr_buffers,
brw->draw.draw_params_bo,
brw->draw.draw_params_offset,
brw->draw.draw_params_bo->size,
0, /* stride */
0); /* step rate */
}
if (vs_prog_data->uses_drawid) {
EMIT_VERTEX_BUFFER_STATE(brw, brw->vb.nr_buffers + 1,
brw->draw.draw_id_bo,
brw->draw.draw_id_offset,
brw->draw.draw_id_bo->size,
0, /* stride */
0); /* step rate */
}
ADVANCE_BATCH();
}
/* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably
* for VertexID/InstanceID.
*/
if (brw->gen >= 6) {
assert(nr_elements <= 34);
} else {
assert(nr_elements <= 18);
}
struct brw_vertex_element *gen6_edgeflag_input = NULL;
BEGIN_BATCH(1 + nr_elements * 2);
OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1));
for (i = 0; i < brw->vb.nr_enabled; i++) {
struct brw_vertex_element *input = brw->vb.enabled[i];
uint32_t format = brw_get_vertex_surface_type(brw, input->glarray);
uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
/* Gen6+ passes edgeflag as sideband along with the vertex, instead
* of in the VUE. We have to upload it sideband as the last vertex
* element according to the B-Spec.
*/
if (brw->gen >= 6) {
gen6_edgeflag_input = input;
continue;
}
}
switch (input->glarray->Size) {
case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT
: BRW_VE1_COMPONENT_STORE_1_FLT;
break;
}
if (brw->gen >= 6) {
OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
GEN6_VE0_VALID |
(format << BRW_VE0_FORMAT_SHIFT) |
(input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
} else {
OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
BRW_VE0_VALID |
(format << BRW_VE0_FORMAT_SHIFT) |
(input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
}
if (brw->gen >= 5)
OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
(comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
(comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
(comp3 << BRW_VE1_COMPONENT_3_SHIFT));
else
OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
(comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
(comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
(comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
}
if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid ||
vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance) {
uint32_t dw0 = 0, dw1 = 0;
uint32_t comp0 = BRW_VE1_COMPONENT_STORE_0;
uint32_t comp1 = BRW_VE1_COMPONENT_STORE_0;
uint32_t comp2 = BRW_VE1_COMPONENT_STORE_0;
uint32_t comp3 = BRW_VE1_COMPONENT_STORE_0;
if (vs_prog_data->uses_basevertex)
comp0 = BRW_VE1_COMPONENT_STORE_SRC;
if (vs_prog_data->uses_baseinstance)
comp1 = BRW_VE1_COMPONENT_STORE_SRC;
if (vs_prog_data->uses_vertexid)
comp2 = BRW_VE1_COMPONENT_STORE_VID;
if (vs_prog_data->uses_instanceid)
comp3 = BRW_VE1_COMPONENT_STORE_IID;
dw1 = (comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
(comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
(comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
(comp3 << BRW_VE1_COMPONENT_3_SHIFT);
if (brw->gen >= 6) {
dw0 |= GEN6_VE0_VALID |
brw->vb.nr_buffers << GEN6_VE0_INDEX_SHIFT |
BRW_SURFACEFORMAT_R32G32_UINT << BRW_VE0_FORMAT_SHIFT;
} else {
dw0 |= BRW_VE0_VALID |
brw->vb.nr_buffers << BRW_VE0_INDEX_SHIFT |
BRW_SURFACEFORMAT_R32G32_UINT << BRW_VE0_FORMAT_SHIFT;
dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
}
/* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values,
* the format is ignored and the value is always int.
*/
OUT_BATCH(dw0);
OUT_BATCH(dw1);
}
if (vs_prog_data->uses_drawid) {
uint32_t dw0 = 0, dw1 = 0;
dw1 = (BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT);
if (brw->gen >= 6) {
dw0 |= GEN6_VE0_VALID |
((brw->vb.nr_buffers + 1) << GEN6_VE0_INDEX_SHIFT) |
(BRW_SURFACEFORMAT_R32_UINT << BRW_VE0_FORMAT_SHIFT);
} else {
dw0 |= BRW_VE0_VALID |
((brw->vb.nr_buffers + 1) << BRW_VE0_INDEX_SHIFT) |
(BRW_SURFACEFORMAT_R32_UINT << BRW_VE0_FORMAT_SHIFT);
dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
}
OUT_BATCH(dw0);
OUT_BATCH(dw1);
}
if (brw->gen >= 6 && gen6_edgeflag_input) {
uint32_t format =
brw_get_vertex_surface_type(brw, gen6_edgeflag_input->glarray);
OUT_BATCH((gen6_edgeflag_input->buffer << GEN6_VE0_INDEX_SHIFT) |
GEN6_VE0_VALID |
GEN6_VE0_EDGE_FLAG_ENABLE |
(format << BRW_VE0_FORMAT_SHIFT) |
(gen6_edgeflag_input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
OUT_BATCH((BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
}
ADVANCE_BATCH();
}
const struct brw_tracked_state brw_vertices = {
.dirty = {
.mesa = _NEW_POLYGON,
.brw = BRW_NEW_BATCH |
BRW_NEW_BLORP |
BRW_NEW_VERTICES |
BRW_NEW_VS_PROG_DATA,
},
.emit = brw_emit_vertices,
};
static void
brw_upload_indices(struct brw_context *brw)
{
struct gl_context *ctx = &brw->ctx;
const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
GLuint ib_size;
drm_intel_bo *old_bo = brw->ib.bo;
struct gl_buffer_object *bufferobj;
GLuint offset;
GLuint ib_type_size;
if (index_buffer == NULL)
return;
ib_type_size = _mesa_sizeof_type(index_buffer->type);
ib_size = index_buffer->count ? ib_type_size * index_buffer->count :
index_buffer->obj->Size;
bufferobj = index_buffer->obj;
/* Turn into a proper VBO:
*/
if (!_mesa_is_bufferobj(bufferobj)) {
/* Get new bufferobj, offset:
*/
intel_upload_data(brw, index_buffer->ptr, ib_size, ib_type_size,
&brw->ib.bo, &offset);
brw->ib.size = brw->ib.bo->size;
} else {
offset = (GLuint) (unsigned long) index_buffer->ptr;
/* If the index buffer isn't aligned to its element size, we have to
* rebase it into a temporary.
*/
if ((ib_type_size - 1) & offset) {
perf_debug("copying index buffer to a temporary to work around "
"misaligned offset %d\n", offset);
GLubyte *map = ctx->Driver.MapBufferRange(ctx,
offset,
ib_size,
GL_MAP_READ_BIT,
bufferobj,
MAP_INTERNAL);
intel_upload_data(brw, map, ib_size, ib_type_size,
&brw->ib.bo, &offset);
brw->ib.size = brw->ib.bo->size;
ctx->Driver.UnmapBuffer(ctx, bufferobj, MAP_INTERNAL);
} else {
drm_intel_bo *bo =
intel_bufferobj_buffer(brw, intel_buffer_object(bufferobj),
offset, ib_size);
if (bo != brw->ib.bo) {
drm_intel_bo_unreference(brw->ib.bo);
brw->ib.bo = bo;
brw->ib.size = bufferobj->Size;
drm_intel_bo_reference(bo);
}
}
}
/* Use 3DPRIMITIVE's start_vertex_offset to avoid re-uploading
* the index buffer state when we're just moving the start index
* of our drawing.
*/
brw->ib.start_vertex_offset = offset / ib_type_size;
if (brw->ib.bo != old_bo)
brw->ctx.NewDriverState |= BRW_NEW_INDEX_BUFFER;
if (index_buffer->type != brw->ib.type) {
brw->ib.type = index_buffer->type;
brw->ctx.NewDriverState |= BRW_NEW_INDEX_BUFFER;
}
}
const struct brw_tracked_state brw_indices = {
.dirty = {
.mesa = 0,
.brw = BRW_NEW_BLORP |
BRW_NEW_INDICES,
},
.emit = brw_upload_indices,
};
static void
brw_emit_index_buffer(struct brw_context *brw)
{
const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
GLuint cut_index_setting;
if (index_buffer == NULL)
return;
if (brw->prim_restart.enable_cut_index && !brw->is_haswell) {
cut_index_setting = BRW_CUT_INDEX_ENABLE;
} else {
cut_index_setting = 0;
}
BEGIN_BATCH(3);
OUT_BATCH(CMD_INDEX_BUFFER << 16 |
cut_index_setting |
brw_get_index_type(index_buffer->type) |
1);
OUT_RELOC(brw->ib.bo,
I915_GEM_DOMAIN_VERTEX, 0,
0);
OUT_RELOC(brw->ib.bo,
I915_GEM_DOMAIN_VERTEX, 0,
brw->ib.size - 1);
ADVANCE_BATCH();
}
const struct brw_tracked_state brw_index_buffer = {
.dirty = {
.mesa = 0,
.brw = BRW_NEW_BATCH |
BRW_NEW_BLORP |
BRW_NEW_INDEX_BUFFER,
},
.emit = brw_emit_index_buffer,
};