blob: e07d657db7ad2185fdd5f8771e4de9a59b08e2f9 [file] [log] [blame]
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_fs_combine_constants.cpp
*
* This file contains the opt_combine_constants() pass that runs after the
* regular optimization loop. It passes over the instruction list and
* selectively promotes immediate values to registers by emitting a mov(1)
* instruction.
*
* This is useful on Gen 7 particularly, because a few instructions can be
* coissued (i.e., issued in the same cycle as another thread on the same EU
* issues an instruction) under some circumstances, one of which is that they
* cannot use immediate values.
*/
#include "brw_fs.h"
#include "brw_cfg.h"
#include "util/half_float.h"
using namespace brw;
static const bool debug = false;
/* Returns whether an instruction could co-issue if its immediate source were
* replaced with a GRF source.
*/
static bool
could_coissue(const struct gen_device_info *devinfo, const fs_inst *inst)
{
if (devinfo->gen != 7)
return false;
switch (inst->opcode) {
case BRW_OPCODE_MOV:
case BRW_OPCODE_CMP:
case BRW_OPCODE_ADD:
case BRW_OPCODE_MUL:
/* Only float instructions can coissue. We don't have a great
* understanding of whether or not something like float(int(a) + int(b))
* would be considered float (based on the destination type) or integer
* (based on the source types), so we take the conservative choice of
* only promoting when both destination and source are float.
*/
return inst->dst.type == BRW_REGISTER_TYPE_F &&
inst->src[0].type == BRW_REGISTER_TYPE_F;
default:
return false;
}
}
/**
* Returns true for instructions that don't support immediate sources.
*/
static bool
must_promote_imm(const struct gen_device_info *devinfo, const fs_inst *inst)
{
switch (inst->opcode) {
case SHADER_OPCODE_POW:
return devinfo->gen < 8;
case BRW_OPCODE_MAD:
case BRW_OPCODE_LRP:
return true;
default:
return false;
}
}
/** A box for putting fs_regs in a linked list. */
struct reg_link {
DECLARE_RALLOC_CXX_OPERATORS(reg_link)
reg_link(fs_reg *reg) : reg(reg) {}
struct exec_node link;
fs_reg *reg;
};
static struct exec_node *
link(void *mem_ctx, fs_reg *reg)
{
reg_link *l = new(mem_ctx) reg_link(reg);
return &l->link;
}
/**
* Information about an immediate value.
*/
struct imm {
/** The common ancestor of all blocks using this immediate value. */
bblock_t *block;
/**
* The instruction generating the immediate value, if all uses are contained
* within a single basic block. Otherwise, NULL.
*/
fs_inst *inst;
/**
* A list of fs_regs that refer to this immediate. If we promote it, we'll
* have to patch these up to refer to the new GRF.
*/
exec_list *uses;
/** The immediate value */
union {
char bytes[8];
double df;
int64_t d64;
float f;
int32_t d;
int16_t w;
};
uint8_t size;
/** When promoting half-float we need to account for certain restrictions */
bool is_half_float;
/**
* The GRF register and subregister number where we've decided to store the
* constant value.
*/
uint8_t subreg_offset;
uint16_t nr;
/** The number of coissuable instructions using this immediate. */
uint16_t uses_by_coissue;
/**
* Whether this constant is used by an instruction that can't handle an
* immediate source (and already has to be promoted to a GRF).
*/
bool must_promote;
uint16_t first_use_ip;
uint16_t last_use_ip;
};
/** The working set of information about immediates. */
struct table {
struct imm *imm;
int size;
int len;
};
static struct imm *
find_imm(struct table *table, void *data, uint8_t size)
{
for (int i = 0; i < table->len; i++) {
if (table->imm[i].size == size &&
!memcmp(table->imm[i].bytes, data, size)) {
return &table->imm[i];
}
}
return NULL;
}
static struct imm *
new_imm(struct table *table, void *mem_ctx)
{
if (table->len == table->size) {
table->size *= 2;
table->imm = reralloc(mem_ctx, table->imm, struct imm, table->size);
}
return &table->imm[table->len++];
}
/**
* Comparator used for sorting an array of imm structures.
*
* We sort by basic block number, then last use IP, then first use IP (least
* to greatest). This sorting causes immediates live in the same area to be
* allocated to the same register in the hopes that all values will be dead
* about the same time and the register can be reused.
*/
static int
compare(const void *_a, const void *_b)
{
const struct imm *a = (const struct imm *)_a,
*b = (const struct imm *)_b;
int block_diff = a->block->num - b->block->num;
if (block_diff)
return block_diff;
int end_diff = a->last_use_ip - b->last_use_ip;
if (end_diff)
return end_diff;
return a->first_use_ip - b->first_use_ip;
}
static bool
get_constant_value(const struct gen_device_info *devinfo,
const fs_inst *inst, uint32_t src_idx,
void *out, brw_reg_type *out_type)
{
const bool can_do_source_mods = inst->can_do_source_mods(devinfo);
const fs_reg *src = &inst->src[src_idx];
*out_type = src->type;
switch (*out_type) {
case BRW_REGISTER_TYPE_DF: {
double val = !can_do_source_mods ? src->df : fabs(src->df);
memcpy(out, &val, 8);
break;
}
case BRW_REGISTER_TYPE_F: {
float val = !can_do_source_mods ? src->f : fabsf(src->f);
memcpy(out, &val, 4);
break;
}
case BRW_REGISTER_TYPE_HF: {
uint16_t val = src->d & 0xffffu;
if (can_do_source_mods)
val = _mesa_float_to_half(fabsf(_mesa_half_to_float(val)));
memcpy(out, &val, 2);
break;
}
case BRW_REGISTER_TYPE_Q: {
int64_t val = !can_do_source_mods ? src->d64 : llabs(src->d64);
memcpy(out, &val, 8);
break;
}
case BRW_REGISTER_TYPE_UQ:
memcpy(out, &src->u64, 8);
break;
case BRW_REGISTER_TYPE_D: {
int32_t val = !can_do_source_mods ? src->d : abs(src->d);
memcpy(out, &val, 4);
break;
}
case BRW_REGISTER_TYPE_UD:
memcpy(out, &src->ud, 4);
break;
case BRW_REGISTER_TYPE_W: {
int16_t val = src->d & 0xffffu;
if (can_do_source_mods)
val = abs(val);
memcpy(out, &val, 2);
break;
}
case BRW_REGISTER_TYPE_UW:
memcpy(out, &src->ud, 2);
break;
default:
return false;
};
return true;
}
static struct brw_reg
build_imm_reg_for_copy(struct imm *imm)
{
switch (imm->size) {
case 8:
return brw_imm_d(imm->d64);
case 4:
return brw_imm_d(imm->d);
case 2:
return brw_imm_w(imm->w);
default:
unreachable("not implemented");
}
}
static inline uint32_t
get_alignment_for_imm(const struct imm *imm)
{
if (imm->is_half_float)
return 4; /* At least MAD seems to require this */
else
return imm->size;
}
static bool
needs_negate(const fs_reg *reg, const struct imm *imm)
{
switch (reg->type) {
case BRW_REGISTER_TYPE_DF:
return signbit(reg->df) != signbit(imm->df);
case BRW_REGISTER_TYPE_F:
return signbit(reg->f) != signbit(imm->f);
case BRW_REGISTER_TYPE_Q:
return (reg->d64 < 0) != (imm->d64 < 0);
case BRW_REGISTER_TYPE_D:
return (reg->d < 0) != (imm->d < 0);
case BRW_REGISTER_TYPE_HF:
return (reg->d & 0x8000u) != (imm->w & 0x8000u);
case BRW_REGISTER_TYPE_W:
return ((int16_t)reg->d < 0) != (imm->w < 0);
case BRW_REGISTER_TYPE_UQ:
case BRW_REGISTER_TYPE_UD:
case BRW_REGISTER_TYPE_UW:
return false;
default:
unreachable("not implemented");
};
}
static bool
representable_as_hf(float f, uint16_t *hf)
{
union fi u;
uint16_t h = _mesa_float_to_half(f);
u.f = _mesa_half_to_float(h);
if (u.f == f) {
*hf = h;
return true;
}
return false;
}
static bool
represent_src_as_imm(const struct gen_device_info *devinfo,
fs_reg *src)
{
/* TODO : consider specific platforms also */
if (devinfo->gen == 12) {
uint16_t hf;
if (representable_as_hf(src->f, &hf)) {
*src = retype(brw_imm_uw(hf), BRW_REGISTER_TYPE_HF);
return true;
}
}
return false;
}
bool
fs_visitor::opt_combine_constants()
{
void *const_ctx = ralloc_context(NULL);
struct table table;
table.size = 8;
table.len = 0;
table.imm = ralloc_array(const_ctx, struct imm, table.size);
const brw::idom_tree &idom = idom_analysis.require();
unsigned ip = -1;
/* Make a pass through all instructions and count the number of times each
* constant is used by coissueable instructions or instructions that cannot
* take immediate arguments.
*/
foreach_block_and_inst(block, fs_inst, inst, cfg) {
ip++;
if (!could_coissue(devinfo, inst) && !must_promote_imm(devinfo, inst))
continue;
bool represented_as_imm = false;
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file != IMM)
continue;
if (!represented_as_imm && i == 0 &&
inst->opcode == BRW_OPCODE_MAD &&
represent_src_as_imm(devinfo, &inst->src[i])) {
represented_as_imm = true;
continue;
}
char data[8];
brw_reg_type type;
if (!get_constant_value(devinfo, inst, i, data, &type))
continue;
uint8_t size = type_sz(type);
struct imm *imm = find_imm(&table, data, size);
if (imm) {
bblock_t *intersection = idom.intersect(block, imm->block);
if (intersection != imm->block)
imm->inst = NULL;
imm->block = intersection;
imm->uses->push_tail(link(const_ctx, &inst->src[i]));
imm->uses_by_coissue += could_coissue(devinfo, inst);
imm->must_promote = imm->must_promote || must_promote_imm(devinfo, inst);
imm->last_use_ip = ip;
if (type == BRW_REGISTER_TYPE_HF)
imm->is_half_float = true;
} else {
imm = new_imm(&table, const_ctx);
imm->block = block;
imm->inst = inst;
imm->uses = new(const_ctx) exec_list();
imm->uses->push_tail(link(const_ctx, &inst->src[i]));
memcpy(imm->bytes, data, size);
imm->size = size;
imm->is_half_float = type == BRW_REGISTER_TYPE_HF;
imm->uses_by_coissue = could_coissue(devinfo, inst);
imm->must_promote = must_promote_imm(devinfo, inst);
imm->first_use_ip = ip;
imm->last_use_ip = ip;
}
}
}
/* Remove constants from the table that don't have enough uses to make them
* profitable to store in a register.
*/
for (int i = 0; i < table.len;) {
struct imm *imm = &table.imm[i];
if (!imm->must_promote && imm->uses_by_coissue < 4) {
table.imm[i] = table.imm[table.len - 1];
table.len--;
continue;
}
i++;
}
if (table.len == 0) {
ralloc_free(const_ctx);
return false;
}
if (cfg->num_blocks != 1)
qsort(table.imm, table.len, sizeof(struct imm), compare);
/* Insert MOVs to load the constant values into GRFs. */
fs_reg reg(VGRF, alloc.allocate(1));
reg.stride = 0;
for (int i = 0; i < table.len; i++) {
struct imm *imm = &table.imm[i];
/* Insert it either before the instruction that generated the immediate
* or after the last non-control flow instruction of the common ancestor.
*/
exec_node *n = (imm->inst ? imm->inst :
imm->block->last_non_control_flow_inst()->next);
/* From the BDW and CHV PRM, 3D Media GPGPU, Special Restrictions:
*
* "In Align16 mode, the channel selects and channel enables apply to a
* pair of half-floats, because these parameters are defined for DWord
* elements ONLY. This is applicable when both source and destination
* are half-floats."
*
* This means that Align16 instructions that use promoted HF immediates
* and use a <0,1,0>:HF region would read 2 HF slots instead of
* replicating the single one we want. To avoid this, we always populate
* both HF slots within a DWord with the constant.
*/
const uint32_t width = devinfo->gen == 8 && imm->is_half_float ? 2 : 1;
const fs_builder ibld = bld.at(imm->block, n).exec_all().group(width, 0);
/* Put the immediate in an offset aligned to its size. Some instructions
* seem to have additional alignment requirements, so account for that
* too.
*/
reg.offset = ALIGN(reg.offset, get_alignment_for_imm(imm));
/* Ensure we have enough space in the register to copy the immediate */
struct brw_reg imm_reg = build_imm_reg_for_copy(imm);
if (reg.offset + type_sz(imm_reg.type) * width > REG_SIZE) {
reg.nr = alloc.allocate(1);
reg.offset = 0;
}
ibld.MOV(retype(reg, imm_reg.type), imm_reg);
imm->nr = reg.nr;
imm->subreg_offset = reg.offset;
reg.offset += imm->size * width;
}
shader_stats.promoted_constants = table.len;
/* Rewrite the immediate sources to refer to the new GRFs. */
for (int i = 0; i < table.len; i++) {
foreach_list_typed(reg_link, link, link, table.imm[i].uses) {
fs_reg *reg = link->reg;
#ifdef DEBUG
switch (reg->type) {
case BRW_REGISTER_TYPE_DF:
assert((isnan(reg->df) && isnan(table.imm[i].df)) ||
(fabs(reg->df) == fabs(table.imm[i].df)));
break;
case BRW_REGISTER_TYPE_F:
assert((isnan(reg->f) && isnan(table.imm[i].f)) ||
(fabsf(reg->f) == fabsf(table.imm[i].f)));
break;
case BRW_REGISTER_TYPE_HF:
assert((isnan(_mesa_half_to_float(reg->d & 0xffffu)) &&
isnan(_mesa_half_to_float(table.imm[i].w))) ||
(fabsf(_mesa_half_to_float(reg->d & 0xffffu)) ==
fabsf(_mesa_half_to_float(table.imm[i].w))));
break;
case BRW_REGISTER_TYPE_Q:
assert(abs(reg->d64) == abs(table.imm[i].d64));
break;
case BRW_REGISTER_TYPE_UQ:
assert(reg->d64 == table.imm[i].d64);
break;
case BRW_REGISTER_TYPE_D:
assert(abs(reg->d) == abs(table.imm[i].d));
break;
case BRW_REGISTER_TYPE_UD:
assert(reg->d == table.imm[i].d);
break;
case BRW_REGISTER_TYPE_W:
assert(abs((int16_t) (reg->d & 0xffff)) == table.imm[i].w);
break;
case BRW_REGISTER_TYPE_UW:
assert((reg->ud & 0xffffu) == (uint16_t) table.imm[i].w);
break;
default:
break;
}
#endif
reg->file = VGRF;
reg->offset = table.imm[i].subreg_offset;
reg->stride = 0;
reg->negate = needs_negate(reg, &table.imm[i]);
reg->nr = table.imm[i].nr;
}
}
if (debug) {
for (int i = 0; i < table.len; i++) {
struct imm *imm = &table.imm[i];
printf("0x%016" PRIx64 " - block %3d, reg %3d sub %2d, "
"Uses: (%2d, %2d), IP: %4d to %4d, length %4d\n",
(uint64_t)(imm->d & BITFIELD64_MASK(imm->size * 8)),
imm->block->num,
imm->nr,
imm->subreg_offset,
imm->must_promote,
imm->uses_by_coissue,
imm->first_use_ip,
imm->last_use_ip,
imm->last_use_ip - imm->first_use_ip);
}
}
ralloc_free(const_ctx);
invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return true;
}