blob: 48e340d09cde2d6b0c8e8abd1df0a90ff86e496b [file] [log] [blame]
/*
* Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef IR3_H_
#define IR3_H_
#include <stdint.h>
#include <stdbool.h>
#include "compiler/shader_enums.h"
#include "util/bitscan.h"
#include "util/list.h"
#include "util/set.h"
#include "util/u_debug.h"
#include "instr-a3xx.h"
/* low level intermediate representation of an adreno shader program */
struct ir3_compiler;
struct ir3;
struct ir3_instruction;
struct ir3_block;
struct ir3_info {
void *data; /* used internally in ir3 assembler */
uint16_t sizedwords;
uint16_t instrs_count; /* expanded to account for rpt's */
uint16_t nops_count; /* # of nop instructions, including nopN */
uint16_t mov_count;
uint16_t cov_count;
/* NOTE: max_reg, etc, does not include registers not touched
* by the shader (ie. vertex fetched via VFD_DECODE but not
* touched by shader)
*/
int8_t max_reg; /* highest GPR # used by shader */
int8_t max_half_reg;
int16_t max_const;
/* number of sync bits: */
uint16_t ss, sy;
/* estimate of number of cycles stalled on (ss) */
uint16_t sstall;
uint16_t last_baryf; /* instruction # of last varying fetch */
};
struct ir3_register {
enum {
IR3_REG_CONST = 0x001,
IR3_REG_IMMED = 0x002,
IR3_REG_HALF = 0x004,
/* high registers are used for some things in compute shaders,
* for example. Seems to be for things that are global to all
* threads in a wave, so possibly these are global/shared by
* all the threads in the wave?
*/
IR3_REG_HIGH = 0x008,
IR3_REG_RELATIV= 0x010,
IR3_REG_R = 0x020,
/* Most instructions, it seems, can do float abs/neg but not
* integer. The CP pass needs to know what is intended (int or
* float) in order to do the right thing. For this reason the
* abs/neg flags are split out into float and int variants. In
* addition, .b (bitwise) operations, the negate is actually a
* bitwise not, so split that out into a new flag to make it
* more clear.
*/
IR3_REG_FNEG = 0x040,
IR3_REG_FABS = 0x080,
IR3_REG_SNEG = 0x100,
IR3_REG_SABS = 0x200,
IR3_REG_BNOT = 0x400,
IR3_REG_EVEN = 0x800,
IR3_REG_POS_INF= 0x1000,
/* (ei) flag, end-input? Set on last bary, presumably to signal
* that the shader needs no more input:
*/
IR3_REG_EI = 0x2000,
/* meta-flags, for intermediate stages of IR, ie.
* before register assignment is done:
*/
IR3_REG_SSA = 0x4000, /* 'instr' is ptr to assigning instr */
IR3_REG_ARRAY = 0x8000,
} flags;
/* used for cat5 instructions, but also for internal/IR level
* tracking of what registers are read/written by an instruction.
* wrmask may be a bad name since it is used to represent both
* src and dst that touch multiple adjacent registers.
*/
unsigned wrmask : 16; /* up to vec16 */
/* for relative addressing, 32bits for array size is too small,
* but otoh we don't need to deal with disjoint sets, so instead
* use a simple size field (number of scalar components).
*
* Note the size field isn't important for relative const (since
* we don't have to do register allocation for constants).
*/
unsigned size : 16;
/* normal registers:
* the component is in the low two bits of the reg #, so
* rN.x becomes: (N << 2) | x
*/
uint16_t num;
union {
/* immediate: */
int32_t iim_val;
uint32_t uim_val;
float fim_val;
/* relative: */
struct {
uint16_t id;
int16_t offset;
} array;
};
/* For IR3_REG_SSA, src registers contain ptr back to assigning
* instruction.
*
* For IR3_REG_ARRAY, the pointer is back to the last dependent
* array access (although the net effect is the same, it points
* back to a previous instruction that we depend on).
*/
struct ir3_instruction *instr;
};
/*
* Stupid/simple growable array implementation:
*/
#define DECLARE_ARRAY(type, name) \
unsigned name ## _count, name ## _sz; \
type * name;
#define array_insert(ctx, arr, val) do { \
if (arr ## _count == arr ## _sz) { \
arr ## _sz = MAX2(2 * arr ## _sz, 16); \
arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
} \
arr[arr ##_count++] = val; \
} while (0)
struct ir3_instruction {
struct ir3_block *block;
opc_t opc;
enum {
/* (sy) flag is set on first instruction, and after sample
* instructions (probably just on RAW hazard).
*/
IR3_INSTR_SY = 0x001,
/* (ss) flag is set on first instruction, and first instruction
* to depend on the result of "long" instructions (RAW hazard):
*
* rcp, rsq, log2, exp2, sin, cos, sqrt
*
* It seems to synchronize until all in-flight instructions are
* completed, for example:
*
* rsq hr1.w, hr1.w
* add.f hr2.z, (neg)hr2.z, hc0.y
* mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
* rsq hr2.x, hr2.x
* (rpt1)nop
* mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
* nop
* mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
* (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
* (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
*
* The last mul.f does not have (ss) set, presumably because the
* (ss) on the previous instruction does the job.
*
* The blob driver also seems to set it on WAR hazards, although
* not really clear if this is needed or just blob compiler being
* sloppy. So far I haven't found a case where removing the (ss)
* causes problems for WAR hazard, but I could just be getting
* lucky:
*
* rcp r1.y, r3.y
* (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
*
*/
IR3_INSTR_SS = 0x002,
/* (jp) flag is set on jump targets:
*/
IR3_INSTR_JP = 0x004,
IR3_INSTR_UL = 0x008,
IR3_INSTR_3D = 0x010,
IR3_INSTR_A = 0x020,
IR3_INSTR_O = 0x040,
IR3_INSTR_P = 0x080,
IR3_INSTR_S = 0x100,
IR3_INSTR_S2EN = 0x200,
IR3_INSTR_G = 0x400,
IR3_INSTR_SAT = 0x800,
/* (cat5/cat6) Bindless */
IR3_INSTR_B = 0x1000,
/* (cat5-only) Get some parts of the encoding from a1.x */
IR3_INSTR_A1EN = 0x2000,
/* meta-flags, for intermediate stages of IR, ie.
* before register assignment is done:
*/
IR3_INSTR_MARK = 0x4000,
IR3_INSTR_UNUSED= 0x8000,
} flags;
uint8_t repeat;
uint8_t nop;
#ifdef DEBUG
unsigned regs_max;
#endif
unsigned regs_count;
struct ir3_register **regs;
union {
struct {
char inv;
char comp;
int immed;
struct ir3_block *target;
} cat0;
struct {
type_t src_type, dst_type;
} cat1;
struct {
enum {
IR3_COND_LT = 0,
IR3_COND_LE = 1,
IR3_COND_GT = 2,
IR3_COND_GE = 3,
IR3_COND_EQ = 4,
IR3_COND_NE = 5,
} condition;
} cat2;
struct {
unsigned samp, tex;
unsigned tex_base : 3;
type_t type;
} cat5;
struct {
type_t type;
int src_offset;
int dst_offset;
int iim_val : 3; /* for ldgb/stgb, # of components */
unsigned d : 3; /* for ldc, component offset */
bool typed : 1;
unsigned base : 3;
} cat6;
struct {
unsigned w : 1; /* write */
unsigned r : 1; /* read */
unsigned l : 1; /* local */
unsigned g : 1; /* global */
} cat7;
/* for meta-instructions, just used to hold extra data
* before instruction scheduling, etc
*/
struct {
int off; /* component/offset */
} split;
struct {
/* for output collects, this maps back to the entry in the
* ir3_shader_variant::outputs table.
*/
int outidx;
} collect;
struct {
unsigned samp, tex;
unsigned input_offset;
unsigned samp_base : 3;
unsigned tex_base : 3;
} prefetch;
struct {
/* maps back to entry in ir3_shader_variant::inputs table: */
int inidx;
/* for sysvals, identifies the sysval type. Mostly so we can
* identify the special cases where a sysval should not be DCE'd
* (currently, just pre-fs texture fetch)
*/
gl_system_value sysval;
} input;
};
/* When we get to the RA stage, we need instruction's position/name: */
uint16_t ip;
uint16_t name;
/* used for per-pass extra instruction data.
*
* TODO we should remove the per-pass data like this and 'use_count'
* and do something similar to what RA does w/ ir3_ra_instr_data..
* ie. use the ir3_count_instructions pass, and then use instr->ip
* to index into a table of pass-private data.
*/
void *data;
/**
* Valid if pass calls ir3_find_ssa_uses().. see foreach_ssa_use()
*/
struct set *uses;
int use_count; /* currently just updated/used by cp */
/* Used during CP and RA stages. For collect and shader inputs/
* outputs where we need a sequence of consecutive registers,
* keep track of each src instructions left (ie 'n-1') and right
* (ie 'n+1') neighbor. The front-end must insert enough mov's
* to ensure that each instruction has at most one left and at
* most one right neighbor. During the copy-propagation pass,
* we only remove mov's when we can preserve this constraint.
* And during the RA stage, we use the neighbor information to
* allocate a block of registers in one shot.
*
* TODO: maybe just add something like:
* struct ir3_instruction_ref {
* struct ir3_instruction *instr;
* unsigned cnt;
* }
*
* Or can we get away without the refcnt stuff? It seems like
* it should be overkill.. the problem is if, potentially after
* already eliminating some mov's, if you have a single mov that
* needs to be grouped with it's neighbors in two different
* places (ex. shader output and a collect).
*/
struct {
struct ir3_instruction *left, *right;
uint16_t left_cnt, right_cnt;
} cp;
/* an instruction can reference at most one address register amongst
* it's src/dst registers. Beyond that, you need to insert mov's.
*
* NOTE: do not write this directly, use ir3_instr_set_address()
*/
struct ir3_instruction *address;
/* Tracking for additional dependent instructions. Used to handle
* barriers, WAR hazards for arrays/SSBOs/etc.
*/
DECLARE_ARRAY(struct ir3_instruction *, deps);
/*
* From PoV of instruction scheduling, not execution (ie. ignores global/
* local distinction):
* shared image atomic SSBO everything
* barrier()/ - R/W R/W R/W R/W X
* groupMemoryBarrier()
* memoryBarrier() - R/W R/W
* (but only images declared coherent?)
* memoryBarrierAtomic() - R/W
* memoryBarrierBuffer() - R/W
* memoryBarrierImage() - R/W
* memoryBarrierShared() - R/W
*
* TODO I think for SSBO/image/shared, in cases where we can determine
* which variable is accessed, we don't need to care about accesses to
* different variables (unless declared coherent??)
*/
enum {
IR3_BARRIER_EVERYTHING = 1 << 0,
IR3_BARRIER_SHARED_R = 1 << 1,
IR3_BARRIER_SHARED_W = 1 << 2,
IR3_BARRIER_IMAGE_R = 1 << 3,
IR3_BARRIER_IMAGE_W = 1 << 4,
IR3_BARRIER_BUFFER_R = 1 << 5,
IR3_BARRIER_BUFFER_W = 1 << 6,
IR3_BARRIER_ARRAY_R = 1 << 7,
IR3_BARRIER_ARRAY_W = 1 << 8,
} barrier_class, barrier_conflict;
/* Entry in ir3_block's instruction list: */
struct list_head node;
#ifdef DEBUG
uint32_t serialno;
#endif
// TODO only computerator/assembler:
int line;
};
static inline struct ir3_instruction *
ir3_neighbor_first(struct ir3_instruction *instr)
{
int cnt = 0;
while (instr->cp.left) {
instr = instr->cp.left;
if (++cnt > 0xffff) {
debug_assert(0);
break;
}
}
return instr;
}
static inline int ir3_neighbor_count(struct ir3_instruction *instr)
{
int num = 1;
debug_assert(!instr->cp.left);
while (instr->cp.right) {
num++;
instr = instr->cp.right;
if (num > 0xffff) {
debug_assert(0);
break;
}
}
return num;
}
struct ir3 {
struct ir3_compiler *compiler;
gl_shader_stage type;
DECLARE_ARRAY(struct ir3_instruction *, inputs);
DECLARE_ARRAY(struct ir3_instruction *, outputs);
/* Track bary.f (and ldlv) instructions.. this is needed in
* scheduling to ensure that all varying fetches happen before
* any potential kill instructions. The hw gets grumpy if all
* threads in a group are killed before the last bary.f gets
* a chance to signal end of input (ei).
*/
DECLARE_ARRAY(struct ir3_instruction *, baryfs);
/* Track all indirect instructions (read and write). To avoid
* deadlock scenario where an address register gets scheduled,
* but other dependent src instructions cannot be scheduled due
* to dependency on a *different* address register value, the
* scheduler needs to ensure that all dependencies other than
* the instruction other than the address register are scheduled
* before the one that writes the address register. Having a
* convenient list of instructions that reference some address
* register simplifies this.
*/
DECLARE_ARRAY(struct ir3_instruction *, a0_users);
/* same for a1.x: */
DECLARE_ARRAY(struct ir3_instruction *, a1_users);
/* and same for instructions that consume predicate register: */
DECLARE_ARRAY(struct ir3_instruction *, predicates);
/* Track texture sample instructions which need texture state
* patched in (for astc-srgb workaround):
*/
DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
/* List of blocks: */
struct list_head block_list;
/* List of ir3_array's: */
struct list_head array_list;
#ifdef DEBUG
unsigned block_count, instr_count;
#endif
};
struct ir3_array {
struct list_head node;
unsigned length;
unsigned id;
struct nir_register *r;
/* To avoid array write's from getting DCE'd, keep track of the
* most recent write. Any array access depends on the most
* recent write. This way, nothing depends on writes after the
* last read. But all the writes that happen before that have
* something depending on them
*/
struct ir3_instruction *last_write;
/* extra stuff used in RA pass: */
unsigned base; /* base vreg name */
unsigned reg; /* base physical reg */
uint16_t start_ip, end_ip;
/* Indicates if half-precision */
bool half;
};
struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
struct ir3_block {
struct list_head node;
struct ir3 *shader;
const struct nir_block *nblock;
struct list_head instr_list; /* list of ir3_instruction */
/* each block has either one or two successors.. in case of
* two successors, 'condition' decides which one to follow.
* A block preceding an if/else has two successors.
*/
struct ir3_instruction *condition;
struct ir3_block *successors[2];
struct set *predecessors; /* set of ir3_block */
uint16_t start_ip, end_ip;
/* Track instructions which do not write a register but other-
* wise must not be discarded (such as kill, stg, etc)
*/
DECLARE_ARRAY(struct ir3_instruction *, keeps);
/* used for per-pass extra block data. Mainly used right
* now in RA step to track livein/liveout.
*/
void *data;
#ifdef DEBUG
uint32_t serialno;
#endif
};
static inline uint32_t
block_id(struct ir3_block *block)
{
#ifdef DEBUG
return block->serialno;
#else
return (uint32_t)(unsigned long)block;
#endif
}
struct ir3 * ir3_create(struct ir3_compiler *compiler, gl_shader_stage type);
void ir3_destroy(struct ir3 *shader);
struct ir3_shader_variant;
void * ir3_assemble(struct ir3_shader_variant *v);
void * ir3_alloc(struct ir3 *shader, int sz);
struct ir3_block * ir3_block_create(struct ir3 *shader);
struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
opc_t opc, int nreg);
struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
const char *ir3_instr_name(struct ir3_instruction *instr);
struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
int num, int flags);
struct ir3_register * ir3_reg_clone(struct ir3 *shader,
struct ir3_register *reg);
void ir3_instr_set_address(struct ir3_instruction *instr,
struct ir3_instruction *addr);
static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
{
if (instr->flags & IR3_INSTR_MARK)
return true; /* already visited */
instr->flags |= IR3_INSTR_MARK;
return false;
}
void ir3_block_clear_mark(struct ir3_block *block);
void ir3_clear_mark(struct ir3 *shader);
unsigned ir3_count_instructions(struct ir3 *ir);
unsigned ir3_count_instructions_ra(struct ir3 *ir);
/**
* Move 'instr' to just before 'after'
*/
static inline void
ir3_instr_move_before(struct ir3_instruction *instr,
struct ir3_instruction *after)
{
list_delinit(&instr->node);
list_addtail(&instr->node, &after->node);
}
/**
* Move 'instr' to just after 'before':
*/
static inline void
ir3_instr_move_after(struct ir3_instruction *instr,
struct ir3_instruction *before)
{
list_delinit(&instr->node);
list_add(&instr->node, &before->node);
}
void ir3_find_ssa_uses(struct ir3 *ir, void *mem_ctx, bool falsedeps);
void ir3_set_dst_type(struct ir3_instruction *instr, bool half);
void ir3_fixup_src_type(struct ir3_instruction *instr);
bool ir3_valid_flags(struct ir3_instruction *instr, unsigned n, unsigned flags);
#include "util/set.h"
#define foreach_ssa_use(__use, __instr) \
for (struct ir3_instruction *__use = (void *)~0; \
__use && (__instr)->uses; __use = NULL) \
set_foreach ((__instr)->uses, __entry) \
if ((__use = (void *)__entry->key))
#define MAX_ARRAYS 16
/* comp:
* 0 - x
* 1 - y
* 2 - z
* 3 - w
*/
static inline uint32_t regid(int num, int comp)
{
return (num << 2) | (comp & 0x3);
}
static inline uint32_t reg_num(struct ir3_register *reg)
{
return reg->num >> 2;
}
static inline uint32_t reg_comp(struct ir3_register *reg)
{
return reg->num & 0x3;
}
#define INVALID_REG regid(63, 0)
#define VALIDREG(r) ((r) != INVALID_REG)
#define CONDREG(r, val) COND(VALIDREG(r), (val))
static inline bool is_flow(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 0);
}
static inline bool is_kill(struct ir3_instruction *instr)
{
return instr->opc == OPC_KILL;
}
static inline bool is_nop(struct ir3_instruction *instr)
{
return instr->opc == OPC_NOP;
}
static inline bool is_same_type_reg(struct ir3_register *reg1,
struct ir3_register *reg2)
{
unsigned type_reg1 = (reg1->flags & (IR3_REG_HIGH | IR3_REG_HALF));
unsigned type_reg2 = (reg2->flags & (IR3_REG_HIGH | IR3_REG_HALF));
if (type_reg1 ^ type_reg2)
return false;
else
return true;
}
/* Is it a non-transformative (ie. not type changing) mov? This can
* also include absneg.s/absneg.f, which for the most part can be
* treated as a mov (single src argument).
*/
static inline bool is_same_type_mov(struct ir3_instruction *instr)
{
struct ir3_register *dst;
switch (instr->opc) {
case OPC_MOV:
if (instr->cat1.src_type != instr->cat1.dst_type)
return false;
/* If the type of dest reg and src reg are different,
* it shouldn't be considered as same type mov
*/
if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
return false;
break;
case OPC_ABSNEG_F:
case OPC_ABSNEG_S:
if (instr->flags & IR3_INSTR_SAT)
return false;
/* If the type of dest reg and src reg are different,
* it shouldn't be considered as same type mov
*/
if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
return false;
break;
default:
return false;
}
dst = instr->regs[0];
/* mov's that write to a0 or p0.x are special: */
if (dst->num == regid(REG_P0, 0))
return false;
if (reg_num(dst) == REG_A0)
return false;
if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
return false;
return true;
}
/* A move from const, which changes size but not type, can also be
* folded into dest instruction in some cases.
*/
static inline bool is_const_mov(struct ir3_instruction *instr)
{
if (instr->opc != OPC_MOV)
return false;
if (!(instr->regs[1]->flags & IR3_REG_CONST))
return false;
type_t src_type = instr->cat1.src_type;
type_t dst_type = instr->cat1.dst_type;
return (type_float(src_type) && type_float(dst_type)) ||
(type_uint(src_type) && type_uint(dst_type)) ||
(type_sint(src_type) && type_sint(dst_type));
}
static inline bool is_alu(struct ir3_instruction *instr)
{
return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
}
static inline bool is_sfu(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 4);
}
static inline bool is_tex(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 5);
}
static inline bool is_tex_or_prefetch(struct ir3_instruction *instr)
{
return is_tex(instr) || (instr->opc == OPC_META_TEX_PREFETCH);
}
static inline bool is_mem(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 6);
}
static inline bool is_barrier(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == 7);
}
static inline bool
is_half(struct ir3_instruction *instr)
{
return !!(instr->regs[0]->flags & IR3_REG_HALF);
}
static inline bool
is_high(struct ir3_instruction *instr)
{
return !!(instr->regs[0]->flags & IR3_REG_HIGH);
}
static inline bool
is_store(struct ir3_instruction *instr)
{
/* these instructions, the "destination" register is
* actually a source, the address to store to.
*/
switch (instr->opc) {
case OPC_STG:
case OPC_STGB:
case OPC_STIB:
case OPC_STP:
case OPC_STL:
case OPC_STLW:
case OPC_L2G:
case OPC_G2L:
return true;
default:
return false;
}
}
static inline bool is_load(struct ir3_instruction *instr)
{
switch (instr->opc) {
case OPC_LDG:
case OPC_LDGB:
case OPC_LDIB:
case OPC_LDL:
case OPC_LDP:
case OPC_L2G:
case OPC_LDLW:
case OPC_LDC:
case OPC_LDLV:
/* probably some others too.. */
return true;
default:
return false;
}
}
static inline bool is_input(struct ir3_instruction *instr)
{
/* in some cases, ldlv is used to fetch varying without
* interpolation.. fortunately inloc is the first src
* register in either case
*/
switch (instr->opc) {
case OPC_LDLV:
case OPC_BARY_F:
return true;
default:
return false;
}
}
static inline bool is_bool(struct ir3_instruction *instr)
{
switch (instr->opc) {
case OPC_CMPS_F:
case OPC_CMPS_S:
case OPC_CMPS_U:
return true;
default:
return false;
}
}
static inline opc_t
cat3_half_opc(opc_t opc)
{
switch (opc) {
case OPC_MAD_F32: return OPC_MAD_F16;
case OPC_SEL_B32: return OPC_SEL_B16;
case OPC_SEL_S32: return OPC_SEL_S16;
case OPC_SEL_F32: return OPC_SEL_F16;
case OPC_SAD_S32: return OPC_SAD_S16;
default: return opc;
}
}
static inline opc_t
cat3_full_opc(opc_t opc)
{
switch (opc) {
case OPC_MAD_F16: return OPC_MAD_F32;
case OPC_SEL_B16: return OPC_SEL_B32;
case OPC_SEL_S16: return OPC_SEL_S32;
case OPC_SEL_F16: return OPC_SEL_F32;
case OPC_SAD_S16: return OPC_SAD_S32;
default: return opc;
}
}
static inline opc_t
cat4_half_opc(opc_t opc)
{
switch (opc) {
case OPC_RSQ: return OPC_HRSQ;
case OPC_LOG2: return OPC_HLOG2;
case OPC_EXP2: return OPC_HEXP2;
default: return opc;
}
}
static inline opc_t
cat4_full_opc(opc_t opc)
{
switch (opc) {
case OPC_HRSQ: return OPC_RSQ;
case OPC_HLOG2: return OPC_LOG2;
case OPC_HEXP2: return OPC_EXP2;
default: return opc;
}
}
static inline bool is_meta(struct ir3_instruction *instr)
{
return (opc_cat(instr->opc) == -1);
}
static inline unsigned dest_regs(struct ir3_instruction *instr)
{
if ((instr->regs_count == 0) || is_store(instr) || is_flow(instr))
return 0;
return util_last_bit(instr->regs[0]->wrmask);
}
static inline bool
writes_gpr(struct ir3_instruction *instr)
{
if (dest_regs(instr) == 0)
return false;
/* is dest a normal temp register: */
struct ir3_register *reg = instr->regs[0];
debug_assert(!(reg->flags & (IR3_REG_CONST | IR3_REG_IMMED)));
if ((reg_num(reg) == REG_A0) ||
(reg->num == regid(REG_P0, 0)))
return false;
return true;
}
static inline bool writes_addr0(struct ir3_instruction *instr)
{
if (instr->regs_count > 0) {
struct ir3_register *dst = instr->regs[0];
return dst->num == regid(REG_A0, 0);
}
return false;
}
static inline bool writes_addr1(struct ir3_instruction *instr)
{
if (instr->regs_count > 0) {
struct ir3_register *dst = instr->regs[0];
return dst->num == regid(REG_A0, 1);
}
return false;
}
static inline bool writes_pred(struct ir3_instruction *instr)
{
if (instr->regs_count > 0) {
struct ir3_register *dst = instr->regs[0];
return reg_num(dst) == REG_P0;
}
return false;
}
/* returns defining instruction for reg */
/* TODO better name */
static inline struct ir3_instruction *ssa(struct ir3_register *reg)
{
if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
return reg->instr;
}
return NULL;
}
static inline bool conflicts(struct ir3_instruction *a,
struct ir3_instruction *b)
{
return (a && b) && (a != b);
}
static inline bool reg_gpr(struct ir3_register *r)
{
if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
return false;
if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
return false;
return true;
}
static inline type_t half_type(type_t type)
{
switch (type) {
case TYPE_F32: return TYPE_F16;
case TYPE_U32: return TYPE_U16;
case TYPE_S32: return TYPE_S16;
case TYPE_F16:
case TYPE_U16:
case TYPE_S16:
return type;
default:
assert(0);
return ~0;
}
}
static inline type_t full_type(type_t type)
{
switch (type) {
case TYPE_F16: return TYPE_F32;
case TYPE_U16: return TYPE_U32;
case TYPE_S16: return TYPE_S32;
case TYPE_F32:
case TYPE_U32:
case TYPE_S32:
return type;
default:
assert(0);
return ~0;
}
}
/* some cat2 instructions (ie. those which are not float) can embed an
* immediate:
*/
static inline bool ir3_cat2_int(opc_t opc)
{
switch (opc) {
case OPC_ADD_U:
case OPC_ADD_S:
case OPC_SUB_U:
case OPC_SUB_S:
case OPC_CMPS_U:
case OPC_CMPS_S:
case OPC_MIN_U:
case OPC_MIN_S:
case OPC_MAX_U:
case OPC_MAX_S:
case OPC_CMPV_U:
case OPC_CMPV_S:
case OPC_MUL_U24:
case OPC_MUL_S24:
case OPC_MULL_U:
case OPC_CLZ_S:
case OPC_ABSNEG_S:
case OPC_AND_B:
case OPC_OR_B:
case OPC_NOT_B:
case OPC_XOR_B:
case OPC_BFREV_B:
case OPC_CLZ_B:
case OPC_SHL_B:
case OPC_SHR_B:
case OPC_ASHR_B:
case OPC_MGEN_B:
case OPC_GETBIT_B:
case OPC_CBITS_B:
case OPC_BARY_F:
return true;
default:
return false;
}
}
/* map cat2 instruction to valid abs/neg flags: */
static inline unsigned ir3_cat2_absneg(opc_t opc)
{
switch (opc) {
case OPC_ADD_F:
case OPC_MIN_F:
case OPC_MAX_F:
case OPC_MUL_F:
case OPC_SIGN_F:
case OPC_CMPS_F:
case OPC_ABSNEG_F:
case OPC_CMPV_F:
case OPC_FLOOR_F:
case OPC_CEIL_F:
case OPC_RNDNE_F:
case OPC_RNDAZ_F:
case OPC_TRUNC_F:
case OPC_BARY_F:
return IR3_REG_FABS | IR3_REG_FNEG;
case OPC_ADD_U:
case OPC_ADD_S:
case OPC_SUB_U:
case OPC_SUB_S:
case OPC_CMPS_U:
case OPC_CMPS_S:
case OPC_MIN_U:
case OPC_MIN_S:
case OPC_MAX_U:
case OPC_MAX_S:
case OPC_CMPV_U:
case OPC_CMPV_S:
case OPC_MUL_U24:
case OPC_MUL_S24:
case OPC_MULL_U:
case OPC_CLZ_S:
return 0;
case OPC_ABSNEG_S:
return IR3_REG_SABS | IR3_REG_SNEG;
case OPC_AND_B:
case OPC_OR_B:
case OPC_NOT_B:
case OPC_XOR_B:
case OPC_BFREV_B:
case OPC_CLZ_B:
case OPC_SHL_B:
case OPC_SHR_B:
case OPC_ASHR_B:
case OPC_MGEN_B:
case OPC_GETBIT_B:
case OPC_CBITS_B:
return IR3_REG_BNOT;
default:
return 0;
}
}
/* map cat3 instructions to valid abs/neg flags: */
static inline unsigned ir3_cat3_absneg(opc_t opc)
{
switch (opc) {
case OPC_MAD_F16:
case OPC_MAD_F32:
case OPC_SEL_F16:
case OPC_SEL_F32:
return IR3_REG_FNEG;
case OPC_MAD_U16:
case OPC_MADSH_U16:
case OPC_MAD_S16:
case OPC_MADSH_M16:
case OPC_MAD_U24:
case OPC_MAD_S24:
case OPC_SEL_S16:
case OPC_SEL_S32:
case OPC_SAD_S16:
case OPC_SAD_S32:
/* neg *may* work on 3rd src.. */
case OPC_SEL_B16:
case OPC_SEL_B32:
default:
return 0;
}
}
#define MASK(n) ((1 << (n)) - 1)
/* iterator for an instructions's sources (reg), also returns src #: */
#define foreach_src_n(__srcreg, __n, __instr) \
if ((__instr)->regs_count) \
for (struct ir3_register *__srcreg = (void *)~0; __srcreg; __srcreg = NULL) \
for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
if ((__srcreg = (__instr)->regs[__n + 1]))
/* iterator for an instructions's sources (reg): */
#define foreach_src(__srcreg, __instr) \
foreach_src_n(__srcreg, __i, __instr)
static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
{
unsigned cnt = instr->regs_count + instr->deps_count;
if (instr->address)
cnt++;
return cnt;
}
static inline struct ir3_instruction **
__ssa_srcp_n(struct ir3_instruction *instr, unsigned n)
{
if (n == (instr->regs_count + instr->deps_count))
return &instr->address;
if (n >= instr->regs_count)
return &instr->deps[n - instr->regs_count];
if (ssa(instr->regs[n]))
return &instr->regs[n]->instr;
return NULL;
}
static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
{
if (n == (instr->regs_count + instr->deps_count))
return false;
if (n >= instr->regs_count)
return true;
return false;
}
#define foreach_ssa_srcp_n(__srcp, __n, __instr) \
for (struct ir3_instruction **__srcp = (void *)~0; __srcp; __srcp = NULL) \
for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
if ((__srcp = __ssa_srcp_n(__instr, __n)))
#define foreach_ssa_srcp(__srcp, __instr) \
foreach_ssa_srcp_n(__srcp, __i, __instr)
/* iterator for an instruction's SSA sources (instr), also returns src #: */
#define foreach_ssa_src_n(__srcinst, __n, __instr) \
for (struct ir3_instruction *__srcinst = (void *)~0; __srcinst; __srcinst = NULL) \
foreach_ssa_srcp_n(__srcp, __n, __instr) \
if ((__srcinst = *__srcp))
/* iterator for an instruction's SSA sources (instr): */
#define foreach_ssa_src(__srcinst, __instr) \
foreach_ssa_src_n(__srcinst, __i, __instr)
/* iterators for shader inputs: */
#define foreach_input_n(__ininstr, __cnt, __ir) \
for (struct ir3_instruction *__ininstr = (void *)~0; __ininstr; __ininstr = NULL) \
for (unsigned __cnt = 0; __cnt < (__ir)->inputs_count; __cnt++) \
if ((__ininstr = (__ir)->inputs[__cnt]))
#define foreach_input(__ininstr, __ir) \
foreach_input_n(__ininstr, __i, __ir)
/* iterators for shader outputs: */
#define foreach_output_n(__outinstr, __cnt, __ir) \
for (struct ir3_instruction *__outinstr = (void *)~0; __outinstr; __outinstr = NULL) \
for (unsigned __cnt = 0; __cnt < (__ir)->outputs_count; __cnt++) \
if ((__outinstr = (__ir)->outputs[__cnt]))
#define foreach_output(__outinstr, __ir) \
foreach_output_n(__outinstr, __i, __ir)
/* iterators for instructions: */
#define foreach_instr(__instr, __list) \
list_for_each_entry(struct ir3_instruction, __instr, __list, node)
#define foreach_instr_rev(__instr, __list) \
list_for_each_entry_rev(struct ir3_instruction, __instr, __list, node)
#define foreach_instr_safe(__instr, __list) \
list_for_each_entry_safe(struct ir3_instruction, __instr, __list, node)
/* iterators for blocks: */
#define foreach_block(__block, __list) \
list_for_each_entry(struct ir3_block, __block, __list, node)
#define foreach_block_safe(__block, __list) \
list_for_each_entry_safe(struct ir3_block, __block, __list, node)
#define foreach_block_rev(__block, __list) \
list_for_each_entry_rev(struct ir3_block, __block, __list, node)
/* iterators for arrays: */
#define foreach_array(__array, __list) \
list_for_each_entry(struct ir3_array, __array, __list, node)
/* Check if condition is true for any src instruction.
*/
static inline bool
check_src_cond(struct ir3_instruction *instr, bool (*cond)(struct ir3_instruction *))
{
/* Note that this is also used post-RA so skip the ssa iterator: */
foreach_src (reg, instr) {
struct ir3_instruction *src = reg->instr;
if (!src)
continue;
/* meta:split/collect aren't real instructions, the thing that
* we actually care about is *their* srcs
*/
if ((src->opc == OPC_META_SPLIT) || (src->opc == OPC_META_COLLECT)) {
if (check_src_cond(src, cond))
return true;
} else {
if (cond(src))
return true;
}
}
return false;
}
#define IR3_PASS(ir, pass, ...) ({ \
bool progress = pass(ir, ##__VA_ARGS__); \
if (progress) { \
ir3_debug_print(ir, "AFTER: " #pass); \
ir3_validate(ir); \
} \
progress; \
})
/* validate: */
void ir3_validate(struct ir3 *ir);
/* dump: */
void ir3_print(struct ir3 *ir);
void ir3_print_instr(struct ir3_instruction *instr);
/* delay calculation: */
int ir3_delayslots(struct ir3_instruction *assigner,
struct ir3_instruction *consumer, unsigned n, bool soft);
unsigned ir3_delay_calc(struct ir3_block *block, struct ir3_instruction *instr,
bool soft, bool pred);
void ir3_remove_nops(struct ir3 *ir);
/* dead code elimination: */
struct ir3_shader_variant;
bool ir3_dce(struct ir3 *ir, struct ir3_shader_variant *so);
/* fp16 conversion folding */
bool ir3_cf(struct ir3 *ir);
/* copy-propagate: */
bool ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
bool ir3_cp_postsched(struct ir3 *ir);
/* group neighbors and insert mov's to resolve conflicts: */
bool ir3_group(struct ir3 *ir);
/* scheduling: */
bool ir3_sched_add_deps(struct ir3 *ir);
int ir3_sched(struct ir3 *ir);
struct ir3_context;
bool ir3_postsched(struct ir3 *ir, struct ir3_shader_variant *v);
bool ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so);
/* register assignment: */
struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(struct ir3_compiler *compiler, bool mergedregs);
int ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor, unsigned nprecolor);
/* legalize: */
bool ir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary);
static inline bool
ir3_has_latency_to_hide(struct ir3 *ir)
{
/* VS/GS/TCS/TESS co-exist with frag shader invocations, but we don't
* know the nature of the fragment shader. Just assume it will have
* latency to hide:
*/
if (ir->type != MESA_SHADER_FRAGMENT)
return true;
foreach_block (block, &ir->block_list) {
foreach_instr (instr, &block->instr_list) {
if (is_tex_or_prefetch(instr))
return true;
if (is_load(instr)) {
switch (instr->opc) {
case OPC_LDLV:
case OPC_LDL:
case OPC_LDLW:
break;
default:
return true;
}
}
}
}
return false;
}
/* ************************************************************************* */
/* instruction helpers */
/* creates SSA src of correct type (ie. half vs full precision) */
static inline struct ir3_register * __ssa_src(struct ir3_instruction *instr,
struct ir3_instruction *src, unsigned flags)
{
struct ir3_register *reg;
if (src->regs[0]->flags & IR3_REG_HALF)
flags |= IR3_REG_HALF;
reg = ir3_reg_create(instr, 0, IR3_REG_SSA | flags);
reg->instr = src;
reg->wrmask = src->regs[0]->wrmask;
return reg;
}
static inline struct ir3_register * __ssa_dst(struct ir3_instruction *instr)
{
struct ir3_register *reg = ir3_reg_create(instr, 0, 0);
reg->flags |= IR3_REG_SSA;
return reg;
}
static inline struct ir3_instruction *
create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
{
struct ir3_instruction *mov;
unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
mov = ir3_instr_create(block, OPC_MOV);
mov->cat1.src_type = type;
mov->cat1.dst_type = type;
__ssa_dst(mov)->flags |= flags;
ir3_reg_create(mov, 0, IR3_REG_IMMED | flags)->uim_val = val;
return mov;
}
static inline struct ir3_instruction *
create_immed(struct ir3_block *block, uint32_t val)
{
return create_immed_typed(block, val, TYPE_U32);
}
static inline struct ir3_instruction *
create_uniform_typed(struct ir3_block *block, unsigned n, type_t type)
{
struct ir3_instruction *mov;
unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
mov = ir3_instr_create(block, OPC_MOV);
mov->cat1.src_type = type;
mov->cat1.dst_type = type;
__ssa_dst(mov)->flags |= flags;
ir3_reg_create(mov, n, IR3_REG_CONST | flags);
return mov;
}
static inline struct ir3_instruction *
create_uniform(struct ir3_block *block, unsigned n)
{
return create_uniform_typed(block, n, TYPE_F32);
}
static inline struct ir3_instruction *
create_uniform_indirect(struct ir3_block *block, int n,
struct ir3_instruction *address)
{
struct ir3_instruction *mov;
mov = ir3_instr_create(block, OPC_MOV);
mov->cat1.src_type = TYPE_U32;
mov->cat1.dst_type = TYPE_U32;
__ssa_dst(mov);
ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
ir3_instr_set_address(mov, address);
return mov;
}
static inline struct ir3_instruction *
ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
{
struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
__ssa_dst(instr)->flags |= flags;
if (src->regs[0]->flags & IR3_REG_ARRAY) {
struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY);
src_reg->array = src->regs[0]->array;
} else {
__ssa_src(instr, src, src->regs[0]->flags & IR3_REG_HIGH);
}
debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
instr->cat1.src_type = type;
instr->cat1.dst_type = type;
return instr;
}
static inline struct ir3_instruction *
ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
type_t src_type, type_t dst_type)
{
struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
unsigned dst_flags = (type_size(dst_type) < 32) ? IR3_REG_HALF : 0;
unsigned src_flags = (type_size(src_type) < 32) ? IR3_REG_HALF : 0;
debug_assert((src->regs[0]->flags & IR3_REG_HALF) == src_flags);
__ssa_dst(instr)->flags |= dst_flags;
__ssa_src(instr, src, 0);
instr->cat1.src_type = src_type;
instr->cat1.dst_type = dst_type;
debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
return instr;
}
static inline struct ir3_instruction *
ir3_NOP(struct ir3_block *block)
{
return ir3_instr_create(block, OPC_NOP);
}
#define IR3_INSTR_0 0
#define __INSTR0(flag, name, opc) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create(block, opc); \
instr->flags |= flag; \
return instr; \
}
#define INSTR0F(f, name) __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name)
#define INSTR0(name) __INSTR0(0, name, OPC_##name)
#define __INSTR1(flag, name, opc) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block, \
struct ir3_instruction *a, unsigned aflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create(block, opc); \
__ssa_dst(instr); \
__ssa_src(instr, a, aflags); \
instr->flags |= flag; \
return instr; \
}
#define INSTR1F(f, name) __INSTR1(IR3_INSTR_##f, name##_##f, OPC_##name)
#define INSTR1(name) __INSTR1(0, name, OPC_##name)
#define __INSTR2(flag, name, opc) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block, \
struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create(block, opc); \
__ssa_dst(instr); \
__ssa_src(instr, a, aflags); \
__ssa_src(instr, b, bflags); \
instr->flags |= flag; \
return instr; \
}
#define INSTR2F(f, name) __INSTR2(IR3_INSTR_##f, name##_##f, OPC_##name)
#define INSTR2(name) __INSTR2(0, name, OPC_##name)
#define __INSTR3(flag, name, opc) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block, \
struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags, \
struct ir3_instruction *c, unsigned cflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create2(block, opc, 4); \
__ssa_dst(instr); \
__ssa_src(instr, a, aflags); \
__ssa_src(instr, b, bflags); \
__ssa_src(instr, c, cflags); \
instr->flags |= flag; \
return instr; \
}
#define INSTR3F(f, name) __INSTR3(IR3_INSTR_##f, name##_##f, OPC_##name)
#define INSTR3(name) __INSTR3(0, name, OPC_##name)
#define __INSTR4(flag, name, opc) \
static inline struct ir3_instruction * \
ir3_##name(struct ir3_block *block, \
struct ir3_instruction *a, unsigned aflags, \
struct ir3_instruction *b, unsigned bflags, \
struct ir3_instruction *c, unsigned cflags, \
struct ir3_instruction *d, unsigned dflags) \
{ \
struct ir3_instruction *instr = \
ir3_instr_create2(block, opc, 5); \
__ssa_dst(instr); \
__ssa_src(instr, a, aflags); \
__ssa_src(instr, b, bflags); \
__ssa_src(instr, c, cflags); \
__ssa_src(instr, d, dflags); \
instr->flags |= flag; \
return instr; \
}
#define INSTR4F(f, name) __INSTR4(IR3_INSTR_##f, name##_##f, OPC_##name)
#define INSTR4(name) __INSTR4(0, name, OPC_##name)
/* cat0 instructions: */
INSTR1(B)
INSTR0(JUMP)
INSTR1(KILL)
INSTR0(END)
INSTR0(CHSH)
INSTR0(CHMASK)
INSTR1(PREDT)
INSTR0(PREDF)
INSTR0(PREDE)
/* cat2 instructions, most 2 src but some 1 src: */
INSTR2(ADD_F)
INSTR2(MIN_F)
INSTR2(MAX_F)
INSTR2(MUL_F)
INSTR1(SIGN_F)
INSTR2(CMPS_F)
INSTR1(ABSNEG_F)
INSTR2(CMPV_F)
INSTR1(FLOOR_F)
INSTR1(CEIL_F)
INSTR1(RNDNE_F)
INSTR1(RNDAZ_F)
INSTR1(TRUNC_F)
INSTR2(ADD_U)
INSTR2(ADD_S)
INSTR2(SUB_U)
INSTR2(SUB_S)
INSTR2(CMPS_U)
INSTR2(CMPS_S)
INSTR2(MIN_U)
INSTR2(MIN_S)
INSTR2(MAX_U)
INSTR2(MAX_S)
INSTR1(ABSNEG_S)
INSTR2(AND_B)
INSTR2(OR_B)
INSTR1(NOT_B)
INSTR2(XOR_B)
INSTR2(CMPV_U)
INSTR2(CMPV_S)
INSTR2(MUL_U24)
INSTR2(MUL_S24)
INSTR2(MULL_U)
INSTR1(BFREV_B)
INSTR1(CLZ_S)
INSTR1(CLZ_B)
INSTR2(SHL_B)
INSTR2(SHR_B)
INSTR2(ASHR_B)
INSTR2(BARY_F)
INSTR2(MGEN_B)
INSTR2(GETBIT_B)
INSTR1(SETRM)
INSTR1(CBITS_B)
INSTR2(SHB)
INSTR2(MSAD)
/* cat3 instructions: */
INSTR3(MAD_U16)
INSTR3(MADSH_U16)
INSTR3(MAD_S16)
INSTR3(MADSH_M16)
INSTR3(MAD_U24)
INSTR3(MAD_S24)
INSTR3(MAD_F16)
INSTR3(MAD_F32)
/* NOTE: SEL_B32 checks for zero vs nonzero */
INSTR3(SEL_B16)
INSTR3(SEL_B32)
INSTR3(SEL_S16)
INSTR3(SEL_S32)
INSTR3(SEL_F16)
INSTR3(SEL_F32)
INSTR3(SAD_S16)
INSTR3(SAD_S32)
/* cat4 instructions: */
INSTR1(RCP)
INSTR1(RSQ)
INSTR1(HRSQ)
INSTR1(LOG2)
INSTR1(HLOG2)
INSTR1(EXP2)
INSTR1(HEXP2)
INSTR1(SIN)
INSTR1(COS)
INSTR1(SQRT)
/* cat5 instructions: */
INSTR1(DSX)
INSTR1(DSXPP_1)
INSTR1(DSY)
INSTR1(DSYPP_1)
INSTR1F(3D, DSX)
INSTR1F(3D, DSY)
INSTR1(RGETPOS)
static inline struct ir3_instruction *
ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
unsigned wrmask, unsigned flags, struct ir3_instruction *samp_tex,
struct ir3_instruction *src0, struct ir3_instruction *src1)
{
struct ir3_instruction *sam;
sam = ir3_instr_create(block, opc);
sam->flags |= flags;
__ssa_dst(sam)->wrmask = wrmask;
if (flags & IR3_INSTR_S2EN) {
__ssa_src(sam, samp_tex, IR3_REG_HALF);
}
if (src0) {
__ssa_src(sam, src0, 0);
}
if (src1) {
__ssa_src(sam, src1, 0);
}
sam->cat5.type = type;
return sam;
}
/* cat6 instructions: */
INSTR2(LDLV)
INSTR3(LDG)
INSTR3(LDL)
INSTR3(LDLW)
INSTR3(STG)
INSTR3(STL)
INSTR3(STLW)
INSTR1(RESINFO)
INSTR1(RESFMT)
INSTR2(ATOMIC_ADD)
INSTR2(ATOMIC_SUB)
INSTR2(ATOMIC_XCHG)
INSTR2(ATOMIC_INC)
INSTR2(ATOMIC_DEC)
INSTR2(ATOMIC_CMPXCHG)
INSTR2(ATOMIC_MIN)
INSTR2(ATOMIC_MAX)
INSTR2(ATOMIC_AND)
INSTR2(ATOMIC_OR)
INSTR2(ATOMIC_XOR)
INSTR2(LDC)
#if GPU >= 600
INSTR3(STIB);
INSTR2(LDIB);
INSTR3F(G, ATOMIC_ADD)
INSTR3F(G, ATOMIC_SUB)
INSTR3F(G, ATOMIC_XCHG)
INSTR3F(G, ATOMIC_INC)
INSTR3F(G, ATOMIC_DEC)
INSTR3F(G, ATOMIC_CMPXCHG)
INSTR3F(G, ATOMIC_MIN)
INSTR3F(G, ATOMIC_MAX)
INSTR3F(G, ATOMIC_AND)
INSTR3F(G, ATOMIC_OR)
INSTR3F(G, ATOMIC_XOR)
#elif GPU >= 400
INSTR3(LDGB)
INSTR4(STGB)
INSTR4(STIB)
INSTR4F(G, ATOMIC_ADD)
INSTR4F(G, ATOMIC_SUB)
INSTR4F(G, ATOMIC_XCHG)
INSTR4F(G, ATOMIC_INC)
INSTR4F(G, ATOMIC_DEC)
INSTR4F(G, ATOMIC_CMPXCHG)
INSTR4F(G, ATOMIC_MIN)
INSTR4F(G, ATOMIC_MAX)
INSTR4F(G, ATOMIC_AND)
INSTR4F(G, ATOMIC_OR)
INSTR4F(G, ATOMIC_XOR)
#endif
INSTR4F(G, STG)
/* cat7 instructions: */
INSTR0(BAR)
INSTR0(FENCE)
/* meta instructions: */
INSTR0(META_TEX_PREFETCH);
/* ************************************************************************* */
/* split this out or find some helper to use.. like main/bitset.h.. */
#include <string.h>
#include "util/bitset.h"
#define MAX_REG 256
typedef BITSET_DECLARE(regmaskstate_t, 2 * MAX_REG);
typedef struct {
bool mergedregs;
regmaskstate_t mask;
} regmask_t;
static inline bool
__regmask_get(regmask_t *regmask, struct ir3_register *reg, unsigned n)
{
if (regmask->mergedregs) {
/* a6xx+ case, with merged register file, we track things in terms
* of half-precision registers, with a full precisions register
* using two half-precision slots:
*/
if (reg->flags & IR3_REG_HALF) {
return BITSET_TEST(regmask->mask, n);
} else {
n *= 2;
return BITSET_TEST(regmask->mask, n) ||
BITSET_TEST(regmask->mask, n+1);
}
} else {
/* pre a6xx case, with separate register file for half and full
* precision:
*/
if (reg->flags & IR3_REG_HALF)
n += MAX_REG;
return BITSET_TEST(regmask->mask, n);
}
}
static inline void
__regmask_set(regmask_t *regmask, struct ir3_register *reg, unsigned n)
{
if (regmask->mergedregs) {
/* a6xx+ case, with merged register file, we track things in terms
* of half-precision registers, with a full precisions register
* using two half-precision slots:
*/
if (reg->flags & IR3_REG_HALF) {
BITSET_SET(regmask->mask, n);
} else {
n *= 2;
BITSET_SET(regmask->mask, n);
BITSET_SET(regmask->mask, n+1);
}
} else {
/* pre a6xx case, with separate register file for half and full
* precision:
*/
if (reg->flags & IR3_REG_HALF)
n += MAX_REG;
BITSET_SET(regmask->mask, n);
}
}
static inline void regmask_init(regmask_t *regmask, bool mergedregs)
{
memset(&regmask->mask, 0, sizeof(regmask->mask));
regmask->mergedregs = mergedregs;
}
static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
{
if (reg->flags & IR3_REG_RELATIV) {
for (unsigned i = 0; i < reg->size; i++)
__regmask_set(regmask, reg, reg->array.offset + i);
} else {
for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
if (mask & 1)
__regmask_set(regmask, reg, n);
}
}
static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
{
assert(dst->mergedregs == a->mergedregs);
assert(dst->mergedregs == b->mergedregs);
for (unsigned i = 0; i < ARRAY_SIZE(dst->mask); i++)
dst->mask[i] = a->mask[i] | b->mask[i];
}
static inline bool regmask_get(regmask_t *regmask,
struct ir3_register *reg)
{
if (reg->flags & IR3_REG_RELATIV) {
for (unsigned i = 0; i < reg->size; i++)
if (__regmask_get(regmask, reg, reg->array.offset + i))
return true;
} else {
for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
if (mask & 1)
if (__regmask_get(regmask, reg, n))
return true;
}
return false;
}
/* ************************************************************************* */
#endif /* IR3_H_ */