blob: b081d575e2d4f8d2d89a454728d0642e7f5d1b62 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "tu_private.h"
#include "ir3/ir3_nir.h"
#include "main/menums.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"
#include "util/debug.h"
#include "util/mesa-sha1.h"
#include "util/u_atomic.h"
#include "vk_format.h"
#include "vk_util.h"
#include "tu_cs.h"
/* Emit IB that preloads the descriptors that the shader uses */
static void
emit_load_state(struct tu_cs *cs, unsigned opcode, enum a6xx_state_type st,
enum a6xx_state_block sb, unsigned base, unsigned offset,
unsigned count)
{
/* Note: just emit one packet, even if count overflows NUM_UNIT. It's not
* clear if emitting more packets will even help anything. Presumably the
* descriptor cache is relatively small, and these packets stop doing
* anything when there are too many descriptors.
*/
tu_cs_emit_pkt7(cs, opcode, 3);
tu_cs_emit(cs,
CP_LOAD_STATE6_0_STATE_TYPE(st) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_BINDLESS) |
CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
CP_LOAD_STATE6_0_NUM_UNIT(MIN2(count, 1024-1)));
tu_cs_emit_qw(cs, offset | (base << 28));
}
static unsigned
tu6_load_state_size(struct tu_pipeline_layout *layout, bool compute)
{
const unsigned load_state_size = 4;
unsigned size = 0;
for (unsigned i = 0; i < layout->num_sets; i++) {
struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
for (unsigned j = 0; j < set_layout->binding_count; j++) {
struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
unsigned count = 0;
/* Note: some users, like amber for example, pass in
* VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
* filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
*/
VkShaderStageFlags stages = compute ?
binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
unsigned stage_count = util_bitcount(stages);
switch (binding->type) {
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
/* IBO-backed resources only need one packet for all graphics stages */
if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT)
count += 1;
if (stages & VK_SHADER_STAGE_COMPUTE_BIT)
count += 1;
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
/* Textures and UBO's needs a packet for each stage */
count = stage_count;
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
/* Because of how we pack combined images and samplers, we
* currently can't use one packet for the whole array.
*/
count = stage_count * binding->array_size * 2;
break;
default:
unreachable("bad descriptor type");
}
size += count * load_state_size;
}
}
return size;
}
static void
tu6_emit_load_state(struct tu_pipeline *pipeline, bool compute)
{
unsigned size = tu6_load_state_size(pipeline->layout, compute);
if (size == 0)
return;
struct tu_cs cs;
tu_cs_begin_sub_stream(&pipeline->cs, size, &cs);
struct tu_pipeline_layout *layout = pipeline->layout;
for (unsigned i = 0; i < layout->num_sets; i++) {
/* From 13.2.7. Descriptor Set Binding:
*
* A compatible descriptor set must be bound for all set numbers that
* any shaders in a pipeline access, at the time that a draw or
* dispatch command is recorded to execute using that pipeline.
* However, if none of the shaders in a pipeline statically use any
* bindings with a particular set number, then no descriptor set need
* be bound for that set number, even if the pipeline layout includes
* a non-trivial descriptor set layout for that set number.
*
* This means that descriptor sets unused by the pipeline may have a
* garbage or 0 BINDLESS_BASE register, which will cause context faults
* when prefetching descriptors from these sets. Skip prefetching for
* descriptors from them to avoid this. This is also an optimization,
* since these prefetches would be useless.
*/
if (!(pipeline->active_desc_sets & (1u << i)))
continue;
struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
for (unsigned j = 0; j < set_layout->binding_count; j++) {
struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
unsigned base = i;
unsigned offset = binding->offset / 4;
/* Note: some users, like amber for example, pass in
* VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
* filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
*/
VkShaderStageFlags stages = compute ?
binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
unsigned count = binding->array_size;
if (count == 0 || stages == 0)
continue;
switch (binding->type) {
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
base = MAX_SETS;
offset = (layout->set[i].dynamic_offset_start +
binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
/* fallthrough */
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
/* IBO-backed resources only need one packet for all graphics stages */
if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT) {
emit_load_state(&cs, CP_LOAD_STATE6, ST6_SHADER, SB6_IBO,
base, offset, count);
}
if (stages & VK_SHADER_STAGE_COMPUTE_BIT) {
emit_load_state(&cs, CP_LOAD_STATE6_FRAG, ST6_IBO, SB6_CS_SHADER,
base, offset, count);
}
break;
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
/* nothing - input attachment doesn't use bindless */
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: {
tu_foreach_stage(stage, stages) {
emit_load_state(&cs, tu6_stage2opcode(stage),
binding->type == VK_DESCRIPTOR_TYPE_SAMPLER ?
ST6_SHADER : ST6_CONSTANTS,
tu6_stage2texsb(stage), base, offset, count);
}
break;
}
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
base = MAX_SETS;
offset = (layout->set[i].dynamic_offset_start +
binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
/* fallthrough */
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: {
tu_foreach_stage(stage, stages) {
emit_load_state(&cs, tu6_stage2opcode(stage), ST6_UBO,
tu6_stage2shadersb(stage), base, offset, count);
}
break;
}
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: {
tu_foreach_stage(stage, stages) {
/* TODO: We could emit less CP_LOAD_STATE6 if we used
* struct-of-arrays instead of array-of-structs.
*/
for (unsigned i = 0; i < count; i++) {
unsigned tex_offset = offset + 2 * i * A6XX_TEX_CONST_DWORDS;
unsigned sam_offset = offset + (2 * i + 1) * A6XX_TEX_CONST_DWORDS;
emit_load_state(&cs, tu6_stage2opcode(stage),
ST6_CONSTANTS, tu6_stage2texsb(stage),
base, tex_offset, 1);
emit_load_state(&cs, tu6_stage2opcode(stage),
ST6_SHADER, tu6_stage2texsb(stage),
base, sam_offset, 1);
}
}
break;
}
default:
unreachable("bad descriptor type");
}
}
}
pipeline->load_state.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &cs);
}
struct tu_pipeline_builder
{
struct tu_device *device;
struct tu_pipeline_cache *cache;
struct tu_pipeline_layout *layout;
const VkAllocationCallbacks *alloc;
const VkGraphicsPipelineCreateInfo *create_info;
struct tu_shader *shaders[MESA_SHADER_STAGES];
struct ir3_shader_variant *variants[MESA_SHADER_STAGES];
struct ir3_shader_variant *binning_variant;
uint64_t shader_iova[MESA_SHADER_STAGES];
uint64_t binning_vs_iova;
bool rasterizer_discard;
/* these states are affectd by rasterizer_discard */
VkSampleCountFlagBits samples;
bool use_color_attachments;
bool use_dual_src_blend;
uint32_t color_attachment_count;
VkFormat color_attachment_formats[MAX_RTS];
VkFormat depth_attachment_format;
uint32_t render_components;
};
static bool
tu_logic_op_reads_dst(VkLogicOp op)
{
switch (op) {
case VK_LOGIC_OP_CLEAR:
case VK_LOGIC_OP_COPY:
case VK_LOGIC_OP_COPY_INVERTED:
case VK_LOGIC_OP_SET:
return false;
default:
return true;
}
}
static VkBlendFactor
tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
{
/* treat dst alpha as 1.0 and avoid reading it */
switch (factor) {
case VK_BLEND_FACTOR_DST_ALPHA:
return VK_BLEND_FACTOR_ONE;
case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
return VK_BLEND_FACTOR_ZERO;
default:
return factor;
}
}
static bool tu_blend_factor_is_dual_src(VkBlendFactor factor)
{
switch (factor) {
case VK_BLEND_FACTOR_SRC1_COLOR:
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
case VK_BLEND_FACTOR_SRC1_ALPHA:
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
return true;
default:
return false;
}
}
static bool
tu_blend_state_is_dual_src(const VkPipelineColorBlendStateCreateInfo *info)
{
if (!info)
return false;
for (unsigned i = 0; i < info->attachmentCount; i++) {
const VkPipelineColorBlendAttachmentState *blend = &info->pAttachments[i];
if (tu_blend_factor_is_dual_src(blend->srcColorBlendFactor) ||
tu_blend_factor_is_dual_src(blend->dstColorBlendFactor) ||
tu_blend_factor_is_dual_src(blend->srcAlphaBlendFactor) ||
tu_blend_factor_is_dual_src(blend->dstAlphaBlendFactor))
return true;
}
return false;
}
void
tu6_emit_xs_config(struct tu_cs *cs,
gl_shader_stage stage, /* xs->type, but xs may be NULL */
const struct ir3_shader_variant *xs,
uint64_t binary_iova)
{
static const struct xs_config {
uint16_t reg_sp_xs_ctrl;
uint16_t reg_sp_xs_config;
uint16_t reg_hlsq_xs_ctrl;
uint16_t reg_sp_vs_obj_start;
} xs_config[] = {
[MESA_SHADER_VERTEX] = {
REG_A6XX_SP_VS_CTRL_REG0,
REG_A6XX_SP_VS_CONFIG,
REG_A6XX_HLSQ_VS_CNTL,
REG_A6XX_SP_VS_OBJ_START_LO,
},
[MESA_SHADER_TESS_CTRL] = {
REG_A6XX_SP_HS_CTRL_REG0,
REG_A6XX_SP_HS_CONFIG,
REG_A6XX_HLSQ_HS_CNTL,
REG_A6XX_SP_HS_OBJ_START_LO,
},
[MESA_SHADER_TESS_EVAL] = {
REG_A6XX_SP_DS_CTRL_REG0,
REG_A6XX_SP_DS_CONFIG,
REG_A6XX_HLSQ_DS_CNTL,
REG_A6XX_SP_DS_OBJ_START_LO,
},
[MESA_SHADER_GEOMETRY] = {
REG_A6XX_SP_GS_CTRL_REG0,
REG_A6XX_SP_GS_CONFIG,
REG_A6XX_HLSQ_GS_CNTL,
REG_A6XX_SP_GS_OBJ_START_LO,
},
[MESA_SHADER_FRAGMENT] = {
REG_A6XX_SP_FS_CTRL_REG0,
REG_A6XX_SP_FS_CONFIG,
REG_A6XX_HLSQ_FS_CNTL,
REG_A6XX_SP_FS_OBJ_START_LO,
},
[MESA_SHADER_COMPUTE] = {
REG_A6XX_SP_CS_CTRL_REG0,
REG_A6XX_SP_CS_CONFIG,
REG_A6XX_HLSQ_CS_CNTL,
REG_A6XX_SP_CS_OBJ_START_LO,
},
};
const struct xs_config *cfg = &xs_config[stage];
if (!xs) {
/* shader stage disabled */
tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_config, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, cfg->reg_hlsq_xs_ctrl, 1);
tu_cs_emit(cs, 0);
return;
}
bool is_fs = xs->type == MESA_SHADER_FRAGMENT;
enum a3xx_threadsize threadsize = FOUR_QUADS;
/* TODO:
* the "threadsize" field may have nothing to do with threadsize,
* use a value that matches the blob until it is figured out
*/
if (xs->type == MESA_SHADER_GEOMETRY)
threadsize = TWO_QUADS;
tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_ctrl, 1);
tu_cs_emit(cs,
A6XX_SP_VS_CTRL_REG0_THREADSIZE(threadsize) |
A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(xs->info.max_reg + 1) |
A6XX_SP_VS_CTRL_REG0_HALFREGFOOTPRINT(xs->info.max_half_reg + 1) |
COND(xs->mergedregs, A6XX_SP_VS_CTRL_REG0_MERGEDREGS) |
A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(xs->branchstack) |
COND(xs->need_pixlod, A6XX_SP_VS_CTRL_REG0_PIXLODENABLE) |
COND(xs->need_fine_derivatives, A6XX_SP_VS_CTRL_REG0_DIFF_FINE) |
/* only fragment shader sets VARYING bit */
COND(xs->total_in && is_fs, A6XX_SP_FS_CTRL_REG0_VARYING) |
/* unknown bit, seems unnecessary */
COND(is_fs, 0x1000000));
tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_config, 2);
tu_cs_emit(cs, A6XX_SP_VS_CONFIG_ENABLED |
COND(xs->bindless_tex, A6XX_SP_VS_CONFIG_BINDLESS_TEX) |
COND(xs->bindless_samp, A6XX_SP_VS_CONFIG_BINDLESS_SAMP) |
COND(xs->bindless_ibo, A6XX_SP_VS_CONFIG_BINDLESS_IBO) |
COND(xs->bindless_ubo, A6XX_SP_VS_CONFIG_BINDLESS_UBO) |
A6XX_SP_VS_CONFIG_NTEX(xs->num_samp) |
A6XX_SP_VS_CONFIG_NSAMP(xs->num_samp));
tu_cs_emit(cs, xs->instrlen);
tu_cs_emit_pkt4(cs, cfg->reg_hlsq_xs_ctrl, 1);
tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(xs->constlen) |
A6XX_HLSQ_VS_CNTL_ENABLED);
/* emit program binary
* binary_iova should be aligned to 1 instrlen unit (128 bytes)
*/
assert((binary_iova & 0x7f) == 0);
tu_cs_emit_pkt4(cs, cfg->reg_sp_vs_obj_start, 2);
tu_cs_emit_qw(cs, binary_iova);
tu_cs_emit_pkt7(cs, tu6_stage2opcode(stage), 3);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(stage)) |
CP_LOAD_STATE6_0_NUM_UNIT(xs->instrlen));
tu_cs_emit_qw(cs, binary_iova);
/* emit immediates */
const struct ir3_const_state *const_state = ir3_const_state(xs);
uint32_t base = const_state->offsets.immediate;
int size = const_state->immediates_count;
/* truncate size to avoid writing constants that shader
* does not use:
*/
size = MIN2(size + base, xs->constlen) - base;
if (size <= 0)
return;
tu_cs_emit_pkt7(cs, tu6_stage2opcode(stage), 3 + size * 4);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(stage)) |
CP_LOAD_STATE6_0_NUM_UNIT(size));
tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
for (unsigned i = 0; i < size; i++) {
tu_cs_emit(cs, const_state->immediates[i].val[0]);
tu_cs_emit(cs, const_state->immediates[i].val[1]);
tu_cs_emit(cs, const_state->immediates[i].val[2]);
tu_cs_emit(cs, const_state->immediates[i].val[3]);
}
}
static void
tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
const struct ir3_shader_variant *v,
uint32_t binary_iova)
{
tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
.cs_state = true,
.cs_ibo = true));
tu6_emit_xs_config(cs, MESA_SHADER_COMPUTE, v, binary_iova);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
tu_cs_emit(cs, 0x41);
uint32_t local_invocation_id =
ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
uint32_t work_group_id =
ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
tu_cs_emit(cs,
A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
}
static void
tu6_emit_vs_system_values(struct tu_cs *cs,
const struct ir3_shader_variant *vs,
const struct ir3_shader_variant *hs,
const struct ir3_shader_variant *ds,
const struct ir3_shader_variant *gs,
bool primid_passthru)
{
const uint32_t vertexid_regid =
ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
const uint32_t instanceid_regid =
ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
const uint32_t tess_coord_x_regid = hs ?
ir3_find_sysval_regid(ds, SYSTEM_VALUE_TESS_COORD) :
regid(63, 0);
const uint32_t tess_coord_y_regid = VALIDREG(tess_coord_x_regid) ?
tess_coord_x_regid + 1 :
regid(63, 0);
const uint32_t hs_patch_regid = hs ?
ir3_find_sysval_regid(hs, SYSTEM_VALUE_PRIMITIVE_ID) :
regid(63, 0);
const uint32_t ds_patch_regid = hs ?
ir3_find_sysval_regid(ds, SYSTEM_VALUE_PRIMITIVE_ID) :
regid(63, 0);
const uint32_t hs_invocation_regid = hs ?
ir3_find_sysval_regid(hs, SYSTEM_VALUE_TCS_HEADER_IR3) :
regid(63, 0);
const uint32_t primitiveid_regid = gs ?
ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID) :
regid(63, 0);
const uint32_t gsheader_regid = gs ?
ir3_find_sysval_regid(gs, SYSTEM_VALUE_GS_HEADER_IR3) :
regid(63, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
A6XX_VFD_CONTROL_1_REGID4PRIMID(primitiveid_regid) |
0xfc000000);
tu_cs_emit(cs, A6XX_VFD_CONTROL_2_REGID_HSPATCHID(hs_patch_regid) |
A6XX_VFD_CONTROL_2_REGID_INVOCATIONID(hs_invocation_regid));
tu_cs_emit(cs, A6XX_VFD_CONTROL_3_REGID_DSPATCHID(ds_patch_regid) |
A6XX_VFD_CONTROL_3_REGID_TESSX(tess_coord_x_regid) |
A6XX_VFD_CONTROL_3_REGID_TESSY(tess_coord_y_regid) |
0xfc);
tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
tu_cs_emit(cs, A6XX_VFD_CONTROL_5_REGID_GSHEADER(gsheader_regid) |
0xfc00); /* VFD_CONTROL_5 */
tu_cs_emit(cs, COND(primid_passthru, A6XX_VFD_CONTROL_6_PRIMID_PASSTHRU)); /* VFD_CONTROL_6 */
}
/* Add any missing varyings needed for stream-out. Otherwise varyings not
* used by fragment shader will be stripped out.
*/
static void
tu6_link_streamout(struct ir3_shader_linkage *l,
const struct ir3_shader_variant *v)
{
const struct ir3_stream_output_info *info = &v->shader->stream_output;
/*
* First, any stream-out varyings not already in linkage map (ie. also
* consumed by frag shader) need to be added:
*/
for (unsigned i = 0; i < info->num_outputs; i++) {
const struct ir3_stream_output *out = &info->output[i];
unsigned compmask =
(1 << (out->num_components + out->start_component)) - 1;
unsigned k = out->register_index;
unsigned idx, nextloc = 0;
/* psize/pos need to be the last entries in linkage map, and will
* get added link_stream_out, so skip over them:
*/
if (v->outputs[k].slot == VARYING_SLOT_PSIZ ||
v->outputs[k].slot == VARYING_SLOT_POS)
continue;
for (idx = 0; idx < l->cnt; idx++) {
if (l->var[idx].regid == v->outputs[k].regid)
break;
nextloc = MAX2(nextloc, l->var[idx].loc + 4);
}
/* add if not already in linkage map: */
if (idx == l->cnt)
ir3_link_add(l, v->outputs[k].regid, compmask, nextloc);
/* expand component-mask if needed, ie streaming out all components
* but frag shader doesn't consume all components:
*/
if (compmask & ~l->var[idx].compmask) {
l->var[idx].compmask |= compmask;
l->max_loc = MAX2(l->max_loc, l->var[idx].loc +
util_last_bit(l->var[idx].compmask));
}
}
}
static void
tu6_setup_streamout(struct tu_cs *cs,
const struct ir3_shader_variant *v,
struct ir3_shader_linkage *l)
{
const struct ir3_stream_output_info *info = &v->shader->stream_output;
uint32_t prog[IR3_MAX_SO_OUTPUTS * 2] = {};
uint32_t ncomp[IR3_MAX_SO_BUFFERS] = {};
uint32_t prog_count = align(l->max_loc, 2) / 2;
/* TODO: streamout state should be in a non-GMEM draw state */
/* no streamout: */
if (info->num_outputs == 0) {
tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 4);
tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
tu_cs_emit(cs, 0);
tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
tu_cs_emit(cs, 0);
return;
}
/* is there something to do with info->stride[i]? */
for (unsigned i = 0; i < info->num_outputs; i++) {
const struct ir3_stream_output *out = &info->output[i];
unsigned k = out->register_index;
unsigned idx;
/* Skip it, if there's an unused reg in the middle of outputs. */
if (v->outputs[k].regid == INVALID_REG)
continue;
ncomp[out->output_buffer] += out->num_components;
/* linkage map sorted by order frag shader wants things, so
* a bit less ideal here..
*/
for (idx = 0; idx < l->cnt; idx++)
if (l->var[idx].regid == v->outputs[k].regid)
break;
debug_assert(idx < l->cnt);
for (unsigned j = 0; j < out->num_components; j++) {
unsigned c = j + out->start_component;
unsigned loc = l->var[idx].loc + c;
unsigned off = j + out->dst_offset; /* in dwords */
if (loc & 1) {
prog[loc/2] |= A6XX_VPC_SO_PROG_B_EN |
A6XX_VPC_SO_PROG_B_BUF(out->output_buffer) |
A6XX_VPC_SO_PROG_B_OFF(off * 4);
} else {
prog[loc/2] |= A6XX_VPC_SO_PROG_A_EN |
A6XX_VPC_SO_PROG_A_BUF(out->output_buffer) |
A6XX_VPC_SO_PROG_A_OFF(off * 4);
}
}
}
tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 12 + 2 * prog_count);
tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
tu_cs_emit(cs, A6XX_VPC_SO_BUF_CNTL_ENABLE |
COND(ncomp[0] > 0, A6XX_VPC_SO_BUF_CNTL_BUF0) |
COND(ncomp[1] > 0, A6XX_VPC_SO_BUF_CNTL_BUF1) |
COND(ncomp[2] > 0, A6XX_VPC_SO_BUF_CNTL_BUF2) |
COND(ncomp[3] > 0, A6XX_VPC_SO_BUF_CNTL_BUF3));
for (uint32_t i = 0; i < 4; i++) {
tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(i));
tu_cs_emit(cs, ncomp[i]);
}
/* note: "VPC_SO_CNTL" write seems to be responsible for resetting the SO_PROG */
tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
tu_cs_emit(cs, A6XX_VPC_SO_CNTL_ENABLE);
for (uint32_t i = 0; i < prog_count; i++) {
tu_cs_emit(cs, REG_A6XX_VPC_SO_PROG);
tu_cs_emit(cs, prog[i]);
}
}
static void
tu6_emit_const(struct tu_cs *cs, uint32_t opcode, uint32_t base,
enum a6xx_state_block block, uint32_t offset,
uint32_t size, uint32_t *dwords) {
assert(size % 4 == 0);
tu_cs_emit_pkt7(cs, opcode, 3 + size);
tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
CP_LOAD_STATE6_0_STATE_BLOCK(block) |
CP_LOAD_STATE6_0_NUM_UNIT(size / 4));
tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
dwords = (uint32_t *)&((uint8_t *)dwords)[offset];
tu_cs_emit_array(cs, dwords, size);
}
static void
tu6_emit_link_map(struct tu_cs *cs,
const struct ir3_shader_variant *producer,
const struct ir3_shader_variant *consumer,
enum a6xx_state_block sb)
{
const struct ir3_const_state *const_state = ir3_const_state(consumer);
uint32_t base = const_state->offsets.primitive_map;
uint32_t patch_locs[MAX_VARYING] = { }, num_loc;
num_loc = ir3_link_geometry_stages(producer, consumer, patch_locs);
int size = DIV_ROUND_UP(num_loc, 4);
size = (MIN2(size + base, consumer->constlen) - base) * 4;
if (size <= 0)
return;
tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, base, sb, 0, size,
patch_locs);
}
static uint16_t
gl_primitive_to_tess(uint16_t primitive) {
switch (primitive) {
case GL_POINTS:
return TESS_POINTS;
case GL_LINE_STRIP:
return TESS_LINES;
case GL_TRIANGLE_STRIP:
return TESS_CW_TRIS;
default:
unreachable("");
}
}
void
tu6_emit_vpc(struct tu_cs *cs,
const struct ir3_shader_variant *vs,
const struct ir3_shader_variant *hs,
const struct ir3_shader_variant *ds,
const struct ir3_shader_variant *gs,
const struct ir3_shader_variant *fs)
{
/* note: doesn't compile as static because of the array regs.. */
const struct reg_config {
uint16_t reg_sp_xs_out_reg;
uint16_t reg_sp_xs_vpc_dst_reg;
uint16_t reg_vpc_xs_pack;
uint16_t reg_vpc_xs_clip_cntl;
uint16_t reg_gras_xs_cl_cntl;
uint16_t reg_pc_xs_out_cntl;
uint16_t reg_sp_xs_primitive_cntl;
uint16_t reg_vpc_xs_layer_cntl;
uint16_t reg_gras_xs_layer_cntl;
} reg_config[] = {
[MESA_SHADER_VERTEX] = {
REG_A6XX_SP_VS_OUT_REG(0),
REG_A6XX_SP_VS_VPC_DST_REG(0),
REG_A6XX_VPC_VS_PACK,
REG_A6XX_VPC_VS_CLIP_CNTL,
REG_A6XX_GRAS_VS_CL_CNTL,
REG_A6XX_PC_VS_OUT_CNTL,
REG_A6XX_SP_VS_PRIMITIVE_CNTL,
REG_A6XX_VPC_VS_LAYER_CNTL,
REG_A6XX_GRAS_VS_LAYER_CNTL
},
[MESA_SHADER_TESS_EVAL] = {
REG_A6XX_SP_DS_OUT_REG(0),
REG_A6XX_SP_DS_VPC_DST_REG(0),
REG_A6XX_VPC_DS_PACK,
REG_A6XX_VPC_DS_CLIP_CNTL,
REG_A6XX_GRAS_DS_CL_CNTL,
REG_A6XX_PC_DS_OUT_CNTL,
REG_A6XX_SP_DS_PRIMITIVE_CNTL,
REG_A6XX_VPC_DS_LAYER_CNTL,
REG_A6XX_GRAS_DS_LAYER_CNTL
},
[MESA_SHADER_GEOMETRY] = {
REG_A6XX_SP_GS_OUT_REG(0),
REG_A6XX_SP_GS_VPC_DST_REG(0),
REG_A6XX_VPC_GS_PACK,
REG_A6XX_VPC_GS_CLIP_CNTL,
REG_A6XX_GRAS_GS_CL_CNTL,
REG_A6XX_PC_GS_OUT_CNTL,
REG_A6XX_SP_GS_PRIMITIVE_CNTL,
REG_A6XX_VPC_GS_LAYER_CNTL,
REG_A6XX_GRAS_GS_LAYER_CNTL
},
};
const struct ir3_shader_variant *last_shader;
if (gs) {
last_shader = gs;
} else if (hs) {
last_shader = ds;
} else {
last_shader = vs;
}
const struct reg_config *cfg = &reg_config[last_shader->type];
struct ir3_shader_linkage linkage = { .primid_loc = 0xff };
if (fs)
ir3_link_shaders(&linkage, last_shader, fs, true);
if (last_shader->shader->stream_output.num_outputs)
tu6_link_streamout(&linkage, last_shader);
/* We do this after linking shaders in order to know whether PrimID
* passthrough needs to be enabled.
*/
bool primid_passthru = linkage.primid_loc != 0xff;
tu6_emit_vs_system_values(cs, vs, hs, ds, gs, primid_passthru);
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
tu_cs_emit(cs, ~linkage.varmask[0]);
tu_cs_emit(cs, ~linkage.varmask[1]);
tu_cs_emit(cs, ~linkage.varmask[2]);
tu_cs_emit(cs, ~linkage.varmask[3]);
/* a6xx finds position/pointsize at the end */
const uint32_t position_regid =
ir3_find_output_regid(last_shader, VARYING_SLOT_POS);
const uint32_t pointsize_regid =
ir3_find_output_regid(last_shader, VARYING_SLOT_PSIZ);
const uint32_t layer_regid =
ir3_find_output_regid(last_shader, VARYING_SLOT_LAYER);
uint32_t primitive_regid = gs ?
ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID) : regid(63, 0);
uint32_t flags_regid = gs ?
ir3_find_output_regid(gs, VARYING_SLOT_GS_VERTEX_FLAGS_IR3) : 0;
uint32_t pointsize_loc = 0xff, position_loc = 0xff, layer_loc = 0xff;
if (layer_regid != regid(63, 0)) {
layer_loc = linkage.max_loc;
ir3_link_add(&linkage, layer_regid, 0x1, linkage.max_loc);
}
if (position_regid != regid(63, 0)) {
position_loc = linkage.max_loc;
ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
}
if (pointsize_regid != regid(63, 0)) {
pointsize_loc = linkage.max_loc;
ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
}
tu6_setup_streamout(cs, last_shader, &linkage);
/* map outputs of the last shader to VPC */
assert(linkage.cnt <= 32);
const uint32_t sp_out_count = DIV_ROUND_UP(linkage.cnt, 2);
const uint32_t sp_vpc_dst_count = DIV_ROUND_UP(linkage.cnt, 4);
uint32_t sp_out[16];
uint32_t sp_vpc_dst[8];
for (uint32_t i = 0; i < linkage.cnt; i++) {
((uint16_t *) sp_out)[i] =
A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
((uint8_t *) sp_vpc_dst)[i] =
A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
}
tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_out_reg, sp_out_count);
tu_cs_emit_array(cs, sp_out, sp_out_count);
tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_vpc_dst_reg, sp_vpc_dst_count);
tu_cs_emit_array(cs, sp_vpc_dst, sp_vpc_dst_count);
tu_cs_emit_pkt4(cs, cfg->reg_vpc_xs_pack, 1);
tu_cs_emit(cs, A6XX_VPC_VS_PACK_POSITIONLOC(position_loc) |
A6XX_VPC_VS_PACK_PSIZELOC(pointsize_loc) |
A6XX_VPC_VS_PACK_STRIDE_IN_VPC(linkage.max_loc));
tu_cs_emit_pkt4(cs, cfg->reg_vpc_xs_clip_cntl, 1);
tu_cs_emit(cs, 0xffff00);
tu_cs_emit_pkt4(cs, cfg->reg_gras_xs_cl_cntl, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, cfg->reg_pc_xs_out_cntl, 1);
tu_cs_emit(cs, A6XX_PC_VS_OUT_CNTL_STRIDE_IN_VPC(linkage.max_loc) |
CONDREG(pointsize_regid, A6XX_PC_VS_OUT_CNTL_PSIZE) |
CONDREG(layer_regid, A6XX_PC_VS_OUT_CNTL_LAYER) |
CONDREG(primitive_regid, A6XX_PC_VS_OUT_CNTL_PRIMITIVE_ID));
tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_primitive_cntl, 1);
tu_cs_emit(cs, A6XX_SP_VS_PRIMITIVE_CNTL_OUT(linkage.cnt) |
A6XX_SP_GS_PRIMITIVE_CNTL_FLAGS_REGID(flags_regid));
tu_cs_emit_pkt4(cs, cfg->reg_vpc_xs_layer_cntl, 1);
tu_cs_emit(cs, A6XX_VPC_GS_LAYER_CNTL_LAYERLOC(layer_loc) | 0xff00);
tu_cs_emit_pkt4(cs, cfg->reg_gras_xs_layer_cntl, 1);
tu_cs_emit(cs, CONDREG(layer_regid, A6XX_GRAS_GS_LAYER_CNTL_WRITES_LAYER));
tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMID_CNTL, 1);
tu_cs_emit(cs, COND(primid_passthru, A6XX_PC_PRIMID_CNTL_PRIMID_PASSTHRU));
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs ? fs->total_in : 0) |
COND(fs && fs->total_in, A6XX_VPC_CNTL_0_VARYING) |
A6XX_VPC_CNTL_0_PRIMIDLOC(linkage.primid_loc) |
A6XX_VPC_CNTL_0_UNKLOC(0xff));
if (hs) {
shader_info *hs_info = &hs->shader->nir->info;
tu_cs_emit_pkt4(cs, REG_A6XX_PC_TESS_NUM_VERTEX, 1);
tu_cs_emit(cs, hs_info->tess.tcs_vertices_out);
/* Total attribute slots in HS incoming patch. */
tu_cs_emit_pkt4(cs, REG_A6XX_PC_UNKNOWN_9801, 1);
tu_cs_emit(cs,
hs_info->tess.tcs_vertices_out * vs->output_size / 4);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
tu_cs_emit(cs, vs->output_size);
/* In SPIR-V generated from GLSL, the tessellation primitive params are
* are specified in the tess eval shader, but in SPIR-V generated from
* HLSL, they are specified in the tess control shader. */
shader_info *tess_info =
ds->shader->nir->info.tess.spacing == TESS_SPACING_UNSPECIFIED ?
&hs->shader->nir->info : &ds->shader->nir->info;
tu_cs_emit_pkt4(cs, REG_A6XX_PC_TESS_CNTL, 1);
uint32_t output;
if (tess_info->tess.point_mode)
output = TESS_POINTS;
else if (tess_info->tess.primitive_mode == GL_ISOLINES)
output = TESS_LINES;
else if (tess_info->tess.ccw)
output = TESS_CCW_TRIS;
else
output = TESS_CW_TRIS;
enum a6xx_tess_spacing spacing;
switch (tess_info->tess.spacing) {
case TESS_SPACING_EQUAL:
spacing = TESS_EQUAL;
break;
case TESS_SPACING_FRACTIONAL_ODD:
spacing = TESS_FRACTIONAL_ODD;
break;
case TESS_SPACING_FRACTIONAL_EVEN:
spacing = TESS_FRACTIONAL_EVEN;
break;
case TESS_SPACING_UNSPECIFIED:
default:
unreachable("invalid tess spacing");
}
tu_cs_emit(cs, A6XX_PC_TESS_CNTL_SPACING(spacing) |
A6XX_PC_TESS_CNTL_OUTPUT(output));
tu6_emit_link_map(cs, vs, hs, SB6_HS_SHADER);
tu6_emit_link_map(cs, hs, ds, SB6_DS_SHADER);
}
if (gs) {
uint32_t vertices_out, invocations, output, vec4_size;
/* this detects the tu_clear_blit path, which doesn't set ->nir */
if (gs->shader->nir) {
if (hs) {
tu6_emit_link_map(cs, ds, gs, SB6_GS_SHADER);
} else {
tu6_emit_link_map(cs, vs, gs, SB6_GS_SHADER);
}
vertices_out = gs->shader->nir->info.gs.vertices_out - 1;
output = gl_primitive_to_tess(gs->shader->nir->info.gs.output_primitive);
invocations = gs->shader->nir->info.gs.invocations - 1;
/* Size of per-primitive alloction in ldlw memory in vec4s. */
vec4_size = gs->shader->nir->info.gs.vertices_in *
DIV_ROUND_UP(vs->output_size, 4);
} else {
vertices_out = 3;
output = TESS_CW_TRIS;
invocations = 0;
vec4_size = 0;
}
tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_5, 1);
tu_cs_emit(cs,
A6XX_PC_PRIMITIVE_CNTL_5_GS_VERTICES_OUT(vertices_out) |
A6XX_PC_PRIMITIVE_CNTL_5_GS_OUTPUT(output) |
A6XX_PC_PRIMITIVE_CNTL_5_GS_INVOCATIONS(invocations));
tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_3, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9100, 1);
tu_cs_emit(cs, 0xff);
tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 1);
tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_6_STRIDE_IN_VPC(vec4_size));
tu_cs_emit_pkt4(cs, REG_A6XX_PC_UNKNOWN_9B07, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_PRIM_SIZE, 1);
tu_cs_emit(cs, vs->output_size);
}
}
static int
tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
uint32_t index,
uint8_t *interp_mode,
uint8_t *ps_repl_mode)
{
enum
{
INTERP_SMOOTH = 0,
INTERP_FLAT = 1,
INTERP_ZERO = 2,
INTERP_ONE = 3,
};
enum
{
PS_REPL_NONE = 0,
PS_REPL_S = 1,
PS_REPL_T = 2,
PS_REPL_ONE_MINUS_T = 3,
};
const uint32_t compmask = fs->inputs[index].compmask;
/* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
* fourth component occupy three consecutive varying slots
*/
int shift = 0;
*interp_mode = 0;
*ps_repl_mode = 0;
if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
if (compmask & 0x1) {
*ps_repl_mode |= PS_REPL_S << shift;
shift += 2;
}
if (compmask & 0x2) {
*ps_repl_mode |= PS_REPL_T << shift;
shift += 2;
}
if (compmask & 0x4) {
*interp_mode |= INTERP_ZERO << shift;
shift += 2;
}
if (compmask & 0x8) {
*interp_mode |= INTERP_ONE << 6;
shift += 2;
}
} else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
fs->inputs[index].rasterflat) {
for (int i = 0; i < 4; i++) {
if (compmask & (1 << i)) {
*interp_mode |= INTERP_FLAT << shift;
shift += 2;
}
}
}
return shift;
}
static void
tu6_emit_vpc_varying_modes(struct tu_cs *cs,
const struct ir3_shader_variant *fs)
{
uint32_t interp_modes[8] = { 0 };
uint32_t ps_repl_modes[8] = { 0 };
if (fs) {
for (int i = -1;
(i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
/* get the mode for input i */
uint8_t interp_mode;
uint8_t ps_repl_mode;
const int bits =
tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
/* OR the mode into the array */
const uint32_t inloc = fs->inputs[i].inloc * 2;
uint32_t n = inloc / 32;
uint32_t shift = inloc % 32;
interp_modes[n] |= interp_mode << shift;
ps_repl_modes[n] |= ps_repl_mode << shift;
if (shift + bits > 32) {
n++;
shift = 32 - shift;
interp_modes[n] |= interp_mode >> shift;
ps_repl_modes[n] |= ps_repl_mode >> shift;
}
}
}
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
tu_cs_emit_array(cs, interp_modes, 8);
tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
tu_cs_emit_array(cs, ps_repl_modes, 8);
}
void
tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
{
uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
uint32_t ij_regid[IJ_COUNT];
uint32_t smask_in_regid;
bool sample_shading = fs->per_samp | fs->key.sample_shading;
bool enable_varyings = fs->total_in > 0;
samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
for (unsigned i = 0; i < ARRAY_SIZE(ij_regid); i++)
ij_regid[i] = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + i);
if (VALIDREG(ij_regid[IJ_LINEAR_SAMPLE]))
tu_finishme("linear sample varying");
if (VALIDREG(ij_regid[IJ_LINEAR_CENTROID]))
tu_finishme("linear centroid varying");
if (fs->num_sampler_prefetch > 0) {
assert(VALIDREG(ij_regid[IJ_PERSP_PIXEL]));
/* also, it seems like ij_pix is *required* to be r0.x */
assert(ij_regid[IJ_PERSP_PIXEL] == regid(0, 0));
}
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
0x7000); // XXX);
for (int i = 0; i < fs->num_sampler_prefetch; i++) {
const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
}
if (fs->num_sampler_prefetch > 0) {
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_BINDLESS_PREFETCH_CMD(0), fs->num_sampler_prefetch);
for (int i = 0; i < fs->num_sampler_prefetch; i++) {
const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
tu_cs_emit(cs,
A6XX_SP_FS_BINDLESS_PREFETCH_CMD_SAMP_ID(prefetch->samp_bindless_id) |
A6XX_SP_FS_BINDLESS_PREFETCH_CMD_TEX_ID(prefetch->tex_bindless_id));
}
}
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
tu_cs_emit(cs, 0x7);
tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_regid[IJ_PERSP_SIZE]));
tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_IJ_PERSP_PIXEL(ij_regid[IJ_PERSP_PIXEL]) |
A6XX_HLSQ_CONTROL_3_REG_IJ_LINEAR_PIXEL(ij_regid[IJ_LINEAR_PIXEL]) |
A6XX_HLSQ_CONTROL_3_REG_IJ_PERSP_CENTROID(ij_regid[IJ_PERSP_CENTROID]) |
A6XX_HLSQ_CONTROL_3_REG_IJ_LINEAR_CENTROID(ij_regid[IJ_LINEAR_CENTROID]));
tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
A6XX_HLSQ_CONTROL_4_REG_IJ_PERSP_SAMPLE(ij_regid[IJ_PERSP_SAMPLE]) |
A6XX_HLSQ_CONTROL_4_REG_IJ_LINEAR_SAMPLE(ij_regid[IJ_LINEAR_SAMPLE]));
tu_cs_emit(cs, 0xfc);
tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
tu_cs_emit(cs, enable_varyings ? 3 : 1);
bool need_size = fs->frag_face || fs->fragcoord_compmask != 0;
bool need_size_persamp = false;
if (VALIDREG(ij_regid[IJ_PERSP_SIZE])) {
if (sample_shading)
need_size_persamp = true;
else
need_size = true;
}
if (VALIDREG(ij_regid[IJ_LINEAR_PIXEL]))
need_size = true;
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
tu_cs_emit(cs,
CONDREG(ij_regid[IJ_PERSP_PIXEL], A6XX_GRAS_CNTL_IJ_PERSP_PIXEL) |
CONDREG(ij_regid[IJ_PERSP_CENTROID], A6XX_GRAS_CNTL_IJ_PERSP_CENTROID) |
CONDREG(ij_regid[IJ_PERSP_SAMPLE], A6XX_GRAS_CNTL_IJ_PERSP_SAMPLE) |
COND(need_size, A6XX_GRAS_CNTL_SIZE) |
COND(need_size_persamp, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
COND(fs->fragcoord_compmask != 0, A6XX_GRAS_CNTL_COORD_MASK(fs->fragcoord_compmask)));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
tu_cs_emit(cs,
CONDREG(ij_regid[IJ_PERSP_PIXEL], A6XX_RB_RENDER_CONTROL0_IJ_PERSP_PIXEL) |
CONDREG(ij_regid[IJ_PERSP_CENTROID], A6XX_RB_RENDER_CONTROL0_IJ_PERSP_CENTROID) |
CONDREG(ij_regid[IJ_PERSP_SAMPLE], A6XX_RB_RENDER_CONTROL0_IJ_PERSP_SAMPLE) |
COND(need_size, A6XX_RB_RENDER_CONTROL0_SIZE) |
COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
COND(need_size_persamp, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
COND(fs->fragcoord_compmask != 0,
A6XX_RB_RENDER_CONTROL0_COORD_MASK(fs->fragcoord_compmask)));
tu_cs_emit(cs,
/* these two bits (UNK4/UNK5) relate to fragcoord
* without them, fragcoord is the same for all samples
*/
COND(sample_shading, A6XX_RB_RENDER_CONTROL1_UNK4) |
COND(sample_shading, A6XX_RB_RENDER_CONTROL1_UNK5) |
CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
CONDREG(ij_regid[IJ_PERSP_SIZE], A6XX_RB_RENDER_CONTROL1_SIZE) |
COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CNTL, 1);
tu_cs_emit(cs, COND(sample_shading, A6XX_RB_SAMPLE_CNTL_PER_SAMP_MODE));
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8101, 1);
tu_cs_emit(cs, COND(sample_shading, 0x6)); // XXX
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CNTL, 1);
tu_cs_emit(cs, COND(sample_shading, A6XX_GRAS_SAMPLE_CNTL_PER_SAMP_MODE));
}
static void
tu6_emit_fs_outputs(struct tu_cs *cs,
const struct ir3_shader_variant *fs,
uint32_t mrt_count, bool dual_src_blend,
uint32_t render_components,
bool is_s8_uint)
{
uint32_t smask_regid, posz_regid;
posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
uint32_t fragdata_regid[8];
if (fs->color0_mrt) {
fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
fragdata_regid[i] = fragdata_regid[0];
} else {
for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
}
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
COND(dual_src_blend, A6XX_SP_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE) |
0xfc000000);
tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
// TODO we could have a mix of half and full precision outputs,
// we really need to figure out half-precision from IR3_REG_HALF
tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
(false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
}
tu_cs_emit_regs(cs,
A6XX_SP_FS_RENDER_COMPONENTS(.dword = render_components));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK) |
COND(dual_src_blend, A6XX_RB_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE));
tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
tu_cs_emit_regs(cs,
A6XX_RB_RENDER_COMPONENTS(.dword = render_components));
enum a6xx_ztest_mode zmode;
if (fs->no_earlyz || fs->has_kill || fs->writes_pos || is_s8_uint) {
zmode = A6XX_LATE_Z;
} else {
zmode = A6XX_EARLY_Z;
}
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
tu_cs_emit(cs, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_Z_MODE(zmode));
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
tu_cs_emit(cs, A6XX_RB_DEPTH_PLANE_CNTL_Z_MODE(zmode));
}
static void
tu6_emit_geom_tess_consts(struct tu_cs *cs,
const struct ir3_shader_variant *vs,
const struct ir3_shader_variant *hs,
const struct ir3_shader_variant *ds,
const struct ir3_shader_variant *gs,
uint32_t cps_per_patch)
{
uint32_t num_vertices =
hs ? cps_per_patch : gs->shader->nir->info.gs.vertices_in;
uint32_t vs_params[4] = {
vs->output_size * num_vertices * 4, /* vs primitive stride */
vs->output_size * 4, /* vs vertex stride */
0,
0,
};
uint32_t vs_base = ir3_const_state(vs)->offsets.primitive_param;
tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, vs_base, SB6_VS_SHADER, 0,
ARRAY_SIZE(vs_params), vs_params);
if (hs) {
assert(ds->type != MESA_SHADER_NONE);
uint32_t hs_params[4] = {
vs->output_size * num_vertices * 4, /* hs primitive stride */
vs->output_size * 4, /* hs vertex stride */
hs->output_size,
cps_per_patch,
};
uint32_t hs_base = hs->const_state->offsets.primitive_param;
tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, hs_base, SB6_HS_SHADER, 0,
ARRAY_SIZE(hs_params), hs_params);
if (gs)
num_vertices = gs->shader->nir->info.gs.vertices_in;
uint32_t ds_params[4] = {
ds->output_size * num_vertices * 4, /* ds primitive stride */
ds->output_size * 4, /* ds vertex stride */
hs->output_size, /* hs vertex stride (dwords) */
hs->shader->nir->info.tess.tcs_vertices_out
};
uint32_t ds_base = ds->const_state->offsets.primitive_param;
tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, ds_base, SB6_DS_SHADER, 0,
ARRAY_SIZE(ds_params), ds_params);
}
if (gs) {
const struct ir3_shader_variant *prev = ds ? ds : vs;
uint32_t gs_params[4] = {
prev->output_size * num_vertices * 4, /* gs primitive stride */
prev->output_size * 4, /* gs vertex stride */
0,
0,
};
uint32_t gs_base = gs->const_state->offsets.primitive_param;
tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, gs_base, SB6_GS_SHADER, 0,
ARRAY_SIZE(gs_params), gs_params);
}
}
static void
tu6_emit_program(struct tu_cs *cs,
struct tu_pipeline_builder *builder,
bool binning_pass)
{
const struct ir3_shader_variant *vs = builder->variants[MESA_SHADER_VERTEX];
const struct ir3_shader_variant *bs = builder->binning_variant;
const struct ir3_shader_variant *hs = builder->variants[MESA_SHADER_TESS_CTRL];
const struct ir3_shader_variant *ds = builder->variants[MESA_SHADER_TESS_EVAL];
const struct ir3_shader_variant *gs = builder->variants[MESA_SHADER_GEOMETRY];
const struct ir3_shader_variant *fs = builder->variants[MESA_SHADER_FRAGMENT];
gl_shader_stage stage = MESA_SHADER_VERTEX;
STATIC_ASSERT(MESA_SHADER_VERTEX == 0);
tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
.vs_state = true,
.hs_state = true,
.ds_state = true,
.gs_state = true,
.fs_state = true,
.gfx_ibo = true));
/* Don't use the binning pass variant when GS is present because we don't
* support compiling correct binning pass variants with GS.
*/
if (binning_pass && !gs) {
vs = bs;
tu6_emit_xs_config(cs, stage, bs, builder->binning_vs_iova);
stage++;
}
for (; stage < ARRAY_SIZE(builder->shaders); stage++) {
const struct ir3_shader_variant *xs = builder->variants[stage];
if (stage == MESA_SHADER_FRAGMENT && binning_pass)
fs = xs = NULL;
tu6_emit_xs_config(cs, stage, xs, builder->shader_iova[stage]);
}
tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
tu_cs_emit(cs, 0);
tu6_emit_vpc(cs, vs, hs, ds, gs, fs);
tu6_emit_vpc_varying_modes(cs, fs);
if (fs) {
tu6_emit_fs_inputs(cs, fs);
tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count,
builder->use_dual_src_blend,
builder->render_components,
builder->depth_attachment_format == VK_FORMAT_S8_UINT);
} else {
/* TODO: check if these can be skipped if fs is disabled */
struct ir3_shader_variant dummy_variant = {};
tu6_emit_fs_inputs(cs, &dummy_variant);
tu6_emit_fs_outputs(cs, &dummy_variant, builder->color_attachment_count,
builder->use_dual_src_blend,
builder->render_components,
builder->depth_attachment_format == VK_FORMAT_S8_UINT);
}
if (gs || hs) {
uint32_t cps_per_patch = builder->create_info->pTessellationState ?
builder->create_info->pTessellationState->patchControlPoints : 0;
tu6_emit_geom_tess_consts(cs, vs, hs, ds, gs, cps_per_patch);
}
}
static void
tu6_emit_vertex_input(struct tu_cs *cs,
const struct ir3_shader_variant *vs,
const VkPipelineVertexInputStateCreateInfo *info,
uint32_t *bindings_used)
{
uint32_t vfd_decode_idx = 0;
uint32_t binding_instanced = 0; /* bitmask of instanced bindings */
uint32_t step_rate[MAX_VBS];
for (uint32_t i = 0; i < info->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *binding =
&info->pVertexBindingDescriptions[i];
tu_cs_emit_regs(cs,
A6XX_VFD_FETCH_STRIDE(binding->binding, binding->stride));
if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
binding_instanced |= 1 << binding->binding;
*bindings_used |= 1 << binding->binding;
step_rate[binding->binding] = 1;
}
const VkPipelineVertexInputDivisorStateCreateInfoEXT *div_state =
vk_find_struct_const(info->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
if (div_state) {
for (uint32_t i = 0; i < div_state->vertexBindingDivisorCount; i++) {
const VkVertexInputBindingDivisorDescriptionEXT *desc =
&div_state->pVertexBindingDivisors[i];
step_rate[desc->binding] = desc->divisor;
}
}
/* TODO: emit all VFD_DECODE/VFD_DEST_CNTL in same (two) pkt4 */
for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription *attr =
&info->pVertexAttributeDescriptions[i];
uint32_t input_idx;
assert(*bindings_used & BIT(attr->binding));
for (input_idx = 0; input_idx < vs->inputs_count; input_idx++) {
if ((vs->inputs[input_idx].slot - VERT_ATTRIB_GENERIC0) == attr->location)
break;
}
/* attribute not used, skip it */
if (input_idx == vs->inputs_count)
continue;
const struct tu_native_format format = tu6_format_vtx(attr->format);
tu_cs_emit_regs(cs,
A6XX_VFD_DECODE_INSTR(vfd_decode_idx,
.idx = attr->binding,
.offset = attr->offset,
.instanced = binding_instanced & (1 << attr->binding),
.format = format.fmt,
.swap = format.swap,
.unk30 = 1,
._float = !vk_format_is_int(attr->format)),
A6XX_VFD_DECODE_STEP_RATE(vfd_decode_idx, step_rate[attr->binding]));
tu_cs_emit_regs(cs,
A6XX_VFD_DEST_CNTL_INSTR(vfd_decode_idx,
.writemask = vs->inputs[input_idx].compmask,
.regid = vs->inputs[input_idx].regid));
vfd_decode_idx++;
}
tu_cs_emit_regs(cs,
A6XX_VFD_CONTROL_0(
.fetch_cnt = vfd_decode_idx, /* decode_cnt for binning pass ? */
.decode_cnt = vfd_decode_idx));
}
static uint32_t
tu6_guardband_adj(uint32_t v)
{
if (v > 256)
return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
else
return 511;
}
void
tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
{
float offsets[3];
float scales[3];
scales[0] = viewport->width / 2.0f;
scales[1] = viewport->height / 2.0f;
scales[2] = viewport->maxDepth - viewport->minDepth;
offsets[0] = viewport->x + scales[0];
offsets[1] = viewport->y + scales[1];
offsets[2] = viewport->minDepth;
VkOffset2D min;
VkOffset2D max;
min.x = (int32_t) viewport->x;
max.x = (int32_t) ceilf(viewport->x + viewport->width);
if (viewport->height >= 0.0f) {
min.y = (int32_t) viewport->y;
max.y = (int32_t) ceilf(viewport->y + viewport->height);
} else {
min.y = (int32_t)(viewport->y + viewport->height);
max.y = (int32_t) ceilf(viewport->y);
}
/* the spec allows viewport->height to be 0.0f */
if (min.y == max.y)
max.y++;
assert(min.x >= 0 && min.x < max.x);
assert(min.y >= 0 && min.y < max.y);
VkExtent2D guardband_adj;
guardband_adj.width = tu6_guardband_adj(max.x - min.x);
guardband_adj.height = tu6_guardband_adj(max.y - min.y);
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]).value);
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]).value);
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]).value);
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]).value);
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]).value);
tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]).value);
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
tu_cs_emit(cs,
A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
float z_clamp_min = MIN2(viewport->minDepth, viewport->maxDepth);
float z_clamp_max = MAX2(viewport->minDepth, viewport->maxDepth);
tu_cs_emit_regs(cs,
A6XX_GRAS_CL_Z_CLAMP_MIN(z_clamp_min),
A6XX_GRAS_CL_Z_CLAMP_MAX(z_clamp_max));
tu_cs_emit_regs(cs,
A6XX_RB_Z_CLAMP_MIN(z_clamp_min),
A6XX_RB_Z_CLAMP_MAX(z_clamp_max));
}
void
tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
{
VkOffset2D min = scissor->offset;
VkOffset2D max = {
scissor->offset.x + scissor->extent.width,
scissor->offset.y + scissor->extent.height,
};
/* special case for empty scissor with max == 0 to avoid overflow */
if (max.x == 0)
min.x = max.x = 1;
if (max.y == 0)
min.y = max.y = 1;
/* avoid overflow with large scissor
* note the max will be limited to min - 1, so that empty scissor works
*/
uint32_t scissor_max = BITFIELD_MASK(15);
min.x = MIN2(scissor_max, min.x);
min.y = MIN2(scissor_max, min.y);
max.x = MIN2(scissor_max, max.x);
max.y = MIN2(scissor_max, max.y);
tu_cs_emit_regs(cs,
A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0(.x = min.x, .y = min.y),
A6XX_GRAS_SC_SCREEN_SCISSOR_BR_0(.x = max.x - 1, .y = max.y - 1));
}
void
tu6_emit_sample_locations(struct tu_cs *cs, const VkSampleLocationsInfoEXT *samp_loc)
{
if (!samp_loc) {
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 1);
tu_cs_emit(cs, 0);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 1);
tu_cs_emit(cs, 0);
return;
}
assert(samp_loc->sampleLocationsPerPixel == samp_loc->sampleLocationsCount);
assert(samp_loc->sampleLocationGridSize.width == 1);
assert(samp_loc->sampleLocationGridSize.height == 1);
uint32_t sample_config =
A6XX_RB_SAMPLE_CONFIG_LOCATION_ENABLE;
uint32_t sample_locations = 0;
for (uint32_t i = 0; i < samp_loc->sampleLocationsCount; i++) {
sample_locations |=
(A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_X(samp_loc->pSampleLocations[i].x) |
A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_Y(samp_loc->pSampleLocations[i].y)) << i*8;
}
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 2);
tu_cs_emit(cs, sample_config);
tu_cs_emit(cs, sample_locations);
tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 2);
tu_cs_emit(cs, sample_config);
tu_cs_emit(cs, sample_locations);
tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 2);
tu_cs_emit(cs, sample_config);
tu_cs_emit(cs, sample_locations);
}
static uint32_t
tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
VkSampleCountFlagBits samples)
{
uint32_t gras_su_cntl = 0;
if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
/* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
if (rast_info->depthBiasEnable)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
if (samples > VK_SAMPLE_COUNT_1_BIT)
gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
return gras_su_cntl;
}
void
tu6_emit_depth_bias(struct tu_cs *cs,
float constant_factor,
float clamp,
float slope_factor)
{
tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor).value);
tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor).value);
tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp).value);
}
static void
tu6_emit_depth_control(struct tu_cs *cs,
const VkPipelineDepthStencilStateCreateInfo *ds_info,
const VkPipelineRasterizationStateCreateInfo *rast_info)
{
uint32_t rb_depth_cntl = 0;
if (ds_info->depthTestEnable) {
rb_depth_cntl |=
A6XX_RB_DEPTH_CNTL_Z_ENABLE |
A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE; /* TODO: don't set for ALWAYS/NEVER */
if (rast_info->depthClampEnable)
rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_CLAMP_ENABLE;
if (ds_info->depthWriteEnable)
rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
}
if (ds_info->depthBoundsTestEnable)
rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_BOUNDS_ENABLE | A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
tu_cs_emit(cs, rb_depth_cntl);
}
static void
tu6_emit_stencil_control(struct tu_cs *cs,
const VkPipelineDepthStencilStateCreateInfo *ds_info)
{
uint32_t rb_stencil_control = 0;
if (ds_info->stencilTestEnable) {
const VkStencilOpState *front = &ds_info->front;
const VkStencilOpState *back = &ds_info->back;
rb_stencil_control |=
A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
}
tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
tu_cs_emit(cs, rb_stencil_control);
}
static uint32_t
tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
bool has_alpha)
{
const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
has_alpha ? att->srcColorBlendFactor
: tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
has_alpha ? att->dstColorBlendFactor
: tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
const enum adreno_rb_blend_factor src_alpha_factor =
tu6_blend_factor(att->srcAlphaBlendFactor);
const enum adreno_rb_blend_factor dst_alpha_factor =
tu6_blend_factor(att->dstAlphaBlendFactor);
return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
}
static uint32_t
tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
uint32_t rb_mrt_control_rop,
bool is_int,
bool has_alpha)
{
uint32_t rb_mrt_control =
A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
/* ignore blending and logic op for integer attachments */
if (is_int) {
rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
return rb_mrt_control;
}
rb_mrt_control |= rb_mrt_control_rop;
if (att->blendEnable) {
rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
if (has_alpha)
rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
}
return rb_mrt_control;
}
static void
tu6_emit_rb_mrt_controls(struct tu_cs *cs,
const VkPipelineColorBlendStateCreateInfo *blend_info,
const VkFormat attachment_formats[MAX_RTS],
uint32_t *blend_enable_mask)
{
*blend_enable_mask = 0;
bool rop_reads_dst = false;
uint32_t rb_mrt_control_rop = 0;
if (blend_info->logicOpEnable) {
rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
rb_mrt_control_rop =
A6XX_RB_MRT_CONTROL_ROP_ENABLE |
A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
}
for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
const VkPipelineColorBlendAttachmentState *att =
&blend_info->pAttachments[i];
const VkFormat format = attachment_formats[i];
uint32_t rb_mrt_control = 0;
uint32_t rb_mrt_blend_control = 0;
if (format != VK_FORMAT_UNDEFINED) {
const bool is_int = vk_format_is_int(format);
const bool has_alpha = vk_format_has_alpha(format);
rb_mrt_control =
tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
if (att->blendEnable || rop_reads_dst)
*blend_enable_mask |= 1 << i;
}
tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
tu_cs_emit(cs, rb_mrt_control);
tu_cs_emit(cs, rb_mrt_blend_control);
}
}
static void
tu6_emit_blend_control(struct tu_cs *cs,
uint32_t blend_enable_mask,
bool dual_src_blend,
const VkPipelineMultisampleStateCreateInfo *msaa_info)
{
const uint32_t sample_mask =
msaa_info->pSampleMask ? (*msaa_info->pSampleMask & 0xffff)
: ((1 << msaa_info->rasterizationSamples) - 1);
tu_cs_emit_regs(cs,
A6XX_SP_BLEND_CNTL(.enabled = blend_enable_mask,
.dual_color_in_enable = dual_src_blend,
.alpha_to_coverage = msaa_info->alphaToCoverageEnable,
.unk8 = true));
/* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
tu_cs_emit_regs(cs,
A6XX_RB_BLEND_CNTL(.enable_blend = blend_enable_mask,
.independent_blend = true,
.sample_mask = sample_mask,
.dual_color_in_enable = dual_src_blend,
.alpha_to_coverage = msaa_info->alphaToCoverageEnable,
.alpha_to_one = msaa_info->alphaToOneEnable));
}
static VkResult
tu_pipeline_allocate_cs(struct tu_device *dev,
struct tu_pipeline *pipeline,
struct tu_pipeline_builder *builder,
struct ir3_shader_variant *compute)
{
uint32_t size = 2048 + tu6_load_state_size(pipeline->layout, compute);
/* graphics case: */
if (builder) {
for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
if (builder->variants[i])
size += builder->variants[i]->info.sizedwords;
}
size += builder->binning_variant->info.sizedwords;
} else {
size += compute->info.sizedwords;
}
tu_cs_init(&pipeline->cs, dev, TU_CS_MODE_SUB_STREAM, size);
/* Reserve the space now such that tu_cs_begin_sub_stream never fails. Note
* that LOAD_STATE can potentially take up a large amount of space so we
* calculate its size explicitly.
*/
return tu_cs_reserve_space(&pipeline->cs, size);
}
static void
tu_pipeline_shader_key_init(struct ir3_shader_key *key,
const VkGraphicsPipelineCreateInfo *pipeline_info)
{
for (uint32_t i = 0; i < pipeline_info->stageCount; i++) {
if (pipeline_info->pStages[i].stage == VK_SHADER_STAGE_GEOMETRY_BIT) {
key->has_gs = true;
break;
}
}
if (pipeline_info->pRasterizationState->rasterizerDiscardEnable)
return;
const VkPipelineMultisampleStateCreateInfo *msaa_info = pipeline_info->pMultisampleState;
const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations =
vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
if (msaa_info->rasterizationSamples > 1 ||
/* also set msaa key when sample location is not the default
* since this affects varying interpolation */
(sample_locations && sample_locations->sampleLocationsEnable)) {
key->msaa = true;
}
/* note: not actually used by ir3, just checked in tu6_emit_fs_inputs */
if (msaa_info->sampleShadingEnable)
key->sample_shading = true;
/* We set this after we compile to NIR because we need the prim mode */
key->tessellation = IR3_TESS_NONE;
}
static uint32_t
tu6_get_tessmode(struct tu_shader* shader)
{
uint32_t primitive_mode = shader->ir3_shader->nir->info.tess.primitive_mode;
switch (primitive_mode) {
case GL_ISOLINES:
return IR3_TESS_ISOLINES;
case GL_TRIANGLES:
return IR3_TESS_TRIANGLES;
case GL_QUADS:
return IR3_TESS_QUADS;
case GL_NONE:
return IR3_TESS_NONE;
default:
unreachable("bad tessmode");
}
}
static uint64_t
tu_upload_variant(struct tu_pipeline *pipeline,
const struct ir3_shader_variant *variant)
{
struct tu_cs_memory memory;
if (!variant)
return 0;
/* this expects to get enough alignment because shaders are allocated first
* and sizedwords is always aligned correctly
* note: an assert in tu6_emit_xs_config validates the alignment
*/
tu_cs_alloc(&pipeline->cs, variant->info.sizedwords, 1, &memory);
memcpy(memory.map, variant->bin, sizeof(uint32_t) * variant->info.sizedwords);
return memory.iova;
}
static VkResult
tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
const struct ir3_compiler *compiler = builder->device->compiler;
const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
NULL
};
for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
gl_shader_stage stage =
vk_to_mesa_shader_stage(builder->create_info->pStages[i].stage);
stage_infos[stage] = &builder->create_info->pStages[i];
}
struct ir3_shader_key key = {};
tu_pipeline_shader_key_init(&key, builder->create_info);
for (gl_shader_stage stage = MESA_SHADER_VERTEX;
stage < MESA_SHADER_STAGES; stage++) {
const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
if (!stage_info && stage != MESA_SHADER_FRAGMENT)
continue;
struct tu_shader *shader =
tu_shader_create(builder->device, stage, stage_info, builder->layout,
builder->alloc);
if (!shader)
return VK_ERROR_OUT_OF_HOST_MEMORY;
/* In SPIR-V generated from GLSL, the primitive mode is specified in the
* tessellation evaluation shader, but in SPIR-V generated from HLSL,
* the mode is specified in the tessellation control shader. */
if ((stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_TESS_CTRL) &&
key.tessellation == IR3_TESS_NONE) {
key.tessellation = tu6_get_tessmode(shader);
}
builder->shaders[stage] = shader;
}
struct tu_shader *gs = builder->shaders[MESA_SHADER_GEOMETRY];
key.layer_zero =
!gs || !(gs->ir3_shader->nir->info.outputs_written & VARYING_SLOT_LAYER);
pipeline->tess.patch_type = key.tessellation;
for (gl_shader_stage stage = MESA_SHADER_VERTEX;
stage < MESA_SHADER_STAGES; stage++) {
if (!builder->shaders[stage])
continue;
bool created;
builder->variants[stage] =
ir3_shader_get_variant(builder->shaders[stage]->ir3_shader,
&key, false, &created);
if (!builder->variants[stage])
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
uint32_t safe_constlens = ir3_trim_constlen(builder->variants, compiler);
key.safe_constlen = true;
for (gl_shader_stage stage = MESA_SHADER_VERTEX;
stage < MESA_SHADER_STAGES; stage++) {
if (!builder->shaders[stage])
continue;
if (safe_constlens & (1 << stage)) {
bool created;
builder->variants[stage] =
ir3_shader_get_variant(builder->shaders[stage]->ir3_shader,
&key, false, &created);
if (!builder->variants[stage])
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
struct ir3_shader_variant *variant;
if (vs->ir3_shader->stream_output.num_outputs ||
!ir3_has_binning_vs(&key)) {
variant = builder->variants[MESA_SHADER_VERTEX];
} else {
bool created;
key.safe_constlen = !!(safe_constlens & (1 << MESA_SHADER_VERTEX));
variant = ir3_shader_get_variant(vs->ir3_shader, &key,
true, &created);
if (!variant)
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
builder->binning_variant = variant;
return VK_SUCCESS;
}
static void
tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
const VkPipelineDynamicStateCreateInfo *dynamic_info =
builder->create_info->pDynamicState;
if (!dynamic_info)
return;
for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
VkDynamicState state = dynamic_info->pDynamicStates[i];
switch (state) {
case VK_DYNAMIC_STATE_VIEWPORT ... VK_DYNAMIC_STATE_STENCIL_REFERENCE:
pipeline->dynamic_state_mask |= BIT(state);
break;
case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
pipeline->dynamic_state_mask |= BIT(TU_DYNAMIC_STATE_SAMPLE_LOCATIONS);
break;
default:
assert(!"unsupported dynamic state");
break;
}
}
}
static void
tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link,
struct tu_shader *shader,
struct ir3_shader_variant *v)
{
link->const_state = *ir3_const_state(v);
link->constlen = v->constlen;
link->push_consts = shader->push_consts;
}
static void
tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
struct tu_cs prog_cs;
tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
tu6_emit_program(&prog_cs, builder, false);
pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
tu6_emit_program(&prog_cs, builder, true);
pipeline->program.binning_state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
VkShaderStageFlags stages = 0;
for (unsigned i = 0; i < builder->create_info->stageCount; i++) {
stages |= builder->create_info->pStages[i].stage;
}
pipeline->active_stages = stages;
uint32_t desc_sets = 0;
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
if (!builder->shaders[i])
continue;
tu_pipeline_set_linkage(&pipeline->program.link[i],
builder->shaders[i],
builder->variants[i]);
desc_sets |= builder->shaders[i]->active_desc_sets;
}
pipeline->active_desc_sets = desc_sets;
}
static void
tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
const VkPipelineVertexInputStateCreateInfo *vi_info =
builder->create_info->pVertexInputState;
const struct ir3_shader_variant *vs = builder->variants[MESA_SHADER_VERTEX];
const struct ir3_shader_variant *bs = builder->binning_variant;
struct tu_cs vi_cs;
tu_cs_begin_sub_stream(&pipeline->cs,
MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
tu6_emit_vertex_input(&vi_cs, vs, vi_info,
&pipeline->vi.bindings_used);
pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
if (bs) {
tu_cs_begin_sub_stream(&pipeline->cs,
MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
tu6_emit_vertex_input(
&vi_cs, bs, vi_info, &pipeline->vi.bindings_used);
pipeline->vi.binning_state_ib =
tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
}
}
static void
tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
const VkPipelineInputAssemblyStateCreateInfo *ia_info =
builder->create_info->pInputAssemblyState;
pipeline->ia.primtype = tu6_primtype(ia_info->topology);
pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
}
static bool
tu_pipeline_static_state(struct tu_pipeline *pipeline, struct tu_cs *cs,
uint32_t id, uint32_t size)
{
struct tu_cs_memory memory;
if (pipeline->dynamic_state_mask & BIT(id))
return false;
/* TODO: share this logc with tu_cmd_dynamic_state */
tu_cs_alloc(&pipeline->cs, size, 1, &memory);
tu_cs_init_external(cs, memory.map, memory.map + size);
tu_cs_begin(cs);
tu_cs_reserve_space(cs, size);
assert(id < ARRAY_SIZE(pipeline->dynamic_state));
pipeline->dynamic_state[id].iova = memory.iova;
pipeline->dynamic_state[id].size = size;
return true;
}
static void
tu_pipeline_builder_parse_tessellation(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
const VkPipelineTessellationStateCreateInfo *tess_info =
builder->create_info->pTessellationState;
if (!tess_info)
return;
assert(pipeline->ia.primtype == DI_PT_PATCHES0);
assert(tess_info->patchControlPoints <= 32);
pipeline->ia.primtype += tess_info->patchControlPoints;
const VkPipelineTessellationDomainOriginStateCreateInfo *domain_info =
vk_find_struct_const(tess_info->pNext, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO);
pipeline->tess.upper_left_domain_origin = !domain_info ||
domain_info->domainOrigin == VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT;
const struct ir3_shader_variant *hs = builder->variants[MESA_SHADER_TESS_CTRL];
const struct ir3_shader_variant *ds = builder->variants[MESA_SHADER_TESS_EVAL];
pipeline->tess.param_stride = hs->output_size * 4;
pipeline->tess.hs_bo_regid = hs->const_state->offsets.primitive_param + 1;
pipeline->tess.ds_bo_regid = ds->const_state->offsets.primitive_param + 1;
}
static void
tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
/* The spec says:
*
* pViewportState is a pointer to an instance of the
* VkPipelineViewportStateCreateInfo structure, and is ignored if the
* pipeline has rasterization disabled."
*
* We leave the relevant registers stale in that case.
*/
if (builder->rasterizer_discard)
return;
const VkPipelineViewportStateCreateInfo *vp_info =
builder->create_info->pViewportState;
struct tu_cs cs;
if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_VIEWPORT, 18))
tu6_emit_viewport(&cs, vp_info->pViewports);
if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_SCISSOR, 3))
tu6_emit_scissor(&cs, vp_info->pScissors);
}
static void
tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
const VkPipelineRasterizationStateCreateInfo *rast_info =
builder->create_info->pRasterizationState;
enum a6xx_polygon_mode mode = tu6_polygon_mode(rast_info->polygonMode);
struct tu_cs cs;
tu_cs_begin_sub_stream(&pipeline->cs, 9, &cs);
tu_cs_emit_regs(&cs,
A6XX_GRAS_CL_CNTL(
.znear_clip_disable = rast_info->depthClampEnable,
.zfar_clip_disable = rast_info->depthClampEnable,
.unk5 = rast_info->depthClampEnable,
.zero_gb_scale_z = 1,
.vp_clip_code_ignore = 1));
tu_cs_emit_regs(&cs,
A6XX_VPC_POLYGON_MODE(.mode = mode));
tu_cs_emit_regs(&cs,
A6XX_PC_POLYGON_MODE(.mode = mode));
/* move to hw ctx init? */
tu_cs_emit_regs(&cs,
A6XX_GRAS_SU_POINT_MINMAX(.min = 1.0f / 16.0f, .max = 4092.0f),
A6XX_GRAS_SU_POINT_SIZE(1.0f));
pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &cs);
pipeline->gras_su_cntl =
tu6_gras_su_cntl(rast_info, builder->samples);
if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_LINE_WIDTH, 2)) {
pipeline->gras_su_cntl |=
A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(rast_info->lineWidth / 2.0f);
tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = pipeline->gras_su_cntl));
}
if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_DEPTH_BIAS, 4)) {
tu6_emit_depth_bias(&cs, rast_info->depthBiasConstantFactor,
rast_info->depthBiasClamp,
rast_info->depthBiasSlopeFactor);
}
}
static void
tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
struct tu_pipeline *pipeline)
{
/* The spec says:
*
* pDepthStencilState is a pointer to an instance of the
* VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
* the pipeline has rasterization disabled or if the subpass of the
* render pass the pipeline is created against does not use a
* depth/stencil attachment.
*
* Disable both depth and stencil tests if there is no ds attachment,
* Disable depth test if ds attachment is S8_UINT, since S8_UINT defines
* only the separate stencil attachment
*/
static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
const VkPipelineDepthStencilStateCreateInfo *ds_info =
builder->depth_attachment_format != VK_FORMAT_UNDEFINED
? builder->create_info->pDepthStencilState
: &dummy_ds_info;
const VkPipelineDepthStencilStateCreateInfo *ds_info_depth =
builder->depth_attachment_format != VK_FORMAT_S8_UINT
? ds_info : &dummy_ds_info;
struct tu_cs cs;
tu_cs_begin_sub_stream(&pipeline->cs, 6, &cs);
/* move to hw ctx init? */
tu_cs_emit_regs(&cs, A6XX_RB_ALPHA_CONTROL());
tu6_emit_depth_control(&cs, ds_info_depth,
builder->create_info->pRasterizationState);
tu6_emit_stencil_control(&cs, ds_info);
pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &cs);
if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3)) {
tu_cs_emit_regs(&cs,
A6XX_RB_Z_BOUNDS_MIN(ds_info->minDepthBounds),
A6XX_RB_Z_BOUNDS_MAX(ds_info->maxDepthBounds));
}
if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2)) {
tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.mask = ds_info->front.compareMask & 0xff,
.bfmask = ds_info->back.compareMask & 0xff));
}
if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2)) {
tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.wrmask = ds_info->front.writeMask & 0xff,
.bfwrmask = ds_info->back.writeMask & 0xff));
}
if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2)) {
tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.ref = ds_info->front.reference & 0xff,
.bfref = ds_info->back.reference & 0xff));
}
}
static void
tu_pipeline_builder_parse_multisample_and_color_blend(
struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
{
/* The spec says:
*
* pMultisampleState is a pointer to an instance of the
* VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
* has rasterization disabled.
*
* Also,
*
* pColorBlendState is a pointer to an instance of the
* VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
* pipeline has rasterization disabled or if the subpass of the render
* pass the pipeline is created against does not use any color
* attachments.
*
* We leave the relevant registers stale when rasterization is disabled.
*/
if (builder->rasterizer_discard)
return;
static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
const VkPipelineMultisampleStateCreateInfo *msaa_info =
builder->create_info->pMultisampleState;
const VkPipelineColorBlendStateCreateInfo *blend_info =
builder->use_color_attachments ? builder->create_info->pColorBlendState
: &dummy_blend_info;
struct tu_cs cs;
tu_cs_begin_sub_stream(&pipeline->cs, MAX_RTS * 3 + 4, &cs);
uint32_t blend_enable_mask;
tu6_emit_rb_mrt_controls(&cs, blend_info,
builder->color_attachment_formats,
&blend_enable_mask);
tu6_emit_blend_control(&cs, blend_enable_mask,
builder->use_dual_src_blend, msaa_info);
pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &cs);
if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5)) {
tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
tu_cs_emit_array(&cs, (const uint32_t *) blend_info->blendConstants, 4);
}
const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations =
vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
const VkSampleLocationsInfoEXT *samp_loc = NULL;
if (sample_locations && sample_locations->sampleLocationsEnable)
samp_loc = &sample_locations->sampleLocationsInfo;
if (tu_pipeline_static_state(pipeline, &cs, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS,
samp_loc ? 9 : 6)) {
tu6_emit_sample_locations(&cs, samp_loc);
}
}
static void
tu_pipeline_finish(struct tu_pipeline *pipeline,
struct tu_device *dev,
const VkAllocationCallbacks *alloc)
{
tu_cs_finish(&pipeline->cs);
}
static VkResult
tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
struct tu_pipeline **pipeline)
{
VkResult result;
*pipeline = vk_object_zalloc(&builder->device->vk, builder->alloc,
sizeof(**pipeline), VK_OBJECT_TYPE_PIPELINE);
if (!*pipeline)
return VK_ERROR_OUT_OF_HOST_MEMORY;
(*pipeline)->layout = builder->layout;
/* compile and upload shaders */
result = tu_pipeline_builder_compile_shaders(builder, *pipeline);
if (result != VK_SUCCESS) {
vk_object_free(&builder->device->vk, builder->alloc, *pipeline);
return result;
}
result = tu_pipeline_allocate_cs(builder->device, *pipeline, builder, NULL);
if (result != VK_SUCCESS) {
vk_object_free(&builder->device->vk, builder->alloc, *pipeline);
return result;
}
for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++)
builder->shader_iova[i] = tu_upload_variant(*pipeline, builder->variants[i]);
builder->binning_vs_iova =
tu_upload_variant(*pipeline, builder->binning_variant);
tu_pipeline_builder_parse_dynamic(builder, *pipeline);
tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
tu_pipeline_builder_parse_tessellation(builder, *pipeline);
tu_pipeline_builder_parse_viewport(builder, *pipeline);
tu_pipeline_builder_parse_rasterization(builder, *pipeline);
tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
tu6_emit_load_state(*pipeline, false);
/* we should have reserved enough space upfront such that the CS never
* grows
*/
assert((*pipeline)->cs.bo_count == 1);
return VK_SUCCESS;
}
static void
tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
{
for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
if (!builder->shaders[i])
continue;
tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
}
}
static void
tu_pipeline_builder_init_graphics(
struct tu_pipeline_builder *builder,
struct tu_device *dev,
struct tu_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *create_info,
const VkAllocationCallbacks *alloc)
{
TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
*builder = (struct tu_pipeline_builder) {
.device = dev,
.cache = cache,
.create_info = create_info,
.alloc = alloc,
.layout = layout,
};
builder->rasterizer_discard =
create_info->pRasterizationState->rasterizerDiscardEnable;
if (builder->rasterizer_discard) {
builder->samples = VK_SAMPLE_COUNT_1_BIT;
} else {
builder->samples = create_info->pMultisampleState->rasterizationSamples;
const struct tu_render_pass *pass =
tu_render_pass_from_handle(create_info->renderPass);
const struct tu_subpass *subpass =
&pass->subpasses[create_info->subpass];
const uint32_t a = subpass->depth_stencil_attachment.attachment;
builder->depth_attachment_format = (a != VK_ATTACHMENT_UNUSED) ?
pass->attachments[a].format : VK_FORMAT_UNDEFINED;
assert(subpass->color_count == 0 ||
!create_info->pColorBlendState ||
subpass->color_count == create_info->pColorBlendState->attachmentCount);
builder->color_attachment_count = subpass->color_count;
for (uint32_t i = 0; i < subpass->color_count; i++) {
const uint32_t a = subpass->color_attachments[i].attachment;
if (a == VK_ATTACHMENT_UNUSED)
continue;
builder->color_attachment_formats[i] = pass->attachments[a].format;
builder->use_color_attachments = true;
builder->render_components |= 0xf << (i * 4);
}
if (tu_blend_state_is_dual_src(create_info->pColorBlendState)) {
builder->color_attachment_count++;
builder->use_dual_src_blend = true;
/* dual source blending has an extra fs output in the 2nd slot */
if (subpass->color_attachments[0].attachment != VK_ATTACHMENT_UNUSED)
builder->render_components |= 0xf << 4;
}
}
}
static VkResult
tu_graphics_pipeline_create(VkDevice device,
VkPipelineCache pipelineCache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
TU_FROM_HANDLE(tu_device, dev, device);
TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
struct tu_pipeline_builder builder;
tu_pipeline_builder_init_graphics(&builder, dev, cache,
pCreateInfo, pAllocator);
struct tu_pipeline *pipeline = NULL;
VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
tu_pipeline_builder_finish(&builder);
if (result == VK_SUCCESS)
*pPipeline = tu_pipeline_to_handle(pipeline);
else
*pPipeline = VK_NULL_HANDLE;
return result;
}
VkResult
tu_CreateGraphicsPipelines(VkDevice device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines)
{
VkResult final_result = VK_SUCCESS;
for (uint32_t i = 0; i < count; i++) {
VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
&pCreateInfos[i], pAllocator,
&pPipelines[i]);
if (result != VK_SUCCESS)
final_result = result;
}
return final_result;
}
static VkResult
tu_compute_pipeline_create(VkDevice device,
VkPipelineCache _cache,
const VkComputePipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
TU_FROM_HANDLE(tu_device, dev, device);
TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
VkResult result;
struct tu_pipeline *pipeline;
*pPipeline = VK_NULL_HANDLE;
pipeline = vk_object_zalloc(&dev->vk, pAllocator, sizeof(*pipeline),
VK_OBJECT_TYPE_PIPELINE);
if (!pipeline)
return VK_ERROR_OUT_OF_HOST_MEMORY;
pipeline->layout = layout;
struct ir3_shader_key key = {};
struct tu_shader *shader =
tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
if (!shader) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
pipeline->active_desc_sets = shader->active_desc_sets;
bool created;
struct ir3_shader_variant *v =
ir3_shader_get_variant(shader->ir3_shader, &key, false, &created);
if (!v) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE],
shader, v);
result = tu_pipeline_allocate_cs(dev, pipeline, NULL, v);
if (result != VK_SUCCESS)
goto fail;
uint64_t shader_iova = tu_upload_variant(pipeline, v);
for (int i = 0; i < 3; i++)
pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
struct tu_cs prog_cs;
tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
tu6_emit_cs_config(&prog_cs, shader, v, shader_iova);
pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
tu6_emit_load_state(pipeline, true);
*pPipeline = tu_pipeline_to_handle(pipeline);
return VK_SUCCESS;
fail:
if (shader)
tu_shader_destroy(dev, shader, pAllocator);
vk_object_free(&dev->vk, pAllocator, pipeline);
return result;
}
VkResult
tu_CreateComputePipelines(VkDevice device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines)
{
VkResult final_result = VK_SUCCESS;
for (uint32_t i = 0; i < count; i++) {
VkResult result = tu_compute_pipeline_create(device, pipelineCache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (result != VK_SUCCESS)
final_result = result;
}
return final_result;
}
void
tu_DestroyPipeline(VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks *pAllocator)
{
TU_FROM_HANDLE(tu_device, dev, _device);
TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
if (!_pipeline)
return;
tu_pipeline_finish(pipeline, dev, pAllocator);
vk_object_free(&dev->vk, pAllocator, pipeline);
}