blob: e07d2c4b9b46737d0f23bb86937e764c38693d33 [file] [log] [blame]
/*
* Copyright © 2008 Jérôme Glisse
* Copyright © 2010 Marek Olšák <maraeo@gmail.com>
* Copyright © 2015 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
* AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*/
#include "amdgpu_cs.h"
#include "util/os_time.h"
#include <inttypes.h>
#include <stdio.h>
#include "amd/common/sid.h"
DEBUG_GET_ONCE_BOOL_OPTION(noop, "RADEON_NOOP", false)
/* FENCES */
static struct pipe_fence_handle *
amdgpu_fence_create(struct amdgpu_ctx *ctx, unsigned ip_type,
unsigned ip_instance, unsigned ring)
{
struct amdgpu_fence *fence = CALLOC_STRUCT(amdgpu_fence);
fence->reference.count = 1;
fence->ws = ctx->ws;
fence->ctx = ctx;
fence->fence.context = ctx->ctx;
fence->fence.ip_type = ip_type;
fence->fence.ip_instance = ip_instance;
fence->fence.ring = ring;
util_queue_fence_init(&fence->submitted);
util_queue_fence_reset(&fence->submitted);
p_atomic_inc(&ctx->refcount);
return (struct pipe_fence_handle *)fence;
}
static struct pipe_fence_handle *
amdgpu_fence_import_syncobj(struct radeon_winsys *rws, int fd)
{
struct amdgpu_winsys *ws = amdgpu_winsys(rws);
struct amdgpu_fence *fence = CALLOC_STRUCT(amdgpu_fence);
int r;
if (!fence)
return NULL;
pipe_reference_init(&fence->reference, 1);
fence->ws = ws;
r = amdgpu_cs_import_syncobj(ws->dev, fd, &fence->syncobj);
if (r) {
FREE(fence);
return NULL;
}
util_queue_fence_init(&fence->submitted);
assert(amdgpu_fence_is_syncobj(fence));
return (struct pipe_fence_handle*)fence;
}
static struct pipe_fence_handle *
amdgpu_fence_import_sync_file(struct radeon_winsys *rws, int fd)
{
struct amdgpu_winsys *ws = amdgpu_winsys(rws);
struct amdgpu_fence *fence = CALLOC_STRUCT(amdgpu_fence);
if (!fence)
return NULL;
pipe_reference_init(&fence->reference, 1);
fence->ws = ws;
/* fence->ctx == NULL means that the fence is syncobj-based. */
/* Convert sync_file into syncobj. */
int r = amdgpu_cs_create_syncobj(ws->dev, &fence->syncobj);
if (r) {
FREE(fence);
return NULL;
}
r = amdgpu_cs_syncobj_import_sync_file(ws->dev, fence->syncobj, fd);
if (r) {
amdgpu_cs_destroy_syncobj(ws->dev, fence->syncobj);
FREE(fence);
return NULL;
}
util_queue_fence_init(&fence->submitted);
return (struct pipe_fence_handle*)fence;
}
static int amdgpu_fence_export_sync_file(struct radeon_winsys *rws,
struct pipe_fence_handle *pfence)
{
struct amdgpu_winsys *ws = amdgpu_winsys(rws);
struct amdgpu_fence *fence = (struct amdgpu_fence*)pfence;
if (amdgpu_fence_is_syncobj(fence)) {
int fd, r;
/* Convert syncobj into sync_file. */
r = amdgpu_cs_syncobj_export_sync_file(ws->dev, fence->syncobj, &fd);
return r ? -1 : fd;
}
util_queue_fence_wait(&fence->submitted);
/* Convert the amdgpu fence into a fence FD. */
int fd;
if (amdgpu_cs_fence_to_handle(ws->dev, &fence->fence,
AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD,
(uint32_t*)&fd))
return -1;
return fd;
}
static int amdgpu_export_signalled_sync_file(struct radeon_winsys *rws)
{
struct amdgpu_winsys *ws = amdgpu_winsys(rws);
uint32_t syncobj;
int fd = -1;
int r = amdgpu_cs_create_syncobj2(ws->dev, DRM_SYNCOBJ_CREATE_SIGNALED,
&syncobj);
if (r) {
return -1;
}
r = amdgpu_cs_syncobj_export_sync_file(ws->dev, syncobj, &fd);
if (r) {
fd = -1;
}
amdgpu_cs_destroy_syncobj(ws->dev, syncobj);
return fd;
}
static void amdgpu_fence_submitted(struct pipe_fence_handle *fence,
uint64_t seq_no,
uint64_t *user_fence_cpu_address)
{
struct amdgpu_fence *afence = (struct amdgpu_fence*)fence;
afence->fence.fence = seq_no;
afence->user_fence_cpu_address = user_fence_cpu_address;
util_queue_fence_signal(&afence->submitted);
}
static void amdgpu_fence_signalled(struct pipe_fence_handle *fence)
{
struct amdgpu_fence *afence = (struct amdgpu_fence*)fence;
afence->signalled = true;
util_queue_fence_signal(&afence->submitted);
}
bool amdgpu_fence_wait(struct pipe_fence_handle *fence, uint64_t timeout,
bool absolute)
{
struct amdgpu_fence *afence = (struct amdgpu_fence*)fence;
uint32_t expired;
int64_t abs_timeout;
uint64_t *user_fence_cpu;
int r;
if (afence->signalled)
return true;
if (absolute)
abs_timeout = timeout;
else
abs_timeout = os_time_get_absolute_timeout(timeout);
/* Handle syncobjs. */
if (amdgpu_fence_is_syncobj(afence)) {
if (abs_timeout == OS_TIMEOUT_INFINITE)
abs_timeout = INT64_MAX;
if (amdgpu_cs_syncobj_wait(afence->ws->dev, &afence->syncobj, 1,
abs_timeout, 0, NULL))
return false;
afence->signalled = true;
return true;
}
/* The fence might not have a number assigned if its IB is being
* submitted in the other thread right now. Wait until the submission
* is done. */
if (!util_queue_fence_wait_timeout(&afence->submitted, abs_timeout))
return false;
user_fence_cpu = afence->user_fence_cpu_address;
if (user_fence_cpu) {
if (*user_fence_cpu >= afence->fence.fence) {
afence->signalled = true;
return true;
}
/* No timeout, just query: no need for the ioctl. */
if (!absolute && !timeout)
return false;
}
/* Now use the libdrm query. */
r = amdgpu_cs_query_fence_status(&afence->fence,
abs_timeout,
AMDGPU_QUERY_FENCE_TIMEOUT_IS_ABSOLUTE,
&expired);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_cs_query_fence_status failed.\n");
return false;
}
if (expired) {
/* This variable can only transition from false to true, so it doesn't
* matter if threads race for it. */
afence->signalled = true;
return true;
}
return false;
}
static bool amdgpu_fence_wait_rel_timeout(struct radeon_winsys *rws,
struct pipe_fence_handle *fence,
uint64_t timeout)
{
return amdgpu_fence_wait(fence, timeout, false);
}
static struct pipe_fence_handle *
amdgpu_cs_get_next_fence(struct radeon_cmdbuf *rcs)
{
struct amdgpu_cs *cs = amdgpu_cs(rcs);
struct pipe_fence_handle *fence = NULL;
if (debug_get_option_noop())
return NULL;
if (cs->next_fence) {
amdgpu_fence_reference(&fence, cs->next_fence);
return fence;
}
fence = amdgpu_fence_create(cs->ctx,
cs->csc->ib[IB_MAIN].ip_type,
cs->csc->ib[IB_MAIN].ip_instance,
cs->csc->ib[IB_MAIN].ring);
if (!fence)
return NULL;
amdgpu_fence_reference(&cs->next_fence, fence);
return fence;
}
/* CONTEXTS */
static struct radeon_winsys_ctx *amdgpu_ctx_create(struct radeon_winsys *ws)
{
struct amdgpu_ctx *ctx = CALLOC_STRUCT(amdgpu_ctx);
int r;
struct amdgpu_bo_alloc_request alloc_buffer = {};
amdgpu_bo_handle buf_handle;
if (!ctx)
return NULL;
ctx->ws = amdgpu_winsys(ws);
ctx->refcount = 1;
ctx->initial_num_total_rejected_cs = ctx->ws->num_total_rejected_cs;
r = amdgpu_cs_ctx_create(ctx->ws->dev, &ctx->ctx);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_cs_ctx_create failed. (%i)\n", r);
goto error_create;
}
alloc_buffer.alloc_size = ctx->ws->info.gart_page_size;
alloc_buffer.phys_alignment = ctx->ws->info.gart_page_size;
alloc_buffer.preferred_heap = AMDGPU_GEM_DOMAIN_GTT;
r = amdgpu_bo_alloc(ctx->ws->dev, &alloc_buffer, &buf_handle);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_bo_alloc failed. (%i)\n", r);
goto error_user_fence_alloc;
}
r = amdgpu_bo_cpu_map(buf_handle, (void**)&ctx->user_fence_cpu_address_base);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_bo_cpu_map failed. (%i)\n", r);
goto error_user_fence_map;
}
memset(ctx->user_fence_cpu_address_base, 0, alloc_buffer.alloc_size);
ctx->user_fence_bo = buf_handle;
return (struct radeon_winsys_ctx*)ctx;
error_user_fence_map:
amdgpu_bo_free(buf_handle);
error_user_fence_alloc:
amdgpu_cs_ctx_free(ctx->ctx);
error_create:
FREE(ctx);
return NULL;
}
static void amdgpu_ctx_destroy(struct radeon_winsys_ctx *rwctx)
{
amdgpu_ctx_unref((struct amdgpu_ctx*)rwctx);
}
static enum pipe_reset_status
amdgpu_ctx_query_reset_status(struct radeon_winsys_ctx *rwctx)
{
struct amdgpu_ctx *ctx = (struct amdgpu_ctx*)rwctx;
int r;
/* Return a failure due to a GPU hang. */
if (ctx->ws->info.drm_minor >= 24) {
uint64_t flags;
r = amdgpu_cs_query_reset_state2(ctx->ctx, &flags);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_cs_query_reset_state failed. (%i)\n", r);
return PIPE_NO_RESET;
}
if (flags & AMDGPU_CTX_QUERY2_FLAGS_RESET) {
if (flags & AMDGPU_CTX_QUERY2_FLAGS_GUILTY)
return PIPE_GUILTY_CONTEXT_RESET;
else
return PIPE_INNOCENT_CONTEXT_RESET;
}
} else {
uint32_t result, hangs;
r = amdgpu_cs_query_reset_state(ctx->ctx, &result, &hangs);
if (r) {
fprintf(stderr, "amdgpu: amdgpu_cs_query_reset_state failed. (%i)\n", r);
return PIPE_NO_RESET;
}
switch (result) {
case AMDGPU_CTX_GUILTY_RESET:
return PIPE_GUILTY_CONTEXT_RESET;
case AMDGPU_CTX_INNOCENT_RESET:
return PIPE_INNOCENT_CONTEXT_RESET;
case AMDGPU_CTX_UNKNOWN_RESET:
return PIPE_UNKNOWN_CONTEXT_RESET;
}
}
/* Return a failure due to a rejected command submission. */
if (ctx->ws->num_total_rejected_cs > ctx->initial_num_total_rejected_cs) {
return ctx->num_rejected_cs ? PIPE_GUILTY_CONTEXT_RESET :
PIPE_INNOCENT_CONTEXT_RESET;
}
return PIPE_NO_RESET;
}
/* COMMAND SUBMISSION */
static bool amdgpu_cs_has_user_fence(struct amdgpu_cs_context *cs)
{
return cs->ib[IB_MAIN].ip_type != AMDGPU_HW_IP_UVD &&
cs->ib[IB_MAIN].ip_type != AMDGPU_HW_IP_VCE &&
cs->ib[IB_MAIN].ip_type != AMDGPU_HW_IP_UVD_ENC &&
cs->ib[IB_MAIN].ip_type != AMDGPU_HW_IP_VCN_DEC &&
cs->ib[IB_MAIN].ip_type != AMDGPU_HW_IP_VCN_ENC &&
cs->ib[IB_MAIN].ip_type != AMDGPU_HW_IP_VCN_JPEG;
}
static bool amdgpu_cs_has_chaining(struct amdgpu_cs *cs)
{
return cs->ctx->ws->info.chip_class >= GFX7 &&
(cs->ring_type == RING_GFX || cs->ring_type == RING_COMPUTE);
}
static unsigned amdgpu_cs_epilog_dws(struct amdgpu_cs *cs)
{
if (amdgpu_cs_has_chaining(cs))
return 4; /* for chaining */
return 0;
}
int amdgpu_lookup_buffer(struct amdgpu_cs_context *cs, struct amdgpu_winsys_bo *bo)
{
unsigned hash = bo->unique_id & (ARRAY_SIZE(cs->buffer_indices_hashlist)-1);
int i = cs->buffer_indices_hashlist[hash];
struct amdgpu_cs_buffer *buffers;
int num_buffers;
if (bo->bo) {
buffers = cs->real_buffers;
num_buffers = cs->num_real_buffers;
} else if (!bo->sparse) {
buffers = cs->slab_buffers;
num_buffers = cs->num_slab_buffers;
} else {
buffers = cs->sparse_buffers;
num_buffers = cs->num_sparse_buffers;
}
/* not found or found */
if (i < 0 || (i < num_buffers && buffers[i].bo == bo))
return i;
/* Hash collision, look for the BO in the list of buffers linearly. */
for (i = num_buffers - 1; i >= 0; i--) {
if (buffers[i].bo == bo) {
/* Put this buffer in the hash list.
* This will prevent additional hash collisions if there are
* several consecutive lookup_buffer calls for the same buffer.
*
* Example: Assuming buffers A,B,C collide in the hash list,
* the following sequence of buffers:
* AAAAAAAAAAABBBBBBBBBBBBBBCCCCCCCC
* will collide here: ^ and here: ^,
* meaning that we should get very few collisions in the end. */
cs->buffer_indices_hashlist[hash] = i;
return i;
}
}
return -1;
}
static int
amdgpu_do_add_real_buffer(struct amdgpu_cs_context *cs, struct amdgpu_winsys_bo *bo)
{
struct amdgpu_cs_buffer *buffer;
int idx;
/* New buffer, check if the backing array is large enough. */
if (cs->num_real_buffers >= cs->max_real_buffers) {
unsigned new_max =
MAX2(cs->max_real_buffers + 16, (unsigned)(cs->max_real_buffers * 1.3));
struct amdgpu_cs_buffer *new_buffers;
new_buffers = MALLOC(new_max * sizeof(*new_buffers));
if (!new_buffers) {
fprintf(stderr, "amdgpu_do_add_buffer: allocation failed\n");
FREE(new_buffers);
return -1;
}
memcpy(new_buffers, cs->real_buffers, cs->num_real_buffers * sizeof(*new_buffers));
FREE(cs->real_buffers);
cs->max_real_buffers = new_max;
cs->real_buffers = new_buffers;
}
idx = cs->num_real_buffers;
buffer = &cs->real_buffers[idx];
memset(buffer, 0, sizeof(*buffer));
amdgpu_winsys_bo_reference(&buffer->bo, bo);
p_atomic_inc(&bo->num_cs_references);
cs->num_real_buffers++;
return idx;
}
static int
amdgpu_lookup_or_add_real_buffer(struct amdgpu_cs *acs, struct amdgpu_winsys_bo *bo)
{
struct amdgpu_cs_context *cs = acs->csc;
unsigned hash;
int idx = amdgpu_lookup_buffer(cs, bo);
if (idx >= 0)
return idx;
idx = amdgpu_do_add_real_buffer(cs, bo);
hash = bo->unique_id & (ARRAY_SIZE(cs->buffer_indices_hashlist)-1);
cs->buffer_indices_hashlist[hash] = idx;
if (bo->initial_domain & RADEON_DOMAIN_VRAM)
acs->main.base.used_vram += bo->base.size;
else if (bo->initial_domain & RADEON_DOMAIN_GTT)
acs->main.base.used_gart += bo->base.size;
return idx;
}
static int amdgpu_lookup_or_add_slab_buffer(struct amdgpu_cs *acs,
struct amdgpu_winsys_bo *bo)
{
struct amdgpu_cs_context *cs = acs->csc;
struct amdgpu_cs_buffer *buffer;
unsigned hash;
int idx = amdgpu_lookup_buffer(cs, bo);
int real_idx;
if (idx >= 0)
return idx;
real_idx = amdgpu_lookup_or_add_real_buffer(acs, bo->u.slab.real);
if (real_idx < 0)
return -1;
/* New buffer, check if the backing array is large enough. */
if (cs->num_slab_buffers >= cs->max_slab_buffers) {
unsigned new_max =
MAX2(cs->max_slab_buffers + 16, (unsigned)(cs->max_slab_buffers * 1.3));
struct amdgpu_cs_buffer *new_buffers;
new_buffers = REALLOC(cs->slab_buffers,
cs->max_slab_buffers * sizeof(*new_buffers),
new_max * sizeof(*new_buffers));
if (!new_buffers) {
fprintf(stderr, "amdgpu_lookup_or_add_slab_buffer: allocation failed\n");
return -1;
}
cs->max_slab_buffers = new_max;
cs->slab_buffers = new_buffers;
}
idx = cs->num_slab_buffers;
buffer = &cs->slab_buffers[idx];
memset(buffer, 0, sizeof(*buffer));
amdgpu_winsys_bo_reference(&buffer->bo, bo);
buffer->u.slab.real_idx = real_idx;
p_atomic_inc(&bo->num_cs_references);
cs->num_slab_buffers++;
hash = bo->unique_id & (ARRAY_SIZE(cs->buffer_indices_hashlist)-1);
cs->buffer_indices_hashlist[hash] = idx;
return idx;
}
static int amdgpu_lookup_or_add_sparse_buffer(struct amdgpu_cs *acs,
struct amdgpu_winsys_bo *bo)
{
struct amdgpu_cs_context *cs = acs->csc;
struct amdgpu_cs_buffer *buffer;
unsigned hash;
int idx = amdgpu_lookup_buffer(cs, bo);
if (idx >= 0)
return idx;
/* New buffer, check if the backing array is large enough. */
if (cs->num_sparse_buffers >= cs->max_sparse_buffers) {
unsigned new_max =
MAX2(cs->max_sparse_buffers + 16, (unsigned)(cs->max_sparse_buffers * 1.3));
struct amdgpu_cs_buffer *new_buffers;
new_buffers = REALLOC(cs->sparse_buffers,
cs->max_sparse_buffers * sizeof(*new_buffers),
new_max * sizeof(*new_buffers));
if (!new_buffers) {
fprintf(stderr, "amdgpu_lookup_or_add_sparse_buffer: allocation failed\n");
return -1;
}
cs->max_sparse_buffers = new_max;
cs->sparse_buffers = new_buffers;
}
idx = cs->num_sparse_buffers;
buffer = &cs->sparse_buffers[idx];
memset(buffer, 0, sizeof(*buffer));
amdgpu_winsys_bo_reference(&buffer->bo, bo);
p_atomic_inc(&bo->num_cs_references);
cs->num_sparse_buffers++;
hash = bo->unique_id & (ARRAY_SIZE(cs->buffer_indices_hashlist)-1);
cs->buffer_indices_hashlist[hash] = idx;
/* We delay adding the backing buffers until we really have to. However,
* we cannot delay accounting for memory use.
*/
simple_mtx_lock(&bo->lock);
list_for_each_entry(struct amdgpu_sparse_backing, backing, &bo->u.sparse.backing, list) {
if (bo->initial_domain & RADEON_DOMAIN_VRAM)
acs->main.base.used_vram += backing->bo->base.size;
else if (bo->initial_domain & RADEON_DOMAIN_GTT)
acs->main.base.used_gart += backing->bo->base.size;
}
simple_mtx_unlock(&bo->lock);
return idx;
}
static unsigned amdgpu_cs_add_buffer(struct radeon_cmdbuf *rcs,
struct pb_buffer *buf,
enum radeon_bo_usage usage,
enum radeon_bo_domain domains,
enum radeon_bo_priority priority)
{
/* Don't use the "domains" parameter. Amdgpu doesn't support changing
* the buffer placement during command submission.
*/
struct amdgpu_cs *acs = amdgpu_cs(rcs);
struct amdgpu_cs_context *cs = acs->csc;
struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf;
struct amdgpu_cs_buffer *buffer;
int index;
/* Fast exit for no-op calls.
* This is very effective with suballocators and linear uploaders that
* are outside of the winsys.
*/
if (bo == cs->last_added_bo &&
(usage & cs->last_added_bo_usage) == usage &&
(1u << priority) & cs->last_added_bo_priority_usage)
return cs->last_added_bo_index;
if (!bo->sparse) {
if (!bo->bo) {
index = amdgpu_lookup_or_add_slab_buffer(acs, bo);
if (index < 0)
return 0;
buffer = &cs->slab_buffers[index];
buffer->usage |= usage;
usage &= ~RADEON_USAGE_SYNCHRONIZED;
index = buffer->u.slab.real_idx;
} else {
index = amdgpu_lookup_or_add_real_buffer(acs, bo);
if (index < 0)
return 0;
}
buffer = &cs->real_buffers[index];
} else {
index = amdgpu_lookup_or_add_sparse_buffer(acs, bo);
if (index < 0)
return 0;
buffer = &cs->sparse_buffers[index];
}
buffer->u.real.priority_usage |= 1u << priority;
buffer->usage |= usage;
cs->last_added_bo = bo;
cs->last_added_bo_index = index;
cs->last_added_bo_usage = buffer->usage;
cs->last_added_bo_priority_usage = buffer->u.real.priority_usage;
return index;
}
static bool amdgpu_ib_new_buffer(struct amdgpu_winsys *ws,
struct amdgpu_ib *ib,
enum ring_type ring_type)
{
struct pb_buffer *pb;
uint8_t *mapped;
unsigned buffer_size;
/* Always create a buffer that is at least as large as the maximum seen IB
* size, aligned to a power of two (and multiplied by 4 to reduce internal
* fragmentation if chaining is not available). Limit to 512k dwords, which
* is the largest power of two that fits into the size field of the
* INDIRECT_BUFFER packet.
*/
if (amdgpu_cs_has_chaining(amdgpu_cs_from_ib(ib)))
buffer_size = 4 *util_next_power_of_two(ib->max_ib_size);
else
buffer_size = 4 *util_next_power_of_two(4 * ib->max_ib_size);
const unsigned min_size = MAX2(ib->max_check_space_size, 8 * 1024 * 4);
const unsigned max_size = 512 * 1024 * 4;
buffer_size = MIN2(buffer_size, max_size);
buffer_size = MAX2(buffer_size, min_size); /* min_size is more important */
pb = amdgpu_bo_create(ws, buffer_size,
ws->info.gart_page_size,
RADEON_DOMAIN_GTT,
RADEON_FLAG_NO_INTERPROCESS_SHARING |
(ring_type == RING_GFX ||
ring_type == RING_COMPUTE ||
ring_type == RING_DMA ?
RADEON_FLAG_32BIT | RADEON_FLAG_GTT_WC : 0));
if (!pb)
return false;
mapped = amdgpu_bo_map(pb, NULL, PIPE_MAP_WRITE);
if (!mapped) {
pb_reference(&pb, NULL);
return false;
}
pb_reference(&ib->big_ib_buffer, pb);
pb_reference(&pb, NULL);
ib->ib_mapped = mapped;
ib->used_ib_space = 0;
return true;
}
static unsigned amdgpu_ib_max_submit_dwords(enum ib_type ib_type)
{
/* The maximum IB size including all chained IBs. */
switch (ib_type) {
case IB_MAIN:
/* Smaller submits means the GPU gets busy sooner and there is less
* waiting for buffers and fences. Proof:
* http://www.phoronix.com/scan.php?page=article&item=mesa-111-si&num=1
*/
return 20 * 1024;
case IB_PARALLEL_COMPUTE:
/* Always chain this IB. */
return UINT_MAX;
default:
unreachable("bad ib_type");
}
}
static bool amdgpu_get_new_ib(struct amdgpu_winsys *ws, struct amdgpu_cs *cs,
enum ib_type ib_type)
{
/* Small IBs are better than big IBs, because the GPU goes idle quicker
* and there is less waiting for buffers and fences. Proof:
* http://www.phoronix.com/scan.php?page=article&item=mesa-111-si&num=1
*/
struct amdgpu_ib *ib = NULL;
struct drm_amdgpu_cs_chunk_ib *info = &cs->csc->ib[ib_type];
/* This is the minimum size of a contiguous IB. */
unsigned ib_size = 4 * 1024 * 4;
switch (ib_type) {
case IB_PARALLEL_COMPUTE:
ib = &cs->compute_ib;
break;
case IB_MAIN:
ib = &cs->main;
break;
default:
unreachable("unhandled IB type");
}
/* Always allocate at least the size of the biggest cs_check_space call,
* because precisely the last call might have requested this size.
*/
ib_size = MAX2(ib_size, ib->max_check_space_size);
if (!amdgpu_cs_has_chaining(cs)) {
ib_size = MAX2(ib_size,
4 * MIN2(util_next_power_of_two(ib->max_ib_size),
amdgpu_ib_max_submit_dwords(ib_type)));
}
ib->max_ib_size = ib->max_ib_size - ib->max_ib_size / 32;
ib->base.prev_dw = 0;
ib->base.num_prev = 0;
ib->base.current.cdw = 0;
ib->base.current.buf = NULL;
/* Allocate a new buffer for IBs if the current buffer is all used. */
if (!ib->big_ib_buffer ||
ib->used_ib_space + ib_size > ib->big_ib_buffer->size) {
if (!amdgpu_ib_new_buffer(ws, ib, cs->ring_type))
return false;
}
info->va_start = amdgpu_winsys_bo(ib->big_ib_buffer)->va + ib->used_ib_space;
info->ib_bytes = 0;
/* ib_bytes is in dwords and the conversion to bytes will be done before
* the CS ioctl. */
ib->ptr_ib_size = &info->ib_bytes;
ib->ptr_ib_size_inside_ib = false;
amdgpu_cs_add_buffer(&cs->main.base, ib->big_ib_buffer,
RADEON_USAGE_READ, 0, RADEON_PRIO_IB1);
ib->base.current.buf = (uint32_t*)(ib->ib_mapped + ib->used_ib_space);
ib_size = ib->big_ib_buffer->size - ib->used_ib_space;
ib->base.current.max_dw = ib_size / 4 - amdgpu_cs_epilog_dws(cs);
assert(ib->base.current.max_dw >= ib->max_check_space_size / 4);
ib->base.gpu_address = info->va_start;
return true;
}
static void amdgpu_set_ib_size(struct amdgpu_ib *ib)
{
if (ib->ptr_ib_size_inside_ib) {
*ib->ptr_ib_size = ib->base.current.cdw |
S_3F2_CHAIN(1) | S_3F2_VALID(1);
} else {
*ib->ptr_ib_size = ib->base.current.cdw;
}
}
static void amdgpu_ib_finalize(struct amdgpu_winsys *ws, struct amdgpu_ib *ib)
{
amdgpu_set_ib_size(ib);
ib->used_ib_space += ib->base.current.cdw * 4;
ib->used_ib_space = align(ib->used_ib_space, ws->info.ib_alignment);
ib->max_ib_size = MAX2(ib->max_ib_size, ib->base.prev_dw + ib->base.current.cdw);
}
static bool amdgpu_init_cs_context(struct amdgpu_winsys *ws,
struct amdgpu_cs_context *cs,
enum ring_type ring_type)
{
switch (ring_type) {
case RING_DMA:
cs->ib[IB_MAIN].ip_type = AMDGPU_HW_IP_DMA;
break;
case RING_UVD:
cs->ib[IB_MAIN].ip_type = AMDGPU_HW_IP_UVD;
break;
case RING_UVD_ENC:
cs->ib[IB_MAIN].ip_type = AMDGPU_HW_IP_UVD_ENC;
break;
case RING_VCE:
cs->ib[IB_MAIN].ip_type = AMDGPU_HW_IP_VCE;
break;
case RING_VCN_DEC:
cs->ib[IB_MAIN].ip_type = AMDGPU_HW_IP_VCN_DEC;
break;
case RING_VCN_ENC:
cs->ib[IB_MAIN].ip_type = AMDGPU_HW_IP_VCN_ENC;
break;
case RING_VCN_JPEG:
cs->ib[IB_MAIN].ip_type = AMDGPU_HW_IP_VCN_JPEG;
break;
case RING_COMPUTE:
case RING_GFX:
cs->ib[IB_MAIN].ip_type = ring_type == RING_GFX ? AMDGPU_HW_IP_GFX :
AMDGPU_HW_IP_COMPUTE;
/* The kernel shouldn't invalidate L2 and vL1. The proper place for cache
* invalidation is the beginning of IBs (the previous commit does that),
* because completion of an IB doesn't care about the state of GPU caches,
* but the beginning of an IB does. Draw calls from multiple IBs can be
* executed in parallel, so draw calls from the current IB can finish after
* the next IB starts drawing, and so the cache flush at the end of IB
* is always late.
*/
if (ws->info.drm_minor >= 26)
cs->ib[IB_MAIN].flags = AMDGPU_IB_FLAG_TC_WB_NOT_INVALIDATE;
break;
default:
assert(0);
}
cs->ib[IB_PARALLEL_COMPUTE].ip_type = AMDGPU_HW_IP_COMPUTE;
cs->ib[IB_PARALLEL_COMPUTE].flags = AMDGPU_IB_FLAG_TC_WB_NOT_INVALIDATE;
memset(cs->buffer_indices_hashlist, -1, sizeof(cs->buffer_indices_hashlist));
cs->last_added_bo = NULL;
return true;
}
static void cleanup_fence_list(struct amdgpu_fence_list *fences)
{
for (unsigned i = 0; i < fences->num; i++)
amdgpu_fence_reference(&fences->list[i], NULL);
fences->num = 0;
}
static void amdgpu_cs_context_cleanup(struct amdgpu_cs_context *cs)
{
unsigned i;
for (i = 0; i < cs->num_real_buffers; i++) {
p_atomic_dec(&cs->real_buffers[i].bo->num_cs_references);
amdgpu_winsys_bo_reference(&cs->real_buffers[i].bo, NULL);
}
for (i = 0; i < cs->num_slab_buffers; i++) {
p_atomic_dec(&cs->slab_buffers[i].bo->num_cs_references);
amdgpu_winsys_bo_reference(&cs->slab_buffers[i].bo, NULL);
}
for (i = 0; i < cs->num_sparse_buffers; i++) {
p_atomic_dec(&cs->sparse_buffers[i].bo->num_cs_references);
amdgpu_winsys_bo_reference(&cs->sparse_buffers[i].bo, NULL);
}
cleanup_fence_list(&cs->fence_dependencies);
cleanup_fence_list(&cs->syncobj_dependencies);
cleanup_fence_list(&cs->syncobj_to_signal);
cleanup_fence_list(&cs->compute_fence_dependencies);
cleanup_fence_list(&cs->compute_start_fence_dependencies);
cs->num_real_buffers = 0;
cs->num_slab_buffers = 0;
cs->num_sparse_buffers = 0;
amdgpu_fence_reference(&cs->fence, NULL);
memset(cs->buffer_indices_hashlist, -1, sizeof(cs->buffer_indices_hashlist));
cs->last_added_bo = NULL;
}
static void amdgpu_destroy_cs_context(struct amdgpu_cs_context *cs)
{
amdgpu_cs_context_cleanup(cs);
FREE(cs->real_buffers);
FREE(cs->slab_buffers);
FREE(cs->sparse_buffers);
FREE(cs->fence_dependencies.list);
FREE(cs->syncobj_dependencies.list);
FREE(cs->syncobj_to_signal.list);
FREE(cs->compute_fence_dependencies.list);
FREE(cs->compute_start_fence_dependencies.list);
}
static struct radeon_cmdbuf *
amdgpu_cs_create(struct radeon_winsys_ctx *rwctx,
enum ring_type ring_type,
void (*flush)(void *ctx, unsigned flags,
struct pipe_fence_handle **fence),
void *flush_ctx,
bool stop_exec_on_failure)
{
struct amdgpu_ctx *ctx = (struct amdgpu_ctx*)rwctx;
struct amdgpu_cs *cs;
cs = CALLOC_STRUCT(amdgpu_cs);
if (!cs) {
return NULL;
}
util_queue_fence_init(&cs->flush_completed);
cs->ctx = ctx;
cs->flush_cs = flush;
cs->flush_data = flush_ctx;
cs->ring_type = ring_type;
cs->stop_exec_on_failure = stop_exec_on_failure;
struct amdgpu_cs_fence_info fence_info;
fence_info.handle = cs->ctx->user_fence_bo;
fence_info.offset = cs->ring_type * 4;
amdgpu_cs_chunk_fence_info_to_data(&fence_info, (void*)&cs->fence_chunk);
cs->main.ib_type = IB_MAIN;
cs->compute_ib.ib_type = IB_PARALLEL_COMPUTE;
if (!amdgpu_init_cs_context(ctx->ws, &cs->csc1, ring_type)) {
FREE(cs);
return NULL;
}
if (!amdgpu_init_cs_context(ctx->ws, &cs->csc2, ring_type)) {
amdgpu_destroy_cs_context(&cs->csc1);
FREE(cs);
return NULL;
}
/* Set the first submission context as current. */
cs->csc = &cs->csc1;
cs->cst = &cs->csc2;
if (!amdgpu_get_new_ib(ctx->ws, cs, IB_MAIN)) {
amdgpu_destroy_cs_context(&cs->csc2);
amdgpu_destroy_cs_context(&cs->csc1);
FREE(cs);
return NULL;
}
p_atomic_inc(&ctx->ws->num_cs);
return &cs->main.base;
}
static struct radeon_cmdbuf *
amdgpu_cs_add_parallel_compute_ib(struct radeon_cmdbuf *ib,
bool uses_gds_ordered_append)
{
struct amdgpu_cs *cs = (struct amdgpu_cs*)ib;
struct amdgpu_winsys *ws = cs->ctx->ws;
if (cs->ring_type != RING_GFX)
return NULL;
/* only one secondary IB can be added */
if (cs->compute_ib.ib_mapped)
return NULL;
/* Allocate the compute IB. */
if (!amdgpu_get_new_ib(ws, cs, IB_PARALLEL_COMPUTE))
return NULL;
if (uses_gds_ordered_append) {
cs->csc1.ib[IB_PARALLEL_COMPUTE].flags |=
AMDGPU_IB_FLAG_RESET_GDS_MAX_WAVE_ID;
cs->csc2.ib[IB_PARALLEL_COMPUTE].flags |=
AMDGPU_IB_FLAG_RESET_GDS_MAX_WAVE_ID;
}
return &cs->compute_ib.base;
}
static bool
amdgpu_cs_setup_preemption(struct radeon_cmdbuf *rcs, const uint32_t *preamble_ib,
unsigned preamble_num_dw)
{
struct amdgpu_ib *ib = amdgpu_ib(rcs);
struct amdgpu_cs *cs = amdgpu_cs_from_ib(ib);
struct amdgpu_winsys *ws = cs->ctx->ws;
struct amdgpu_cs_context *csc[2] = {&cs->csc1, &cs->csc2};
unsigned size = align(preamble_num_dw * 4, ws->info.ib_alignment);
struct pb_buffer *preamble_bo;
uint32_t *map;
/* Create the preamble IB buffer. */
preamble_bo = amdgpu_bo_create(ws, size, ws->info.ib_alignment,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_NO_INTERPROCESS_SHARING |
RADEON_FLAG_GTT_WC |
RADEON_FLAG_READ_ONLY);
if (!preamble_bo)
return false;
map = (uint32_t*)amdgpu_bo_map(preamble_bo, NULL,
PIPE_MAP_WRITE | RADEON_MAP_TEMPORARY);
if (!map) {
pb_reference(&preamble_bo, NULL);
return false;
}
/* Upload the preamble IB. */
memcpy(map, preamble_ib, preamble_num_dw * 4);
/* Pad the IB. */
uint32_t ib_pad_dw_mask = ws->info.ib_pad_dw_mask[cs->ring_type];
while (preamble_num_dw & ib_pad_dw_mask)
map[preamble_num_dw++] = PKT3_NOP_PAD;
amdgpu_bo_unmap(preamble_bo);
for (unsigned i = 0; i < 2; i++) {
csc[i]->ib[IB_PREAMBLE] = csc[i]->ib[IB_MAIN];
csc[i]->ib[IB_PREAMBLE].flags |= AMDGPU_IB_FLAG_PREAMBLE;
csc[i]->ib[IB_PREAMBLE].va_start = amdgpu_winsys_bo(preamble_bo)->va;
csc[i]->ib[IB_PREAMBLE].ib_bytes = preamble_num_dw * 4;
csc[i]->ib[IB_MAIN].flags |= AMDGPU_IB_FLAG_PREEMPT;
}
assert(!cs->preamble_ib_bo);
cs->preamble_ib_bo = preamble_bo;
amdgpu_cs_add_buffer(rcs, cs->preamble_ib_bo, RADEON_USAGE_READ, 0,
RADEON_PRIO_IB1);
return true;
}
static bool amdgpu_cs_validate(struct radeon_cmdbuf *rcs)
{
return true;
}
static bool amdgpu_cs_check_space(struct radeon_cmdbuf *rcs, unsigned dw,
bool force_chaining)
{
struct amdgpu_ib *ib = amdgpu_ib(rcs);
struct amdgpu_cs *cs = amdgpu_cs_from_ib(ib);
unsigned requested_size = rcs->prev_dw + rcs->current.cdw + dw;
unsigned cs_epilog_dw = amdgpu_cs_epilog_dws(cs);
unsigned need_byte_size = (dw + cs_epilog_dw) * 4;
uint64_t va;
uint32_t *new_ptr_ib_size;
assert(rcs->current.cdw <= rcs->current.max_dw);
/* 125% of the size for IB epilog. */
unsigned safe_byte_size = need_byte_size + need_byte_size / 4;
ib->max_check_space_size = MAX2(ib->max_check_space_size,
safe_byte_size);
/* If force_chaining is true, we can't return. We have to chain. */
if (!force_chaining) {
if (requested_size > amdgpu_ib_max_submit_dwords(ib->ib_type))
return false;
ib->max_ib_size = MAX2(ib->max_ib_size, requested_size);
if (rcs->current.max_dw - rcs->current.cdw >= dw)
return true;
}
if (!amdgpu_cs_has_chaining(cs)) {
assert(!force_chaining);
return false;
}
/* Allocate a new chunk */
if (rcs->num_prev >= rcs->max_prev) {
unsigned new_max_prev = MAX2(1, 2 * rcs->max_prev);
struct radeon_cmdbuf_chunk *new_prev;
new_prev = REALLOC(rcs->prev,
sizeof(*new_prev) * rcs->max_prev,
sizeof(*new_prev) * new_max_prev);
if (!new_prev)
return false;
rcs->prev = new_prev;
rcs->max_prev = new_max_prev;
}
if (!amdgpu_ib_new_buffer(cs->ctx->ws, ib, cs->ring_type))
return false;
assert(ib->used_ib_space == 0);
va = amdgpu_winsys_bo(ib->big_ib_buffer)->va;
/* This space was originally reserved. */
rcs->current.max_dw += cs_epilog_dw;
/* Pad with NOPs but leave 4 dwords for INDIRECT_BUFFER. */
uint32_t ib_pad_dw_mask = cs->ctx->ws->info.ib_pad_dw_mask[cs->ring_type];
while ((rcs->current.cdw & ib_pad_dw_mask) != ib_pad_dw_mask - 3)
radeon_emit(rcs, PKT3_NOP_PAD);
radeon_emit(rcs, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0));
radeon_emit(rcs, va);
radeon_emit(rcs, va >> 32);
new_ptr_ib_size = &rcs->current.buf[rcs->current.cdw++];
assert((rcs->current.cdw & ib_pad_dw_mask) == 0);
assert((rcs->current.cdw & 7) == 0);
assert(rcs->current.cdw <= rcs->current.max_dw);
amdgpu_set_ib_size(ib);
ib->ptr_ib_size = new_ptr_ib_size;
ib->ptr_ib_size_inside_ib = true;
/* Hook up the new chunk */
rcs->prev[rcs->num_prev].buf = rcs->current.buf;
rcs->prev[rcs->num_prev].cdw = rcs->current.cdw;
rcs->prev[rcs->num_prev].max_dw = rcs->current.cdw; /* no modifications */
rcs->num_prev++;
ib->base.prev_dw += ib->base.current.cdw;
ib->base.current.cdw = 0;
ib->base.current.buf = (uint32_t*)(ib->ib_mapped + ib->used_ib_space);
ib->base.current.max_dw = ib->big_ib_buffer->size / 4 - cs_epilog_dw;
assert(ib->base.current.max_dw >= ib->max_check_space_size / 4);
ib->base.gpu_address = va;
amdgpu_cs_add_buffer(&cs->main.base, ib->big_ib_buffer,
RADEON_USAGE_READ, 0, RADEON_PRIO_IB1);
return true;
}
static unsigned amdgpu_cs_get_buffer_list(struct radeon_cmdbuf *rcs,
struct radeon_bo_list_item *list)
{
struct amdgpu_cs_context *cs = amdgpu_cs(rcs)->csc;
int i;
if (list) {
for (i = 0; i < cs->num_real_buffers; i++) {
list[i].bo_size = cs->real_buffers[i].bo->base.size;
list[i].vm_address = cs->real_buffers[i].bo->va;
list[i].priority_usage = cs->real_buffers[i].u.real.priority_usage;
}
}
return cs->num_real_buffers;
}
static void add_fence_to_list(struct amdgpu_fence_list *fences,
struct amdgpu_fence *fence)
{
unsigned idx = fences->num++;
if (idx >= fences->max) {
unsigned size;
const unsigned increment = 8;
fences->max = idx + increment;
size = fences->max * sizeof(fences->list[0]);
fences->list = realloc(fences->list, size);
/* Clear the newly-allocated elements. */
memset(fences->list + idx, 0,
increment * sizeof(fences->list[0]));
}
amdgpu_fence_reference(&fences->list[idx], (struct pipe_fence_handle*)fence);
}
static bool is_noop_fence_dependency(struct amdgpu_cs *acs,
struct amdgpu_fence *fence)
{
struct amdgpu_cs_context *cs = acs->csc;
/* Detect no-op dependencies only when there is only 1 ring,
* because IBs on one ring are always executed one at a time.
*
* We always want no dependency between back-to-back gfx IBs, because
* we need the parallelism between IBs for good performance.
*/
if ((acs->ring_type == RING_GFX ||
acs->ctx->ws->info.num_rings[acs->ring_type] == 1) &&
!amdgpu_fence_is_syncobj(fence) &&
fence->ctx == acs->ctx &&
fence->fence.ip_type == cs->ib[IB_MAIN].ip_type &&
fence->fence.ip_instance == cs->ib[IB_MAIN].ip_instance &&
fence->fence.ring == cs->ib[IB_MAIN].ring)
return true;
return amdgpu_fence_wait((void *)fence, 0, false);
}
static void amdgpu_cs_add_fence_dependency(struct radeon_cmdbuf *rws,
struct pipe_fence_handle *pfence,
unsigned dependency_flags)
{
struct amdgpu_cs *acs = amdgpu_cs(rws);
struct amdgpu_cs_context *cs = acs->csc;
struct amdgpu_fence *fence = (struct amdgpu_fence*)pfence;
util_queue_fence_wait(&fence->submitted);
if (dependency_flags & RADEON_DEPENDENCY_PARALLEL_COMPUTE_ONLY) {
/* Syncobjs are not needed here. */
assert(!amdgpu_fence_is_syncobj(fence));
if (acs->ctx->ws->info.has_scheduled_fence_dependency &&
dependency_flags & RADEON_DEPENDENCY_START_FENCE)
add_fence_to_list(&cs->compute_start_fence_dependencies, fence);
else
add_fence_to_list(&cs->compute_fence_dependencies, fence);
return;
}
/* Start fences are not needed here. */
assert(!(dependency_flags & RADEON_DEPENDENCY_START_FENCE));
if (is_noop_fence_dependency(acs, fence))
return;
if (amdgpu_fence_is_syncobj(fence))
add_fence_to_list(&cs->syncobj_dependencies, fence);
else
add_fence_to_list(&cs->fence_dependencies, fence);
}
static void amdgpu_add_bo_fence_dependencies(struct amdgpu_cs *acs,
struct amdgpu_cs_buffer *buffer)
{
struct amdgpu_cs_context *cs = acs->csc;
struct amdgpu_winsys_bo *bo = buffer->bo;
unsigned new_num_fences = 0;
for (unsigned j = 0; j < bo->num_fences; ++j) {
struct amdgpu_fence *bo_fence = (void *)bo->fences[j];
if (is_noop_fence_dependency(acs, bo_fence))
continue;
amdgpu_fence_reference(&bo->fences[new_num_fences], bo->fences[j]);
new_num_fences++;
if (!(buffer->usage & RADEON_USAGE_SYNCHRONIZED))
continue;
add_fence_to_list(&cs->fence_dependencies, bo_fence);
}
for (unsigned j = new_num_fences; j < bo->num_fences; ++j)
amdgpu_fence_reference(&bo->fences[j], NULL);
bo->num_fences = new_num_fences;
}
/* Add the given list of fences to the buffer's fence list.
*
* Must be called with the winsys bo_fence_lock held.
*/
void amdgpu_add_fences(struct amdgpu_winsys_bo *bo,
unsigned num_fences,
struct pipe_fence_handle **fences)
{
if (bo->num_fences + num_fences > bo->max_fences) {
unsigned new_max_fences = MAX2(bo->num_fences + num_fences, bo->max_fences * 2);
struct pipe_fence_handle **new_fences =
REALLOC(bo->fences,
bo->num_fences * sizeof(*new_fences),
new_max_fences * sizeof(*new_fences));
if (likely(new_fences)) {
bo->fences = new_fences;
bo->max_fences = new_max_fences;
} else {
unsigned drop;
fprintf(stderr, "amdgpu_add_fences: allocation failure, dropping fence(s)\n");
if (!bo->num_fences)
return;
bo->num_fences--; /* prefer to keep the most recent fence if possible */
amdgpu_fence_reference(&bo->fences[bo->num_fences], NULL);
drop = bo->num_fences + num_fences - bo->max_fences;
num_fences -= drop;
fences += drop;
}
}
for (unsigned i = 0; i < num_fences; ++i) {
bo->fences[bo->num_fences] = NULL;
amdgpu_fence_reference(&bo->fences[bo->num_fences], fences[i]);
bo->num_fences++;
}
}
static void amdgpu_add_fence_dependencies_bo_list(struct amdgpu_cs *acs,
struct pipe_fence_handle *fence,
unsigned num_buffers,
struct amdgpu_cs_buffer *buffers)
{
for (unsigned i = 0; i < num_buffers; i++) {
struct amdgpu_cs_buffer *buffer = &buffers[i];
struct amdgpu_winsys_bo *bo = buffer->bo;
amdgpu_add_bo_fence_dependencies(acs, buffer);
p_atomic_inc(&bo->num_active_ioctls);
amdgpu_add_fences(bo, 1, &fence);
}
}
/* Since the kernel driver doesn't synchronize execution between different
* rings automatically, we have to add fence dependencies manually.
*/
static void amdgpu_add_fence_dependencies_bo_lists(struct amdgpu_cs *acs)
{
struct amdgpu_cs_context *cs = acs->csc;
amdgpu_add_fence_dependencies_bo_list(acs, cs->fence, cs->num_real_buffers, cs->real_buffers);
amdgpu_add_fence_dependencies_bo_list(acs, cs->fence, cs->num_slab_buffers, cs->slab_buffers);
amdgpu_add_fence_dependencies_bo_list(acs, cs->fence, cs->num_sparse_buffers, cs->sparse_buffers);
}
static void amdgpu_cs_add_syncobj_signal(struct radeon_cmdbuf *rws,
struct pipe_fence_handle *fence)
{
struct amdgpu_cs *acs = amdgpu_cs(rws);
struct amdgpu_cs_context *cs = acs->csc;
assert(amdgpu_fence_is_syncobj((struct amdgpu_fence *)fence));
add_fence_to_list(&cs->syncobj_to_signal, (struct amdgpu_fence*)fence);
}
/* Add backing of sparse buffers to the buffer list.
*
* This is done late, during submission, to keep the buffer list short before
* submit, and to avoid managing fences for the backing buffers.
*/
static bool amdgpu_add_sparse_backing_buffers(struct amdgpu_cs_context *cs)
{
for (unsigned i = 0; i < cs->num_sparse_buffers; ++i) {
struct amdgpu_cs_buffer *buffer = &cs->sparse_buffers[i];
struct amdgpu_winsys_bo *bo = buffer->bo;
simple_mtx_lock(&bo->lock);
list_for_each_entry(struct amdgpu_sparse_backing, backing, &bo->u.sparse.backing, list) {
/* We can directly add the buffer here, because we know that each
* backing buffer occurs only once.
*/
int idx = amdgpu_do_add_real_buffer(cs, backing->bo);
if (idx < 0) {
fprintf(stderr, "%s: failed to add buffer\n", __FUNCTION__);
simple_mtx_unlock(&bo->lock);
return false;
}
cs->real_buffers[idx].usage = buffer->usage & ~RADEON_USAGE_SYNCHRONIZED;
cs->real_buffers[idx].u.real.priority_usage = buffer->u.real.priority_usage;
p_atomic_inc(&backing->bo->num_active_ioctls);
}
simple_mtx_unlock(&bo->lock);
}
return true;
}
static void amdgpu_cs_submit_ib(void *job, int thread_index)
{
struct amdgpu_cs *acs = (struct amdgpu_cs*)job;
struct amdgpu_winsys *ws = acs->ctx->ws;
struct amdgpu_cs_context *cs = acs->cst;
int i, r;
uint32_t bo_list = 0;
uint64_t seq_no = 0;
bool has_user_fence = amdgpu_cs_has_user_fence(cs);
bool use_bo_list_create = ws->info.drm_minor < 27;
struct drm_amdgpu_bo_list_in bo_list_in;
/* Prepare the buffer list. */
if (ws->debug_all_bos) {
/* The buffer list contains all buffers. This is a slow path that
* ensures that no buffer is missing in the BO list.
*/
unsigned num_handles = 0;
struct drm_amdgpu_bo_list_entry *list =
alloca(ws->num_buffers * sizeof(struct drm_amdgpu_bo_list_entry));
struct amdgpu_winsys_bo *bo;
simple_mtx_lock(&ws->global_bo_list_lock);
LIST_FOR_EACH_ENTRY(bo, &ws->global_bo_list, u.real.global_list_item) {
list[num_handles].bo_handle = bo->u.real.kms_handle;
list[num_handles].bo_priority = 0;
++num_handles;
}
r = amdgpu_bo_list_create_raw(ws->dev, ws->num_buffers, list, &bo_list);
simple_mtx_unlock(&ws->global_bo_list_lock);
if (r) {
fprintf(stderr, "amdgpu: buffer list creation failed (%d)\n", r);
goto cleanup;
}
} else {
if (!amdgpu_add_sparse_backing_buffers(cs)) {
fprintf(stderr, "amdgpu: amdgpu_add_sparse_backing_buffers failed\n");
r = -ENOMEM;
goto cleanup;
}
struct drm_amdgpu_bo_list_entry *list =
alloca((cs->num_real_buffers + 2) * sizeof(struct drm_amdgpu_bo_list_entry));
unsigned num_handles = 0;
for (i = 0; i < cs->num_real_buffers; ++i) {
struct amdgpu_cs_buffer *buffer = &cs->real_buffers[i];
assert(buffer->u.real.priority_usage != 0);
list[num_handles].bo_handle = buffer->bo->u.real.kms_handle;
list[num_handles].bo_priority = (util_last_bit(buffer->u.real.priority_usage) - 1) / 2;
++num_handles;
}
if (use_bo_list_create) {
/* Legacy path creating the buffer list handle and passing it to the CS ioctl. */
r = amdgpu_bo_list_create_raw(ws->dev, num_handles, list, &bo_list);
if (r) {
fprintf(stderr, "amdgpu: buffer list creation failed (%d)\n", r);
goto cleanup;
}
} else {
/* Standard path passing the buffer list via the CS ioctl. */
bo_list_in.operation = ~0;
bo_list_in.list_handle = ~0;
bo_list_in.bo_number = num_handles;
bo_list_in.bo_info_size = sizeof(struct drm_amdgpu_bo_list_entry);
bo_list_in.bo_info_ptr = (uint64_t)(uintptr_t)list;
}
}
if (acs->ring_type == RING_GFX)
ws->gfx_bo_list_counter += cs->num_real_buffers;
if (acs->stop_exec_on_failure && acs->ctx->num_rejected_cs) {
r = -ECANCELED;
} else {
struct drm_amdgpu_cs_chunk chunks[7];
unsigned num_chunks = 0;
/* BO list */
if (!use_bo_list_create) {
chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_BO_HANDLES;
chunks[num_chunks].length_dw = sizeof(struct drm_amdgpu_bo_list_in) / 4;
chunks[num_chunks].chunk_data = (uintptr_t)&bo_list_in;
num_chunks++;
}
/* Fence dependencies. */
unsigned num_dependencies = cs->fence_dependencies.num;
if (num_dependencies) {
struct drm_amdgpu_cs_chunk_dep *dep_chunk =
alloca(num_dependencies * sizeof(*dep_chunk));
for (unsigned i = 0; i < num_dependencies; i++) {
struct amdgpu_fence *fence =
(struct amdgpu_fence*)cs->fence_dependencies.list[i];
assert(util_queue_fence_is_signalled(&fence->submitted));
amdgpu_cs_chunk_fence_to_dep(&fence->fence, &dep_chunk[i]);
}
chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_DEPENDENCIES;
chunks[num_chunks].length_dw = sizeof(dep_chunk[0]) / 4 * num_dependencies;
chunks[num_chunks].chunk_data = (uintptr_t)dep_chunk;
num_chunks++;
}
/* Syncobj dependencies. */
unsigned num_syncobj_dependencies = cs->syncobj_dependencies.num;
if (num_syncobj_dependencies) {
struct drm_amdgpu_cs_chunk_sem *sem_chunk =
alloca(num_syncobj_dependencies * sizeof(sem_chunk[0]));
for (unsigned i = 0; i < num_syncobj_dependencies; i++) {
struct amdgpu_fence *fence =
(struct amdgpu_fence*)cs->syncobj_dependencies.list[i];
if (!amdgpu_fence_is_syncobj(fence))
continue;
assert(util_queue_fence_is_signalled(&fence->submitted));
sem_chunk[i].handle = fence->syncobj;
}
chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_SYNCOBJ_IN;
chunks[num_chunks].length_dw = sizeof(sem_chunk[0]) / 4 * num_syncobj_dependencies;
chunks[num_chunks].chunk_data = (uintptr_t)sem_chunk;
num_chunks++;
}
/* Submit the parallel compute IB first. */
if (cs->ib[IB_PARALLEL_COMPUTE].ib_bytes > 0) {
unsigned old_num_chunks = num_chunks;
/* Add compute fence dependencies. */
unsigned num_dependencies = cs->compute_fence_dependencies.num;
if (num_dependencies) {
struct drm_amdgpu_cs_chunk_dep *dep_chunk =
alloca(num_dependencies * sizeof(*dep_chunk));
for (unsigned i = 0; i < num_dependencies; i++) {
struct amdgpu_fence *fence =
(struct amdgpu_fence*)cs->compute_fence_dependencies.list[i];
assert(util_queue_fence_is_signalled(&fence->submitted));
amdgpu_cs_chunk_fence_to_dep(&fence->fence, &dep_chunk[i]);
}
chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_DEPENDENCIES;
chunks[num_chunks].length_dw = sizeof(dep_chunk[0]) / 4 * num_dependencies;
chunks[num_chunks].chunk_data = (uintptr_t)dep_chunk;
num_chunks++;
}
/* Add compute start fence dependencies. */
unsigned num_start_dependencies = cs->compute_start_fence_dependencies.num;
if (num_start_dependencies) {
struct drm_amdgpu_cs_chunk_dep *dep_chunk =
alloca(num_start_dependencies * sizeof(*dep_chunk));
for (unsigned i = 0; i < num_start_dependencies; i++) {
struct amdgpu_fence *fence =
(struct amdgpu_fence*)cs->compute_start_fence_dependencies.list[i];
assert(util_queue_fence_is_signalled(&fence->submitted));
amdgpu_cs_chunk_fence_to_dep(&fence->fence, &dep_chunk[i]);
}
chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES;
chunks[num_chunks].length_dw = sizeof(dep_chunk[0]) / 4 * num_start_dependencies;
chunks[num_chunks].chunk_data = (uintptr_t)dep_chunk;
num_chunks++;
}
/* Convert from dwords to bytes. */
cs->ib[IB_PARALLEL_COMPUTE].ib_bytes *= 4;
chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_IB;
chunks[num_chunks].length_dw = sizeof(struct drm_amdgpu_cs_chunk_ib) / 4;
chunks[num_chunks].chunk_data = (uintptr_t)&cs->ib[IB_PARALLEL_COMPUTE];
num_chunks++;
r = amdgpu_cs_submit_raw2(ws->dev, acs->ctx->ctx, bo_list,
num_chunks, chunks, NULL);
if (r)
goto finalize;
/* Back off the compute chunks. */
num_chunks = old_num_chunks;
}
/* Syncobj signals. */
unsigned num_syncobj_to_signal = cs->syncobj_to_signal.num;
if (num_syncobj_to_signal) {
struct drm_amdgpu_cs_chunk_sem *sem_chunk =
alloca(num_syncobj_to_signal * sizeof(sem_chunk[0]));
for (unsigned i = 0; i < num_syncobj_to_signal; i++) {
struct amdgpu_fence *fence =
(struct amdgpu_fence*)cs->syncobj_to_signal.list[i];
assert(amdgpu_fence_is_syncobj(fence));
sem_chunk[i].handle = fence->syncobj;
}
chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_SYNCOBJ_OUT;
chunks[num_chunks].length_dw = sizeof(sem_chunk[0]) / 4
* num_syncobj_to_signal;
chunks[num_chunks].chunk_data = (uintptr_t)sem_chunk;
num_chunks++;
}
/* Fence */
if (has_user_fence) {
chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_FENCE;
chunks[num_chunks].length_dw = sizeof(struct drm_amdgpu_cs_chunk_fence) / 4;
chunks[num_chunks].chunk_data = (uintptr_t)&acs->fence_chunk;
num_chunks++;
}
/* IB */
if (cs->ib[IB_PREAMBLE].ib_bytes) {
chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_IB;
chunks[num_chunks].length_dw = sizeof(struct drm_amdgpu_cs_chunk_ib) / 4;
chunks[num_chunks].chunk_data = (uintptr_t)&cs->ib[IB_PREAMBLE];
num_chunks++;
}
/* IB */
cs->ib[IB_MAIN].ib_bytes *= 4; /* Convert from dwords to bytes. */
chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_IB;
chunks[num_chunks].length_dw = sizeof(struct drm_amdgpu_cs_chunk_ib) / 4;
chunks[num_chunks].chunk_data = (uintptr_t)&cs->ib[IB_MAIN];
num_chunks++;
if (cs->secure) {
cs->ib[IB_PREAMBLE].flags |= AMDGPU_IB_FLAGS_SECURE;
cs->ib[IB_MAIN].flags |= AMDGPU_IB_FLAGS_SECURE;
} else {
cs->ib[IB_PREAMBLE].flags &= ~AMDGPU_IB_FLAGS_SECURE;
cs->ib[IB_MAIN].flags &= ~AMDGPU_IB_FLAGS_SECURE;
}
assert(num_chunks <= ARRAY_SIZE(chunks));
r = amdgpu_cs_submit_raw2(ws->dev, acs->ctx->ctx, bo_list,
num_chunks, chunks, &seq_no);
}
finalize:
if (r) {
if (r == -ENOMEM)
fprintf(stderr, "amdgpu: Not enough memory for command submission.\n");
else if (r == -ECANCELED)
fprintf(stderr, "amdgpu: The CS has been cancelled because the context is lost.\n");
else
fprintf(stderr, "amdgpu: The CS has been rejected, "
"see dmesg for more information (%i).\n", r);
acs->ctx->num_rejected_cs++;
ws->num_total_rejected_cs++;
} else {
/* Success. */
uint64_t *user_fence = NULL;
/* Need to reserve 4 QWORD for user fence:
* QWORD[0]: completed fence
* QWORD[1]: preempted fence
* QWORD[2]: reset fence
* QWORD[3]: preempted then reset
**/
if (has_user_fence)
user_fence = acs->ctx->user_fence_cpu_address_base + acs->ring_type * 4;
amdgpu_fence_submitted(cs->fence, seq_no, user_fence);
}
/* Cleanup. */
if (bo_list)
amdgpu_bo_list_destroy_raw(ws->dev, bo_list);
cleanup:
/* If there was an error, signal the fence, because it won't be signalled
* by the hardware. */
if (r)
amdgpu_fence_signalled(cs->fence);
cs->error_code = r;
for (i = 0; i < cs->num_real_buffers; i++)
p_atomic_dec(&cs->real_buffers[i].bo->num_active_ioctls);
for (i = 0; i < cs->num_slab_buffers; i++)
p_atomic_dec(&cs->slab_buffers[i].bo->num_active_ioctls);
for (i = 0; i < cs->num_sparse_buffers; i++)
p_atomic_dec(&cs->sparse_buffers[i].bo->num_active_ioctls);
amdgpu_cs_context_cleanup(cs);
}
/* Make sure the previous submission is completed. */
void amdgpu_cs_sync_flush(struct radeon_cmdbuf *rcs)
{
struct amdgpu_cs *cs = amdgpu_cs(rcs);
/* Wait for any pending ioctl of this CS to complete. */
util_queue_fence_wait(&cs->flush_completed);
}
static int amdgpu_cs_flush(struct radeon_cmdbuf *rcs,
unsigned flags,
struct pipe_fence_handle **fence)
{
struct amdgpu_cs *cs = amdgpu_cs(rcs);
struct amdgpu_winsys *ws = cs->ctx->ws;
int error_code = 0;
uint32_t ib_pad_dw_mask = ws->info.ib_pad_dw_mask[cs->ring_type];
rcs->current.max_dw += amdgpu_cs_epilog_dws(cs);
/* Pad the IB according to the mask. */
switch (cs->ring_type) {
case RING_DMA:
if (ws->info.chip_class <= GFX6) {
while (rcs->current.cdw & ib_pad_dw_mask)
radeon_emit(rcs, 0xf0000000); /* NOP packet */
} else {
while (rcs->current.cdw & ib_pad_dw_mask)
radeon_emit(rcs, 0x00000000); /* NOP packet */
}
break;
case RING_GFX:
case RING_COMPUTE:
if (ws->info.gfx_ib_pad_with_type2) {
while (rcs->current.cdw & ib_pad_dw_mask)
radeon_emit(rcs, PKT2_NOP_PAD);
} else {
while (rcs->current.cdw & ib_pad_dw_mask)
radeon_emit(rcs, PKT3_NOP_PAD);
}
if (cs->ring_type == RING_GFX)
ws->gfx_ib_size_counter += (rcs->prev_dw + rcs->current.cdw) * 4;
/* Also pad secondary IBs. */
if (cs->compute_ib.ib_mapped) {
while (cs->compute_ib.base.current.cdw & ib_pad_dw_mask)
radeon_emit(&cs->compute_ib.base, PKT3_NOP_PAD);
}
break;
case RING_UVD:
case RING_UVD_ENC:
while (rcs->current.cdw & ib_pad_dw_mask)
radeon_emit(rcs, 0x80000000); /* type2 nop packet */
break;
case RING_VCN_JPEG:
if (rcs->current.cdw % 2)
assert(0);
while (rcs->current.cdw & ib_pad_dw_mask) {
radeon_emit(rcs, 0x60000000); /* nop packet */
radeon_emit(rcs, 0x00000000);
}
break;
case RING_VCN_DEC:
while (rcs->current.cdw & ib_pad_dw_mask)
radeon_emit(rcs, 0x81ff); /* nop packet */
break;
default:
break;
}
if (rcs->current.cdw > rcs->current.max_dw) {
fprintf(stderr, "amdgpu: command stream overflowed\n");
}
/* If the CS is not empty or overflowed.... */
if (likely(radeon_emitted(&cs->main.base, 0) &&
cs->main.base.current.cdw <= cs->main.base.current.max_dw &&
!debug_get_option_noop())) {
struct amdgpu_cs_context *cur = cs->csc;
/* Set IB sizes. */
amdgpu_ib_finalize(ws, &cs->main);
if (cs->compute_ib.ib_mapped)
amdgpu_ib_finalize(ws, &cs->compute_ib);
/* Create a fence. */
amdgpu_fence_reference(&cur->fence, NULL);
if (cs->next_fence) {
/* just move the reference */
cur->fence = cs->next_fence;
cs->next_fence = NULL;
} else {
cur->fence = amdgpu_fence_create(cs->ctx,
cur->ib[IB_MAIN].ip_type,
cur->ib[IB_MAIN].ip_instance,
cur->ib[IB_MAIN].ring);
}
if (fence)
amdgpu_fence_reference(fence, cur->fence);
amdgpu_cs_sync_flush(rcs);
/* Prepare buffers.
*
* This fence must be held until the submission is queued to ensure
* that the order of fence dependency updates matches the order of
* submissions.
*/
simple_mtx_lock(&ws->bo_fence_lock);
amdgpu_add_fence_dependencies_bo_lists(cs);
/* Swap command streams. "cst" is going to be submitted. */
cs->csc = cs->cst;
cs->cst = cur;
/* Submit. */
util_queue_add_job(&ws->cs_queue, cs, &cs->flush_completed,
amdgpu_cs_submit_ib, NULL, 0);
if (flags & RADEON_FLUSH_TOGGLE_SECURE_SUBMISSION)
cs->csc->secure = !cs->cst->secure;
else
cs->csc->secure = cs->cst->secure;
/* The submission has been queued, unlock the fence now. */
simple_mtx_unlock(&ws->bo_fence_lock);
if (!(flags & PIPE_FLUSH_ASYNC)) {
amdgpu_cs_sync_flush(rcs);
error_code = cur->error_code;
}
} else {
if (flags & RADEON_FLUSH_TOGGLE_SECURE_SUBMISSION)
cs->csc->secure = !cs->csc->secure;
amdgpu_cs_context_cleanup(cs->csc);
}
amdgpu_get_new_ib(ws, cs, IB_MAIN);
if (cs->compute_ib.ib_mapped)
amdgpu_get_new_ib(ws, cs, IB_PARALLEL_COMPUTE);
if (cs->preamble_ib_bo) {
amdgpu_cs_add_buffer(rcs, cs->preamble_ib_bo, RADEON_USAGE_READ, 0,
RADEON_PRIO_IB1);
}
cs->main.base.used_gart = 0;
cs->main.base.used_vram = 0;
if (cs->ring_type == RING_GFX)
ws->num_gfx_IBs++;
else if (cs->ring_type == RING_DMA)
ws->num_sdma_IBs++;
return error_code;
}
static void amdgpu_cs_destroy(struct radeon_cmdbuf *rcs)
{
struct amdgpu_cs *cs = amdgpu_cs(rcs);
amdgpu_cs_sync_flush(rcs);
util_queue_fence_destroy(&cs->flush_completed);
p_atomic_dec(&cs->ctx->ws->num_cs);
pb_reference(&cs->preamble_ib_bo, NULL);
pb_reference(&cs->main.big_ib_buffer, NULL);
FREE(cs->main.base.prev);
pb_reference(&cs->compute_ib.big_ib_buffer, NULL);
FREE(cs->compute_ib.base.prev);
amdgpu_destroy_cs_context(&cs->csc1);
amdgpu_destroy_cs_context(&cs->csc2);
amdgpu_fence_reference(&cs->next_fence, NULL);
FREE(cs);
}
static bool amdgpu_bo_is_referenced(struct radeon_cmdbuf *rcs,
struct pb_buffer *_buf,
enum radeon_bo_usage usage)
{
struct amdgpu_cs *cs = amdgpu_cs(rcs);
struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)_buf;
return amdgpu_bo_is_referenced_by_cs_with_usage(cs, bo, usage);
}
void amdgpu_cs_init_functions(struct amdgpu_screen_winsys *ws)
{
ws->base.ctx_create = amdgpu_ctx_create;
ws->base.ctx_destroy = amdgpu_ctx_destroy;
ws->base.ctx_query_reset_status = amdgpu_ctx_query_reset_status;
ws->base.cs_create = amdgpu_cs_create;
ws->base.cs_add_parallel_compute_ib = amdgpu_cs_add_parallel_compute_ib;
ws->base.cs_setup_preemption = amdgpu_cs_setup_preemption;
ws->base.cs_destroy = amdgpu_cs_destroy;
ws->base.cs_add_buffer = amdgpu_cs_add_buffer;
ws->base.cs_validate = amdgpu_cs_validate;
ws->base.cs_check_space = amdgpu_cs_check_space;
ws->base.cs_get_buffer_list = amdgpu_cs_get_buffer_list;
ws->base.cs_flush = amdgpu_cs_flush;
ws->base.cs_get_next_fence = amdgpu_cs_get_next_fence;
ws->base.cs_is_buffer_referenced = amdgpu_bo_is_referenced;
ws->base.cs_sync_flush = amdgpu_cs_sync_flush;
ws->base.cs_add_fence_dependency = amdgpu_cs_add_fence_dependency;
ws->base.cs_add_syncobj_signal = amdgpu_cs_add_syncobj_signal;
ws->base.fence_wait = amdgpu_fence_wait_rel_timeout;
ws->base.fence_reference = amdgpu_fence_reference;
ws->base.fence_import_syncobj = amdgpu_fence_import_syncobj;
ws->base.fence_import_sync_file = amdgpu_fence_import_sync_file;
ws->base.fence_export_sync_file = amdgpu_fence_export_sync_file;
ws->base.export_signalled_sync_file = amdgpu_export_signalled_sync_file;
}