blob: 71e0ed08da47557021c77c155ab70c544e42eb90 [file] [log] [blame]
/*
* Copyright 2006 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "intel_batchbuffer.h"
#include "intel_buffer_objects.h"
#include "intel_bufmgr.h"
#include "intel_buffers.h"
#include "intel_fbo.h"
#include "brw_context.h"
#include "brw_defines.h"
#include "brw_state.h"
#include <xf86drm.h>
#include <i915_drm.h>
static void
intel_batchbuffer_reset(struct brw_context *brw);
void
intel_batchbuffer_init(struct brw_context *brw)
{
intel_batchbuffer_reset(brw);
if (!brw->has_llc) {
brw->batch.cpu_map = malloc(BATCH_SZ);
brw->batch.map = brw->batch.cpu_map;
brw->batch.map_next = brw->batch.cpu_map;
}
}
static void
intel_batchbuffer_reset(struct brw_context *brw)
{
if (brw->batch.last_bo != NULL) {
drm_intel_bo_unreference(brw->batch.last_bo);
brw->batch.last_bo = NULL;
}
brw->batch.last_bo = brw->batch.bo;
brw_render_cache_set_clear(brw);
brw->batch.bo = drm_intel_bo_alloc(brw->bufmgr, "batchbuffer",
BATCH_SZ, 4096);
if (brw->has_llc) {
drm_intel_bo_map(brw->batch.bo, true);
brw->batch.map = brw->batch.bo->virtual;
}
brw->batch.map_next = brw->batch.map;
brw->batch.reserved_space = BATCH_RESERVED;
brw->batch.state_batch_offset = brw->batch.bo->size;
brw->batch.needs_sol_reset = false;
brw->batch.state_base_address_emitted = false;
/* We don't know what ring the new batch will be sent to until we see the
* first BEGIN_BATCH or BEGIN_BATCH_BLT. Mark it as unknown.
*/
brw->batch.ring = UNKNOWN_RING;
}
void
intel_batchbuffer_save_state(struct brw_context *brw)
{
brw->batch.saved.map_next = brw->batch.map_next;
brw->batch.saved.reloc_count =
drm_intel_gem_bo_get_reloc_count(brw->batch.bo);
}
void
intel_batchbuffer_reset_to_saved(struct brw_context *brw)
{
drm_intel_gem_bo_clear_relocs(brw->batch.bo, brw->batch.saved.reloc_count);
brw->batch.map_next = brw->batch.saved.map_next;
if (USED_BATCH(brw->batch) == 0)
brw->batch.ring = UNKNOWN_RING;
}
void
intel_batchbuffer_free(struct intel_batchbuffer *batch)
{
free(batch->cpu_map);
drm_intel_bo_unreference(batch->last_bo);
drm_intel_bo_unreference(batch->bo);
}
void
intel_batchbuffer_require_space(struct brw_context *brw, GLuint sz,
enum brw_gpu_ring ring)
{
/* If we're switching rings, implicitly flush the batch. */
if (unlikely(ring != brw->batch.ring) && brw->batch.ring != UNKNOWN_RING &&
brw->gen >= 6) {
intel_batchbuffer_flush(brw);
}
#ifdef DEBUG
assert(sz < BATCH_SZ - BATCH_RESERVED);
#endif
if (intel_batchbuffer_space(&brw->batch) < sz)
intel_batchbuffer_flush(brw);
enum brw_gpu_ring prev_ring = brw->batch.ring;
/* The intel_batchbuffer_flush() calls above might have changed
* brw->batch.ring to UNKNOWN_RING, so we need to set it here at the end.
*/
brw->batch.ring = ring;
if (unlikely(prev_ring == UNKNOWN_RING && ring == RENDER_RING))
intel_batchbuffer_emit_render_ring_prelude(brw);
}
static void
do_batch_dump(struct brw_context *brw)
{
struct drm_intel_decode *decode;
struct intel_batchbuffer *batch = &brw->batch;
int ret;
decode = drm_intel_decode_context_alloc(brw->screen->deviceID);
if (!decode)
return;
ret = drm_intel_bo_map(batch->bo, false);
if (ret == 0) {
drm_intel_decode_set_batch_pointer(decode,
batch->bo->virtual,
batch->bo->offset64,
USED_BATCH(*batch));
} else {
fprintf(stderr,
"WARNING: failed to map batchbuffer (%s), "
"dumping uploaded data instead.\n", strerror(ret));
drm_intel_decode_set_batch_pointer(decode,
batch->map,
batch->bo->offset64,
USED_BATCH(*batch));
}
drm_intel_decode_set_output_file(decode, stderr);
drm_intel_decode(decode);
drm_intel_decode_context_free(decode);
if (ret == 0) {
drm_intel_bo_unmap(batch->bo);
brw_debug_batch(brw);
}
}
void
intel_batchbuffer_emit_render_ring_prelude(struct brw_context *brw)
{
/* Un-used currently */
}
/**
* Called when starting a new batch buffer.
*/
static void
brw_new_batch(struct brw_context *brw)
{
/* Create a new batchbuffer and reset the associated state: */
drm_intel_gem_bo_clear_relocs(brw->batch.bo, 0);
intel_batchbuffer_reset(brw);
/* If the kernel supports hardware contexts, then most hardware state is
* preserved between batches; we only need to re-emit state that is required
* to be in every batch. Otherwise we need to re-emit all the state that
* would otherwise be stored in the context (which for all intents and
* purposes means everything).
*/
if (brw->hw_ctx == NULL)
brw->ctx.NewDriverState |= BRW_NEW_CONTEXT;
brw->ctx.NewDriverState |= BRW_NEW_BATCH;
brw->state_batch_count = 0;
brw->ib.type = -1;
/* We need to periodically reap the shader time results, because rollover
* happens every few seconds. We also want to see results every once in a
* while, because many programs won't cleanly destroy our context, so the
* end-of-run printout may not happen.
*/
if (INTEL_DEBUG & DEBUG_SHADER_TIME)
brw_collect_and_report_shader_time(brw);
}
/**
* Called from intel_batchbuffer_flush before emitting MI_BATCHBUFFER_END and
* sending it off.
*
* This function can emit state (say, to preserve registers that aren't saved
* between batches). All of this state MUST fit in the reserved space at the
* end of the batchbuffer. If you add more GPU state, increase the reserved
* space by updating the BATCH_RESERVED macro.
*/
static void
brw_finish_batch(struct brw_context *brw)
{
/* Capture the closing pipeline statistics register values necessary to
* support query objects (in the non-hardware context world).
*/
brw_emit_query_end(brw);
if (brw->batch.ring == RENDER_RING) {
/* Work around L3 state leaks into contexts set MI_RESTORE_INHIBIT which
* assume that the L3 cache is configured according to the hardware
* defaults.
*/
if (brw->gen >= 7)
gen7_restore_default_l3_config(brw);
if (brw->is_haswell) {
/* From the Haswell PRM, Volume 2b, Command Reference: Instructions,
* 3DSTATE_CC_STATE_POINTERS > "Note":
*
* "SW must program 3DSTATE_CC_STATE_POINTERS command at the end of every
* 3D batch buffer followed by a PIPE_CONTROL with RC flush and CS stall."
*
* From the example in the docs, it seems to expect a regular pipe control
* flush here as well. We may have done it already, but meh.
*
* See also WaAvoidRCZCounterRollover.
*/
brw_emit_mi_flush(brw);
BEGIN_BATCH(2);
OUT_BATCH(_3DSTATE_CC_STATE_POINTERS << 16 | (2 - 2));
OUT_BATCH(brw->cc.state_offset | 1);
ADVANCE_BATCH();
brw_emit_pipe_control_flush(brw, PIPE_CONTROL_RENDER_TARGET_FLUSH |
PIPE_CONTROL_CS_STALL);
}
}
/* Mark that the current program cache BO has been used by the GPU.
* It will be reallocated if we need to put new programs in for the
* next batch.
*/
brw->cache.bo_used_by_gpu = true;
}
static void
throttle(struct brw_context *brw)
{
/* Wait for the swapbuffers before the one we just emitted, so we
* don't get too many swaps outstanding for apps that are GPU-heavy
* but not CPU-heavy.
*
* We're using intelDRI2Flush (called from the loader before
* swapbuffer) and glFlush (for front buffer rendering) as the
* indicator that a frame is done and then throttle when we get
* here as we prepare to render the next frame. At this point for
* round trips for swap/copy and getting new buffers are done and
* we'll spend less time waiting on the GPU.
*
* Unfortunately, we don't have a handle to the batch containing
* the swap, and getting our hands on that doesn't seem worth it,
* so we just use the first batch we emitted after the last swap.
*/
if (brw->need_swap_throttle && brw->throttle_batch[0]) {
if (brw->throttle_batch[1]) {
if (!brw->disable_throttling)
drm_intel_bo_wait_rendering(brw->throttle_batch[1]);
drm_intel_bo_unreference(brw->throttle_batch[1]);
}
brw->throttle_batch[1] = brw->throttle_batch[0];
brw->throttle_batch[0] = NULL;
brw->need_swap_throttle = false;
/* Throttling here is more precise than the throttle ioctl, so skip it */
brw->need_flush_throttle = false;
}
if (brw->need_flush_throttle) {
__DRIscreen *dri_screen = brw->screen->driScrnPriv;
drmCommandNone(dri_screen->fd, DRM_I915_GEM_THROTTLE);
brw->need_flush_throttle = false;
}
}
/* Drop when RS headers get pulled to libdrm */
#ifndef I915_EXEC_RESOURCE_STREAMER
#define I915_EXEC_RESOURCE_STREAMER (1<<15)
#endif
/* TODO: Push this whole function into bufmgr.
*/
static int
do_flush_locked(struct brw_context *brw)
{
struct intel_batchbuffer *batch = &brw->batch;
int ret = 0;
if (brw->has_llc) {
drm_intel_bo_unmap(batch->bo);
} else {
ret = drm_intel_bo_subdata(batch->bo, 0, 4 * USED_BATCH(*batch), batch->map);
if (ret == 0 && batch->state_batch_offset != batch->bo->size) {
ret = drm_intel_bo_subdata(batch->bo,
batch->state_batch_offset,
batch->bo->size - batch->state_batch_offset,
(char *)batch->map + batch->state_batch_offset);
}
}
if (!brw->screen->no_hw) {
int flags;
if (brw->gen >= 6 && batch->ring == BLT_RING) {
flags = I915_EXEC_BLT;
} else {
flags = I915_EXEC_RENDER |
(brw->use_resource_streamer ? I915_EXEC_RESOURCE_STREAMER : 0);
}
if (batch->needs_sol_reset)
flags |= I915_EXEC_GEN7_SOL_RESET;
if (ret == 0) {
if (unlikely(INTEL_DEBUG & DEBUG_AUB))
brw_annotate_aub(brw);
if (brw->hw_ctx == NULL || batch->ring != RENDER_RING) {
ret = drm_intel_bo_mrb_exec(batch->bo, 4 * USED_BATCH(*batch),
NULL, 0, 0, flags);
} else {
ret = drm_intel_gem_bo_context_exec(batch->bo, brw->hw_ctx,
4 * USED_BATCH(*batch), flags);
}
}
throttle(brw);
}
if (unlikely(INTEL_DEBUG & DEBUG_BATCH))
do_batch_dump(brw);
if (brw->ctx.Const.ResetStrategy == GL_LOSE_CONTEXT_ON_RESET_ARB)
brw_check_for_reset(brw);
if (ret != 0) {
fprintf(stderr, "intel_do_flush_locked failed: %s\n", strerror(-ret));
exit(1);
}
return ret;
}
int
_intel_batchbuffer_flush(struct brw_context *brw,
const char *file, int line)
{
int ret;
if (USED_BATCH(brw->batch) == 0)
return 0;
if (brw->throttle_batch[0] == NULL) {
brw->throttle_batch[0] = brw->batch.bo;
drm_intel_bo_reference(brw->throttle_batch[0]);
}
if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
int bytes_for_commands = 4 * USED_BATCH(brw->batch);
int bytes_for_state = brw->batch.bo->size - brw->batch.state_batch_offset;
int total_bytes = bytes_for_commands + bytes_for_state;
fprintf(stderr, "%s:%d: Batchbuffer flush with %4db (pkt) + "
"%4db (state) = %4db (%0.1f%%)\n", file, line,
bytes_for_commands, bytes_for_state,
total_bytes,
100.0f * total_bytes / BATCH_SZ);
}
brw->batch.reserved_space = 0;
brw_finish_batch(brw);
/* Mark the end of the buffer. */
intel_batchbuffer_emit_dword(&brw->batch, MI_BATCH_BUFFER_END);
if (USED_BATCH(brw->batch) & 1) {
/* Round batchbuffer usage to 2 DWORDs. */
intel_batchbuffer_emit_dword(&brw->batch, MI_NOOP);
}
intel_upload_finish(brw);
/* Check that we didn't just wrap our batchbuffer at a bad time. */
assert(!brw->no_batch_wrap);
ret = do_flush_locked(brw);
if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
fprintf(stderr, "waiting for idle\n");
drm_intel_bo_wait_rendering(brw->batch.bo);
}
if (brw->use_resource_streamer)
gen7_reset_hw_bt_pool_offsets(brw);
/* Start a new batch buffer. */
brw_new_batch(brw);
return ret;
}
/* This is the only way buffers get added to the validate list.
*/
uint32_t
intel_batchbuffer_reloc(struct intel_batchbuffer *batch,
drm_intel_bo *buffer, uint32_t offset,
uint32_t read_domains, uint32_t write_domain,
uint32_t delta)
{
int ret;
ret = drm_intel_bo_emit_reloc(batch->bo, offset,
buffer, delta,
read_domains, write_domain);
assert(ret == 0);
(void)ret;
/* Using the old buffer offset, write in what the right data would be, in
* case the buffer doesn't move and we can short-circuit the relocation
* processing in the kernel
*/
return buffer->offset64 + delta;
}
uint64_t
intel_batchbuffer_reloc64(struct intel_batchbuffer *batch,
drm_intel_bo *buffer, uint32_t offset,
uint32_t read_domains, uint32_t write_domain,
uint32_t delta)
{
int ret = drm_intel_bo_emit_reloc(batch->bo, offset,
buffer, delta,
read_domains, write_domain);
assert(ret == 0);
(void) ret;
/* Using the old buffer offset, write in what the right data would be, in
* case the buffer doesn't move and we can short-circuit the relocation
* processing in the kernel
*/
return buffer->offset64 + delta;
}
void
intel_batchbuffer_data(struct brw_context *brw,
const void *data, GLuint bytes, enum brw_gpu_ring ring)
{
assert((bytes & 3) == 0);
intel_batchbuffer_require_space(brw, bytes, ring);
memcpy(brw->batch.map_next, data, bytes);
brw->batch.map_next += bytes >> 2;
}
static void
load_sized_register_mem(struct brw_context *brw,
uint32_t reg,
drm_intel_bo *bo,
uint32_t read_domains, uint32_t write_domain,
uint32_t offset,
int size)
{
int i;
/* MI_LOAD_REGISTER_MEM only exists on Gen7+. */
assert(brw->gen >= 7);
if (brw->gen >= 8) {
BEGIN_BATCH(4 * size);
for (i = 0; i < size; i++) {
OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (4 - 2));
OUT_BATCH(reg + i * 4);
OUT_RELOC64(bo, read_domains, write_domain, offset + i * 4);
}
ADVANCE_BATCH();
} else {
BEGIN_BATCH(3 * size);
for (i = 0; i < size; i++) {
OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (3 - 2));
OUT_BATCH(reg + i * 4);
OUT_RELOC(bo, read_domains, write_domain, offset + i * 4);
}
ADVANCE_BATCH();
}
}
void
brw_load_register_mem(struct brw_context *brw,
uint32_t reg,
drm_intel_bo *bo,
uint32_t read_domains, uint32_t write_domain,
uint32_t offset)
{
load_sized_register_mem(brw, reg, bo, read_domains, write_domain, offset, 1);
}
void
brw_load_register_mem64(struct brw_context *brw,
uint32_t reg,
drm_intel_bo *bo,
uint32_t read_domains, uint32_t write_domain,
uint32_t offset)
{
load_sized_register_mem(brw, reg, bo, read_domains, write_domain, offset, 2);
}
/*
* Write an arbitrary 32-bit register to a buffer via MI_STORE_REGISTER_MEM.
*/
void
brw_store_register_mem32(struct brw_context *brw,
drm_intel_bo *bo, uint32_t reg, uint32_t offset)
{
assert(brw->gen >= 6);
if (brw->gen >= 8) {
BEGIN_BATCH(4);
OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
OUT_BATCH(reg);
OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
offset);
ADVANCE_BATCH();
} else {
BEGIN_BATCH(3);
OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
OUT_BATCH(reg);
OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
offset);
ADVANCE_BATCH();
}
}
/*
* Write an arbitrary 64-bit register to a buffer via MI_STORE_REGISTER_MEM.
*/
void
brw_store_register_mem64(struct brw_context *brw,
drm_intel_bo *bo, uint32_t reg, uint32_t offset)
{
assert(brw->gen >= 6);
/* MI_STORE_REGISTER_MEM only stores a single 32-bit value, so to
* read a full 64-bit register, we need to do two of them.
*/
if (brw->gen >= 8) {
BEGIN_BATCH(8);
OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
OUT_BATCH(reg);
OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
offset);
OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
OUT_BATCH(reg + sizeof(uint32_t));
OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
offset + sizeof(uint32_t));
ADVANCE_BATCH();
} else {
BEGIN_BATCH(6);
OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
OUT_BATCH(reg);
OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
offset);
OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
OUT_BATCH(reg + sizeof(uint32_t));
OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
offset + sizeof(uint32_t));
ADVANCE_BATCH();
}
}
/*
* Write a 32-bit register using immediate data.
*/
void
brw_load_register_imm32(struct brw_context *brw, uint32_t reg, uint32_t imm)
{
assert(brw->gen >= 6);
BEGIN_BATCH(3);
OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
OUT_BATCH(reg);
OUT_BATCH(imm);
ADVANCE_BATCH();
}
/*
* Write a 64-bit register using immediate data.
*/
void
brw_load_register_imm64(struct brw_context *brw, uint32_t reg, uint64_t imm)
{
assert(brw->gen >= 6);
BEGIN_BATCH(5);
OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
OUT_BATCH(reg);
OUT_BATCH(imm & 0xffffffff);
OUT_BATCH(reg + 4);
OUT_BATCH(imm >> 32);
ADVANCE_BATCH();
}
/*
* Copies a 32-bit register.
*/
void
brw_load_register_reg(struct brw_context *brw, uint32_t src, uint32_t dest)
{
assert(brw->gen >= 8 || brw->is_haswell);
BEGIN_BATCH(3);
OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
OUT_BATCH(src);
OUT_BATCH(dest);
ADVANCE_BATCH();
}
/*
* Copies a 64-bit register.
*/
void
brw_load_register_reg64(struct brw_context *brw, uint32_t src, uint32_t dest)
{
assert(brw->gen >= 8 || brw->is_haswell);
BEGIN_BATCH(6);
OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
OUT_BATCH(src);
OUT_BATCH(dest);
OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
OUT_BATCH(src + sizeof(uint32_t));
OUT_BATCH(dest + sizeof(uint32_t));
ADVANCE_BATCH();
}
/*
* Write 32-bits of immediate data to a GPU memory buffer.
*/
void
brw_store_data_imm32(struct brw_context *brw, drm_intel_bo *bo,
uint32_t offset, uint32_t imm)
{
assert(brw->gen >= 6);
BEGIN_BATCH(4);
OUT_BATCH(MI_STORE_DATA_IMM | (4 - 2));
if (brw->gen >= 8)
OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
offset);
else {
OUT_BATCH(0); /* MBZ */
OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
offset);
}
OUT_BATCH(imm);
ADVANCE_BATCH();
}
/*
* Write 64-bits of immediate data to a GPU memory buffer.
*/
void
brw_store_data_imm64(struct brw_context *brw, drm_intel_bo *bo,
uint32_t offset, uint64_t imm)
{
assert(brw->gen >= 6);
BEGIN_BATCH(5);
OUT_BATCH(MI_STORE_DATA_IMM | (5 - 2));
if (brw->gen >= 8)
OUT_RELOC64(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
offset);
else {
OUT_BATCH(0); /* MBZ */
OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
offset);
}
OUT_BATCH(imm & 0xffffffffu);
OUT_BATCH(imm >> 32);
ADVANCE_BATCH();
}