blob: 1968460be052feaae3fa9ab91e659700dfa6f894 [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef BLORP_GENX_EXEC_H
#define BLORP_GENX_EXEC_H
#include "blorp_priv.h"
#include "common/gen_device_info.h"
#include "common/gen_sample_positions.h"
#include "genxml/gen_macros.h"
/**
* This file provides the blorp pipeline setup and execution functionality.
* It defines the following function:
*
* static void
* blorp_exec(struct blorp_context *blorp, void *batch_data,
* const struct blorp_params *params);
*
* It is the job of whoever includes this header to wrap this in something
* to get an externally visible symbol.
*
* In order for the blorp_exec function to work, the driver must provide
* implementations of the following static helper functions.
*/
static void *
blorp_emit_dwords(struct blorp_batch *batch, unsigned n);
static uint64_t
blorp_emit_reloc(struct blorp_batch *batch,
void *location, struct blorp_address address, uint32_t delta);
static void *
blorp_alloc_dynamic_state(struct blorp_batch *batch,
uint32_t size,
uint32_t alignment,
uint32_t *offset);
static void *
blorp_alloc_vertex_buffer(struct blorp_batch *batch, uint32_t size,
struct blorp_address *addr);
#if GEN_GEN >= 8
static struct blorp_address
blorp_get_workaround_page(struct blorp_batch *batch);
#endif
static void
blorp_alloc_binding_table(struct blorp_batch *batch, unsigned num_entries,
unsigned state_size, unsigned state_alignment,
uint32_t *bt_offset, uint32_t *surface_offsets,
void **surface_maps);
static void
blorp_flush_range(struct blorp_batch *batch, void *start, size_t size);
static void
blorp_surface_reloc(struct blorp_batch *batch, uint32_t ss_offset,
struct blorp_address address, uint32_t delta);
#if GEN_GEN >= 7
static struct blorp_address
blorp_get_surface_base_address(struct blorp_batch *batch);
#endif
static void
blorp_emit_urb_config(struct blorp_batch *batch,
unsigned vs_entry_size, unsigned sf_entry_size);
static void
blorp_emit_pipeline(struct blorp_batch *batch,
const struct blorp_params *params);
/***** BEGIN blorp_exec implementation ******/
static uint64_t
_blorp_combine_address(struct blorp_batch *batch, void *location,
struct blorp_address address, uint32_t delta)
{
if (address.buffer == NULL) {
return address.offset + delta;
} else {
return blorp_emit_reloc(batch, location, address, delta);
}
}
#define __gen_address_type struct blorp_address
#define __gen_user_data struct blorp_batch
#define __gen_combine_address _blorp_combine_address
#include "genxml/genX_pack.h"
#define _blorp_cmd_length(cmd) cmd ## _length
#define _blorp_cmd_length_bias(cmd) cmd ## _length_bias
#define _blorp_cmd_header(cmd) cmd ## _header
#define _blorp_cmd_pack(cmd) cmd ## _pack
#define blorp_emit(batch, cmd, name) \
for (struct cmd name = { _blorp_cmd_header(cmd) }, \
*_dst = blorp_emit_dwords(batch, _blorp_cmd_length(cmd)); \
__builtin_expect(_dst != NULL, 1); \
_blorp_cmd_pack(cmd)(batch, (void *)_dst, &name), \
_dst = NULL)
#define blorp_emitn(batch, cmd, n) ({ \
uint32_t *_dw = blorp_emit_dwords(batch, n); \
if (_dw) { \
struct cmd template = { \
_blorp_cmd_header(cmd), \
.DWordLength = n - _blorp_cmd_length_bias(cmd), \
}; \
_blorp_cmd_pack(cmd)(batch, _dw, &template); \
} \
_dw ? _dw + 1 : NULL; /* Array starts at dw[1] */ \
})
#define STRUCT_ZERO(S) ({ struct S t; memset(&t, 0, sizeof(t)); t; })
#define blorp_emit_dynamic(batch, state, name, align, offset) \
for (struct state name = STRUCT_ZERO(state), \
*_dst = blorp_alloc_dynamic_state(batch, \
_blorp_cmd_length(state) * 4, \
align, offset); \
__builtin_expect(_dst != NULL, 1); \
_blorp_cmd_pack(state)(batch, (void *)_dst, &name), \
blorp_flush_range(batch, _dst, _blorp_cmd_length(state) * 4), \
_dst = NULL)
/* 3DSTATE_URB
* 3DSTATE_URB_VS
* 3DSTATE_URB_HS
* 3DSTATE_URB_DS
* 3DSTATE_URB_GS
*
* Assign the entire URB to the VS. Even though the VS disabled, URB space
* is still needed because the clipper loads the VUE's from the URB. From
* the Sandybridge PRM, Volume 2, Part 1, Section 3DSTATE,
* Dword 1.15:0 "VS Number of URB Entries":
* This field is always used (even if VS Function Enable is DISABLED).
*
* The warning below appears in the PRM (Section 3DSTATE_URB), but we can
* safely ignore it because this batch contains only one draw call.
* Because of URB corruption caused by allocating a previous GS unit
* URB entry to the VS unit, software is required to send a “GS NULL
* Fence” (Send URB fence with VS URB size == 1 and GS URB size == 0)
* plus a dummy DRAW call before any case where VS will be taking over
* GS URB space.
*
* If the 3DSTATE_URB_VS is emitted, than the others must be also.
* From the Ivybridge PRM, Volume 2 Part 1, section 1.7.1 3DSTATE_URB_VS:
*
* 3DSTATE_URB_HS, 3DSTATE_URB_DS, and 3DSTATE_URB_GS must also be
* programmed in order for the programming of this state to be
* valid.
*/
static void
emit_urb_config(struct blorp_batch *batch,
const struct blorp_params *params)
{
/* Once vertex fetcher has written full VUE entries with complete
* header the space requirement is as follows per vertex (in bytes):
*
* Header Position Program constants
* +--------+------------+-------------------+
* | 16 | 16 | n x 16 |
* +--------+------------+-------------------+
*
* where 'n' stands for number of varying inputs expressed as vec4s.
*/
const unsigned num_varyings =
params->wm_prog_data ? params->wm_prog_data->num_varying_inputs : 0;
const unsigned total_needed = 16 + 16 + num_varyings * 16;
/* The URB size is expressed in units of 64 bytes (512 bits) */
const unsigned vs_entry_size = DIV_ROUND_UP(total_needed, 64);
const unsigned sf_entry_size =
params->sf_prog_data ? params->sf_prog_data->urb_entry_size : 0;
blorp_emit_urb_config(batch, vs_entry_size, sf_entry_size);
}
static void
blorp_emit_vertex_data(struct blorp_batch *batch,
const struct blorp_params *params,
struct blorp_address *addr,
uint32_t *size)
{
const float vertices[] = {
/* v0 */ (float)params->x1, (float)params->y1, params->z,
/* v1 */ (float)params->x0, (float)params->y1, params->z,
/* v2 */ (float)params->x0, (float)params->y0, params->z,
};
void *data = blorp_alloc_vertex_buffer(batch, sizeof(vertices), addr);
memcpy(data, vertices, sizeof(vertices));
*size = sizeof(vertices);
blorp_flush_range(batch, data, *size);
}
static void
blorp_emit_input_varying_data(struct blorp_batch *batch,
const struct blorp_params *params,
struct blorp_address *addr,
uint32_t *size)
{
const unsigned vec4_size_in_bytes = 4 * sizeof(float);
const unsigned max_num_varyings =
DIV_ROUND_UP(sizeof(params->wm_inputs), vec4_size_in_bytes);
const unsigned num_varyings =
params->wm_prog_data ? params->wm_prog_data->num_varying_inputs : 0;
*size = 16 + num_varyings * vec4_size_in_bytes;
const uint32_t *const inputs_src = (const uint32_t *)&params->wm_inputs;
void *data = blorp_alloc_vertex_buffer(batch, *size, addr);
uint32_t *inputs = data;
/* Copy in the VS inputs */
assert(sizeof(params->vs_inputs) == 16);
memcpy(inputs, &params->vs_inputs, sizeof(params->vs_inputs));
inputs += 4;
if (params->wm_prog_data) {
/* Walk over the attribute slots, determine if the attribute is used by
* the program and when necessary copy the values from the input storage
* to the vertex data buffer.
*/
for (unsigned i = 0; i < max_num_varyings; i++) {
const gl_varying_slot attr = VARYING_SLOT_VAR0 + i;
const int input_index = params->wm_prog_data->urb_setup[attr];
if (input_index < 0)
continue;
memcpy(inputs, inputs_src + i * 4, vec4_size_in_bytes);
inputs += 4;
}
}
blorp_flush_range(batch, data, *size);
}
static void
blorp_emit_vertex_buffers(struct blorp_batch *batch,
const struct blorp_params *params)
{
struct GENX(VERTEX_BUFFER_STATE) vb[2];
memset(vb, 0, sizeof(vb));
uint32_t size;
blorp_emit_vertex_data(batch, params, &vb[0].BufferStartingAddress, &size);
vb[0].VertexBufferIndex = 0;
vb[0].BufferPitch = 3 * sizeof(float);
#if GEN_GEN >= 6
vb[0].VertexBufferMOCS = vb[0].BufferStartingAddress.mocs;
#endif
#if GEN_GEN >= 7
vb[0].AddressModifyEnable = true;
#endif
#if GEN_GEN >= 8
vb[0].BufferSize = size;
#elif GEN_GEN >= 5
vb[0].BufferAccessType = VERTEXDATA;
vb[0].EndAddress = vb[0].BufferStartingAddress;
vb[0].EndAddress.offset += size - 1;
#elif GEN_GEN == 4
vb[0].BufferAccessType = VERTEXDATA;
vb[0].MaxIndex = 2;
#endif
blorp_emit_input_varying_data(batch, params,
&vb[1].BufferStartingAddress, &size);
vb[1].VertexBufferIndex = 1;
vb[1].BufferPitch = 0;
#if GEN_GEN >= 6
vb[1].VertexBufferMOCS = vb[1].BufferStartingAddress.mocs;
#endif
#if GEN_GEN >= 7
vb[1].AddressModifyEnable = true;
#endif
#if GEN_GEN >= 8
vb[1].BufferSize = size;
#elif GEN_GEN >= 5
vb[1].BufferAccessType = INSTANCEDATA;
vb[1].EndAddress = vb[1].BufferStartingAddress;
vb[1].EndAddress.offset += size - 1;
#elif GEN_GEN == 4
vb[1].BufferAccessType = INSTANCEDATA;
vb[1].MaxIndex = 0;
#endif
const unsigned num_dwords = 1 + GENX(VERTEX_BUFFER_STATE_length) * 2;
uint32_t *dw = blorp_emitn(batch, GENX(3DSTATE_VERTEX_BUFFERS), num_dwords);
if (!dw)
return;
for (unsigned i = 0; i < 2; i++) {
GENX(VERTEX_BUFFER_STATE_pack)(batch, dw, &vb[i]);
dw += GENX(VERTEX_BUFFER_STATE_length);
}
}
static void
blorp_emit_vertex_elements(struct blorp_batch *batch,
const struct blorp_params *params)
{
const unsigned num_varyings =
params->wm_prog_data ? params->wm_prog_data->num_varying_inputs : 0;
bool need_ndc = batch->blorp->compiler->devinfo->gen <= 5;
const unsigned num_elements = 2 + need_ndc + num_varyings;
struct GENX(VERTEX_ELEMENT_STATE) ve[num_elements];
memset(ve, 0, num_elements * sizeof(*ve));
/* Setup VBO for the rectangle primitive..
*
* A rectangle primitive (3DPRIM_RECTLIST) consists of only three
* vertices. The vertices reside in screen space with DirectX
* coordinates (that is, (0, 0) is the upper left corner).
*
* v2 ------ implied
* | |
* | |
* v1 ----- v0
*
* Since the VS is disabled, the clipper loads each VUE directly from
* the URB. This is controlled by the 3DSTATE_VERTEX_BUFFERS and
* 3DSTATE_VERTEX_ELEMENTS packets below. The VUE contents are as follows:
* dw0: Reserved, MBZ.
* dw1: Render Target Array Index. Below vertex fetcher gets programmed
* to assign this with primitive instance identifier which will be
* used for layered clears. All other renders have only one instance
* and therefore the value will be effectively zero.
* dw2: Viewport Index. The HiZ op disables viewport mapping and
* scissoring, so set the dword to 0.
* dw3: Point Width: The HiZ op does not emit the POINTLIST primitive,
* so set the dword to 0.
* dw4: Vertex Position X.
* dw5: Vertex Position Y.
* dw6: Vertex Position Z.
* dw7: Vertex Position W.
*
* dw8: Flat vertex input 0
* dw9: Flat vertex input 1
* ...
* dwn: Flat vertex input n - 8
*
* For details, see the Sandybridge PRM, Volume 2, Part 1, Section 1.5.1
* "Vertex URB Entry (VUE) Formats".
*
* Only vertex position X and Y are going to be variable, Z is fixed to
* zero and W to one. Header words dw0,2,3 are zero. There is no need to
* include the fixed values in the vertex buffer. Vertex fetcher can be
* instructed to fill vertex elements with constant values of one and zero
* instead of reading them from the buffer.
* Flat inputs are program constants that are not interpolated. Moreover
* their values will be the same between vertices.
*
* See the vertex element setup below.
*/
unsigned slot = 0;
ve[slot] = (struct GENX(VERTEX_ELEMENT_STATE)) {
.VertexBufferIndex = 1,
.Valid = true,
.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32B32A32_FLOAT,
.SourceElementOffset = 0,
.Component0Control = VFCOMP_STORE_SRC,
/* From Gen8 onwards hardware is no more instructed to overwrite
* components using an element specifier. Instead one has separate
* 3DSTATE_VF_SGVS (System Generated Value Setup) state packet for it.
*/
#if GEN_GEN >= 8
.Component1Control = VFCOMP_STORE_0,
#elif GEN_GEN >= 5
.Component1Control = VFCOMP_STORE_IID,
#else
.Component1Control = VFCOMP_STORE_0,
#endif
.Component2Control = VFCOMP_STORE_0,
.Component3Control = VFCOMP_STORE_0,
#if GEN_GEN <= 5
.DestinationElementOffset = slot * 4,
#endif
};
slot++;
#if GEN_GEN <= 5
/* On Iron Lake and earlier, a native device coordinates version of the
* position goes right after the normal VUE header and before position.
* Since w == 1 for all of our coordinates, this is just a copy of the
* position.
*/
ve[slot] = (struct GENX(VERTEX_ELEMENT_STATE)) {
.VertexBufferIndex = 0,
.Valid = true,
.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32B32_FLOAT,
.SourceElementOffset = 0,
.Component0Control = VFCOMP_STORE_SRC,
.Component1Control = VFCOMP_STORE_SRC,
.Component2Control = VFCOMP_STORE_SRC,
.Component3Control = VFCOMP_STORE_1_FP,
.DestinationElementOffset = slot * 4,
};
slot++;
#endif
ve[slot] = (struct GENX(VERTEX_ELEMENT_STATE)) {
.VertexBufferIndex = 0,
.Valid = true,
.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32B32_FLOAT,
.SourceElementOffset = 0,
.Component0Control = VFCOMP_STORE_SRC,
.Component1Control = VFCOMP_STORE_SRC,
.Component2Control = VFCOMP_STORE_SRC,
.Component3Control = VFCOMP_STORE_1_FP,
#if GEN_GEN <= 5
.DestinationElementOffset = slot * 4,
#endif
};
slot++;
for (unsigned i = 0; i < num_varyings; ++i) {
ve[slot] = (struct GENX(VERTEX_ELEMENT_STATE)) {
.VertexBufferIndex = 1,
.Valid = true,
.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32B32A32_FLOAT,
.SourceElementOffset = 16 + i * 4 * sizeof(float),
.Component0Control = VFCOMP_STORE_SRC,
.Component1Control = VFCOMP_STORE_SRC,
.Component2Control = VFCOMP_STORE_SRC,
.Component3Control = VFCOMP_STORE_SRC,
#if GEN_GEN <= 5
.DestinationElementOffset = slot * 4,
#endif
};
slot++;
}
const unsigned num_dwords =
1 + GENX(VERTEX_ELEMENT_STATE_length) * num_elements;
uint32_t *dw = blorp_emitn(batch, GENX(3DSTATE_VERTEX_ELEMENTS), num_dwords);
if (!dw)
return;
for (unsigned i = 0; i < num_elements; i++) {
GENX(VERTEX_ELEMENT_STATE_pack)(batch, dw, &ve[i]);
dw += GENX(VERTEX_ELEMENT_STATE_length);
}
#if GEN_GEN >= 8
/* Overwrite Render Target Array Index (2nd dword) in the VUE header with
* primitive instance identifier. This is used for layered clears.
*/
blorp_emit(batch, GENX(3DSTATE_VF_SGVS), sgvs) {
sgvs.InstanceIDEnable = true;
sgvs.InstanceIDComponentNumber = COMP_1;
sgvs.InstanceIDElementOffset = 0;
}
for (unsigned i = 0; i < num_elements; i++) {
blorp_emit(batch, GENX(3DSTATE_VF_INSTANCING), vf) {
vf.VertexElementIndex = i;
vf.InstancingEnable = false;
}
}
blorp_emit(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
topo.PrimitiveTopologyType = _3DPRIM_RECTLIST;
}
#endif
}
/* 3DSTATE_VIEWPORT_STATE_POINTERS */
static uint32_t
blorp_emit_cc_viewport(struct blorp_batch *batch,
const struct blorp_params *params)
{
uint32_t cc_vp_offset;
blorp_emit_dynamic(batch, GENX(CC_VIEWPORT), vp, 32, &cc_vp_offset) {
vp.MinimumDepth = 0.0;
vp.MaximumDepth = 1.0;
}
#if GEN_GEN >= 7
blorp_emit(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), vsp) {
vsp.CCViewportPointer = cc_vp_offset;
}
#elif GEN_GEN == 6
blorp_emit(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vsp) {
vsp.CCViewportStateChange = true;
vsp.PointertoCC_VIEWPORT = cc_vp_offset;
}
#endif
return cc_vp_offset;
}
static uint32_t
blorp_emit_sampler_state(struct blorp_batch *batch,
const struct blorp_params *params)
{
uint32_t offset;
blorp_emit_dynamic(batch, GENX(SAMPLER_STATE), sampler, 32, &offset) {
sampler.MipModeFilter = MIPFILTER_NONE;
sampler.MagModeFilter = MAPFILTER_LINEAR;
sampler.MinModeFilter = MAPFILTER_LINEAR;
sampler.MinLOD = 0;
sampler.MaxLOD = 0;
sampler.TCXAddressControlMode = TCM_CLAMP;
sampler.TCYAddressControlMode = TCM_CLAMP;
sampler.TCZAddressControlMode = TCM_CLAMP;
sampler.MaximumAnisotropy = RATIO21;
sampler.RAddressMinFilterRoundingEnable = true;
sampler.RAddressMagFilterRoundingEnable = true;
sampler.VAddressMinFilterRoundingEnable = true;
sampler.VAddressMagFilterRoundingEnable = true;
sampler.UAddressMinFilterRoundingEnable = true;
sampler.UAddressMagFilterRoundingEnable = true;
#if GEN_GEN > 6
sampler.NonnormalizedCoordinateEnable = true;
#endif
}
#if GEN_GEN >= 7
blorp_emit(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_PS), ssp) {
ssp.PointertoPSSamplerState = offset;
}
#elif GEN_GEN == 6
blorp_emit(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS), ssp) {
ssp.VSSamplerStateChange = true;
ssp.GSSamplerStateChange = true;
ssp.PSSamplerStateChange = true;
ssp.PointertoPSSamplerState = offset;
}
#endif
return offset;
}
/* What follows is the code for setting up a "pipeline" on Sandy Bridge and
* later hardware. This file will be included by i965 for gen4-5 as well, so
* this code is guarded by GEN_GEN >= 6.
*/
#if GEN_GEN >= 6
static void
blorp_emit_vs_config(struct blorp_batch *batch,
const struct blorp_params *params)
{
struct brw_vs_prog_data *vs_prog_data = params->vs_prog_data;
blorp_emit(batch, GENX(3DSTATE_VS), vs) {
if (vs_prog_data) {
vs.Enable = true;
vs.KernelStartPointer = params->vs_prog_kernel;
vs.DispatchGRFStartRegisterForURBData =
vs_prog_data->base.base.dispatch_grf_start_reg;
vs.VertexURBEntryReadLength =
vs_prog_data->base.urb_read_length;
vs.VertexURBEntryReadOffset = 0;
vs.MaximumNumberofThreads =
batch->blorp->isl_dev->info->max_vs_threads - 1;
#if GEN_GEN >= 8
vs.SIMD8DispatchEnable =
vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
#endif
}
}
}
static void
blorp_emit_sf_config(struct blorp_batch *batch,
const struct blorp_params *params)
{
const struct brw_wm_prog_data *prog_data = params->wm_prog_data;
/* 3DSTATE_SF
*
* Disable ViewportTransformEnable (dw2.1)
*
* From the SandyBridge PRM, Volume 2, Part 1, Section 1.3, "3D
* Primitives Overview":
* RECTLIST: Viewport Mapping must be DISABLED (as is typical with the
* use of screen- space coordinates).
*
* A solid rectangle must be rendered, so set FrontFaceFillMode (dw2.4:3)
* and BackFaceFillMode (dw2.5:6) to SOLID(0).
*
* From the Sandy Bridge PRM, Volume 2, Part 1, Section
* 6.4.1.1 3DSTATE_SF, Field FrontFaceFillMode:
* SOLID: Any triangle or rectangle object found to be front-facing
* is rendered as a solid object. This setting is required when
* (rendering rectangle (RECTLIST) objects.
*/
#if GEN_GEN >= 8
blorp_emit(batch, GENX(3DSTATE_SF), sf);
blorp_emit(batch, GENX(3DSTATE_RASTER), raster) {
raster.CullMode = CULLMODE_NONE;
}
blorp_emit(batch, GENX(3DSTATE_SBE), sbe) {
sbe.VertexURBEntryReadOffset = 1;
if (prog_data) {
sbe.NumberofSFOutputAttributes = prog_data->num_varying_inputs;
sbe.VertexURBEntryReadLength = brw_blorp_get_urb_length(prog_data);
sbe.ConstantInterpolationEnable = prog_data->flat_inputs;
} else {
sbe.NumberofSFOutputAttributes = 0;
sbe.VertexURBEntryReadLength = 1;
}
sbe.ForceVertexURBEntryReadLength = true;
sbe.ForceVertexURBEntryReadOffset = true;
#if GEN_GEN >= 9
for (unsigned i = 0; i < 32; i++)
sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
#endif
}
#elif GEN_GEN >= 7
blorp_emit(batch, GENX(3DSTATE_SF), sf) {
sf.FrontFaceFillMode = FILL_MODE_SOLID;
sf.BackFaceFillMode = FILL_MODE_SOLID;
sf.MultisampleRasterizationMode = params->num_samples > 1 ?
MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
#if GEN_GEN == 7
sf.DepthBufferSurfaceFormat = params->depth_format;
#endif
}
blorp_emit(batch, GENX(3DSTATE_SBE), sbe) {
sbe.VertexURBEntryReadOffset = 1;
if (prog_data) {
sbe.NumberofSFOutputAttributes = prog_data->num_varying_inputs;
sbe.VertexURBEntryReadLength = brw_blorp_get_urb_length(prog_data);
sbe.ConstantInterpolationEnable = prog_data->flat_inputs;
} else {
sbe.NumberofSFOutputAttributes = 0;
sbe.VertexURBEntryReadLength = 1;
}
}
#else /* GEN_GEN <= 6 */
blorp_emit(batch, GENX(3DSTATE_SF), sf) {
sf.FrontFaceFillMode = FILL_MODE_SOLID;
sf.BackFaceFillMode = FILL_MODE_SOLID;
sf.MultisampleRasterizationMode = params->num_samples > 1 ?
MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
sf.VertexURBEntryReadOffset = 1;
if (prog_data) {
sf.NumberofSFOutputAttributes = prog_data->num_varying_inputs;
sf.VertexURBEntryReadLength = brw_blorp_get_urb_length(prog_data);
sf.ConstantInterpolationEnable = prog_data->flat_inputs;
} else {
sf.NumberofSFOutputAttributes = 0;
sf.VertexURBEntryReadLength = 1;
}
}
#endif /* GEN_GEN */
}
static void
blorp_emit_ps_config(struct blorp_batch *batch,
const struct blorp_params *params)
{
const struct brw_wm_prog_data *prog_data = params->wm_prog_data;
/* Even when thread dispatch is disabled, max threads (dw5.25:31) must be
* nonzero to prevent the GPU from hanging. While the documentation doesn't
* mention this explicitly, it notes that the valid range for the field is
* [1,39] = [2,40] threads, which excludes zero.
*
* To be safe (and to minimize extraneous code) we go ahead and fully
* configure the WM state whether or not there is a WM program.
*/
#if GEN_GEN >= 8
blorp_emit(batch, GENX(3DSTATE_WM), wm);
blorp_emit(batch, GENX(3DSTATE_PS), ps) {
if (params->src.enabled) {
ps.SamplerCount = 1; /* Up to 4 samplers */
ps.BindingTableEntryCount = 2;
} else {
ps.BindingTableEntryCount = 1;
}
if (prog_data) {
ps.DispatchGRFStartRegisterForConstantSetupData0 =
prog_data->base.dispatch_grf_start_reg;
ps.DispatchGRFStartRegisterForConstantSetupData2 =
prog_data->dispatch_grf_start_reg_2;
ps._8PixelDispatchEnable = prog_data->dispatch_8;
ps._16PixelDispatchEnable = prog_data->dispatch_16;
ps.KernelStartPointer0 = params->wm_prog_kernel;
ps.KernelStartPointer2 =
params->wm_prog_kernel + prog_data->prog_offset_2;
}
/* 3DSTATE_PS expects the number of threads per PSD, which is always 64;
* it implicitly scales for different GT levels (which have some # of
* PSDs).
*
* In Gen8 the format is U8-2 whereas in Gen9 it is U8-1.
*/
if (GEN_GEN >= 9)
ps.MaximumNumberofThreadsPerPSD = 64 - 1;
else
ps.MaximumNumberofThreadsPerPSD = 64 - 2;
switch (params->fast_clear_op) {
case BLORP_FAST_CLEAR_OP_NONE:
break;
#if GEN_GEN >= 9
case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
ps.RenderTargetResolveType = RESOLVE_PARTIAL;
break;
case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
ps.RenderTargetResolveType = RESOLVE_FULL;
break;
#else
case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
ps.RenderTargetResolveEnable = true;
break;
#endif
case BLORP_FAST_CLEAR_OP_CLEAR:
ps.RenderTargetFastClearEnable = true;
break;
default:
unreachable("Invalid fast clear op");
}
}
blorp_emit(batch, GENX(3DSTATE_PS_EXTRA), psx) {
if (prog_data) {
psx.PixelShaderValid = true;
psx.AttributeEnable = prog_data->num_varying_inputs > 0;
psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
}
if (params->src.enabled)
psx.PixelShaderKillsPixel = true;
}
#elif GEN_GEN >= 7
blorp_emit(batch, GENX(3DSTATE_WM), wm) {
switch (params->hiz_op) {
case BLORP_HIZ_OP_DEPTH_CLEAR:
wm.DepthBufferClear = true;
break;
case BLORP_HIZ_OP_DEPTH_RESOLVE:
wm.DepthBufferResolveEnable = true;
break;
case BLORP_HIZ_OP_HIZ_RESOLVE:
wm.HierarchicalDepthBufferResolveEnable = true;
break;
case BLORP_HIZ_OP_NONE:
break;
default:
unreachable("not reached");
}
if (prog_data)
wm.ThreadDispatchEnable = true;
if (params->src.enabled)
wm.PixelShaderKillsPixel = true;
if (params->num_samples > 1) {
wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
wm.MultisampleDispatchMode =
(prog_data && prog_data->persample_dispatch) ?
MSDISPMODE_PERSAMPLE : MSDISPMODE_PERPIXEL;
} else {
wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
}
}
blorp_emit(batch, GENX(3DSTATE_PS), ps) {
ps.MaximumNumberofThreads =
batch->blorp->isl_dev->info->max_wm_threads - 1;
#if GEN_IS_HASWELL
ps.SampleMask = 1;
#endif
if (prog_data) {
ps.DispatchGRFStartRegisterForConstantSetupData0 =
prog_data->base.dispatch_grf_start_reg;
ps.DispatchGRFStartRegisterForConstantSetupData2 =
prog_data->dispatch_grf_start_reg_2;
ps.KernelStartPointer0 = params->wm_prog_kernel;
ps.KernelStartPointer2 =
params->wm_prog_kernel + prog_data->prog_offset_2;
ps._8PixelDispatchEnable = prog_data->dispatch_8;
ps._16PixelDispatchEnable = prog_data->dispatch_16;
ps.AttributeEnable = prog_data->num_varying_inputs > 0;
} else {
/* Gen7 hardware gets angry if we don't enable at least one dispatch
* mode, so just enable 16-pixel dispatch if we don't have a program.
*/
ps._16PixelDispatchEnable = true;
}
if (params->src.enabled)
ps.SamplerCount = 1; /* Up to 4 samplers */
switch (params->fast_clear_op) {
case BLORP_FAST_CLEAR_OP_NONE:
break;
case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
ps.RenderTargetResolveEnable = true;
break;
case BLORP_FAST_CLEAR_OP_CLEAR:
ps.RenderTargetFastClearEnable = true;
break;
default:
unreachable("Invalid fast clear op");
}
}
#else /* GEN_GEN <= 6 */
blorp_emit(batch, GENX(3DSTATE_WM), wm) {
wm.MaximumNumberofThreads =
batch->blorp->isl_dev->info->max_wm_threads - 1;
switch (params->hiz_op) {
case BLORP_HIZ_OP_DEPTH_CLEAR:
wm.DepthBufferClear = true;
break;
case BLORP_HIZ_OP_DEPTH_RESOLVE:
wm.DepthBufferResolveEnable = true;
break;
case BLORP_HIZ_OP_HIZ_RESOLVE:
wm.HierarchicalDepthBufferResolveEnable = true;
break;
case BLORP_HIZ_OP_NONE:
break;
default:
unreachable("not reached");
}
if (prog_data) {
wm.ThreadDispatchEnable = true;
wm.DispatchGRFStartRegisterForConstantSetupData0 =
prog_data->base.dispatch_grf_start_reg;
wm.DispatchGRFStartRegisterForConstantSetupData2 =
prog_data->dispatch_grf_start_reg_2;
wm.KernelStartPointer0 = params->wm_prog_kernel;
wm.KernelStartPointer2 =
params->wm_prog_kernel + prog_data->prog_offset_2;
wm._8PixelDispatchEnable = prog_data->dispatch_8;
wm._16PixelDispatchEnable = prog_data->dispatch_16;
wm.NumberofSFOutputAttributes = prog_data->num_varying_inputs;
}
if (params->src.enabled) {
wm.SamplerCount = 1; /* Up to 4 samplers */
wm.PixelShaderKillsPixel = true; /* TODO: temporarily smash on */
}
if (params->num_samples > 1) {
wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
wm.MultisampleDispatchMode =
(prog_data && prog_data->persample_dispatch) ?
MSDISPMODE_PERSAMPLE : MSDISPMODE_PERPIXEL;
} else {
wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
}
}
#endif /* GEN_GEN */
}
static uint32_t
blorp_emit_blend_state(struct blorp_batch *batch,
const struct blorp_params *params)
{
struct GENX(BLEND_STATE) blend;
memset(&blend, 0, sizeof(blend));
uint32_t offset;
int size = GENX(BLEND_STATE_length) * 4;
size += GENX(BLEND_STATE_ENTRY_length) * 4 * params->num_draw_buffers;
uint32_t *state = blorp_alloc_dynamic_state(batch, size, 64, &offset);
uint32_t *pos = state;
GENX(BLEND_STATE_pack)(NULL, pos, &blend);
pos += GENX(BLEND_STATE_length);
for (unsigned i = 0; i < params->num_draw_buffers; ++i) {
struct GENX(BLEND_STATE_ENTRY) entry = {
.PreBlendColorClampEnable = true,
.PostBlendColorClampEnable = true,
.ColorClampRange = COLORCLAMP_RTFORMAT,
.WriteDisableRed = params->color_write_disable[0],
.WriteDisableGreen = params->color_write_disable[1],
.WriteDisableBlue = params->color_write_disable[2],
.WriteDisableAlpha = params->color_write_disable[3],
};
GENX(BLEND_STATE_ENTRY_pack)(NULL, pos, &entry);
pos += GENX(BLEND_STATE_ENTRY_length);
}
blorp_flush_range(batch, state, size);
#if GEN_GEN >= 7
blorp_emit(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), sp) {
sp.BlendStatePointer = offset;
#if GEN_GEN >= 8
sp.BlendStatePointerValid = true;
#endif
}
#endif
#if GEN_GEN >= 8
blorp_emit(batch, GENX(3DSTATE_PS_BLEND), ps_blend) {
ps_blend.HasWriteableRT = true;
}
#endif
return offset;
}
static uint32_t
blorp_emit_color_calc_state(struct blorp_batch *batch,
const struct blorp_params *params)
{
uint32_t offset;
blorp_emit_dynamic(batch, GENX(COLOR_CALC_STATE), cc, 64, &offset) {
#if GEN_GEN <= 8
cc.StencilReferenceValue = params->stencil_ref;
#endif
}
#if GEN_GEN >= 7
blorp_emit(batch, GENX(3DSTATE_CC_STATE_POINTERS), sp) {
sp.ColorCalcStatePointer = offset;
#if GEN_GEN >= 8
sp.ColorCalcStatePointerValid = true;
#endif
}
#endif
return offset;
}
static uint32_t
blorp_emit_depth_stencil_state(struct blorp_batch *batch,
const struct blorp_params *params)
{
#if GEN_GEN >= 8
struct GENX(3DSTATE_WM_DEPTH_STENCIL) ds = {
GENX(3DSTATE_WM_DEPTH_STENCIL_header),
};
#else
struct GENX(DEPTH_STENCIL_STATE) ds = { 0 };
#endif
if (params->depth.enabled) {
ds.DepthBufferWriteEnable = true;
switch (params->hiz_op) {
case BLORP_HIZ_OP_NONE:
ds.DepthTestEnable = true;
ds.DepthTestFunction = COMPAREFUNCTION_ALWAYS;
break;
/* See the following sections of the Sandy Bridge PRM, Volume 2, Part1:
* - 7.5.3.1 Depth Buffer Clear
* - 7.5.3.2 Depth Buffer Resolve
* - 7.5.3.3 Hierarchical Depth Buffer Resolve
*/
case BLORP_HIZ_OP_DEPTH_RESOLVE:
ds.DepthTestEnable = true;
ds.DepthTestFunction = COMPAREFUNCTION_NEVER;
break;
case BLORP_HIZ_OP_DEPTH_CLEAR:
case BLORP_HIZ_OP_HIZ_RESOLVE:
ds.DepthTestEnable = false;
break;
}
}
if (params->stencil.enabled) {
ds.StencilBufferWriteEnable = true;
ds.StencilTestEnable = true;
ds.DoubleSidedStencilEnable = false;
ds.StencilTestFunction = COMPAREFUNCTION_ALWAYS;
ds.StencilPassDepthPassOp = STENCILOP_REPLACE;
ds.StencilWriteMask = params->stencil_mask;
#if GEN_GEN >= 9
ds.StencilReferenceValue = params->stencil_ref;
#endif
}
#if GEN_GEN >= 8
uint32_t offset = 0;
uint32_t *dw = blorp_emit_dwords(batch,
GENX(3DSTATE_WM_DEPTH_STENCIL_length));
if (!dw)
return 0;
GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, dw, &ds);
#else
uint32_t offset;
void *state = blorp_alloc_dynamic_state(batch,
GENX(DEPTH_STENCIL_STATE_length) * 4,
64, &offset);
GENX(DEPTH_STENCIL_STATE_pack)(NULL, state, &ds);
blorp_flush_range(batch, state, GENX(DEPTH_STENCIL_STATE_length) * 4);
#endif
#if GEN_GEN == 7
blorp_emit(batch, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), sp) {
sp.PointertoDEPTH_STENCIL_STATE = offset;
}
#endif
return offset;
}
static void
blorp_emit_3dstate_multisample(struct blorp_batch *batch,
const struct blorp_params *params)
{
blorp_emit(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
ms.NumberofMultisamples = __builtin_ffs(params->num_samples) - 1;
#if GEN_GEN >= 8
/* The PRM says that this bit is valid only for DX9:
*
* SW can choose to set this bit only for DX9 API. DX10/OGL API's
* should not have any effect by setting or not setting this bit.
*/
ms.PixelPositionOffsetEnable = false;
#elif GEN_GEN >= 7
switch (params->num_samples) {
case 1:
GEN_SAMPLE_POS_1X(ms.Sample);
break;
case 2:
GEN_SAMPLE_POS_2X(ms.Sample);
break;
case 4:
GEN_SAMPLE_POS_4X(ms.Sample);
break;
case 8:
GEN_SAMPLE_POS_8X(ms.Sample);
break;
default:
break;
}
#else
GEN_SAMPLE_POS_4X(ms.Sample);
#endif
ms.PixelLocation = CENTER;
}
}
static void
blorp_emit_pipeline(struct blorp_batch *batch,
const struct blorp_params *params)
{
uint32_t blend_state_offset = 0;
uint32_t color_calc_state_offset;
uint32_t depth_stencil_state_offset;
emit_urb_config(batch, params);
if (params->wm_prog_data) {
blend_state_offset = blorp_emit_blend_state(batch, params);
}
color_calc_state_offset = blorp_emit_color_calc_state(batch, params);
depth_stencil_state_offset = blorp_emit_depth_stencil_state(batch, params);
#if GEN_GEN == 6
/* 3DSTATE_CC_STATE_POINTERS
*
* The pointer offsets are relative to
* CMD_STATE_BASE_ADDRESS.DynamicStateBaseAddress.
*
* The HiZ op doesn't use BLEND_STATE or COLOR_CALC_STATE.
*
* The dynamic state emit helpers emit their own STATE_POINTERS packets on
* gen7+. However, on gen6 and earlier, they're all lumpped together in
* one CC_STATE_POINTERS packet so we have to emit that here.
*/
blorp_emit(batch, GENX(3DSTATE_CC_STATE_POINTERS), cc) {
cc.BLEND_STATEChange = true;
cc.ColorCalcStatePointerValid = true;
cc.DEPTH_STENCIL_STATEChange = true;
cc.PointertoBLEND_STATE = blend_state_offset;
cc.ColorCalcStatePointer = color_calc_state_offset;
cc.PointertoDEPTH_STENCIL_STATE = depth_stencil_state_offset;
}
#else
(void)blend_state_offset;
(void)color_calc_state_offset;
(void)depth_stencil_state_offset;
#endif
blorp_emit(batch, GENX(3DSTATE_CONSTANT_VS), vs);
#if GEN_GEN >= 7
blorp_emit(batch, GENX(3DSTATE_CONSTANT_HS), hs);
blorp_emit(batch, GENX(3DSTATE_CONSTANT_DS), DS);
#endif
blorp_emit(batch, GENX(3DSTATE_CONSTANT_GS), gs);
blorp_emit(batch, GENX(3DSTATE_CONSTANT_PS), ps);
if (params->src.enabled)
blorp_emit_sampler_state(batch, params);
blorp_emit_3dstate_multisample(batch, params);
blorp_emit(batch, GENX(3DSTATE_SAMPLE_MASK), mask) {
mask.SampleMask = (1 << params->num_samples) - 1;
}
/* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
* 3DSTATE_VS, Dword 5.0 "VS Function Enable":
*
* [DevSNB] A pipeline flush must be programmed prior to a
* 3DSTATE_VS command that causes the VS Function Enable to
* toggle. Pipeline flush can be executed by sending a PIPE_CONTROL
* command with CS stall bit set and a post sync operation.
*
* We've already done one at the start of the BLORP operation.
*/
blorp_emit_vs_config(batch, params);
#if GEN_GEN >= 7
blorp_emit(batch, GENX(3DSTATE_HS), hs);
blorp_emit(batch, GENX(3DSTATE_TE), te);
blorp_emit(batch, GENX(3DSTATE_DS), DS);
blorp_emit(batch, GENX(3DSTATE_STREAMOUT), so);
#endif
blorp_emit(batch, GENX(3DSTATE_GS), gs);
blorp_emit(batch, GENX(3DSTATE_CLIP), clip) {
clip.PerspectiveDivideDisable = true;
}
blorp_emit_sf_config(batch, params);
blorp_emit_ps_config(batch, params);
blorp_emit_cc_viewport(batch, params);
}
/******** This is the end of the pipeline setup code ********/
#endif /* GEN_GEN >= 6 */
#if GEN_GEN >= 7 && GEN_GEN <= 10
static void
blorp_emit_memcpy(struct blorp_batch *batch,
struct blorp_address dst,
struct blorp_address src,
uint32_t size)
{
assert(size % 4 == 0);
for (unsigned dw = 0; dw < size; dw += 4) {
#if GEN_GEN >= 8
blorp_emit(batch, GENX(MI_COPY_MEM_MEM), cp) {
cp.DestinationMemoryAddress = dst;
cp.SourceMemoryAddress = src;
}
#else
/* IVB does not have a general purpose register for command streamer
* commands. Therefore, we use an alternate temporary register.
*/
#define BLORP_TEMP_REG 0x2440 /* GEN7_3DPRIM_BASE_VERTEX */
blorp_emit(batch, GENX(MI_LOAD_REGISTER_MEM), load) {
load.RegisterAddress = BLORP_TEMP_REG;
load.MemoryAddress = src;
}
blorp_emit(batch, GENX(MI_STORE_REGISTER_MEM), store) {
store.RegisterAddress = BLORP_TEMP_REG;
store.MemoryAddress = dst;
}
#undef BLORP_TEMP_REG
#endif
dst.offset += 4;
src.offset += 4;
}
}
#endif
static void
blorp_emit_surface_state(struct blorp_batch *batch,
const struct brw_blorp_surface_info *surface,
void *state, uint32_t state_offset,
const bool color_write_disables[4],
bool is_render_target)
{
const struct isl_device *isl_dev = batch->blorp->isl_dev;
struct isl_surf surf = surface->surf;
if (surf.dim == ISL_SURF_DIM_1D &&
surf.dim_layout == ISL_DIM_LAYOUT_GEN4_2D) {
assert(surf.logical_level0_px.height == 1);
surf.dim = ISL_SURF_DIM_2D;
}
/* Blorp doesn't support HiZ in any of the blit or slow-clear paths */
enum isl_aux_usage aux_usage = surface->aux_usage;
if (aux_usage == ISL_AUX_USAGE_HIZ)
aux_usage = ISL_AUX_USAGE_NONE;
isl_channel_mask_t write_disable_mask = 0;
if (is_render_target && GEN_GEN <= 5) {
if (color_write_disables[0])
write_disable_mask |= ISL_CHANNEL_RED_BIT;
if (color_write_disables[1])
write_disable_mask |= ISL_CHANNEL_GREEN_BIT;
if (color_write_disables[2])
write_disable_mask |= ISL_CHANNEL_BLUE_BIT;
if (color_write_disables[3])
write_disable_mask |= ISL_CHANNEL_ALPHA_BIT;
}
isl_surf_fill_state(batch->blorp->isl_dev, state,
.surf = &surf, .view = &surface->view,
.aux_surf = &surface->aux_surf, .aux_usage = aux_usage,
.mocs = surface->addr.mocs,
.clear_color = surface->clear_color,
.write_disables = write_disable_mask);
blorp_surface_reloc(batch, state_offset + isl_dev->ss.addr_offset,
surface->addr, 0);
if (aux_usage != ISL_AUX_USAGE_NONE) {
/* On gen7 and prior, the bottom 12 bits of the MCS base address are
* used to store other information. This should be ok, however, because
* surface buffer addresses are always 4K page alinged.
*/
assert((surface->aux_addr.offset & 0xfff) == 0);
uint32_t *aux_addr = state + isl_dev->ss.aux_addr_offset;
blorp_surface_reloc(batch, state_offset + isl_dev->ss.aux_addr_offset,
surface->aux_addr, *aux_addr);
}
blorp_flush_range(batch, state, GENX(RENDER_SURFACE_STATE_length) * 4);
if (surface->clear_color_addr.buffer) {
#if GEN_GEN > 10
unreachable("Implement indirect clear support on gen11+");
#elif GEN_GEN >= 7 && GEN_GEN <= 10
struct blorp_address dst_addr = blorp_get_surface_base_address(batch);
dst_addr.offset += state_offset + isl_dev->ss.clear_value_offset;
blorp_emit_memcpy(batch, dst_addr, surface->clear_color_addr,
isl_dev->ss.clear_value_size);
#else
unreachable("Fast clears are only supported on gen7+");
#endif
}
}
static void
blorp_emit_null_surface_state(struct blorp_batch *batch,
const struct brw_blorp_surface_info *surface,
uint32_t *state)
{
struct GENX(RENDER_SURFACE_STATE) ss = {
.SurfaceType = SURFTYPE_NULL,
.SurfaceFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R8G8B8A8_UNORM,
.Width = surface->surf.logical_level0_px.width - 1,
.Height = surface->surf.logical_level0_px.height - 1,
.MIPCountLOD = surface->view.base_level,
.MinimumArrayElement = surface->view.base_array_layer,
.Depth = surface->view.array_len - 1,
.RenderTargetViewExtent = surface->view.array_len - 1,
#if GEN_GEN >= 6
.NumberofMultisamples = ffs(surface->surf.samples) - 1,
#endif
#if GEN_GEN >= 7
.SurfaceArray = surface->surf.dim != ISL_SURF_DIM_3D,
#endif
#if GEN_GEN >= 8
.TileMode = YMAJOR,
#else
.TiledSurface = true,
#endif
};
GENX(RENDER_SURFACE_STATE_pack)(NULL, state, &ss);
blorp_flush_range(batch, state, GENX(RENDER_SURFACE_STATE_length) * 4);
}
static void
blorp_emit_surface_states(struct blorp_batch *batch,
const struct blorp_params *params)
{
const struct isl_device *isl_dev = batch->blorp->isl_dev;
uint32_t bind_offset, surface_offsets[2];
void *surface_maps[2];
MAYBE_UNUSED bool has_indirect_clear_color = false;
if (params->use_pre_baked_binding_table) {
bind_offset = params->pre_baked_binding_table_offset;
} else {
unsigned num_surfaces = 1 + params->src.enabled;
blorp_alloc_binding_table(batch, num_surfaces,
isl_dev->ss.size, isl_dev->ss.align,
&bind_offset, surface_offsets, surface_maps);
if (params->dst.enabled) {
blorp_emit_surface_state(batch, &params->dst,
surface_maps[BLORP_RENDERBUFFER_BT_INDEX],
surface_offsets[BLORP_RENDERBUFFER_BT_INDEX],
params->color_write_disable, true);
if (params->dst.clear_color_addr.buffer != NULL)
has_indirect_clear_color = true;
} else {
assert(params->depth.enabled || params->stencil.enabled);
const struct brw_blorp_surface_info *surface =
params->depth.enabled ? &params->depth : &params->stencil;
blorp_emit_null_surface_state(batch, surface,
surface_maps[BLORP_RENDERBUFFER_BT_INDEX]);
}
if (params->src.enabled) {
blorp_emit_surface_state(batch, &params->src,
surface_maps[BLORP_TEXTURE_BT_INDEX],
surface_offsets[BLORP_TEXTURE_BT_INDEX],
NULL, false);
if (params->src.clear_color_addr.buffer != NULL)
has_indirect_clear_color = true;
}
}
#if GEN_GEN >= 7 && GEN_GEN <= 10
if (has_indirect_clear_color) {
/* Updating a surface state object may require that the state cache be
* invalidated. From the SKL PRM, Shared Functions -> State -> State
* Caching:
*
* Whenever the RENDER_SURFACE_STATE object in memory pointed to by
* the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
* modified [...], the L1 state cache must be invalidated to ensure
* the new surface or sampler state is fetched from system memory.
*/
blorp_emit(batch, GENX(PIPE_CONTROL), pipe) {
pipe.StateCacheInvalidationEnable = true;
}
}
#endif
#if GEN_GEN >= 7
blorp_emit(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), bt);
blorp_emit(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_HS), bt);
blorp_emit(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_DS), bt);
blorp_emit(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_GS), bt);
blorp_emit(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_PS), bt) {
bt.PointertoPSBindingTable = bind_offset;
}
#elif GEN_GEN >= 6
blorp_emit(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS), bt) {
bt.PSBindingTableChange = true;
bt.PointertoPSBindingTable = bind_offset;
}
#else
blorp_emit(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS), bt) {
bt.PointertoPSBindingTable = bind_offset;
}
#endif
}
static void
blorp_emit_depth_stencil_config(struct blorp_batch *batch,
const struct blorp_params *params)
{
const struct isl_device *isl_dev = batch->blorp->isl_dev;
uint32_t *dw = blorp_emit_dwords(batch, isl_dev->ds.size / 4);
if (dw == NULL)
return;
struct isl_depth_stencil_hiz_emit_info info = { };
if (params->depth.enabled) {
info.view = &params->depth.view;
info.mocs = params->depth.addr.mocs;
} else if (params->stencil.enabled) {
info.view = &params->stencil.view;
info.mocs = params->stencil.addr.mocs;
}
if (params->depth.enabled) {
info.depth_surf = &params->depth.surf;
info.depth_address =
blorp_emit_reloc(batch, dw + isl_dev->ds.depth_offset / 4,
params->depth.addr, 0);
info.hiz_usage = params->depth.aux_usage;
if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
info.hiz_surf = &params->depth.aux_surf;
struct blorp_address hiz_address = params->depth.aux_addr;
#if GEN_GEN == 6
/* Sandy bridge hardware does not technically support mipmapped HiZ.
* However, we have a special layout that allows us to make it work
* anyway by manually offsetting to the specified miplevel.
*/
assert(info.hiz_surf->dim_layout == ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ);
uint32_t offset_B;
isl_surf_get_image_offset_B_tile_sa(info.hiz_surf,
info.view->base_level, 0, 0,
&offset_B, NULL, NULL);
hiz_address.offset += offset_B;
#endif
info.hiz_address =
blorp_emit_reloc(batch, dw + isl_dev->ds.hiz_offset / 4,
hiz_address, 0);
info.depth_clear_value = params->depth.clear_color.f32[0];
}
}
if (params->stencil.enabled) {
info.stencil_surf = &params->stencil.surf;
struct blorp_address stencil_address = params->stencil.addr;
#if GEN_GEN == 6
/* Sandy bridge hardware does not technically support mipmapped stencil.
* However, we have a special layout that allows us to make it work
* anyway by manually offsetting to the specified miplevel.
*/
assert(info.stencil_surf->dim_layout == ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ);
uint32_t offset_B;
isl_surf_get_image_offset_B_tile_sa(info.stencil_surf,
info.view->base_level, 0, 0,
&offset_B, NULL, NULL);
stencil_address.offset += offset_B;
#endif
info.stencil_address =
blorp_emit_reloc(batch, dw + isl_dev->ds.stencil_offset / 4,
stencil_address, 0);
}
isl_emit_depth_stencil_hiz_s(isl_dev, dw, &info);
}
#if GEN_GEN >= 8
/* Emits the Optimized HiZ sequence specified in the BDW+ PRMs. The
* depth/stencil buffer extents are ignored to handle APIs which perform
* clearing operations without such information.
* */
static void
blorp_emit_gen8_hiz_op(struct blorp_batch *batch,
const struct blorp_params *params)
{
/* We should be performing an operation on a depth or stencil buffer.
*/
assert(params->depth.enabled || params->stencil.enabled);
/* The stencil buffer should only be enabled if a fast clear operation is
* requested.
*/
if (params->stencil.enabled)
assert(params->hiz_op == BLORP_HIZ_OP_DEPTH_CLEAR);
/* From the BDW PRM Volume 2, 3DSTATE_WM_HZ_OP:
*
* 3DSTATE_MULTISAMPLE packet must be used prior to this packet to change
* the Number of Multisamples. This packet must not be used to change
* Number of Multisamples in a rendering sequence.
*
* Since HIZ may be the first thing in a batch buffer, play safe and always
* emit 3DSTATE_MULTISAMPLE.
*/
blorp_emit_3dstate_multisample(batch, params);
/* If we can't alter the depth stencil config and multiple layers are
* involved, the HiZ op will fail. This is because the op requires that a
* new config is emitted for each additional layer.
*/
if (batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL) {
assert(params->num_layers <= 1);
} else {
blorp_emit_depth_stencil_config(batch, params);
}
blorp_emit(batch, GENX(3DSTATE_WM_HZ_OP), hzp) {
switch (params->hiz_op) {
case BLORP_HIZ_OP_DEPTH_CLEAR:
hzp.StencilBufferClearEnable = params->stencil.enabled;
hzp.DepthBufferClearEnable = params->depth.enabled;
hzp.StencilClearValue = params->stencil_ref;
hzp.FullSurfaceDepthandStencilClear = params->full_surface_hiz_op;
break;
case BLORP_HIZ_OP_DEPTH_RESOLVE:
assert(params->full_surface_hiz_op);
hzp.DepthBufferResolveEnable = true;
break;
case BLORP_HIZ_OP_HIZ_RESOLVE:
assert(params->full_surface_hiz_op);
hzp.HierarchicalDepthBufferResolveEnable = true;
break;
case BLORP_HIZ_OP_NONE:
unreachable("Invalid HIZ op");
}
hzp.NumberofMultisamples = ffs(params->num_samples) - 1;
hzp.SampleMask = 0xFFFF;
/* Due to a hardware issue, this bit MBZ */
assert(hzp.ScissorRectangleEnable == false);
/* Contrary to the HW docs both fields are inclusive */
hzp.ClearRectangleXMin = params->x0;
hzp.ClearRectangleYMin = params->y0;
/* Contrary to the HW docs both fields are exclusive */
hzp.ClearRectangleXMax = params->x1;
hzp.ClearRectangleYMax = params->y1;
}
/* PIPE_CONTROL w/ all bits clear except for “Post-Sync Operation” must set
* to “Write Immediate Data” enabled.
*/
blorp_emit(batch, GENX(PIPE_CONTROL), pc) {
pc.PostSyncOperation = WriteImmediateData;
pc.Address = blorp_get_workaround_page(batch);
}
blorp_emit(batch, GENX(3DSTATE_WM_HZ_OP), hzp);
}
#endif
/**
* \brief Execute a blit or render pass operation.
*
* To execute the operation, this function manually constructs and emits a
* batch to draw a rectangle primitive. The batchbuffer is flushed before
* constructing and after emitting the batch.
*
* This function alters no GL state.
*/
static void
blorp_exec(struct blorp_batch *batch, const struct blorp_params *params)
{
#if GEN_GEN >= 8
if (params->hiz_op != BLORP_HIZ_OP_NONE) {
blorp_emit_gen8_hiz_op(batch, params);
return;
}
#endif
blorp_emit_vertex_buffers(batch, params);
blorp_emit_vertex_elements(batch, params);
blorp_emit_pipeline(batch, params);
blorp_emit_surface_states(batch, params);
if (!(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL))
blorp_emit_depth_stencil_config(batch, params);
blorp_emit(batch, GENX(3DPRIMITIVE), prim) {
prim.VertexAccessType = SEQUENTIAL;
prim.PrimitiveTopologyType = _3DPRIM_RECTLIST;
#if GEN_GEN >= 7
prim.PredicateEnable = batch->flags & BLORP_BATCH_PREDICATE_ENABLE;
#endif
prim.VertexCountPerInstance = 3;
prim.InstanceCount = params->num_layers;
}
}
#endif /* BLORP_GENX_EXEC_H */