blob: 33d38909007918c45a7864757db88372d85031b0 [file] [log] [blame]
/*
* Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "r600_sq.h"
#include "r600_formats.h"
#include "r600_opcodes.h"
#include "r600_shader.h"
#include "r600d.h"
#include "sb/sb_public.h"
#include "pipe/p_shader_tokens.h"
#include "tgsi/tgsi_info.h"
#include "tgsi/tgsi_parse.h"
#include "tgsi/tgsi_scan.h"
#include "tgsi/tgsi_dump.h"
#include "util/u_bitcast.h"
#include "util/u_memory.h"
#include "util/u_math.h"
#include <stdio.h>
#include <errno.h>
/* CAYMAN notes
Why CAYMAN got loops for lots of instructions is explained here.
-These 8xx t-slot only ops are implemented in all vector slots.
MUL_LIT, FLT_TO_UINT, INT_TO_FLT, UINT_TO_FLT
These 8xx t-slot only opcodes become vector ops, with all four
slots expecting the arguments on sources a and b. Result is
broadcast to all channels.
MULLO_INT, MULHI_INT, MULLO_UINT, MULHI_UINT, MUL_64
These 8xx t-slot only opcodes become vector ops in the z, y, and
x slots.
EXP_IEEE, LOG_IEEE/CLAMPED, RECIP_IEEE/CLAMPED/FF/INT/UINT/_64/CLAMPED_64
RECIPSQRT_IEEE/CLAMPED/FF/_64/CLAMPED_64
SQRT_IEEE/_64
SIN/COS
The w slot may have an independent co-issued operation, or if the
result is required to be in the w slot, the opcode above may be
issued in the w slot as well.
The compiler must issue the source argument to slots z, y, and x
*/
/* Contents of r0 on entry to various shaders
VS - .x = VertexID
.y = RelVertexID (??)
.w = InstanceID
GS - r0.xyw, r1.xyz = per-vertex offsets
r0.z = PrimitiveID
TCS - .x = PatchID
.y = RelPatchID (??)
.z = InvocationID
.w = tess factor base.
TES - .x = TessCoord.x
- .y = TessCoord.y
- .z = RelPatchID (??)
- .w = PrimitiveID
PS - face_gpr.z = SampleMask
face_gpr.w = SampleID
*/
#define R600_SHADER_BUFFER_INFO_SEL (512 + R600_BUFFER_INFO_OFFSET / 16)
static int r600_shader_from_tgsi(struct r600_context *rctx,
struct r600_pipe_shader *pipeshader,
union r600_shader_key key);
static void r600_add_gpr_array(struct r600_shader *ps, int start_gpr,
int size, unsigned comp_mask) {
if (!size)
return;
if (ps->num_arrays == ps->max_arrays) {
ps->max_arrays += 64;
ps->arrays = realloc(ps->arrays, ps->max_arrays *
sizeof(struct r600_shader_array));
}
int n = ps->num_arrays;
++ps->num_arrays;
ps->arrays[n].comp_mask = comp_mask;
ps->arrays[n].gpr_start = start_gpr;
ps->arrays[n].gpr_count = size;
}
static void r600_dump_streamout(struct pipe_stream_output_info *so)
{
unsigned i;
fprintf(stderr, "STREAMOUT\n");
for (i = 0; i < so->num_outputs; i++) {
unsigned mask = ((1 << so->output[i].num_components) - 1) <<
so->output[i].start_component;
fprintf(stderr, " %i: MEM_STREAM%d_BUF%i[%i..%i] <- OUT[%i].%s%s%s%s%s\n",
i,
so->output[i].stream,
so->output[i].output_buffer,
so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
so->output[i].register_index,
mask & 1 ? "x" : "",
mask & 2 ? "y" : "",
mask & 4 ? "z" : "",
mask & 8 ? "w" : "",
so->output[i].dst_offset < so->output[i].start_component ? " (will lower)" : "");
}
}
static int store_shader(struct pipe_context *ctx,
struct r600_pipe_shader *shader)
{
struct r600_context *rctx = (struct r600_context *)ctx;
uint32_t *ptr, i;
if (shader->bo == NULL) {
shader->bo = (struct r600_resource*)
pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_IMMUTABLE, shader->shader.bc.ndw * 4);
if (shader->bo == NULL) {
return -ENOMEM;
}
ptr = r600_buffer_map_sync_with_rings(&rctx->b, shader->bo, PIPE_TRANSFER_WRITE);
if (R600_BIG_ENDIAN) {
for (i = 0; i < shader->shader.bc.ndw; ++i) {
ptr[i] = util_cpu_to_le32(shader->shader.bc.bytecode[i]);
}
} else {
memcpy(ptr, shader->shader.bc.bytecode, shader->shader.bc.ndw * sizeof(*ptr));
}
rctx->b.ws->buffer_unmap(shader->bo->buf);
}
return 0;
}
int r600_pipe_shader_create(struct pipe_context *ctx,
struct r600_pipe_shader *shader,
union r600_shader_key key)
{
struct r600_context *rctx = (struct r600_context *)ctx;
struct r600_pipe_shader_selector *sel = shader->selector;
int r;
bool dump = r600_can_dump_shader(&rctx->screen->b,
tgsi_get_processor_type(sel->tokens));
unsigned use_sb = !(rctx->screen->b.debug_flags & DBG_NO_SB);
unsigned sb_disasm = use_sb || (rctx->screen->b.debug_flags & DBG_SB_DISASM);
unsigned export_shader;
shader->shader.bc.isa = rctx->isa;
if (dump) {
fprintf(stderr, "--------------------------------------------------------------\n");
tgsi_dump(sel->tokens, 0);
if (sel->so.num_outputs) {
r600_dump_streamout(&sel->so);
}
}
r = r600_shader_from_tgsi(rctx, shader, key);
if (r) {
R600_ERR("translation from TGSI failed !\n");
goto error;
}
if (shader->shader.processor_type == PIPE_SHADER_VERTEX) {
/* only disable for vertex shaders in tess paths */
if (key.vs.as_ls)
use_sb = 0;
}
use_sb &= (shader->shader.processor_type != PIPE_SHADER_TESS_CTRL);
use_sb &= (shader->shader.processor_type != PIPE_SHADER_TESS_EVAL);
use_sb &= (shader->shader.processor_type != PIPE_SHADER_COMPUTE);
/* disable SB for shaders using doubles */
use_sb &= !shader->shader.uses_doubles;
use_sb &= !shader->shader.uses_atomics;
use_sb &= !shader->shader.uses_images;
/* Check if the bytecode has already been built. */
if (!shader->shader.bc.bytecode) {
r = r600_bytecode_build(&shader->shader.bc);
if (r) {
R600_ERR("building bytecode failed !\n");
goto error;
}
}
if (dump && !sb_disasm) {
fprintf(stderr, "--------------------------------------------------------------\n");
r600_bytecode_disasm(&shader->shader.bc);
fprintf(stderr, "______________________________________________________________\n");
} else if ((dump && sb_disasm) || use_sb) {
r = r600_sb_bytecode_process(rctx, &shader->shader.bc, &shader->shader,
dump, use_sb);
if (r) {
R600_ERR("r600_sb_bytecode_process failed !\n");
goto error;
}
}
if (shader->gs_copy_shader) {
if (dump) {
// dump copy shader
r = r600_sb_bytecode_process(rctx, &shader->gs_copy_shader->shader.bc,
&shader->gs_copy_shader->shader, dump, 0);
if (r)
goto error;
}
if ((r = store_shader(ctx, shader->gs_copy_shader)))
goto error;
}
/* Store the shader in a buffer. */
if ((r = store_shader(ctx, shader)))
goto error;
/* Build state. */
switch (shader->shader.processor_type) {
case PIPE_SHADER_TESS_CTRL:
evergreen_update_hs_state(ctx, shader);
break;
case PIPE_SHADER_TESS_EVAL:
if (key.tes.as_es)
evergreen_update_es_state(ctx, shader);
else
evergreen_update_vs_state(ctx, shader);
break;
case PIPE_SHADER_GEOMETRY:
if (rctx->b.chip_class >= EVERGREEN) {
evergreen_update_gs_state(ctx, shader);
evergreen_update_vs_state(ctx, shader->gs_copy_shader);
} else {
r600_update_gs_state(ctx, shader);
r600_update_vs_state(ctx, shader->gs_copy_shader);
}
break;
case PIPE_SHADER_VERTEX:
export_shader = key.vs.as_es;
if (rctx->b.chip_class >= EVERGREEN) {
if (key.vs.as_ls)
evergreen_update_ls_state(ctx, shader);
else if (key.vs.as_es)
evergreen_update_es_state(ctx, shader);
else
evergreen_update_vs_state(ctx, shader);
} else {
if (export_shader)
r600_update_es_state(ctx, shader);
else
r600_update_vs_state(ctx, shader);
}
break;
case PIPE_SHADER_FRAGMENT:
if (rctx->b.chip_class >= EVERGREEN) {
evergreen_update_ps_state(ctx, shader);
} else {
r600_update_ps_state(ctx, shader);
}
break;
case PIPE_SHADER_COMPUTE:
evergreen_update_ls_state(ctx, shader);
break;
default:
r = -EINVAL;
goto error;
}
return 0;
error:
r600_pipe_shader_destroy(ctx, shader);
return r;
}
void r600_pipe_shader_destroy(struct pipe_context *ctx UNUSED, struct r600_pipe_shader *shader)
{
r600_resource_reference(&shader->bo, NULL);
r600_bytecode_clear(&shader->shader.bc);
r600_release_command_buffer(&shader->command_buffer);
}
/*
* tgsi -> r600 shader
*/
struct r600_shader_tgsi_instruction;
struct r600_shader_src {
unsigned sel;
unsigned swizzle[4];
unsigned neg;
unsigned abs;
unsigned rel;
unsigned kc_bank;
boolean kc_rel; /* true if cache bank is indexed */
uint32_t value[4];
};
struct eg_interp {
boolean enabled;
unsigned ij_index;
};
struct r600_shader_ctx {
struct tgsi_shader_info info;
struct tgsi_parse_context parse;
const struct tgsi_token *tokens;
unsigned type;
unsigned file_offset[TGSI_FILE_COUNT];
unsigned temp_reg;
const struct r600_shader_tgsi_instruction *inst_info;
struct r600_bytecode *bc;
struct r600_shader *shader;
struct r600_shader_src src[4];
uint32_t *literals;
uint32_t nliterals;
uint32_t max_driver_temp_used;
/* needed for evergreen interpolation */
struct eg_interp eg_interpolators[6]; // indexed by Persp/Linear * 3 + sample/center/centroid
/* evergreen/cayman also store sample mask in face register */
int face_gpr;
/* sample id is .w component stored in fixed point position register */
int fixed_pt_position_gpr;
int colors_used;
boolean clip_vertex_write;
unsigned cv_output;
unsigned edgeflag_output;
int cs_block_size_reg;
int cs_grid_size_reg;
bool cs_block_size_loaded, cs_grid_size_loaded;
int fragcoord_input;
int next_ring_offset;
int gs_out_ring_offset;
int gs_next_vertex;
struct r600_shader *gs_for_vs;
int gs_export_gpr_tregs[4];
int gs_rotated_input[2];
const struct pipe_stream_output_info *gs_stream_output_info;
unsigned enabled_stream_buffers_mask;
unsigned tess_input_info; /* temp with tess input offsets */
unsigned tess_output_info; /* temp with tess input offsets */
unsigned thread_id_gpr; /* temp with thread id calculated for images */
bool thread_id_gpr_loaded;
};
struct r600_shader_tgsi_instruction {
unsigned op;
int (*process)(struct r600_shader_ctx *ctx);
};
static int emit_gs_ring_writes(struct r600_shader_ctx *ctx, const struct pipe_stream_output_info *so, int stream, bool ind);
static const struct r600_shader_tgsi_instruction r600_shader_tgsi_instruction[], eg_shader_tgsi_instruction[], cm_shader_tgsi_instruction[];
static int tgsi_helper_tempx_replicate(struct r600_shader_ctx *ctx);
static inline int callstack_push(struct r600_shader_ctx *ctx, unsigned reason);
static void fc_pushlevel(struct r600_shader_ctx *ctx, int type);
static int tgsi_else(struct r600_shader_ctx *ctx);
static int tgsi_endif(struct r600_shader_ctx *ctx);
static int tgsi_bgnloop(struct r600_shader_ctx *ctx);
static int tgsi_endloop(struct r600_shader_ctx *ctx);
static int tgsi_loop_brk_cont(struct r600_shader_ctx *ctx);
static int tgsi_fetch_rel_const(struct r600_shader_ctx *ctx,
unsigned int cb_idx, unsigned cb_rel, unsigned int offset, unsigned ar_chan,
unsigned int dst_reg);
static void r600_bytecode_src(struct r600_bytecode_alu_src *bc_src,
const struct r600_shader_src *shader_src,
unsigned chan);
static int do_lds_fetch_values(struct r600_shader_ctx *ctx, unsigned temp_reg,
unsigned dst_reg, unsigned mask);
static bool ctx_needs_stack_workaround_8xx(struct r600_shader_ctx *ctx)
{
if (ctx->bc->family == CHIP_HEMLOCK ||
ctx->bc->family == CHIP_CYPRESS ||
ctx->bc->family == CHIP_JUNIPER)
return false;
return true;
}
static int tgsi_last_instruction(unsigned writemask)
{
int i, lasti = 0;
for (i = 0; i < 4; i++) {
if (writemask & (1 << i)) {
lasti = i;
}
}
return lasti;
}
static int tgsi_is_supported(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *i = &ctx->parse.FullToken.FullInstruction;
unsigned j;
if (i->Instruction.NumDstRegs > 1 && i->Instruction.Opcode != TGSI_OPCODE_DFRACEXP) {
R600_ERR("too many dst (%d)\n", i->Instruction.NumDstRegs);
return -EINVAL;
}
#if 0
if (i->Instruction.Label) {
R600_ERR("label unsupported\n");
return -EINVAL;
}
#endif
for (j = 0; j < i->Instruction.NumSrcRegs; j++) {
if (i->Src[j].Register.Dimension) {
switch (i->Src[j].Register.File) {
case TGSI_FILE_CONSTANT:
case TGSI_FILE_HW_ATOMIC:
break;
case TGSI_FILE_INPUT:
if (ctx->type == PIPE_SHADER_GEOMETRY ||
ctx->type == PIPE_SHADER_TESS_CTRL ||
ctx->type == PIPE_SHADER_TESS_EVAL)
break;
case TGSI_FILE_OUTPUT:
if (ctx->type == PIPE_SHADER_TESS_CTRL)
break;
default:
R600_ERR("unsupported src %d (file %d, dimension %d)\n", j,
i->Src[j].Register.File,
i->Src[j].Register.Dimension);
return -EINVAL;
}
}
}
for (j = 0; j < i->Instruction.NumDstRegs; j++) {
if (i->Dst[j].Register.Dimension) {
if (ctx->type == PIPE_SHADER_TESS_CTRL)
continue;
R600_ERR("unsupported dst (dimension)\n");
return -EINVAL;
}
}
return 0;
}
int eg_get_interpolator_index(unsigned interpolate, unsigned location)
{
if (interpolate == TGSI_INTERPOLATE_COLOR ||
interpolate == TGSI_INTERPOLATE_LINEAR ||
interpolate == TGSI_INTERPOLATE_PERSPECTIVE)
{
int is_linear = interpolate == TGSI_INTERPOLATE_LINEAR;
int loc;
switch(location) {
case TGSI_INTERPOLATE_LOC_CENTER:
loc = 1;
break;
case TGSI_INTERPOLATE_LOC_CENTROID:
loc = 2;
break;
case TGSI_INTERPOLATE_LOC_SAMPLE:
default:
loc = 0; break;
}
return is_linear * 3 + loc;
}
return -1;
}
static void evergreen_interp_assign_ij_index(struct r600_shader_ctx *ctx,
int input)
{
int i = eg_get_interpolator_index(
ctx->shader->input[input].interpolate,
ctx->shader->input[input].interpolate_location);
assert(i >= 0);
ctx->shader->input[input].ij_index = ctx->eg_interpolators[i].ij_index;
}
static int evergreen_interp_alu(struct r600_shader_ctx *ctx, int input)
{
int i, r;
struct r600_bytecode_alu alu;
int gpr = 0, base_chan = 0;
int ij_index = ctx->shader->input[input].ij_index;
/* work out gpr and base_chan from index */
gpr = ij_index / 2;
base_chan = (2 * (ij_index % 2)) + 1;
for (i = 0; i < 8; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
if (i < 4)
alu.op = ALU_OP2_INTERP_ZW;
else
alu.op = ALU_OP2_INTERP_XY;
if ((i > 1) && (i < 6)) {
alu.dst.sel = ctx->shader->input[input].gpr;
alu.dst.write = 1;
}
alu.dst.chan = i % 4;
alu.src[0].sel = gpr;
alu.src[0].chan = (base_chan - (i % 2));
alu.src[1].sel = V_SQ_ALU_SRC_PARAM_BASE + ctx->shader->input[input].lds_pos;
alu.bank_swizzle_force = SQ_ALU_VEC_210;
if ((i % 4) == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int evergreen_interp_flat(struct r600_shader_ctx *ctx, int input)
{
int i, r;
struct r600_bytecode_alu alu;
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_INTERP_LOAD_P0;
alu.dst.sel = ctx->shader->input[input].gpr;
alu.dst.write = 1;
alu.dst.chan = i;
alu.src[0].sel = V_SQ_ALU_SRC_PARAM_BASE + ctx->shader->input[input].lds_pos;
alu.src[0].chan = i;
if (i == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
/*
* Special export handling in shaders
*
* shader export ARRAY_BASE for EXPORT_POS:
* 60 is position
* 61 is misc vector
* 62, 63 are clip distance vectors
*
* The use of the values exported in 61-63 are controlled by PA_CL_VS_OUT_CNTL:
* VS_OUT_MISC_VEC_ENA - enables the use of all fields in export 61
* USE_VTX_POINT_SIZE - point size in the X channel of export 61
* USE_VTX_EDGE_FLAG - edge flag in the Y channel of export 61
* USE_VTX_RENDER_TARGET_INDX - render target index in the Z channel of export 61
* USE_VTX_VIEWPORT_INDX - viewport index in the W channel of export 61
* USE_VTX_KILL_FLAG - kill flag in the Z channel of export 61 (mutually
* exclusive from render target index)
* VS_OUT_CCDIST0_VEC_ENA/VS_OUT_CCDIST1_VEC_ENA - enable clip distance vectors
*
*
* shader export ARRAY_BASE for EXPORT_PIXEL:
* 0-7 CB targets
* 61 computed Z vector
*
* The use of the values exported in the computed Z vector are controlled
* by DB_SHADER_CONTROL:
* Z_EXPORT_ENABLE - Z as a float in RED
* STENCIL_REF_EXPORT_ENABLE - stencil ref as int in GREEN
* COVERAGE_TO_MASK_ENABLE - alpha to mask in ALPHA
* MASK_EXPORT_ENABLE - pixel sample mask in BLUE
* DB_SOURCE_FORMAT - export control restrictions
*
*/
/* Map name/sid pair from tgsi to the 8-bit semantic index for SPI setup */
static int r600_spi_sid(struct r600_shader_io * io)
{
int index, name = io->name;
/* These params are handled differently, they don't need
* semantic indices, so we'll use 0 for them.
*/
if (name == TGSI_SEMANTIC_POSITION ||
name == TGSI_SEMANTIC_PSIZE ||
name == TGSI_SEMANTIC_EDGEFLAG ||
name == TGSI_SEMANTIC_FACE ||
name == TGSI_SEMANTIC_SAMPLEMASK)
index = 0;
else {
if (name == TGSI_SEMANTIC_GENERIC) {
/* For generic params simply use sid from tgsi */
index = io->sid;
} else {
/* For non-generic params - pack name and sid into 8 bits */
index = 0x80 | (name<<3) | (io->sid);
}
/* Make sure that all really used indices have nonzero value, so
* we can just compare it to 0 later instead of comparing the name
* with different values to detect special cases. */
index++;
}
return index;
};
/* we need this to get a common lds index for vs/tcs/tes input/outputs */
int r600_get_lds_unique_index(unsigned semantic_name, unsigned index)
{
switch (semantic_name) {
case TGSI_SEMANTIC_POSITION:
return 0;
case TGSI_SEMANTIC_PSIZE:
return 1;
case TGSI_SEMANTIC_CLIPDIST:
assert(index <= 1);
return 2 + index;
case TGSI_SEMANTIC_GENERIC:
if (index <= 63-4)
return 4 + index - 9;
else
/* same explanation as in the default statement,
* the only user hitting this is st/nine.
*/
return 0;
/* patch indices are completely separate and thus start from 0 */
case TGSI_SEMANTIC_TESSOUTER:
return 0;
case TGSI_SEMANTIC_TESSINNER:
return 1;
case TGSI_SEMANTIC_PATCH:
return 2 + index;
default:
/* Don't fail here. The result of this function is only used
* for LS, TCS, TES, and GS, where legacy GL semantics can't
* occur, but this function is called for all vertex shaders
* before it's known whether LS will be compiled or not.
*/
return 0;
}
}
/* turn input into interpolate on EG */
static int evergreen_interp_input(struct r600_shader_ctx *ctx, int index)
{
int r = 0;
if (ctx->shader->input[index].spi_sid) {
ctx->shader->input[index].lds_pos = ctx->shader->nlds++;
if (ctx->shader->input[index].interpolate > 0) {
evergreen_interp_assign_ij_index(ctx, index);
r = evergreen_interp_alu(ctx, index);
} else {
r = evergreen_interp_flat(ctx, index);
}
}
return r;
}
static int select_twoside_color(struct r600_shader_ctx *ctx, int front, int back)
{
struct r600_bytecode_alu alu;
int i, r;
int gpr_front = ctx->shader->input[front].gpr;
int gpr_back = ctx->shader->input[back].gpr;
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP3_CNDGT;
alu.is_op3 = 1;
alu.dst.write = 1;
alu.dst.sel = gpr_front;
alu.src[0].sel = ctx->face_gpr;
alu.src[1].sel = gpr_front;
alu.src[2].sel = gpr_back;
alu.dst.chan = i;
alu.src[1].chan = i;
alu.src[2].chan = i;
alu.last = (i==3);
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
return 0;
}
/* execute a single slot ALU calculation */
static int single_alu_op2(struct r600_shader_ctx *ctx, int op,
int dst_sel, int dst_chan,
int src0_sel, unsigned src0_chan_val,
int src1_sel, unsigned src1_chan_val)
{
struct r600_bytecode_alu alu;
int r, i;
if (ctx->bc->chip_class == CAYMAN && op == ALU_OP2_MULLO_INT) {
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = op;
alu.src[0].sel = src0_sel;
if (src0_sel == V_SQ_ALU_SRC_LITERAL)
alu.src[0].value = src0_chan_val;
else
alu.src[0].chan = src0_chan_val;
alu.src[1].sel = src1_sel;
if (src1_sel == V_SQ_ALU_SRC_LITERAL)
alu.src[1].value = src1_chan_val;
else
alu.src[1].chan = src1_chan_val;
alu.dst.sel = dst_sel;
alu.dst.chan = i;
alu.dst.write = i == dst_chan;
alu.last = (i == 3);
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = op;
alu.src[0].sel = src0_sel;
if (src0_sel == V_SQ_ALU_SRC_LITERAL)
alu.src[0].value = src0_chan_val;
else
alu.src[0].chan = src0_chan_val;
alu.src[1].sel = src1_sel;
if (src1_sel == V_SQ_ALU_SRC_LITERAL)
alu.src[1].value = src1_chan_val;
else
alu.src[1].chan = src1_chan_val;
alu.dst.sel = dst_sel;
alu.dst.chan = dst_chan;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
return 0;
}
/* execute a single slot ALU calculation */
static int single_alu_op3(struct r600_shader_ctx *ctx, int op,
int dst_sel, int dst_chan,
int src0_sel, unsigned src0_chan_val,
int src1_sel, unsigned src1_chan_val,
int src2_sel, unsigned src2_chan_val)
{
struct r600_bytecode_alu alu;
int r;
/* validate this for other ops */
assert(op == ALU_OP3_MULADD_UINT24 || op == ALU_OP3_CNDE_INT);
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = op;
alu.src[0].sel = src0_sel;
if (src0_sel == V_SQ_ALU_SRC_LITERAL)
alu.src[0].value = src0_chan_val;
else
alu.src[0].chan = src0_chan_val;
alu.src[1].sel = src1_sel;
if (src1_sel == V_SQ_ALU_SRC_LITERAL)
alu.src[1].value = src1_chan_val;
else
alu.src[1].chan = src1_chan_val;
alu.src[2].sel = src2_sel;
if (src2_sel == V_SQ_ALU_SRC_LITERAL)
alu.src[2].value = src2_chan_val;
else
alu.src[2].chan = src2_chan_val;
alu.dst.sel = dst_sel;
alu.dst.chan = dst_chan;
alu.is_op3 = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
return 0;
}
/* put it in temp_reg.x */
static int get_lds_offset0(struct r600_shader_ctx *ctx,
int rel_patch_chan,
int temp_reg, bool is_patch_var)
{
int r;
/* MUL temp.x, patch_stride (input_vals.x), rel_patch_id (r0.y (tcs)) */
/* ADD
Dimension - patch0_offset (input_vals.z),
Non-dim - patch0_data_offset (input_vals.w)
*/
r = single_alu_op3(ctx, ALU_OP3_MULADD_UINT24,
temp_reg, 0,
ctx->tess_output_info, 0,
0, rel_patch_chan,
ctx->tess_output_info, is_patch_var ? 3 : 2);
if (r)
return r;
return 0;
}
static inline int get_address_file_reg(struct r600_shader_ctx *ctx, int index)
{
return index > 0 ? ctx->bc->index_reg[index - 1] : ctx->bc->ar_reg;
}
static int r600_get_temp(struct r600_shader_ctx *ctx)
{
return ctx->temp_reg + ctx->max_driver_temp_used++;
}
static int vs_add_primid_output(struct r600_shader_ctx *ctx, int prim_id_sid)
{
int i;
i = ctx->shader->noutput++;
ctx->shader->output[i].name = TGSI_SEMANTIC_PRIMID;
ctx->shader->output[i].sid = 0;
ctx->shader->output[i].gpr = 0;
ctx->shader->output[i].interpolate = TGSI_INTERPOLATE_CONSTANT;
ctx->shader->output[i].write_mask = 0x4;
ctx->shader->output[i].spi_sid = prim_id_sid;
return 0;
}
static int tgsi_barrier(struct r600_shader_ctx *ctx)
{
struct r600_bytecode_alu alu;
int r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
return 0;
}
static int tgsi_declaration(struct r600_shader_ctx *ctx)
{
struct tgsi_full_declaration *d = &ctx->parse.FullToken.FullDeclaration;
int r, i, j, count = d->Range.Last - d->Range.First + 1;
switch (d->Declaration.File) {
case TGSI_FILE_INPUT:
for (j = 0; j < count; j++) {
i = ctx->shader->ninput + j;
assert(i < ARRAY_SIZE(ctx->shader->input));
ctx->shader->input[i].name = d->Semantic.Name;
ctx->shader->input[i].sid = d->Semantic.Index + j;
ctx->shader->input[i].interpolate = d->Interp.Interpolate;
ctx->shader->input[i].interpolate_location = d->Interp.Location;
ctx->shader->input[i].gpr = ctx->file_offset[TGSI_FILE_INPUT] + d->Range.First + j;
if (ctx->type == PIPE_SHADER_FRAGMENT) {
ctx->shader->input[i].spi_sid = r600_spi_sid(&ctx->shader->input[i]);
switch (ctx->shader->input[i].name) {
case TGSI_SEMANTIC_FACE:
if (ctx->face_gpr != -1)
ctx->shader->input[i].gpr = ctx->face_gpr; /* already allocated by allocate_system_value_inputs */
else
ctx->face_gpr = ctx->shader->input[i].gpr;
break;
case TGSI_SEMANTIC_COLOR:
ctx->colors_used++;
break;
case TGSI_SEMANTIC_POSITION:
ctx->fragcoord_input = i;
break;
case TGSI_SEMANTIC_PRIMID:
/* set this for now */
ctx->shader->gs_prim_id_input = true;
ctx->shader->ps_prim_id_input = i;
break;
}
if (ctx->bc->chip_class >= EVERGREEN) {
if ((r = evergreen_interp_input(ctx, i)))
return r;
}
} else if (ctx->type == PIPE_SHADER_GEOMETRY) {
/* FIXME probably skip inputs if they aren't passed in the ring */
ctx->shader->input[i].ring_offset = ctx->next_ring_offset;
ctx->next_ring_offset += 16;
if (ctx->shader->input[i].name == TGSI_SEMANTIC_PRIMID)
ctx->shader->gs_prim_id_input = true;
}
}
ctx->shader->ninput += count;
break;
case TGSI_FILE_OUTPUT:
for (j = 0; j < count; j++) {
i = ctx->shader->noutput + j;
assert(i < ARRAY_SIZE(ctx->shader->output));
ctx->shader->output[i].name = d->Semantic.Name;
ctx->shader->output[i].sid = d->Semantic.Index + j;
ctx->shader->output[i].gpr = ctx->file_offset[TGSI_FILE_OUTPUT] + d->Range.First + j;
ctx->shader->output[i].interpolate = d->Interp.Interpolate;
ctx->shader->output[i].write_mask = d->Declaration.UsageMask;
if (ctx->type == PIPE_SHADER_VERTEX ||
ctx->type == PIPE_SHADER_GEOMETRY ||
ctx->type == PIPE_SHADER_TESS_EVAL) {
ctx->shader->output[i].spi_sid = r600_spi_sid(&ctx->shader->output[i]);
switch (d->Semantic.Name) {
case TGSI_SEMANTIC_CLIPDIST:
break;
case TGSI_SEMANTIC_PSIZE:
ctx->shader->vs_out_misc_write = 1;
ctx->shader->vs_out_point_size = 1;
break;
case TGSI_SEMANTIC_EDGEFLAG:
ctx->shader->vs_out_misc_write = 1;
ctx->shader->vs_out_edgeflag = 1;
ctx->edgeflag_output = i;
break;
case TGSI_SEMANTIC_VIEWPORT_INDEX:
ctx->shader->vs_out_misc_write = 1;
ctx->shader->vs_out_viewport = 1;
break;
case TGSI_SEMANTIC_LAYER:
ctx->shader->vs_out_misc_write = 1;
ctx->shader->vs_out_layer = 1;
break;
case TGSI_SEMANTIC_CLIPVERTEX:
ctx->clip_vertex_write = TRUE;
ctx->cv_output = i;
break;
}
if (ctx->type == PIPE_SHADER_GEOMETRY) {
ctx->gs_out_ring_offset += 16;
}
} else if (ctx->type == PIPE_SHADER_FRAGMENT) {
switch (d->Semantic.Name) {
case TGSI_SEMANTIC_COLOR:
ctx->shader->nr_ps_max_color_exports++;
break;
}
}
}
ctx->shader->noutput += count;
break;
case TGSI_FILE_TEMPORARY:
if (ctx->info.indirect_files & (1 << TGSI_FILE_TEMPORARY)) {
if (d->Array.ArrayID) {
r600_add_gpr_array(ctx->shader,
ctx->file_offset[TGSI_FILE_TEMPORARY] +
d->Range.First,
d->Range.Last - d->Range.First + 1, 0x0F);
}
}
break;
case TGSI_FILE_CONSTANT:
case TGSI_FILE_SAMPLER:
case TGSI_FILE_SAMPLER_VIEW:
case TGSI_FILE_ADDRESS:
case TGSI_FILE_BUFFER:
case TGSI_FILE_IMAGE:
case TGSI_FILE_MEMORY:
break;
case TGSI_FILE_HW_ATOMIC:
i = ctx->shader->nhwatomic_ranges;
ctx->shader->atomics[i].start = d->Range.First;
ctx->shader->atomics[i].end = d->Range.Last;
ctx->shader->atomics[i].hw_idx = ctx->shader->atomic_base + ctx->shader->nhwatomic;
ctx->shader->atomics[i].array_id = d->Array.ArrayID;
ctx->shader->atomics[i].buffer_id = d->Dim.Index2D;
ctx->shader->nhwatomic_ranges++;
ctx->shader->nhwatomic += count;
break;
case TGSI_FILE_SYSTEM_VALUE:
if (d->Semantic.Name == TGSI_SEMANTIC_SAMPLEMASK ||
d->Semantic.Name == TGSI_SEMANTIC_SAMPLEID ||
d->Semantic.Name == TGSI_SEMANTIC_SAMPLEPOS) {
break; /* Already handled from allocate_system_value_inputs */
} else if (d->Semantic.Name == TGSI_SEMANTIC_INSTANCEID) {
break;
} else if (d->Semantic.Name == TGSI_SEMANTIC_VERTEXID)
break;
else if (d->Semantic.Name == TGSI_SEMANTIC_INVOCATIONID)
break;
else if (d->Semantic.Name == TGSI_SEMANTIC_TESSINNER ||
d->Semantic.Name == TGSI_SEMANTIC_TESSOUTER) {
int param = r600_get_lds_unique_index(d->Semantic.Name, 0);
int dreg = d->Semantic.Name == TGSI_SEMANTIC_TESSINNER ? 3 : 2;
unsigned temp_reg = r600_get_temp(ctx);
r = get_lds_offset0(ctx, 2, temp_reg, true);
if (r)
return r;
r = single_alu_op2(ctx, ALU_OP2_ADD_INT,
temp_reg, 0,
temp_reg, 0,
V_SQ_ALU_SRC_LITERAL, param * 16);
if (r)
return r;
do_lds_fetch_values(ctx, temp_reg, dreg, 0xf);
}
else if (d->Semantic.Name == TGSI_SEMANTIC_TESSCOORD) {
/* MOV r1.x, r0.x;
MOV r1.y, r0.y;
*/
for (i = 0; i < 2; i++) {
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = 0;
alu.src[0].chan = 0 + i;
alu.dst.sel = 1;
alu.dst.chan = 0 + i;
alu.dst.write = 1;
alu.last = (i == 1) ? 1 : 0;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
/* ADD r1.z, 1.0f, -r0.x */
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_ADD;
alu.src[0].sel = V_SQ_ALU_SRC_1;
alu.src[1].sel = 1;
alu.src[1].chan = 0;
alu.src[1].neg = 1;
alu.dst.sel = 1;
alu.dst.chan = 2;
alu.dst.write = 1;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* ADD r1.z, r1.z, -r1.y */
alu.op = ALU_OP2_ADD;
alu.src[0].sel = 1;
alu.src[0].chan = 2;
alu.src[1].sel = 1;
alu.src[1].chan = 1;
alu.src[1].neg = 1;
alu.dst.sel = 1;
alu.dst.chan = 2;
alu.dst.write = 1;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
break;
}
break;
default:
R600_ERR("unsupported file %d declaration\n", d->Declaration.File);
return -EINVAL;
}
return 0;
}
static int allocate_system_value_inputs(struct r600_shader_ctx *ctx, int gpr_offset)
{
struct tgsi_parse_context parse;
struct {
boolean enabled;
int *reg;
unsigned name, alternate_name;
} inputs[2] = {
{ false, &ctx->face_gpr, TGSI_SEMANTIC_SAMPLEMASK, ~0u }, /* lives in Front Face GPR.z */
{ false, &ctx->fixed_pt_position_gpr, TGSI_SEMANTIC_SAMPLEID, TGSI_SEMANTIC_SAMPLEPOS } /* SAMPLEID is in Fixed Point Position GPR.w */
};
int num_regs = 0;
unsigned k, i;
if (tgsi_parse_init(&parse, ctx->tokens) != TGSI_PARSE_OK) {
return 0;
}
/* need to scan shader for system values and interpolateAtSample/Offset/Centroid */
while (!tgsi_parse_end_of_tokens(&parse)) {
tgsi_parse_token(&parse);
if (parse.FullToken.Token.Type == TGSI_TOKEN_TYPE_INSTRUCTION) {
const struct tgsi_full_instruction *inst = &parse.FullToken.FullInstruction;
if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE ||
inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
inst->Instruction.Opcode == TGSI_OPCODE_INTERP_CENTROID)
{
int interpolate, location, k;
if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
location = TGSI_INTERPOLATE_LOC_CENTER;
inputs[1].enabled = true; /* needs SAMPLEID */
} else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
location = TGSI_INTERPOLATE_LOC_CENTER;
/* Needs sample positions, currently those are always available */
} else {
location = TGSI_INTERPOLATE_LOC_CENTROID;
}
interpolate = ctx->info.input_interpolate[inst->Src[0].Register.Index];
k = eg_get_interpolator_index(interpolate, location);
if (k >= 0)
ctx->eg_interpolators[k].enabled = true;
}
} else if (parse.FullToken.Token.Type == TGSI_TOKEN_TYPE_DECLARATION) {
struct tgsi_full_declaration *d = &parse.FullToken.FullDeclaration;
if (d->Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
for (k = 0; k < ARRAY_SIZE(inputs); k++) {
if (d->Semantic.Name == inputs[k].name ||
d->Semantic.Name == inputs[k].alternate_name) {
inputs[k].enabled = true;
}
}
}
}
}
tgsi_parse_free(&parse);
for (i = 0; i < ARRAY_SIZE(inputs); i++) {
boolean enabled = inputs[i].enabled;
int *reg = inputs[i].reg;
unsigned name = inputs[i].name;
if (enabled) {
int gpr = gpr_offset + num_regs++;
ctx->shader->nsys_inputs++;
// add to inputs, allocate a gpr
k = ctx->shader->ninput++;
ctx->shader->input[k].name = name;
ctx->shader->input[k].sid = 0;
ctx->shader->input[k].interpolate = TGSI_INTERPOLATE_CONSTANT;
ctx->shader->input[k].interpolate_location = TGSI_INTERPOLATE_LOC_CENTER;
*reg = ctx->shader->input[k].gpr = gpr;
}
}
return gpr_offset + num_regs;
}
/*
* for evergreen we need to scan the shader to find the number of GPRs we need to
* reserve for interpolation and system values
*
* we need to know if we are going to emit
* any sample or centroid inputs
* if perspective and linear are required
*/
static int evergreen_gpr_count(struct r600_shader_ctx *ctx)
{
unsigned i;
int num_baryc;
struct tgsi_parse_context parse;
memset(&ctx->eg_interpolators, 0, sizeof(ctx->eg_interpolators));
for (i = 0; i < ctx->info.num_inputs; i++) {
int k;
/* skip position/face/mask/sampleid */
if (ctx->info.input_semantic_name[i] == TGSI_SEMANTIC_POSITION ||
ctx->info.input_semantic_name[i] == TGSI_SEMANTIC_FACE ||
ctx->info.input_semantic_name[i] == TGSI_SEMANTIC_SAMPLEMASK ||
ctx->info.input_semantic_name[i] == TGSI_SEMANTIC_SAMPLEID)
continue;
k = eg_get_interpolator_index(
ctx->info.input_interpolate[i],
ctx->info.input_interpolate_loc[i]);
if (k >= 0)
ctx->eg_interpolators[k].enabled = TRUE;
}
if (tgsi_parse_init(&parse, ctx->tokens) != TGSI_PARSE_OK) {
return 0;
}
/* need to scan shader for system values and interpolateAtSample/Offset/Centroid */
while (!tgsi_parse_end_of_tokens(&parse)) {
tgsi_parse_token(&parse);
if (parse.FullToken.Token.Type == TGSI_TOKEN_TYPE_INSTRUCTION) {
const struct tgsi_full_instruction *inst = &parse.FullToken.FullInstruction;
if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE ||
inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
inst->Instruction.Opcode == TGSI_OPCODE_INTERP_CENTROID)
{
int interpolate, location, k;
if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
location = TGSI_INTERPOLATE_LOC_CENTER;
} else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
location = TGSI_INTERPOLATE_LOC_CENTER;
} else {
location = TGSI_INTERPOLATE_LOC_CENTROID;
}
interpolate = ctx->info.input_interpolate[inst->Src[0].Register.Index];
k = eg_get_interpolator_index(interpolate, location);
if (k >= 0)
ctx->eg_interpolators[k].enabled = true;
}
}
}
tgsi_parse_free(&parse);
/* assign gpr to each interpolator according to priority */
num_baryc = 0;
for (i = 0; i < ARRAY_SIZE(ctx->eg_interpolators); i++) {
if (ctx->eg_interpolators[i].enabled) {
ctx->eg_interpolators[i].ij_index = num_baryc;
num_baryc ++;
}
}
/* XXX PULL MODEL and LINE STIPPLE */
num_baryc = (num_baryc + 1) >> 1;
return allocate_system_value_inputs(ctx, num_baryc);
}
/* sample_id_sel == NULL means fetch for current sample */
static int load_sample_position(struct r600_shader_ctx *ctx, struct r600_shader_src *sample_id, int chan_sel)
{
struct r600_bytecode_vtx vtx;
int r, t1;
assert(ctx->fixed_pt_position_gpr != -1);
t1 = r600_get_temp(ctx);
memset(&vtx, 0, sizeof(struct r600_bytecode_vtx));
vtx.op = FETCH_OP_VFETCH;
vtx.buffer_id = R600_BUFFER_INFO_CONST_BUFFER;
vtx.fetch_type = SQ_VTX_FETCH_NO_INDEX_OFFSET;
if (sample_id == NULL) {
vtx.src_gpr = ctx->fixed_pt_position_gpr; // SAMPLEID is in .w;
vtx.src_sel_x = 3;
}
else {
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
r600_bytecode_src(&alu.src[0], sample_id, chan_sel);
alu.dst.sel = t1;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
vtx.src_gpr = t1;
vtx.src_sel_x = 0;
}
vtx.mega_fetch_count = 16;
vtx.dst_gpr = t1;
vtx.dst_sel_x = 0;
vtx.dst_sel_y = 1;
vtx.dst_sel_z = 2;
vtx.dst_sel_w = 3;
vtx.data_format = FMT_32_32_32_32_FLOAT;
vtx.num_format_all = 2;
vtx.format_comp_all = 1;
vtx.use_const_fields = 0;
vtx.offset = 0;
vtx.endian = r600_endian_swap(32);
vtx.srf_mode_all = 1; /* SRF_MODE_NO_ZERO */
r = r600_bytecode_add_vtx(ctx->bc, &vtx);
if (r)
return r;
return t1;
}
static int load_block_grid_size(struct r600_shader_ctx *ctx, bool load_block)
{
struct r600_bytecode_vtx vtx;
int r, t1;
if (ctx->cs_block_size_loaded)
return ctx->cs_block_size_reg;
if (ctx->cs_grid_size_loaded)
return ctx->cs_grid_size_reg;
t1 = load_block ? ctx->cs_block_size_reg : ctx->cs_grid_size_reg;
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = V_SQ_ALU_SRC_0;
alu.dst.sel = t1;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
memset(&vtx, 0, sizeof(struct r600_bytecode_vtx));
vtx.op = FETCH_OP_VFETCH;
vtx.buffer_id = R600_BUFFER_INFO_CONST_BUFFER;
vtx.fetch_type = SQ_VTX_FETCH_NO_INDEX_OFFSET;
vtx.src_gpr = t1;
vtx.src_sel_x = 0;
vtx.mega_fetch_count = 16;
vtx.dst_gpr = t1;
vtx.dst_sel_x = 0;
vtx.dst_sel_y = 1;
vtx.dst_sel_z = 2;
vtx.dst_sel_w = 7;
vtx.data_format = FMT_32_32_32_32;
vtx.num_format_all = 1;
vtx.format_comp_all = 0;
vtx.use_const_fields = 0;
vtx.offset = load_block ? 0 : 16; // first element is size of buffer
vtx.endian = r600_endian_swap(32);
vtx.srf_mode_all = 1; /* SRF_MODE_NO_ZERO */
r = r600_bytecode_add_vtx(ctx->bc, &vtx);
if (r)
return r;
if (load_block)
ctx->cs_block_size_loaded = true;
else
ctx->cs_grid_size_loaded = true;
return t1;
}
static void tgsi_src(struct r600_shader_ctx *ctx,
const struct tgsi_full_src_register *tgsi_src,
struct r600_shader_src *r600_src)
{
memset(r600_src, 0, sizeof(*r600_src));
r600_src->swizzle[0] = tgsi_src->Register.SwizzleX;
r600_src->swizzle[1] = tgsi_src->Register.SwizzleY;
r600_src->swizzle[2] = tgsi_src->Register.SwizzleZ;
r600_src->swizzle[3] = tgsi_src->Register.SwizzleW;
r600_src->neg = tgsi_src->Register.Negate;
r600_src->abs = tgsi_src->Register.Absolute;
if (tgsi_src->Register.File == TGSI_FILE_IMMEDIATE) {
int index;
if ((tgsi_src->Register.SwizzleX == tgsi_src->Register.SwizzleY) &&
(tgsi_src->Register.SwizzleX == tgsi_src->Register.SwizzleZ) &&
(tgsi_src->Register.SwizzleX == tgsi_src->Register.SwizzleW)) {
index = tgsi_src->Register.Index * 4 + tgsi_src->Register.SwizzleX;
r600_bytecode_special_constants(ctx->literals[index], &r600_src->sel, &r600_src->neg, r600_src->abs);
if (r600_src->sel != V_SQ_ALU_SRC_LITERAL)
return;
}
index = tgsi_src->Register.Index;
r600_src->sel = V_SQ_ALU_SRC_LITERAL;
memcpy(r600_src->value, ctx->literals + index * 4, sizeof(r600_src->value));
} else if (tgsi_src->Register.File == TGSI_FILE_SYSTEM_VALUE) {
if (ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_SAMPLEMASK) {
r600_src->swizzle[0] = 2; // Z value
r600_src->swizzle[1] = 2;
r600_src->swizzle[2] = 2;
r600_src->swizzle[3] = 2;
r600_src->sel = ctx->face_gpr;
} else if (ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_SAMPLEID) {
r600_src->swizzle[0] = 3; // W value
r600_src->swizzle[1] = 3;
r600_src->swizzle[2] = 3;
r600_src->swizzle[3] = 3;
r600_src->sel = ctx->fixed_pt_position_gpr;
} else if (ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_SAMPLEPOS) {
r600_src->swizzle[0] = 0;
r600_src->swizzle[1] = 1;
r600_src->swizzle[2] = 4;
r600_src->swizzle[3] = 4;
r600_src->sel = load_sample_position(ctx, NULL, -1);
} else if (ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_INSTANCEID) {
r600_src->swizzle[0] = 3;
r600_src->swizzle[1] = 3;
r600_src->swizzle[2] = 3;
r600_src->swizzle[3] = 3;
r600_src->sel = 0;
} else if (ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_VERTEXID) {
r600_src->swizzle[0] = 0;
r600_src->swizzle[1] = 0;
r600_src->swizzle[2] = 0;
r600_src->swizzle[3] = 0;
r600_src->sel = 0;
} else if (ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_THREAD_ID) {
r600_src->sel = 0;
} else if (ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_BLOCK_ID) {
r600_src->sel = 1;
} else if (ctx->type != PIPE_SHADER_TESS_CTRL && ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_INVOCATIONID) {
r600_src->swizzle[0] = 3;
r600_src->swizzle[1] = 3;
r600_src->swizzle[2] = 3;
r600_src->swizzle[3] = 3;
r600_src->sel = 1;
} else if (ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_INVOCATIONID) {
r600_src->swizzle[0] = 2;
r600_src->swizzle[1] = 2;
r600_src->swizzle[2] = 2;
r600_src->swizzle[3] = 2;
r600_src->sel = 0;
} else if (ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_TESSCOORD) {
r600_src->sel = 1;
} else if (ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_TESSINNER) {
r600_src->sel = 3;
} else if (ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_TESSOUTER) {
r600_src->sel = 2;
} else if (ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_VERTICESIN) {
if (ctx->type == PIPE_SHADER_TESS_CTRL) {
r600_src->sel = ctx->tess_input_info;
r600_src->swizzle[0] = 2;
r600_src->swizzle[1] = 2;
r600_src->swizzle[2] = 2;
r600_src->swizzle[3] = 2;
} else {
r600_src->sel = ctx->tess_input_info;
r600_src->swizzle[0] = 3;
r600_src->swizzle[1] = 3;
r600_src->swizzle[2] = 3;
r600_src->swizzle[3] = 3;
}
} else if (ctx->type == PIPE_SHADER_TESS_CTRL && ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_PRIMID) {
r600_src->sel = 0;
r600_src->swizzle[0] = 0;
r600_src->swizzle[1] = 0;
r600_src->swizzle[2] = 0;
r600_src->swizzle[3] = 0;
} else if (ctx->type == PIPE_SHADER_TESS_EVAL && ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_PRIMID) {
r600_src->sel = 0;
r600_src->swizzle[0] = 3;
r600_src->swizzle[1] = 3;
r600_src->swizzle[2] = 3;
r600_src->swizzle[3] = 3;
} else if (ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_GRID_SIZE) {
r600_src->sel = load_block_grid_size(ctx, false);
} else if (ctx->info.system_value_semantic_name[tgsi_src->Register.Index] == TGSI_SEMANTIC_BLOCK_SIZE) {
r600_src->sel = load_block_grid_size(ctx, true);
}
} else {
if (tgsi_src->Register.Indirect)
r600_src->rel = V_SQ_REL_RELATIVE;
r600_src->sel = tgsi_src->Register.Index;
r600_src->sel += ctx->file_offset[tgsi_src->Register.File];
}
if (tgsi_src->Register.File == TGSI_FILE_CONSTANT) {
if (tgsi_src->Register.Dimension) {
r600_src->kc_bank = tgsi_src->Dimension.Index;
if (tgsi_src->Dimension.Indirect) {
r600_src->kc_rel = 1;
}
}
}
}
static int tgsi_fetch_rel_const(struct r600_shader_ctx *ctx,
unsigned int cb_idx, unsigned cb_rel, unsigned int offset, unsigned ar_chan,
unsigned int dst_reg)
{
struct r600_bytecode_vtx vtx;
unsigned int ar_reg;
int r;
if (offset) {
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP2_ADD_INT;
alu.src[0].sel = ctx->bc->ar_reg;
alu.src[0].chan = ar_chan;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = offset;
alu.dst.sel = dst_reg;
alu.dst.chan = ar_chan;
alu.dst.write = 1;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
ar_reg = dst_reg;
} else {
ar_reg = ctx->bc->ar_reg;
}
memset(&vtx, 0, sizeof(vtx));
vtx.buffer_id = cb_idx;
vtx.fetch_type = SQ_VTX_FETCH_NO_INDEX_OFFSET;
vtx.src_gpr = ar_reg;
vtx.src_sel_x = ar_chan;
vtx.mega_fetch_count = 16;
vtx.dst_gpr = dst_reg;
vtx.dst_sel_x = 0; /* SEL_X */
vtx.dst_sel_y = 1; /* SEL_Y */
vtx.dst_sel_z = 2; /* SEL_Z */
vtx.dst_sel_w = 3; /* SEL_W */
vtx.data_format = FMT_32_32_32_32_FLOAT;
vtx.num_format_all = 2; /* NUM_FORMAT_SCALED */
vtx.format_comp_all = 1; /* FORMAT_COMP_SIGNED */
vtx.endian = r600_endian_swap(32);
vtx.buffer_index_mode = cb_rel; // cb_rel ? V_SQ_CF_INDEX_0 : V_SQ_CF_INDEX_NONE;
if ((r = r600_bytecode_add_vtx(ctx->bc, &vtx)))
return r;
return 0;
}
static int fetch_gs_input(struct r600_shader_ctx *ctx, struct tgsi_full_src_register *src, unsigned int dst_reg)
{
struct r600_bytecode_vtx vtx;
int r;
unsigned index = src->Register.Index;
unsigned vtx_id = src->Dimension.Index;
int offset_reg = ctx->gs_rotated_input[vtx_id / 3];
int offset_chan = vtx_id % 3;
int t2 = 0;
/* offsets of per-vertex data in ESGS ring are passed to GS in R0.x, R0.y,
* R0.w, R1.x, R1.y, R1.z (it seems R0.z is used for PrimitiveID) */
if (offset_reg == ctx->gs_rotated_input[0] && offset_chan == 2)
offset_chan = 3;
if (src->Dimension.Indirect || src->Register.Indirect)
t2 = r600_get_temp(ctx);
if (src->Dimension.Indirect) {
int treg[3];
struct r600_bytecode_alu alu;
int r, i;
unsigned addr_reg;
addr_reg = get_address_file_reg(ctx, src->DimIndirect.Index);
if (src->DimIndirect.Index > 0) {
r = single_alu_op2(ctx, ALU_OP1_MOV,
ctx->bc->ar_reg, 0,
addr_reg, 0,
0, 0);
if (r)
return r;
}
/*
we have to put the R0.x/y/w into Rt.x Rt+1.x Rt+2.x then index reg from Rt.
at least this is what fglrx seems to do. */
for (i = 0; i < 3; i++) {
treg[i] = r600_get_temp(ctx);
}
r600_add_gpr_array(ctx->shader, treg[0], 3, 0x0F);
for (i = 0; i < 3; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = ctx->gs_rotated_input[0];
alu.src[0].chan = i == 2 ? 3 : i;
alu.dst.sel = treg[i];
alu.dst.chan = 0;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = treg[0];
alu.src[0].rel = 1;
alu.dst.sel = t2;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
offset_reg = t2;
offset_chan = 0;
}
if (src->Register.Indirect) {
int addr_reg;
unsigned first = ctx->info.input_array_first[src->Indirect.ArrayID];
addr_reg = get_address_file_reg(ctx, src->Indirect.Index);
/* pull the value from index_reg */
r = single_alu_op2(ctx, ALU_OP2_ADD_INT,
t2, 1,
addr_reg, 0,
V_SQ_ALU_SRC_LITERAL, first);
if (r)
return r;
r = single_alu_op3(ctx, ALU_OP3_MULADD_UINT24,
t2, 0,
t2, 1,
V_SQ_ALU_SRC_LITERAL, 4,
offset_reg, offset_chan);
if (r)
return r;
offset_reg = t2;
offset_chan = 0;
index = src->Register.Index - first;
}
memset(&vtx, 0, sizeof(vtx));
vtx.buffer_id = R600_GS_RING_CONST_BUFFER;
vtx.fetch_type = SQ_VTX_FETCH_NO_INDEX_OFFSET;
vtx.src_gpr = offset_reg;
vtx.src_sel_x = offset_chan;
vtx.offset = index * 16; /*bytes*/
vtx.mega_fetch_count = 16;
vtx.dst_gpr = dst_reg;
vtx.dst_sel_x = 0; /* SEL_X */
vtx.dst_sel_y = 1; /* SEL_Y */
vtx.dst_sel_z = 2; /* SEL_Z */
vtx.dst_sel_w = 3; /* SEL_W */
if (ctx->bc->chip_class >= EVERGREEN) {
vtx.use_const_fields = 1;
} else {
vtx.data_format = FMT_32_32_32_32_FLOAT;
}
if ((r = r600_bytecode_add_vtx(ctx->bc, &vtx)))
return r;
return 0;
}
static int tgsi_split_gs_inputs(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
unsigned i;
for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
struct tgsi_full_src_register *src = &inst->Src[i];
if (src->Register.File == TGSI_FILE_INPUT) {
if (ctx->shader->input[src->Register.Index].name == TGSI_SEMANTIC_PRIMID) {
/* primitive id is in R0.z */
ctx->src[i].sel = 0;
ctx->src[i].swizzle[0] = 2;
}
}
if (src->Register.File == TGSI_FILE_INPUT && src->Register.Dimension) {
int treg = r600_get_temp(ctx);
fetch_gs_input(ctx, src, treg);
ctx->src[i].sel = treg;
ctx->src[i].rel = 0;
}
}
return 0;
}
/* Tessellation shaders pass outputs to the next shader using LDS.
*
* LS outputs = TCS(HS) inputs
* TCS(HS) outputs = TES(DS) inputs
*
* The LDS layout is:
* - TCS inputs for patch 0
* - TCS inputs for patch 1
* - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
* - ...
* - TCS outputs for patch 0 = get_tcs_out_patch0_offset
* - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
* - TCS outputs for patch 1
* - Per-patch TCS outputs for patch 1
* - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
* - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
* - ...
*
* All three shaders VS(LS), TCS, TES share the same LDS space.
*/
/* this will return with the dw address in temp_reg.x */
static int r600_get_byte_address(struct r600_shader_ctx *ctx, int temp_reg,
const struct tgsi_full_dst_register *dst,
const struct tgsi_full_src_register *src,
int stride_bytes_reg, int stride_bytes_chan)
{
struct tgsi_full_dst_register reg;
ubyte *name, *index, *array_first;
int r;
int param;
struct tgsi_shader_info *info = &ctx->info;
/* Set the register description. The address computation is the same
* for sources and destinations. */
if (src) {
reg.Register.File = src->Register.File;
reg.Register.Index = src->Register.Index;
reg.Register.Indirect = src->Register.Indirect;
reg.Register.Dimension = src->Register.Dimension;
reg.Indirect = src->Indirect;
reg.Dimension = src->Dimension;
reg.DimIndirect = src->DimIndirect;
} else
reg = *dst;
/* If the register is 2-dimensional (e.g. an array of vertices
* in a primitive), calculate the base address of the vertex. */
if (reg.Register.Dimension) {
int sel, chan;
if (reg.Dimension.Indirect) {
unsigned addr_reg;
assert (reg.DimIndirect.File == TGSI_FILE_ADDRESS);
addr_reg = get_address_file_reg(ctx, reg.DimIndirect.Index);
/* pull the value from index_reg */
sel = addr_reg;
chan = 0;
} else {
sel = V_SQ_ALU_SRC_LITERAL;
chan = reg.Dimension.Index;
}
r = single_alu_op3(ctx, ALU_OP3_MULADD_UINT24,
temp_reg, 0,
stride_bytes_reg, stride_bytes_chan,
sel, chan,
temp_reg, 0);
if (r)
return r;
}
if (reg.Register.File == TGSI_FILE_INPUT) {
name = info->input_semantic_name;
index = info->input_semantic_index;
array_first = info->input_array_first;
} else if (reg.Register.File == TGSI_FILE_OUTPUT) {
name = info->output_semantic_name;
index = info->output_semantic_index;
array_first = info->output_array_first;
} else {
assert(0);
return -1;
}
if (reg.Register.Indirect) {
int addr_reg;
int first;
/* Add the relative address of the element. */
if (reg.Indirect.ArrayID)
first = array_first[reg.Indirect.ArrayID];
else
first = reg.Register.Index;
addr_reg = get_address_file_reg(ctx, reg.Indirect.Index);
/* pull the value from index_reg */
r = single_alu_op3(ctx, ALU_OP3_MULADD_UINT24,
temp_reg, 0,
V_SQ_ALU_SRC_LITERAL, 16,
addr_reg, 0,
temp_reg, 0);
if (r)
return r;
param = r600_get_lds_unique_index(name[first],
index[first]);
} else {
param = r600_get_lds_unique_index(name[reg.Register.Index],
index[reg.Register.Index]);
}
/* add to base_addr - passed in temp_reg.x */
if (param) {
r = single_alu_op2(ctx, ALU_OP2_ADD_INT,
temp_reg, 0,
temp_reg, 0,
V_SQ_ALU_SRC_LITERAL, param * 16);
if (r)
return r;
}
return 0;
}
static int do_lds_fetch_values(struct r600_shader_ctx *ctx, unsigned temp_reg,
unsigned dst_reg, unsigned mask)
{
struct r600_bytecode_alu alu;
int r, i, lasti;
if ((ctx->bc->cf_last->ndw>>1) >= 0x60)
ctx->bc->force_add_cf = 1;
lasti = tgsi_last_instruction(mask);
for (i = 1; i <= lasti; i++) {
if (!(mask & (1 << i)))
continue;
r = single_alu_op2(ctx, ALU_OP2_ADD_INT,
temp_reg, i,
temp_reg, 0,
V_SQ_ALU_SRC_LITERAL, 4 * i);
if (r)
return r;
}
for (i = 0; i <= lasti; i++) {
if (!(mask & (1 << i)))
continue;
/* emit an LDS_READ_RET */
memset(&alu, 0, sizeof(alu));
alu.op = LDS_OP1_LDS_READ_RET;
alu.src[0].sel = temp_reg;
alu.src[0].chan = i;
alu.src[1].sel = V_SQ_ALU_SRC_0;
alu.src[2].sel = V_SQ_ALU_SRC_0;
alu.dst.chan = 0;
alu.is_lds_idx_op = true;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
for (i = 0; i <= lasti; i++) {
if (!(mask & (1 << i)))
continue;
/* then read from LDS_OQ_A_POP */
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = EG_V_SQ_ALU_SRC_LDS_OQ_A_POP;
alu.src[0].chan = 0;
alu.dst.sel = dst_reg;
alu.dst.chan = i;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int fetch_mask(struct tgsi_src_register *reg)
{
int mask = 0;
mask |= 1 << reg->SwizzleX;
mask |= 1 << reg->SwizzleY;
mask |= 1 << reg->SwizzleZ;
mask |= 1 << reg->SwizzleW;
return mask;
}
static int fetch_tes_input(struct r600_shader_ctx *ctx, struct tgsi_full_src_register *src, unsigned int dst_reg)
{
int r;
unsigned temp_reg = r600_get_temp(ctx);
r = get_lds_offset0(ctx, 2, temp_reg,
src->Register.Dimension ? false : true);
if (r)
return r;
/* the base address is now in temp.x */
r = r600_get_byte_address(ctx, temp_reg,
NULL, src, ctx->tess_output_info, 1);
if (r)
return r;
r = do_lds_fetch_values(ctx, temp_reg, dst_reg, fetch_mask(&src->Register));
if (r)
return r;
return 0;
}
static int fetch_tcs_input(struct r600_shader_ctx *ctx, struct tgsi_full_src_register *src, unsigned int dst_reg)
{
int r;
unsigned temp_reg = r600_get_temp(ctx);
/* t.x = ips * r0.y */
r = single_alu_op2(ctx, ALU_OP2_MUL_UINT24,
temp_reg, 0,
ctx->tess_input_info, 0,
0, 1);
if (r)
return r;
/* the base address is now in temp.x */
r = r600_get_byte_address(ctx, temp_reg,
NULL, src, ctx->tess_input_info, 1);
if (r)
return r;
r = do_lds_fetch_values(ctx, temp_reg, dst_reg, fetch_mask(&src->Register));
if (r)
return r;
return 0;
}
static int fetch_tcs_output(struct r600_shader_ctx *ctx, struct tgsi_full_src_register *src, unsigned int dst_reg)
{
int r;
unsigned temp_reg = r600_get_temp(ctx);
r = get_lds_offset0(ctx, 1, temp_reg,
src->Register.Dimension ? false : true);
if (r)
return r;
/* the base address is now in temp.x */
r = r600_get_byte_address(ctx, temp_reg,
NULL, src,
ctx->tess_output_info, 1);
if (r)
return r;
r = do_lds_fetch_values(ctx, temp_reg, dst_reg, fetch_mask(&src->Register));
if (r)
return r;
return 0;
}
static int tgsi_split_lds_inputs(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
unsigned i;
for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
struct tgsi_full_src_register *src = &inst->Src[i];
if (ctx->type == PIPE_SHADER_TESS_EVAL && src->Register.File == TGSI_FILE_INPUT) {
int treg = r600_get_temp(ctx);
fetch_tes_input(ctx, src, treg);
ctx->src[i].sel = treg;
ctx->src[i].rel = 0;
}
if (ctx->type == PIPE_SHADER_TESS_CTRL && src->Register.File == TGSI_FILE_INPUT) {
int treg = r600_get_temp(ctx);
fetch_tcs_input(ctx, src, treg);
ctx->src[i].sel = treg;
ctx->src[i].rel = 0;
}
if (ctx->type == PIPE_SHADER_TESS_CTRL && src->Register.File == TGSI_FILE_OUTPUT) {
int treg = r600_get_temp(ctx);
fetch_tcs_output(ctx, src, treg);
ctx->src[i].sel = treg;
ctx->src[i].rel = 0;
}
}
return 0;
}
static int tgsi_split_constant(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, j, k, nconst, r;
for (i = 0, nconst = 0; i < inst->Instruction.NumSrcRegs; i++) {
if (inst->Src[i].Register.File == TGSI_FILE_CONSTANT) {
nconst++;
}
tgsi_src(ctx, &inst->Src[i], &ctx->src[i]);
}
for (i = 0, j = nconst - 1; i < inst->Instruction.NumSrcRegs; i++) {
if (inst->Src[i].Register.File != TGSI_FILE_CONSTANT) {
continue;
}
if (ctx->src[i].rel) {
int chan = inst->Src[i].Indirect.Swizzle;
int treg = r600_get_temp(ctx);
if ((r = tgsi_fetch_rel_const(ctx, ctx->src[i].kc_bank, ctx->src[i].kc_rel, ctx->src[i].sel - 512, chan, treg)))
return r;
ctx->src[i].kc_bank = 0;
ctx->src[i].kc_rel = 0;
ctx->src[i].sel = treg;
ctx->src[i].rel = 0;
j--;
} else if (j > 0) {
int treg = r600_get_temp(ctx);
for (k = 0; k < 4; k++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = ctx->src[i].sel;
alu.src[0].chan = k;
alu.src[0].rel = ctx->src[i].rel;
alu.src[0].kc_bank = ctx->src[i].kc_bank;
alu.src[0].kc_rel = ctx->src[i].kc_rel;
alu.dst.sel = treg;
alu.dst.chan = k;
alu.dst.write = 1;
if (k == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
ctx->src[i].sel = treg;
ctx->src[i].rel =0;
j--;
}
}
return 0;
}
/* need to move any immediate into a temp - for trig functions which use literal for PI stuff */
static int tgsi_split_literal_constant(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, j, k, nliteral, r;
for (i = 0, nliteral = 0; i < inst->Instruction.NumSrcRegs; i++) {
if (ctx->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
nliteral++;
}
}
for (i = 0, j = nliteral - 1; i < inst->Instruction.NumSrcRegs; i++) {
if (j > 0 && ctx->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
int treg = r600_get_temp(ctx);
for (k = 0; k < 4; k++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = ctx->src[i].sel;
alu.src[0].chan = k;
alu.src[0].value = ctx->src[i].value[k];
alu.dst.sel = treg;
alu.dst.chan = k;
alu.dst.write = 1;
if (k == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
ctx->src[i].sel = treg;
j--;
}
}
return 0;
}
static int process_twoside_color_inputs(struct r600_shader_ctx *ctx)
{
int i, r, count = ctx->shader->ninput;
for (i = 0; i < count; i++) {
if (ctx->shader->input[i].name == TGSI_SEMANTIC_COLOR) {
r = select_twoside_color(ctx, i, ctx->shader->input[i].back_color_input);
if (r)
return r;
}
}
return 0;
}
static int emit_streamout(struct r600_shader_ctx *ctx, struct pipe_stream_output_info *so,
int stream, unsigned *stream_item_size UNUSED)
{
unsigned so_gpr[PIPE_MAX_SHADER_OUTPUTS];
unsigned start_comp[PIPE_MAX_SHADER_OUTPUTS];
int j, r;
unsigned i;
/* Sanity checking. */
if (so->num_outputs > PIPE_MAX_SO_OUTPUTS) {
R600_ERR("Too many stream outputs: %d\n", so->num_outputs);
r = -EINVAL;
goto out_err;
}
for (i = 0; i < so->num_outputs; i++) {
if (so->output[i].output_buffer >= 4) {
R600_ERR("Exceeded the max number of stream output buffers, got: %d\n",
so->output[i].output_buffer);
r = -EINVAL;
goto out_err;
}
}
/* Initialize locations where the outputs are stored. */
for (i = 0; i < so->num_outputs; i++) {
so_gpr[i] = ctx->shader->output[so->output[i].register_index].gpr;
start_comp[i] = so->output[i].start_component;
/* Lower outputs with dst_offset < start_component.
*
* We can only output 4D vectors with a write mask, e.g. we can
* only output the W component at offset 3, etc. If we want
* to store Y, Z, or W at buffer offset 0, we need to use MOV
* to move it to X and output X. */
if (so->output[i].dst_offset < so->output[i].start_component) {
unsigned tmp = r600_get_temp(ctx);
for (j = 0; j < so->output[i].num_components; j++) {
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = so_gpr[i];
alu.src[0].chan = so->output[i].start_component + j;
alu.dst.sel = tmp;
alu.dst.chan = j;
alu.dst.write = 1;
if (j == so->output[i].num_components - 1)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
start_comp[i] = 0;
so_gpr[i] = tmp;
}
}
/* Write outputs to buffers. */
for (i = 0; i < so->num_outputs; i++) {
struct r600_bytecode_output output;
if (stream != -1 && stream != so->output[i].stream)
continue;
memset(&output, 0, sizeof(struct r600_bytecode_output));
output.gpr = so_gpr[i];
output.elem_size = so->output[i].num_components - 1;
if (output.elem_size == 2)
output.elem_size = 3; // 3 not supported, write 4 with junk at end
output.array_base = so->output[i].dst_offset - start_comp[i];
output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE;
output.burst_count = 1;
/* array_size is an upper limit for the burst_count
* with MEM_STREAM instructions */
output.array_size = 0xFFF;
output.comp_mask = ((1 << so->output[i].num_components) - 1) << start_comp[i];
if (ctx->bc->chip_class >= EVERGREEN) {
switch (so->output[i].output_buffer) {
case 0:
output.op = CF_OP_MEM_STREAM0_BUF0;
break;
case 1:
output.op = CF_OP_MEM_STREAM0_BUF1;
break;
case 2:
output.op = CF_OP_MEM_STREAM0_BUF2;
break;
case 3:
output.op = CF_OP_MEM_STREAM0_BUF3;
break;
}
output.op += so->output[i].stream * 4;
assert(output.op >= CF_OP_MEM_STREAM0_BUF0 && output.op <= CF_OP_MEM_STREAM3_BUF3);
ctx->enabled_stream_buffers_mask |= (1 << so->output[i].output_buffer) << so->output[i].stream * 4;
} else {
switch (so->output[i].output_buffer) {
case 0:
output.op = CF_OP_MEM_STREAM0;
break;
case 1:
output.op = CF_OP_MEM_STREAM1;
break;
case 2:
output.op = CF_OP_MEM_STREAM2;
break;
case 3:
output.op = CF_OP_MEM_STREAM3;
break;
}
ctx->enabled_stream_buffers_mask |= 1 << so->output[i].output_buffer;
}
r = r600_bytecode_add_output(ctx->bc, &output);
if (r)
goto out_err;
}
return 0;
out_err:
return r;
}
static void convert_edgeflag_to_int(struct r600_shader_ctx *ctx)
{
struct r600_bytecode_alu alu;
unsigned reg;
if (!ctx->shader->vs_out_edgeflag)
return;
reg = ctx->shader->output[ctx->edgeflag_output].gpr;
/* clamp(x, 0, 1) */
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = reg;
alu.dst.sel = reg;
alu.dst.write = 1;
alu.dst.clamp = 1;
alu.last = 1;
r600_bytecode_add_alu(ctx->bc, &alu);
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP1_FLT_TO_INT;
alu.src[0].sel = reg;
alu.dst.sel = reg;
alu.dst.write = 1;
alu.last = 1;
r600_bytecode_add_alu(ctx->bc, &alu);
}
static int generate_gs_copy_shader(struct r600_context *rctx,
struct r600_pipe_shader *gs,
struct pipe_stream_output_info *so)
{
struct r600_shader_ctx ctx = {};
struct r600_shader *gs_shader = &gs->shader;
struct r600_pipe_shader *cshader;
unsigned ocnt = gs_shader->noutput;
struct r600_bytecode_alu alu;
struct r600_bytecode_vtx vtx;
struct r600_bytecode_output output;
struct r600_bytecode_cf *cf_jump, *cf_pop,
*last_exp_pos = NULL, *last_exp_param = NULL;
int next_clip_pos = 61, next_param = 0;
unsigned i, j;
int ring;
bool only_ring_0 = true;
cshader = calloc(1, sizeof(struct r600_pipe_shader));
if (!cshader)
return 0;
memcpy(cshader->shader.output, gs_shader->output, ocnt *
sizeof(struct r600_shader_io));
cshader->shader.noutput = ocnt;
ctx.shader = &cshader->shader;
ctx.bc = &ctx.shader->bc;
ctx.type = ctx.bc->type = PIPE_SHADER_VERTEX;
r600_bytecode_init(ctx.bc, rctx->b.chip_class, rctx->b.family,
rctx->screen->has_compressed_msaa_texturing);
ctx.bc->isa = rctx->isa;
cf_jump = NULL;
memset(cshader->shader.ring_item_sizes, 0, sizeof(cshader->shader.ring_item_sizes));
/* R0.x = R0.x & 0x3fffffff */
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP2_AND_INT;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = 0x3fffffff;
alu.dst.write = 1;
r600_bytecode_add_alu(ctx.bc, &alu);
/* R0.y = R0.x >> 30 */
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP2_LSHR_INT;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = 0x1e;
alu.dst.chan = 1;
alu.dst.write = 1;
alu.last = 1;
r600_bytecode_add_alu(ctx.bc, &alu);
/* fetch vertex data from GSVS ring */
for (i = 0; i < ocnt; ++i) {
struct r600_shader_io *out = &ctx.shader->output[i];
out->gpr = i + 1;
out->ring_offset = i * 16;
memset(&vtx, 0, sizeof(vtx));
vtx.op = FETCH_OP_VFETCH;
vtx.buffer_id = R600_GS_RING_CONST_BUFFER;
vtx.fetch_type = SQ_VTX_FETCH_NO_INDEX_OFFSET;
vtx.mega_fetch_count = 16;
vtx.offset = out->ring_offset;
vtx.dst_gpr = out->gpr;
vtx.src_gpr = 0;
vtx.dst_sel_x = 0;
vtx.dst_sel_y = 1;
vtx.dst_sel_z = 2;
vtx.dst_sel_w = 3;
if (rctx->b.chip_class >= EVERGREEN) {
vtx.use_const_fields = 1;
} else {
vtx.data_format = FMT_32_32_32_32_FLOAT;
}
r600_bytecode_add_vtx(ctx.bc, &vtx);
}
ctx.temp_reg = i + 1;
for (ring = 3; ring >= 0; --ring) {
bool enabled = false;
for (i = 0; i < so->num_outputs; i++) {
if (so->output[i].stream == ring) {
enabled = true;
if (ring > 0)
only_ring_0 = false;
break;
}
}
if (ring != 0 && !enabled) {
cshader->shader.ring_item_sizes[ring] = 0;
continue;
}
if (cf_jump) {
// Patch up jump label
r600_bytecode_add_cfinst(ctx.bc, CF_OP_POP);
cf_pop = ctx.bc->cf_last;
cf_jump->cf_addr = cf_pop->id + 2;
cf_jump->pop_count = 1;
cf_pop->cf_addr = cf_pop->id + 2;
cf_pop->pop_count = 1;
}
/* PRED_SETE_INT __, R0.y, ring */
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP2_PRED_SETE_INT;
alu.src[0].chan = 1;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = ring;
alu.execute_mask = 1;
alu.update_pred = 1;
alu.last = 1;
r600_bytecode_add_alu_type(ctx.bc, &alu, CF_OP_ALU_PUSH_BEFORE);
r600_bytecode_add_cfinst(ctx.bc, CF_OP_JUMP);
cf_jump = ctx.bc->cf_last;
if (enabled)
emit_streamout(&ctx, so, only_ring_0 ? -1 : ring, &cshader->shader.ring_item_sizes[ring]);
cshader->shader.ring_item_sizes[ring] = ocnt * 16;
}
/* bc adds nops - copy it */
if (ctx.bc->chip_class == R600) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP0_NOP;
alu.last = 1;
r600_bytecode_add_alu(ctx.bc, &alu);
r600_bytecode_add_cfinst(ctx.bc, CF_OP_NOP);
}
/* export vertex data */
/* XXX factor out common code with r600_shader_from_tgsi ? */
for (i = 0; i < ocnt; ++i) {
struct r600_shader_io *out = &ctx.shader->output[i];
bool instream0 = true;
if (out->name == TGSI_SEMANTIC_CLIPVERTEX)
continue;
for (j = 0; j < so->num_outputs; j++) {
if (so->output[j].register_index == i) {
if (so->output[j].stream == 0)
break;
if (so->output[j].stream > 0)
instream0 = false;
}
}
if (!instream0)
continue;
memset(&output, 0, sizeof(output));
output.gpr = out->gpr;
output.elem_size = 3;
output.swizzle_x = 0;
output.swizzle_y = 1;
output.swizzle_z = 2;
output.swizzle_w = 3;
output.burst_count = 1;
output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PARAM;
output.op = CF_OP_EXPORT;
switch (out->name) {
case TGSI_SEMANTIC_POSITION:
output.array_base = 60;
output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS;
break;
case TGSI_SEMANTIC_PSIZE:
output.array_base = 61;
if (next_clip_pos == 61)
next_clip_pos = 62;
output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS;
output.swizzle_y = 7;
output.swizzle_z = 7;
output.swizzle_w = 7;
ctx.shader->vs_out_misc_write = 1;
ctx.shader->vs_out_point_size = 1;
break;
case TGSI_SEMANTIC_LAYER:
if (out->spi_sid) {
/* duplicate it as PARAM to pass to the pixel shader */
output.array_base = next_param++;
r600_bytecode_add_output(ctx.bc, &output);
last_exp_param = ctx.bc->cf_last;
}
output.array_base = 61;
if (next_clip_pos == 61)
next_clip_pos = 62;
output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS;
output.swizzle_x = 7;
output.swizzle_y = 7;
output.swizzle_z = 0;
output.swizzle_w = 7;
ctx.shader->vs_out_misc_write = 1;
ctx.shader->vs_out_layer = 1;
break;
case TGSI_SEMANTIC_VIEWPORT_INDEX:
if (out->spi_sid) {
/* duplicate it as PARAM to pass to the pixel shader */
output.array_base = next_param++;
r600_bytecode_add_output(ctx.bc, &output);
last_exp_param = ctx.bc->cf_last;
}
output.array_base = 61;
if (next_clip_pos == 61)
next_clip_pos = 62;
output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS;
ctx.shader->vs_out_misc_write = 1;
ctx.shader->vs_out_viewport = 1;
output.swizzle_x = 7;
output.swizzle_y = 7;
output.swizzle_z = 7;
output.swizzle_w = 0;
break;
case TGSI_SEMANTIC_CLIPDIST:
/* spi_sid is 0 for clipdistance outputs that were generated
* for clipvertex - we don't need to pass them to PS */
ctx.shader->clip_dist_write = gs->shader.clip_dist_write;
ctx.shader->cull_dist_write = gs->shader.cull_dist_write;
ctx.shader->cc_dist_mask = gs->shader.cc_dist_mask;
if (out->spi_sid) {
/* duplicate it as PARAM to pass to the pixel shader */
output.array_base = next_param++;
r600_bytecode_add_output(ctx.bc, &output);
last_exp_param = ctx.bc->cf_last;
}
output.array_base = next_clip_pos++;
output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS;
break;
case TGSI_SEMANTIC_FOG:
output.swizzle_y = 4; /* 0 */
output.swizzle_z = 4; /* 0 */
output.swizzle_w = 5; /* 1 */
break;
default:
output.array_base = next_param++;
break;
}
r600_bytecode_add_output(ctx.bc, &output);
if (output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PARAM)
last_exp_param = ctx.bc->cf_last;
else
last_exp_pos = ctx.bc->cf_last;
}
if (!last_exp_pos) {
memset(&output, 0, sizeof(output));
output.gpr = 0;
output.elem_size = 3;
output.swizzle_x = 7;
output.swizzle_y = 7;
output.swizzle_z = 7;
output.swizzle_w = 7;
output.burst_count = 1;
output.type = 2;
output.op = CF_OP_EXPORT;
output.array_base = 60;
output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS;
r600_bytecode_add_output(ctx.bc, &output);
last_exp_pos = ctx.bc->cf_last;
}
if (!last_exp_param) {
memset(&output, 0, sizeof(output));
output.gpr = 0;
output.elem_size = 3;
output.swizzle_x = 7;
output.swizzle_y = 7;
output.swizzle_z = 7;
output.swizzle_w = 7;
output.burst_count = 1;
output.type = 2;
output.op = CF_OP_EXPORT;
output.array_base = next_param++;
output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PARAM;
r600_bytecode_add_output(ctx.bc, &output);
last_exp_param = ctx.bc->cf_last;
}
last_exp_pos->op = CF_OP_EXPORT_DONE;
last_exp_param->op = CF_OP_EXPORT_DONE;
r600_bytecode_add_cfinst(ctx.bc, CF_OP_POP);
cf_pop = ctx.bc->cf_last;
cf_jump->cf_addr = cf_pop->id + 2;
cf_jump->pop_count = 1;
cf_pop->cf_addr = cf_pop->id + 2;
cf_pop->pop_count = 1;
if (ctx.bc->chip_class == CAYMAN)
cm_bytecode_add_cf_end(ctx.bc);
else {
r600_bytecode_add_cfinst(ctx.bc, CF_OP_NOP);
ctx.bc->cf_last->end_of_program = 1;
}
gs->gs_copy_shader = cshader;
cshader->enabled_stream_buffers_mask = ctx.enabled_stream_buffers_mask;
ctx.bc->nstack = 1;
return r600_bytecode_build(ctx.bc);
}
static int emit_inc_ring_offset(struct r600_shader_ctx *ctx, int idx, bool ind)
{
if (ind) {
struct r600_bytecode_alu alu;
int r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_ADD_INT;
alu.src[0].sel = ctx->gs_export_gpr_tregs[idx];
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = ctx->gs_out_ring_offset >> 4;
alu.dst.sel = ctx->gs_export_gpr_tregs[idx];
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int emit_gs_ring_writes(struct r600_shader_ctx *ctx, const struct pipe_stream_output_info *so UNUSED, int stream, bool ind)
{
struct r600_bytecode_output output;
int ring_offset;
unsigned i, k;
int effective_stream = stream == -1 ? 0 : stream;
int idx = 0;
for (i = 0; i < ctx->shader->noutput; i++) {
if (ctx->gs_for_vs) {
/* for ES we need to lookup corresponding ring offset expected by GS
* (map this output to GS input by name and sid) */
/* FIXME precompute offsets */
ring_offset = -1;
for(k = 0; k < ctx->gs_for_vs->ninput; ++k) {
struct r600_shader_io *in = &ctx->gs_for_vs->input[k];
struct r600_shader_io *out = &ctx->shader->output[i];
if (in->name == out->name && in->sid == out->sid)
ring_offset = in->ring_offset;
}
if (ring_offset == -1)
continue;
} else {
ring_offset = idx * 16;
idx++;
}
if (stream > 0 && ctx->shader->output[i].name == TGSI_SEMANTIC_POSITION)
continue;
/* next_ring_offset after parsing input decls contains total size of
* single vertex data, gs_next_vertex - current vertex index */
if (!ind)
ring_offset += ctx->gs_out_ring_offset * ctx->gs_next_vertex;
memset(&output, 0, sizeof(struct r600_bytecode_output));
output.gpr = ctx->shader->output[i].gpr;
output.elem_size = 3;
output.comp_mask = 0xF;
output.burst_count = 1;
if (ind)
output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND;
else
output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE;
switch (stream) {
default:
case 0:
output.op = CF_OP_MEM_RING; break;
case 1:
output.op = CF_OP_MEM_RING1; break;
case 2:
output.op = CF_OP_MEM_RING2; break;
case 3:
output.op = CF_OP_MEM_RING3; break;
}
if (ind) {
output.array_base = ring_offset >> 2; /* in dwords */
output.array_size = 0xfff;
output.index_gpr = ctx->gs_export_gpr_tregs[effective_stream];
} else
output.array_base = ring_offset >> 2; /* in dwords */
r600_bytecode_add_output(ctx->bc, &output);
}
++ctx->gs_next_vertex;
return 0;
}
static int r600_fetch_tess_io_info(struct r600_shader_ctx *ctx)
{
int r;
struct r600_bytecode_vtx vtx;
int temp_val = ctx->temp_reg;
/* need to store the TCS output somewhere */
r = single_alu_op2(ctx, ALU_OP1_MOV,
temp_val, 0,
V_SQ_ALU_SRC_LITERAL, 0,
0, 0);
if (r)
return r;
/* used by VS/TCS */
if (ctx->tess_input_info) {
/* fetch tcs input values into resv space */
memset(&vtx, 0, sizeof(struct r600_bytecode_vtx));
vtx.op = FETCH_OP_VFETCH;
vtx.buffer_id = R600_LDS_INFO_CONST_BUFFER;
vtx.fetch_type = SQ_VTX_FETCH_NO_INDEX_OFFSET;
vtx.mega_fetch_count = 16;
vtx.data_format = FMT_32_32_32_32;
vtx.num_format_all = 2;
vtx.format_comp_all = 1;
vtx.use_const_fields = 0;
vtx.endian = r600_endian_swap(32);
vtx.srf_mode_all = 1;
vtx.offset = 0;
vtx.dst_gpr = ctx->tess_input_info;
vtx.dst_sel_x = 0;
vtx.dst_sel_y = 1;
vtx.dst_sel_z = 2;
vtx.dst_sel_w = 3;
vtx.src_gpr = temp_val;
vtx.src_sel_x = 0;
r = r600_bytecode_add_vtx(ctx->bc, &vtx);
if (r)
return r;
}
/* used by TCS/TES */
if (ctx->tess_output_info) {
/* fetch tcs output values into resv space */
memset(&vtx, 0, sizeof(struct r600_bytecode_vtx));
vtx.op = FETCH_OP_VFETCH;
vtx.buffer_id = R600_LDS_INFO_CONST_BUFFER;
vtx.fetch_type = SQ_VTX_FETCH_NO_INDEX_OFFSET;
vtx.mega_fetch_count = 16;
vtx.data_format = FMT_32_32_32_32;
vtx.num_format_all = 2;
vtx.format_comp_all = 1;
vtx.use_const_fields = 0;
vtx.endian = r600_endian_swap(32);
vtx.srf_mode_all = 1;
vtx.offset = 16;
vtx.dst_gpr = ctx->tess_output_info;
vtx.dst_sel_x = 0;
vtx.dst_sel_y = 1;
vtx.dst_sel_z = 2;
vtx.dst_sel_w = 3;
vtx.src_gpr = temp_val;
vtx.src_sel_x = 0;
r = r600_bytecode_add_vtx(ctx->bc, &vtx);
if (r)
return r;
}
return 0;
}
static int emit_lds_vs_writes(struct r600_shader_ctx *ctx)
{
int j, r;
int temp_reg;
unsigned i;
/* fetch tcs input values into input_vals */
ctx->tess_input_info = r600_get_temp(ctx);
ctx->tess_output_info = 0;
r = r600_fetch_tess_io_info(ctx);
if (r)
return r;
temp_reg = r600_get_temp(ctx);
/* dst reg contains LDS address stride * idx */
/* MUL vertexID, vertex_dw_stride */
r = single_alu_op2(ctx, ALU_OP2_MUL_UINT24,
temp_reg, 0,
ctx->tess_input_info, 1,
0, 1); /* rel id in r0.y? */
if (r)
return r;
for (i = 0; i < ctx->shader->noutput; i++) {
struct r600_bytecode_alu alu;
int param = r600_get_lds_unique_index(ctx->shader->output[i].name, ctx->shader->output[i].sid);
if (param) {
r = single_alu_op2(ctx, ALU_OP2_ADD_INT,
temp_reg, 1,
temp_reg, 0,
V_SQ_ALU_SRC_LITERAL, param * 16);
if (r)
return r;
}
r = single_alu_op2(ctx, ALU_OP2_ADD_INT,
temp_reg, 2,
temp_reg, param ? 1 : 0,
V_SQ_ALU_SRC_LITERAL, 8);
if (r)
return r;
for (j = 0; j < 2; j++) {
int chan = (j == 1) ? 2 : (param ? 1 : 0);
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = LDS_OP3_LDS_WRITE_REL;
alu.src[0].sel = temp_reg;
alu.src[0].chan = chan;
alu.src[1].sel = ctx->shader->output[i].gpr;
alu.src[1].chan = j * 2;
alu.src[2].sel = ctx->shader->output[i].gpr;
alu.src[2].chan = (j * 2) + 1;
alu.last = 1;
alu.dst.chan = 0;
alu.lds_idx = 1;
alu.is_lds_idx_op = true;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
}
return 0;
}
static int r600_store_tcs_output(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
const struct tgsi_full_dst_register *dst = &inst->Dst[0];
int i, r, lasti;
int temp_reg = r600_get_temp(ctx);
struct r600_bytecode_alu alu;
unsigned write_mask = dst->Register.WriteMask;
if (inst->Dst[0].Register.File != TGSI_FILE_OUTPUT)
return 0;
r = get_lds_offset0(ctx, 1, temp_reg, dst->Register.Dimension ? false : true);
if (r)
return r;
/* the base address is now in temp.x */
r = r600_get_byte_address(ctx, temp_reg,
&inst->Dst[0], NULL, ctx->tess_output_info, 1);
if (r)
return r;
/* LDS write */
lasti = tgsi_last_instruction(write_mask);
for (i = 1; i <= lasti; i++) {
if (!(write_mask & (1 << i)))
continue;
r = single_alu_op2(ctx, ALU_OP2_ADD_INT,
temp_reg, i,
temp_reg, 0,
V_SQ_ALU_SRC_LITERAL, 4 * i);
if (r)
return r;
}
for (i = 0; i <= lasti; i++) {
if (!(write_mask & (1 << i)))
continue;
if ((i == 0 && ((write_mask & 3) == 3)) ||
(i == 2 && ((write_mask & 0xc) == 0xc))) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = LDS_OP3_LDS_WRITE_REL;
alu.src[0].sel = temp_reg;
alu.src[0].chan = i;
alu.src[1].sel = dst->Register.Index;
alu.src[1].sel += ctx->file_offset[dst->Register.File];
alu.src[1].chan = i;
alu.src[2].sel = dst->Register.Index;
alu.src[2].sel += ctx->file_offset[dst->Register.File];
alu.src[2].chan = i + 1;
alu.lds_idx = 1;
alu.dst.chan = 0;
alu.last = 1;
alu.is_lds_idx_op = true;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
i += 1;
continue;
}
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = LDS_OP2_LDS_WRITE;
alu.src[0].sel = temp_reg;
alu.src[0].chan = i;
alu.src[1].sel = dst->Register.Index;
alu.src[1].sel += ctx->file_offset[dst->Register.File];
alu.src[1].chan = i;
alu.src[2].sel = V_SQ_ALU_SRC_0;
alu.dst.chan = 0;
alu.last = 1;
alu.is_lds_idx_op = true;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int r600_tess_factor_read(struct r600_shader_ctx *ctx,
int output_idx, int nc)
{
int param;
unsigned temp_reg = r600_get_temp(ctx);
unsigned name = ctx->shader->output[output_idx].name;
int dreg = ctx->shader->output[output_idx].gpr;
int r;
param = r600_get_lds_unique_index(name, 0);
r = get_lds_offset0(ctx, 1, temp_reg, true);
if (r)
return r;
if (param) {
r = single_alu_op2(ctx, ALU_OP2_ADD_INT,
temp_reg, 0,
temp_reg, 0,
V_SQ_ALU_SRC_LITERAL, param * 16);
if (r)
return r;
}
do_lds_fetch_values(ctx, temp_reg, dreg, ((1u << nc) - 1));
return 0;
}
static int r600_emit_tess_factor(struct r600_shader_ctx *ctx)
{
int stride, outer_comps, inner_comps;
int tessinner_idx = -1, tessouter_idx = -1;
int i, r;
unsigned j;
int temp_reg = r600_get_temp(ctx);
int treg[3] = {-1, -1, -1};
struct r600_bytecode_alu alu;
struct r600_bytecode_cf *cf_jump, *cf_pop;
/* only execute factor emission for invocation 0 */
/* PRED_SETE_INT __, R0.x, 0 */
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP2_PRED_SETE_INT;
alu.src[0].chan = 2;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.execute_mask = 1;
alu.update_pred = 1;
alu.last = 1;
r600_bytecode_add_alu_type(ctx->bc, &alu, CF_OP_ALU_PUSH_BEFORE);
r600_bytecode_add_cfinst(ctx->bc, CF_OP_JUMP);
cf_jump = ctx->bc->cf_last;
treg[0] = r600_get_temp(ctx);
switch (ctx->shader->tcs_prim_mode) {
case PIPE_PRIM_LINES:
stride = 8; /* 2 dwords, 1 vec2 store */
outer_comps = 2;
inner_comps = 0;
break;
case PIPE_PRIM_TRIANGLES:
stride = 16; /* 4 dwords, 1 vec4 store */
outer_comps = 3;
inner_comps = 1;
treg[1] = r600_get_temp(ctx);
break;
case PIPE_PRIM_QUADS:
stride = 24; /* 6 dwords, 2 stores (vec4 + vec2) */
outer_comps = 4;
inner_comps = 2;
treg[1] = r600_get_temp(ctx);
treg[2] = r600_get_temp(ctx);
break;
default:
assert(0);
return -1;
}
/* R0 is InvocationID, RelPatchID, PatchID, tf_base */
/* TF_WRITE takes index in R.x, value in R.y */
for (j = 0; j < ctx->shader->noutput; j++) {
if (ctx->shader->output[j].name == TGSI_SEMANTIC_TESSINNER)
tessinner_idx = j;
if (ctx->shader->output[j].name == TGSI_SEMANTIC_TESSOUTER)
tessouter_idx = j;
}
if (tessouter_idx == -1)
return -1;
if (tessinner_idx == -1 && inner_comps)
return -1;
if (tessouter_idx != -1) {
r = r600_tess_factor_read(ctx, tessouter_idx, outer_comps);
if (r)
return r;
}
if (tessinner_idx != -1) {
r = r600_tess_factor_read(ctx, tessinner_idx, inner_comps);
if (r)
return r;
}
/* r.x = tf_base(r0.w) + relpatchid(r0.y) * tf_stride */
/* r.x = relpatchid(r0.y) * tf_stride */
/* multiply incoming r0.y * stride - t.x = r0.y * stride */
/* add incoming r0.w to it: t.x = t.x + r0.w */
r = single_alu_op3(ctx, ALU_OP3_MULADD_UINT24,
temp_reg, 0,
0, 1,
V_SQ_ALU_SRC_LITERAL, stride,
0, 3);
if (r)
return r;
for (i = 0; i < outer_comps + inner_comps; i++) {
int out_idx = i >= outer_comps ? tessinner_idx : tessouter_idx;
int out_comp = i >= outer_comps ? i - outer_comps : i;
if (ctx->shader->tcs_prim_mode == PIPE_PRIM_LINES) {
if (out_comp == 1)
out_comp = 0;
else if (out_comp == 0)
out_comp = 1;
}
r = single_alu_op2(ctx, ALU_OP2_ADD_INT,
treg[i / 2], (2 * (i % 2)),
temp_reg, 0,
V_SQ_ALU_SRC_LITERAL, 4 * i);
if (r)
return r;
r = single_alu_op2(ctx, ALU_OP1_MOV,
treg[i / 2], 1 + (2 * (i%2)),
ctx->shader->output[out_idx].gpr, out_comp,
0, 0);
if (r)
return r;
}
for (i = 0; i < outer_comps + inner_comps; i++) {
struct r600_bytecode_gds gds;
memset(&gds, 0, sizeof(struct r600_bytecode_gds));
gds.src_gpr = treg[i / 2];
gds.src_sel_x = 2 * (i % 2);
gds.src_sel_y = 1 + (2 * (i % 2));
gds.src_sel_z = 4;
gds.dst_sel_x = 7;
gds.dst_sel_y = 7;
gds.dst_sel_z = 7;
gds.dst_sel_w = 7;
gds.op = FETCH_OP_TF_WRITE;
r = r600_bytecode_add_gds(ctx->bc, &gds);
if (r)
return r;
}
// Patch up jump label
r600_bytecode_add_cfinst(ctx->bc, CF_OP_POP);
cf_pop = ctx->bc->cf_last;
cf_jump->cf_addr = cf_pop->id + 2;
cf_jump->pop_count = 1;
cf_pop->cf_addr = cf_pop->id + 2;
cf_pop->pop_count = 1;
return 0;
}
/*
* We have to work out the thread ID for load and atomic
* operations, which store the returned value to an index
* in an intermediate buffer.
* The index is calculated by taking the thread id,
* calculated from the MBCNT instructions.
* Then the shader engine ID is multiplied by 256,
* and the wave id is added.
* Then the result is multipled by 64 and thread id is
* added.
*/
static int load_thread_id_gpr(struct r600_shader_ctx *ctx)
{
struct r600_bytecode_alu alu;
int r;
if (ctx->thread_id_gpr_loaded)
return 0;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MBCNT_32LO_ACCUM_PREV_INT;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 0;
alu.src[0].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[0].value = 0xffffffff;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MBCNT_32HI_INT;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 1;
alu.src[0].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[0].value = 0xffffffff;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_MULADD_UINT24;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 2;
alu.src[0].sel = EG_V_SQ_ALU_SRC_SE_ID;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = 256;
alu.src[2].sel = EG_V_SQ_ALU_SRC_HW_WAVE_ID;
alu.dst.write = 1;
alu.is_op3 = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
r = single_alu_op3(ctx, ALU_OP3_MULADD_UINT24,
ctx->thread_id_gpr, 1,
ctx->temp_reg, 2,
V_SQ_ALU_SRC_LITERAL, 0x40,
ctx->temp_reg, 0);
if (r)
return r;
ctx->thread_id_gpr_loaded = true;
return 0;
}
static int r600_shader_from_tgsi(struct r600_context *rctx,
struct r600_pipe_shader *pipeshader,
union r600_shader_key key)
{
struct r600_screen *rscreen = rctx->screen;
struct r600_shader *shader = &pipeshader->shader;
struct tgsi_token *tokens = pipeshader->selector->tokens;
struct pipe_stream_output_info so = pipeshader->selector->so;
struct tgsi_full_immediate *immediate;
struct r600_shader_ctx ctx;
struct r600_bytecode_output output[ARRAY_SIZE(shader->output)];
unsigned output_done, noutput;
unsigned opcode;
int j, k, r = 0;
unsigned i;
int next_param_base = 0, next_clip_base;
int max_color_exports = MAX2(key.ps.nr_cbufs, 1);
bool indirect_gprs;
bool ring_outputs = false;
bool lds_outputs = false;
bool lds_inputs = false;
bool pos_emitted = false;
ctx.bc = &shader->bc;
ctx.shader = shader;
r600_bytecode_init(ctx.bc, rscreen->b.chip_class, rscreen->b.family,
rscreen->has_compressed_msaa_texturing);
ctx.tokens = tokens;
tgsi_scan_shader(tokens, &ctx.info);
shader->indirect_files = ctx.info.indirect_files;
shader->uses_doubles = ctx.info.uses_doubles;
shader->uses_atomics = ctx.info.file_mask[TGSI_FILE_HW_ATOMIC];
shader->nsys_inputs = 0;
shader->uses_images = ctx.info.file_count[TGSI_FILE_IMAGE] > 0 ||
ctx.info.file_count[TGSI_FILE_BUFFER] > 0;
indirect_gprs = ctx.info.indirect_files & ~((1 << TGSI_FILE_CONSTANT) | (1 << TGSI_FILE_SAMPLER));
tgsi_parse_init(&ctx.parse, tokens);
ctx.type = ctx.info.processor;
shader->processor_type = ctx.type;
ctx.bc->type = shader->processor_type;
switch (ctx.type) {
case PIPE_SHADER_VERTEX:
shader->vs_as_gs_a = key.vs.as_gs_a;
shader->vs_as_es = key.vs.as_es;
shader->vs_as_ls = key.vs.as_ls;
shader->atomic_base = key.vs.first_atomic_counter;
if (shader->vs_as_es)
ring_outputs = true;
if (shader->vs_as_ls)
lds_outputs = true;
break;
case PIPE_SHADER_GEOMETRY:
ring_outputs = true;
shader->atomic_base = key.gs.first_atomic_counter;
shader->gs_tri_strip_adj_fix = key.gs.tri_strip_adj_fix;
break;
case PIPE_SHADER_TESS_CTRL:
shader->tcs_prim_mode = key.tcs.prim_mode;
shader->atomic_base = key.tcs.first_atomic_counter;
lds_outputs = true;
lds_inputs = true;
break;
case PIPE_SHADER_TESS_EVAL:
shader->tes_as_es = key.tes.as_es;
shader->atomic_base = key.tes.first_atomic_counter;
lds_inputs = true;
if (shader->tes_as_es)
ring_outputs = true;
break;
case PIPE_SHADER_FRAGMENT:
shader->two_side = key.ps.color_two_side;
shader->atomic_base = key.ps.first_atomic_counter;
shader->rat_base = key.ps.nr_cbufs;
shader->image_size_const_offset = key.ps.image_size_const_offset;
break;
case PIPE_SHADER_COMPUTE:
shader->rat_base = 0;
shader->image_size_const_offset = 0;
break;
default:
break;
}
if (shader->vs_as_es || shader->tes_as_es) {
ctx.gs_for_vs = &rctx->gs_shader->current->shader;
} else {
ctx.gs_for_vs = NULL;
}
ctx.next_ring_offset = 0;
ctx.gs_out_ring_offset = 0;
ctx.gs_next_vertex = 0;
ctx.gs_stream_output_info = &so;
ctx.face_gpr = -1;
ctx.fixed_pt_position_gpr = -1;
ctx.fragcoord_input = -1;
ctx.colors_used = 0;
ctx.clip_vertex_write = 0;
ctx.thread_id_gpr_loaded = false;
ctx.cs_block_size_reg = -1;
ctx.cs_grid_size_reg = -1;
ctx.cs_block_size_loaded = false;
ctx.cs_grid_size_loaded = false;
shader->nr_ps_color_exports = 0;
shader->nr_ps_max_color_exports = 0;
/* register allocations */
/* Values [0,127] correspond to GPR[0..127].
* Values [128,159] correspond to constant buffer bank 0
* Values [160,191] correspond to constant buffer bank 1
* Values [256,511] correspond to cfile constants c[0..255]. (Gone on EG)
* Values [256,287] correspond to constant buffer bank 2 (EG)
* Values [288,319] correspond to constant buffer bank 3 (EG)
* Other special values are shown in the list below.
* 244 ALU_SRC_1_DBL_L: special constant 1.0 double-float, LSW. (RV670+)
* 245 ALU_SRC_1_DBL_M: special constant 1.0 double-float, MSW. (RV670+)
* 246 ALU_SRC_0_5_DBL_L: special constant 0.5 double-float, LSW. (RV670+)
* 247 ALU_SRC_0_5_DBL_M: special constant 0.5 double-float, MSW. (RV670+)
* 248 SQ_ALU_SRC_0: special constant 0.0.
* 249 SQ_ALU_SRC_1: special constant 1.0 float.
* 250 SQ_ALU_SRC_1_INT: special constant 1 integer.
* 251 SQ_ALU_SRC_M_1_INT: special constant -1 integer.
* 252 SQ_ALU_SRC_0_5: special constant 0.5 float.
* 253 SQ_ALU_SRC_LITERAL: literal constant.
* 254 SQ_ALU_SRC_PV: previous vector result.
* 255 SQ_ALU_SRC_PS: previous scalar result.
*/
for (i = 0; i < TGSI_FILE_COUNT; i++) {
ctx.file_offset[i] = 0;
}
if (ctx.type == PIPE_SHADER_VERTEX) {
ctx.file_offset[TGSI_FILE_INPUT] = 1;
if (ctx.info.num_inputs)
r600_bytecode_add_cfinst(ctx.bc, CF_OP_CALL_FS);
}
if (ctx.type == PIPE_SHADER_FRAGMENT) {
if (ctx.bc->chip_class >= EVERGREEN)
ctx.file_offset[TGSI_FILE_INPUT] = evergreen_gpr_count(&ctx);
else
ctx.file_offset[TGSI_FILE_INPUT] = allocate_system_value_inputs(&ctx, ctx.file_offset[TGSI_FILE_INPUT]);
}
if (ctx.type == PIPE_SHADER_GEOMETRY) {
/* FIXME 1 would be enough in some cases (3 or less input vertices) */
ctx.file_offset[TGSI_FILE_INPUT] = 2;
}
if (ctx.type == PIPE_SHADER_TESS_CTRL)
ctx.file_offset[TGSI_FILE_INPUT] = 1;
if (ctx.type == PIPE_SHADER_TESS_EVAL) {
bool add_tesscoord = false, add_tess_inout = false;
ctx.file_offset[TGSI_FILE_INPUT] = 1;
for (i = 0; i < PIPE_MAX_SHADER_INPUTS; i++) {
/* if we have tesscoord save one reg */
if (ctx.info.system_value_semantic_name[i] == TGSI_SEMANTIC_TESSCOORD)
add_tesscoord = true;
if (ctx.info.system_value_semantic_name[i] == TGSI_SEMANTIC_TESSINNER ||
ctx.info.system_value_semantic_name[i] == TGSI_SEMANTIC_TESSOUTER)
add_tess_inout = true;
}
if (add_tesscoord || add_tess_inout)
ctx.file_offset[TGSI_FILE_INPUT]++;
if (add_tess_inout)
ctx.file_offset[TGSI_FILE_INPUT]+=2;
}
if (ctx.type == PIPE_SHADER_COMPUTE) {
ctx.file_offset[TGSI_FILE_INPUT] = 2;
for (i = 0; i < PIPE_MAX_SHADER_INPUTS; i++) {
if (ctx.info.system_value_semantic_name[i] == TGSI_SEMANTIC_GRID_SIZE)
ctx.cs_grid_size_reg = ctx.file_offset[TGSI_FILE_INPUT]++;
if (ctx.info.system_value_semantic_name[i] == TGSI_SEMANTIC_BLOCK_SIZE)
ctx.cs_block_size_reg = ctx.file_offset[TGSI_FILE_INPUT]++;
}
}
ctx.file_offset[TGSI_FILE_OUTPUT] =
ctx.file_offset[TGSI_FILE_INPUT] +
ctx.info.file_max[TGSI_FILE_INPUT] + 1;
ctx.file_offset[TGSI_FILE_TEMPORARY] = ctx.file_offset[TGSI_FILE_OUTPUT] +
ctx.info.file_max[TGSI_FILE_OUTPUT] + 1;
/* Outside the GPR range. This will be translated to one of the
* kcache banks later. */
ctx.file_offset[TGSI_FILE_CONSTANT] = 512;
ctx.file_offset[TGSI_FILE_IMMEDIATE] = V_SQ_ALU_SRC_LITERAL;
ctx.bc->ar_reg = ctx.file_offset[TGSI_FILE_TEMPORARY] +
ctx.info.file_max[TGSI_FILE_TEMPORARY] + 1;
ctx.bc->index_reg[0] = ctx.bc->ar_reg + 1;
ctx.bc->index_reg[1] = ctx.bc->ar_reg + 2;
if (ctx.type == PIPE_SHADER_TESS_CTRL) {
ctx.tess_input_info = ctx.bc->ar_reg + 3;
ctx.tess_output_info = ctx.bc->ar_reg + 4;
ctx.temp_reg = ctx.bc->ar_reg + 5;
} else if (ctx.type == PIPE_SHADER_TESS_EVAL) {
ctx.tess_input_info = 0;
ctx.tess_output_info = ctx.bc->ar_reg + 3;
ctx.temp_reg = ctx.bc->ar_reg + 4;
} else if (ctx.type == PIPE_SHADER_GEOMETRY) {
ctx.gs_export_gpr_tregs[0] = ctx.bc->ar_reg + 3;
ctx.gs_export_gpr_tregs[1] = ctx.bc->ar_reg + 4;
ctx.gs_export_gpr_tregs[2] = ctx.bc->ar_reg + 5;
ctx.gs_export_gpr_tregs[3] = ctx.bc->ar_reg + 6;
ctx.temp_reg = ctx.bc->ar_reg + 7;
if (ctx.shader->gs_tri_strip_adj_fix) {
ctx.gs_rotated_input[0] = ctx.bc->ar_reg + 7;
ctx.gs_rotated_input[1] = ctx.bc->ar_reg + 8;
ctx.temp_reg += 2;
} else {
ctx.gs_rotated_input[0] = 0;
ctx.gs_rotated_input[1] = 1;
}
} else {
ctx.temp_reg = ctx.bc->ar_reg + 3;
}
if (shader->uses_images) {
ctx.thread_id_gpr = ctx.temp_reg++;
ctx.thread_id_gpr_loaded = false;
}
shader->max_arrays = 0;
shader->num_arrays = 0;
if (indirect_gprs) {
if (ctx.info.indirect_files & (1 << TGSI_FILE_INPUT)) {
r600_add_gpr_array(shader, ctx.file_offset[TGSI_FILE_INPUT],
ctx.file_offset[TGSI_FILE_OUTPUT] -
ctx.file_offset[TGSI_FILE_INPUT],
0x0F);
}
if (ctx.info.indirect_files & (1 << TGSI_FILE_OUTPUT)) {
r600_add_gpr_array(shader, ctx.file_offset[TGSI_FILE_OUTPUT],
ctx.file_offset[TGSI_FILE_TEMPORARY] -
ctx.file_offset[TGSI_FILE_OUTPUT],
0x0F);
}
}
ctx.nliterals = 0;
ctx.literals = NULL;
ctx.max_driver_temp_used = 0;
shader->fs_write_all = ctx.info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
ctx.info.colors_written == 1;
shader->vs_position_window_space = ctx.info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
shader->ps_conservative_z = (uint8_t)ctx.info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT];
if (ctx.type == PIPE_SHADER_VERTEX ||
ctx.type == PIPE_SHADER_GEOMETRY ||
ctx.type == PIPE_SHADER_TESS_EVAL) {
shader->cc_dist_mask = (1 << (ctx.info.properties[TGSI_PROPERTY_NUM_CULLDIST_ENABLED] +
ctx.info.properties[TGSI_PROPERTY_NUM_CLIPDIST_ENABLED])) - 1;
shader->clip_dist_write = (1 << ctx.info.properties[TGSI_PROPERTY_NUM_CLIPDIST_ENABLED]) - 1;
shader->cull_dist_write = ((1 << ctx.info.properties[TGSI_PROPERTY_NUM_CULLDIST_ENABLED]) - 1) << ctx.info.properties[TGSI_PROPERTY_NUM_CLIPDIST_ENABLED];
}
if (shader->vs_as_gs_a)
vs_add_primid_output(&ctx, key.vs.prim_id_out);
if (ctx.type == PIPE_SHADER_TESS_EVAL)
r600_fetch_tess_io_info(&ctx);
while (!tgsi_parse_end_of_tokens(&ctx.parse)) {
tgsi_parse_token(&ctx.parse);
switch (ctx.parse.FullToken.Token.Type) {
case TGSI_TOKEN_TYPE_IMMEDIATE:
immediate = &ctx.parse.FullToken.FullImmediate;
ctx.literals = realloc(ctx.literals, (ctx.nliterals + 1) * 16);
if(ctx.literals == NULL) {
r = -ENOMEM;
goto out_err;
}
ctx.literals[ctx.nliterals * 4 + 0] = immediate->u[0].Uint;
ctx.literals[ctx.nliterals * 4 + 1] = immediate->u[1].Uint;
ctx.literals[ctx.nliterals * 4 + 2] = immediate->u[2].Uint;
ctx.literals[ctx.nliterals * 4 + 3] = immediate->u[3].Uint;
ctx.nliterals++;
break;
case TGSI_TOKEN_TYPE_DECLARATION:
r = tgsi_declaration(&ctx);
if (r)
goto out_err;
break;
case TGSI_TOKEN_TYPE_INSTRUCTION:
case TGSI_TOKEN_TYPE_PROPERTY:
break;
default:
R600_ERR("unsupported token type %d\n", ctx.parse.FullToken.Token.Type);
r = -EINVAL;
goto out_err;
}
}
shader->ring_item_sizes[0] = ctx.next_ring_offset;
shader->ring_item_sizes[1] = 0;
shader->ring_item_sizes[2] = 0;
shader->ring_item_sizes[3] = 0;
/* Process two side if needed */
if (shader->two_side && ctx.colors_used) {
int i, count = ctx.shader->ninput;
unsigned next_lds_loc = ctx.shader->nlds;
/* additional inputs will be allocated right after the existing inputs,
* we won't need them after the color selection, so we don't need to
* reserve these gprs for the rest of the shader code and to adjust
* output offsets etc. */
int gpr = ctx.file_offset[TGSI_FILE_INPUT] +
ctx.info.file_max[TGSI_FILE_INPUT] + 1;
/* if two sided and neither face or sample mask is used by shader, ensure face_gpr is emitted */
if (ctx.face_gpr == -1) {
i = ctx.shader->ninput++;
ctx.shader->input[i].name = TGSI_SEMANTIC_FACE;
ctx.shader->input[i].spi_sid = 0;
ctx.shader->input[i].gpr = gpr++;
ctx.face_gpr = ctx.shader->input[i].gpr;
}
for (i = 0; i < count; i++) {
if (ctx.shader->input[i].name == TGSI_SEMANTIC_COLOR) {
int ni = ctx.shader->ninput++;
memcpy(&ctx.shader->input[ni],&ctx.shader->input[i], sizeof(struct r600_shader_io));
ctx.shader->input[ni].name = TGSI_SEMANTIC_BCOLOR;
ctx.shader->input[ni].spi_sid = r600_spi_sid(&ctx.shader->input[ni]);
ctx.shader->input[ni].gpr = gpr++;
// TGSI to LLVM needs to know the lds position of inputs.
// Non LLVM path computes it later (in process_twoside_color)
ctx.shader->input[ni].lds_pos = next_lds_loc++;
ctx.shader->input[i].back_color_input = ni;
if (ctx.bc->chip_class >= EVERGREEN) {
if ((r = evergreen_interp_input(&ctx, ni)))
return r;
}
}
}
}
if (shader->fs_write_all && rscreen->b.chip_class >= EVERGREEN)
shader->nr_ps_max_color_exports = 8;
if (ctx.fragcoord_input >= 0) {
if (ctx.bc->chip_class == CAYMAN) {
for (j = 0 ; j < 4; j++) {
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_RECIP_IEEE;
alu.src[0].sel = shader->input[ctx.fragcoord_input].gpr;
alu.src[0].chan = 3;
alu.dst.sel = shader->input[ctx.fragcoord_input].gpr;
alu.dst.chan = j;
alu.dst.write = (j == 3);
alu.last = (j == 3);
if ((r = r600_bytecode_add_alu(ctx.bc, &alu)))
return r;
}
} else {
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_RECIP_IEEE;
alu.src[0].sel = shader->input[ctx.fragcoord_input].gpr;
alu.src[0].chan = 3;
alu.dst.sel = shader->input[ctx.fragcoord_input].gpr;
alu.dst.chan = 3;
alu.dst.write = 1;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx.bc, &alu)))
return r;
}
}
if (ctx.type == PIPE_SHADER_GEOMETRY) {
struct r600_bytecode_alu alu;
int r;
/* GS thread with no output workaround - emit a cut at start of GS */
if (ctx.bc->chip_class == R600)
r600_bytecode_add_cfinst(ctx.bc, CF_OP_CUT_VERTEX);
for (j = 0; j < 4; j++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[0].value = 0;
alu.dst.sel = ctx.gs_export_gpr_tregs[j];
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx.bc, &alu);
if (r)
return r;
}
if (ctx.shader->gs_tri_strip_adj_fix) {
r = single_alu_op2(&ctx, ALU_OP2_AND_INT,
ctx.gs_rotated_input[0], 2,
0, 2,
V_SQ_ALU_SRC_LITERAL, 1);
if (r)
return r;
for (i = 0; i < 6; i++) {
int rotated = (i + 4) % 6;
int offset_reg = i / 3;
int offset_chan = i % 3;
int rotated_offset_reg = rotated / 3;
int rotated_offset_chan = rotated % 3;
if (offset_reg == 0 && offset_chan == 2)
offset_chan = 3;
if (rotated_offset_reg == 0 && rotated_offset_chan == 2)
rotated_offset_chan = 3;
r = single_alu_op3(&ctx, ALU_OP3_CNDE_INT,
ctx.gs_rotated_input[offset_reg], offset_chan,
ctx.gs_rotated_input[0], 2,
offset_reg, offset_chan,
rotated_offset_reg, rotated_offset_chan);
if (r)
return r;
}
}
}
if (ctx.type == PIPE_SHADER_TESS_CTRL)
r600_fetch_tess_io_info(&ctx);
if (shader->two_side && ctx.colors_used) {
if ((r = process_twoside_color_inputs(&ctx)))
return r;
}
tgsi_parse_init(&ctx.parse, tokens);
while (!tgsi_parse_end_of_tokens(&ctx.parse)) {
tgsi_parse_token(&ctx.parse);
switch (ctx.parse.FullToken.Token.Type) {
case TGSI_TOKEN_TYPE_INSTRUCTION:
r = tgsi_is_supported(&ctx);
if (r)
goto out_err;
ctx.max_driver_temp_used = 0;
/* reserve first tmp for everyone */
r600_get_temp(&ctx);
opcode = ctx.parse.FullToken.FullInstruction.Instruction.Opcode;
if ((r = tgsi_split_constant(&ctx)))
goto out_err;
if ((r = tgsi_split_literal_constant(&ctx)))
goto out_err;
if (ctx.type == PIPE_SHADER_GEOMETRY) {
if ((r = tgsi_split_gs_inputs(&ctx)))
goto out_err;
} else if (lds_inputs) {
if ((r = tgsi_split_lds_inputs(&ctx)))
goto out_err;
}
if (ctx.bc->chip_class == CAYMAN)
ctx.inst_info = &cm_shader_tgsi_instruction[opcode];
else if (ctx.bc->chip_class >= EVERGREEN)
ctx.inst_info = &eg_shader_tgsi_instruction[opcode];
else
ctx.inst_info = &r600_shader_tgsi_instruction[opcode];
r = ctx.inst_info->process(&ctx);
if (r)
goto out_err;
if (ctx.type == PIPE_SHADER_TESS_CTRL) {
r = r600_store_tcs_output(&ctx);
if (r)
goto out_err;
}
break;
default:
break;
}
}
/* Reset the temporary register counter. */
ctx.max_driver_temp_used = 0;
noutput = shader->noutput;
if (!ring_outputs && ctx.clip_vertex_write) {
unsigned clipdist_temp[2];
clipdist_temp[0] = r600_get_temp(&ctx);
clipdist_temp[1] = r600_get_temp(&ctx);
/* need to convert a clipvertex write into clipdistance writes and not export
the clip vertex anymore */
memset(&shader->output[noutput], 0, 2*sizeof(struct r600_shader_io));
shader->output[noutput].name = TGSI_SEMANTIC_CLIPDIST;
shader->output[noutput].gpr = clipdist_temp[0];
noutput++;
shader->output[noutput].name = TGSI_SEMANTIC_CLIPDIST;
shader->output[noutput].gpr = clipdist_temp[1];
noutput++;
/* reset spi_sid for clipvertex output to avoid confusing spi */
shader->output[ctx.cv_output].spi_sid = 0;
shader->clip_dist_write = 0xFF;
shader->cc_dist_mask = 0xFF;
for (i = 0; i < 8; i++) {
int oreg = i >> 2;
int ochan = i & 3;
for (j = 0; j < 4; j++) {
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_DOT4;
alu.src[0].sel = shader->output[ctx.cv_output].gpr;
alu.src[0].chan = j;
alu.src[1].sel = 512 + i;
alu.src[1].kc_bank = R600_BUFFER_INFO_CONST_BUFFER;
alu.src[1].chan = j;
alu.dst.sel = clipdist_temp[oreg];
alu.dst.chan = j;
alu.dst.write = (j == ochan);
if (j == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx.bc, &alu);
if (r)
return r;
}
}
}
/* Add stream outputs. */
if (so.num_outputs) {
bool emit = false;
if (!lds_outputs && !ring_outputs && ctx.type == PIPE_SHADER_VERTEX)
emit = true;
if (!ring_outputs && ctx.type == PIPE_SHADER_TESS_EVAL)
emit = true;
if (emit)
emit_streamout(&ctx, &so, -1, NULL);
}
pipeshader->enabled_stream_buffers_mask = ctx.enabled_stream_buffers_mask;
convert_edgeflag_to_int(&ctx);
if (ctx.type == PIPE_SHADER_TESS_CTRL)
r600_emit_tess_factor(&ctx);
if (lds_outputs) {
if (ctx.type == PIPE_SHADER_VERTEX) {
if (ctx.shader->noutput)
emit_lds_vs_writes(&ctx);
}
} else if (ring_outputs) {
if (shader->vs_as_es || shader->tes_as_es) {
ctx.gs_export_gpr_tregs[0] = r600_get_temp(&ctx);
ctx.gs_export_gpr_tregs[1] = -1;
ctx.gs_export_gpr_tregs[2] = -1;
ctx.gs_export_gpr_tregs[3] = -1;
emit_gs_ring_writes(&ctx, &so, -1, FALSE);
}
} else {
/* Export output */
next_clip_base = shader->vs_out_misc_write ? 62 : 61;
for (i = 0, j = 0; i < noutput; i++, j++) {
memset(&output[j], 0, sizeof(struct r600_bytecode_output));
output[j].gpr = shader->output[i].gpr;
output[j].elem_size = 3;
output[j].swizzle_x = 0;
output[j].swizzle_y = 1;
output[j].swizzle_z = 2;
output[j].swizzle_w = 3;
output[j].burst_count = 1;
output[j].type = 0xffffffff;
output[j].op = CF_OP_EXPORT;
switch (ctx.type) {
case PIPE_SHADER_VERTEX:
case PIPE_SHADER_TESS_EVAL:
switch (shader->output[i].name) {
case TGSI_SEMANTIC_POSITION:
output[j].array_base = 60;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS;
pos_emitted = true;
break;
case TGSI_SEMANTIC_PSIZE:
output[j].array_base = 61;
output[j].swizzle_y = 7;
output[j].swizzle_z = 7;
output[j].swizzle_w = 7;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS;
pos_emitted = true;
break;
case TGSI_SEMANTIC_EDGEFLAG:
output[j].array_base = 61;
output[j].swizzle_x = 7;
output[j].swizzle_y = 0;
output[j].swizzle_z = 7;
output[j].swizzle_w = 7;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS;
pos_emitted = true;
break;
case TGSI_SEMANTIC_LAYER:
/* spi_sid is 0 for outputs that are
* not consumed by PS */
if (shader->output[i].spi_sid) {
output[j].array_base = next_param_base++;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PARAM;
j++;
memcpy(&output[j], &output[j-1], sizeof(struct r600_bytecode_output));
}
output[j].array_base = 61;
output[j].swizzle_x = 7;
output[j].swizzle_y = 7;
output[j].swizzle_z = 0;
output[j].swizzle_w = 7;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS;
pos_emitted = true;
break;
case TGSI_SEMANTIC_VIEWPORT_INDEX:
/* spi_sid is 0 for outputs that are
* not consumed by PS */
if (shader->output[i].spi_sid) {
output[j].array_base = next_param_base++;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PARAM;
j++;
memcpy(&output[j], &output[j-1], sizeof(struct r600_bytecode_output));
}
output[j].array_base = 61;
output[j].swizzle_x = 7;
output[j].swizzle_y = 7;
output[j].swizzle_z = 7;
output[j].swizzle_w = 0;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS;
pos_emitted = true;
break;
case TGSI_SEMANTIC_CLIPVERTEX:
j--;
break;
case TGSI_SEMANTIC_CLIPDIST:
output[j].array_base = next_clip_base++;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS;
pos_emitted = true;
/* spi_sid is 0 for clipdistance outputs that were generated
* for clipvertex - we don't need to pass them to PS */
if (shader->output[i].spi_sid) {
j++;
/* duplicate it as PARAM to pass to the pixel shader */
memcpy(&output[j], &output[j-1], sizeof(struct r600_bytecode_output));
output[j].array_base = next_param_base++;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PARAM;
}
break;
case TGSI_SEMANTIC_FOG:
output[j].swizzle_y = 4; /* 0 */
output[j].swizzle_z = 4; /* 0 */
output[j].swizzle_w = 5; /* 1 */
break;
case TGSI_SEMANTIC_PRIMID:
output[j].swizzle_x = 2;
output[j].swizzle_y = 4; /* 0 */
output[j].swizzle_z = 4; /* 0 */
output[j].swizzle_w = 4; /* 0 */
break;
}
break;
case PIPE_SHADER_FRAGMENT:
if (shader->output[i].name == TGSI_SEMANTIC_COLOR) {
/* never export more colors than the number of CBs */
if (shader->output[i].sid >= max_color_exports) {
/* skip export */
j--;
continue;
}
output[j].swizzle_w = key.ps.alpha_to_one ? 5 : 3;
output[j].array_base = shader->output[i].sid;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PIXEL;
shader->nr_ps_color_exports++;
if (shader->fs_write_all && (rscreen->b.chip_class >= EVERGREEN)) {
for (k = 1; k < max_color_exports; k++) {
j++;
memset(&output[j], 0, sizeof(struct r600_bytecode_output));
output[j].gpr = shader->output[i].gpr;
output[j].elem_size = 3;
output[j].swizzle_x = 0;
output[j].swizzle_y = 1;
output[j].swizzle_z = 2;
output[j].swizzle_w = key.ps.alpha_to_one ? 5 : 3;
output[j].burst_count = 1;
output[j].array_base = k;
output[j].op = CF_OP_EXPORT;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PIXEL;
shader->nr_ps_color_exports++;
}
}
} else if (shader->output[i].name == TGSI_SEMANTIC_POSITION) {
output[j].array_base = 61;
output[j].swizzle_x = 2;
output[j].swizzle_y = 7;
output[j].swizzle_z = output[j].swizzle_w = 7;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PIXEL;
} else if (shader->output[i].name == TGSI_SEMANTIC_STENCIL) {
output[j].array_base = 61;
output[j].swizzle_x = 7;
output[j].swizzle_y = 1;
output[j].swizzle_z = output[j].swizzle_w = 7;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PIXEL;
} else if (shader->output[i].name == TGSI_SEMANTIC_SAMPLEMASK) {
output[j].array_base = 61;
output[j].swizzle_x = 7;
output[j].swizzle_y = 7;
output[j].swizzle_z = 0;
output[j].swizzle_w = 7;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PIXEL;
} else {
R600_ERR("unsupported fragment output name %d\n", shader->output[i].name);
r = -EINVAL;
goto out_err;
}
break;
case PIPE_SHADER_TESS_CTRL:
break;
default:
R600_ERR("unsupported processor type %d\n", ctx.type);
r = -EINVAL;
goto out_err;
}
if (output[j].type == 0xffffffff) {
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PARAM;
output[j].array_base = next_param_base++;
}
}
/* add fake position export */
if ((ctx.type == PIPE_SHADER_VERTEX || ctx.type == PIPE_SHADER_TESS_EVAL) && pos_emitted == false) {
memset(&output[j], 0, sizeof(struct r600_bytecode_output));
output[j].gpr = 0;
output[j].elem_size = 3;
output[j].swizzle_x = 7;
output[j].swizzle_y = 7;
output[j].swizzle_z = 7;
output[j].swizzle_w = 7;
output[j].burst_count = 1;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_POS;
output[j].array_base = 60;
output[j].op = CF_OP_EXPORT;
j++;
}
/* add fake param output for vertex shader if no param is exported */
if ((ctx.type == PIPE_SHADER_VERTEX || ctx.type == PIPE_SHADER_TESS_EVAL) && next_param_base == 0) {
memset(&output[j], 0, sizeof(struct r600_bytecode_output));
output[j].gpr = 0;
output[j].elem_size = 3;
output[j].swizzle_x = 7;
output[j].swizzle_y = 7;
output[j].swizzle_z = 7;
output[j].swizzle_w = 7;
output[j].burst_count = 1;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PARAM;
output[j].array_base = 0;
output[j].op = CF_OP_EXPORT;
j++;
}
/* add fake pixel export */
if (ctx.type == PIPE_SHADER_FRAGMENT && shader->nr_ps_color_exports == 0) {
memset(&output[j], 0, sizeof(struct r600_bytecode_output));
output[j].gpr = 0;
output[j].elem_size = 3;
output[j].swizzle_x = 7;
output[j].swizzle_y = 7;
output[j].swizzle_z = 7;
output[j].swizzle_w = 7;
output[j].burst_count = 1;
output[j].type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_PIXEL;
output[j].array_base = 0;
output[j].op = CF_OP_EXPORT;
j++;
shader->nr_ps_color_exports++;
}
noutput = j;
/* set export done on last export of each type */
for (k = noutput - 1, output_done = 0; k >= 0; k--) {
if (!(output_done & (1 << output[k].type))) {
output_done |= (1 << output[k].type);
output[k].op = CF_OP_EXPORT_DONE;
}
}
/* add output to bytecode */
for (i = 0; i < noutput; i++) {
r = r600_bytecode_add_output(ctx.bc, &output[i]);
if (r)
goto out_err;
}
}
/* add program end */
if (ctx.bc->chip_class == CAYMAN)
cm_bytecode_add_cf_end(ctx.bc);
else {
const struct cf_op_info *last = NULL;
if (ctx.bc->cf_last)
last = r600_isa_cf(ctx.bc->cf_last->op);
/* alu clause instructions don't have EOP bit, so add NOP */
if (!last || last->flags & CF_ALU || ctx.bc->cf_last->op == CF_OP_LOOP_END || ctx.bc->cf_last->op == CF_OP_POP)
r600_bytecode_add_cfinst(ctx.bc, CF_OP_NOP);
ctx.bc->cf_last->end_of_program = 1;
}
/* check GPR limit - we have 124 = 128 - 4
* (4 are reserved as alu clause temporary registers) */
if (ctx.bc->ngpr > 124) {
R600_ERR("GPR limit exceeded - shader requires %d registers\n", ctx.bc->ngpr);
r = -ENOMEM;
goto out_err;
}
if (ctx.type == PIPE_SHADER_GEOMETRY) {
if ((r = generate_gs_copy_shader(rctx, pipeshader, &so)))
return r;
}
free(ctx.literals);
tgsi_parse_free(&ctx.parse);
return 0;
out_err:
free(ctx.literals);
tgsi_parse_free(&ctx.parse);
return r;
}
static int tgsi_unsupported(struct r600_shader_ctx *ctx)
{
const unsigned tgsi_opcode =
ctx->parse.FullToken.FullInstruction.Instruction.Opcode;
R600_ERR("%s tgsi opcode unsupported\n",
tgsi_get_opcode_name(tgsi_opcode));
return -EINVAL;
}
static int tgsi_end(struct r600_shader_ctx *ctx UNUSED)
{
return 0;
}
static void r600_bytecode_src(struct r600_bytecode_alu_src *bc_src,
const struct r600_shader_src *shader_src,
unsigned chan)
{
bc_src->sel = shader_src->sel;
bc_src->chan = shader_src->swizzle[chan];
bc_src->neg = shader_src->neg;
bc_src->abs = shader_src->abs;
bc_src->rel = shader_src->rel;
bc_src->value = shader_src->value[bc_src->chan];
bc_src->kc_bank = shader_src->kc_bank;
bc_src->kc_rel = shader_src->kc_rel;
}
static void r600_bytecode_src_set_abs(struct r600_bytecode_alu_src *bc_src)
{
bc_src->abs = 1;
bc_src->neg = 0;
}
static void r600_bytecode_src_toggle_neg(struct r600_bytecode_alu_src *bc_src)
{
bc_src->neg = !bc_src->neg;
}
static void tgsi_dst(struct r600_shader_ctx *ctx,
const struct tgsi_full_dst_register *tgsi_dst,
unsigned swizzle,
struct r600_bytecode_alu_dst *r600_dst)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
r600_dst->sel = tgsi_dst->Register.Index;
r600_dst->sel += ctx->file_offset[tgsi_dst->Register.File];
r600_dst->chan = swizzle;
r600_dst->write = 1;
if (inst->Instruction.Saturate) {
r600_dst->clamp = 1;
}
if (ctx->type == PIPE_SHADER_TESS_CTRL) {
if (tgsi_dst->Register.File == TGSI_FILE_OUTPUT) {
return;
}
}
if (tgsi_dst->Register.Indirect)
r600_dst->rel = V_SQ_REL_RELATIVE;
}
static int tgsi_op2_64_params(struct r600_shader_ctx *ctx, bool singledest, bool swap, int dest_temp, int op_override)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
unsigned write_mask = inst->Dst[0].Register.WriteMask;
struct r600_bytecode_alu alu;
int i, j, r, lasti = tgsi_last_instruction(write_mask);
int use_tmp = 0;
int swizzle_x = inst->Src[0].Register.SwizzleX;
if (singledest) {
switch (write_mask) {
case 0x1:
if (swizzle_x == 2) {
write_mask = 0xc;
use_tmp = 3;
} else
write_mask = 0x3;
break;
case 0x2:
if (swizzle_x == 2) {
write_mask = 0xc;
use_tmp = 3;
} else {
write_mask = 0x3;
use_tmp = 1;
}
break;
case 0x4:
if (swizzle_x == 0) {
write_mask = 0x3;
use_tmp = 1;
} else
write_mask = 0xc;
break;
case 0x8:
if (swizzle_x == 0) {
write_mask = 0x3;
use_tmp = 1;
} else {
write_mask = 0xc;
use_tmp = 3;
}
break;
}
}
lasti = tgsi_last_instruction(write_mask);
for (i = 0; i <= lasti; i++) {
if (!(write_mask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
if (singledest) {
if (use_tmp || dest_temp) {
alu.dst.sel = use_tmp ? ctx->temp_reg : dest_temp;
alu.dst.chan = i;
alu.dst.write = 1;
} else {
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
}
if (i == 1 || i == 3)
alu.dst.write = 0;
} else
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.op = op_override ? op_override : ctx->inst_info->op;
if (ctx->parse.FullToken.FullInstruction.Instruction.Opcode == TGSI_OPCODE_DABS) {
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
} else if (!swap) {
for (j = 0; j < inst->Instruction.NumSrcRegs; j++) {
r600_bytecode_src(&alu.src[j], &ctx->src[j], fp64_switch(i));
}
} else {
r600_bytecode_src(&alu.src[0], &ctx->src[1], fp64_switch(i));
r600_bytecode_src(&alu.src[1], &ctx->src[0], fp64_switch(i));
}
/* handle some special cases */
if (i == 1 || i == 3) {
switch (ctx->parse.FullToken.FullInstruction.Instruction.Opcode) {
case TGSI_OPCODE_DABS:
r600_bytecode_src_set_abs(&alu.src[0]);
break;
default:
break;
}
}
if (i == lasti) {
alu.last = 1;
}
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
if (use_tmp) {
write_mask = inst->Dst[0].Register.WriteMask;
lasti = tgsi_last_instruction(write_mask);
/* move result from temp to dst */
for (i = 0; i <= lasti; i++) {
if (!(write_mask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
if (dest_temp) {
alu.dst.sel = dest_temp;
alu.dst.chan = i;
alu.dst.write = 1;
} else
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = use_tmp - 1;
alu.last = (i == lasti);
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
}
return 0;
}
static int tgsi_op2_64(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
unsigned write_mask = inst->Dst[0].Register.WriteMask;
/* confirm writemasking */
if ((write_mask & 0x3) != 0x3 &&
(write_mask & 0xc) != 0xc) {
fprintf(stderr, "illegal writemask for 64-bit: 0x%x\n", write_mask);
return -1;
}
return tgsi_op2_64_params(ctx, false, false, 0, 0);
}
static int tgsi_op2_64_single_dest(struct r600_shader_ctx *ctx)
{
return tgsi_op2_64_params(ctx, true, false, 0, 0);
}
static int tgsi_op2_64_single_dest_s(struct r600_shader_ctx *ctx)
{
return tgsi_op2_64_params(ctx, true, true, 0, 0);
}
static int tgsi_op3_64(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, j, r;
int lasti = 3;
int tmp = r600_get_temp(ctx);
for (i = 0; i < lasti + 1; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
for (j = 0; j < inst->Instruction.NumSrcRegs; j++) {
r600_bytecode_src(&alu.src[j], &ctx->src[j], i == 3 ? 0 : 1);
}
if (inst->Dst[0].Register.WriteMask & (1 << i))
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
else
alu.dst.sel = tmp;
alu.dst.chan = i;
alu.is_op3 = 1;
if (i == lasti) {
alu.last = 1;
}
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_op2_s(struct r600_shader_ctx *ctx, int swap, int trans_only)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
unsigned write_mask = inst->Dst[0].Register.WriteMask;
int i, j, r, lasti = tgsi_last_instruction(write_mask);
/* use temp register if trans_only and more than one dst component */
int use_tmp = trans_only && (write_mask ^ (1 << lasti));
unsigned op = ctx->inst_info->op;
if (op == ALU_OP2_MUL_IEEE &&
ctx->info.properties[TGSI_PROPERTY_MUL_ZERO_WINS])
op = ALU_OP2_MUL;
for (i = 0; i <= lasti; i++) {
if (!(write_mask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
if (use_tmp) {
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
alu.dst.write = 1;
} else
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.op = op;
if (!swap) {
for (j = 0; j < inst->Instruction.NumSrcRegs; j++) {
r600_bytecode_src(&alu.src[j], &ctx->src[j], i);
}
} else {
r600_bytecode_src(&alu.src[0], &ctx->src[1], i);
r600_bytecode_src(&alu.src[1], &ctx->src[0], i);
}
if (i == lasti || trans_only) {
alu.last = 1;
}
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
if (use_tmp) {
/* move result from temp to dst */
for (i = 0; i <= lasti; i++) {
if (!(write_mask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = i;
alu.last = (i == lasti);
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
}
return 0;
}
static int tgsi_op2(struct r600_shader_ctx *ctx)
{
return tgsi_op2_s(ctx, 0, 0);
}
static int tgsi_op2_swap(struct r600_shader_ctx *ctx)
{
return tgsi_op2_s(ctx, 1, 0);
}
static int tgsi_op2_trans(struct r600_shader_ctx *ctx)
{
return tgsi_op2_s(ctx, 0, 1);
}
static int tgsi_ineg(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
for (i = 0; i < lasti + 1; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
alu.src[0].sel = V_SQ_ALU_SRC_0;
r600_bytecode_src(&alu.src[1], &ctx->src[0], i);
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
if (i == lasti) {
alu.last = 1;
}
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_dneg(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
for (i = 0; i < lasti + 1; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
if (i == 1 || i == 3)
r600_bytecode_src_toggle_neg(&alu.src[0]);
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
if (i == lasti) {
alu.last = 1;
}
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_dfracexp(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
unsigned write_mask = inst->Dst[0].Register.WriteMask;
int i, j, r;
for (i = 0; i <= 3; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
alu.dst.write = 1;
for (j = 0; j < inst->Instruction.NumSrcRegs; j++) {
r600_bytecode_src(&alu.src[j], &ctx->src[j], fp64_switch(i));
}
if (i == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
/* Replicate significand result across channels. */
for (i = 0; i <= 3; i++) {
if (!(write_mask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].chan = (i & 1) + 2;
alu.src[0].sel = ctx->temp_reg;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
for (i = 0; i <= 3; i++) {
if (inst->Dst[1].Register.WriteMask & (1 << i)) {
/* MOV third channels to writemask dst1 */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].chan = 1;
alu.src[0].sel = ctx->temp_reg;
tgsi_dst(ctx, &inst->Dst[1], i, &alu.dst);
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
break;
}
}
return 0;
}
static int egcm_int_to_double(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
assert(inst->Instruction.Opcode == TGSI_OPCODE_I2D ||
inst->Instruction.Opcode == TGSI_OPCODE_U2D);
for (i = 0; i <= (lasti+1)/2; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
for (i = 0; i <= lasti; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_FLT32_TO_FLT64;
alu.src[0].chan = i/2;
if (i%2 == 0)
alu.src[0].sel = ctx->temp_reg;
else {
alu.src[0].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[0].value = 0x0;
}
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.last = i == lasti;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int egcm_double_to_int(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
int treg = r600_get_temp(ctx);
assert(inst->Instruction.Opcode == TGSI_OPCODE_D2I ||
inst->Instruction.Opcode == TGSI_OPCODE_D2U);
/* do a 64->32 into a temp register */
r = tgsi_op2_64_params(ctx, true, false, treg, ALU_OP1_FLT64_TO_FLT32);
if (r)
return r;
for (i = 0; i <= lasti; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
alu.src[0].chan = i;
alu.src[0].sel = treg;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.last = (i == lasti);
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int cayman_emit_unary_double_raw(struct r600_bytecode *bc,
unsigned op,
int dst_reg,
struct r600_shader_src *src,
bool abs)
{
struct r600_bytecode_alu alu;
const int last_slot = 3;
int r;
/* these have to write the result to X/Y by the looks of it */
for (int i = 0 ; i < last_slot; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = op;
r600_bytecode_src(&alu.src[0], src, 1);
r600_bytecode_src(&alu.src[1], src, 0);
if (abs)
r600_bytecode_src_set_abs(&alu.src[1]);
alu.dst.sel = dst_reg;
alu.dst.chan = i;
alu.dst.write = (i == 0 || i == 1);
if (bc->chip_class != CAYMAN || i == last_slot - 1)
alu.last = 1;
r = r600_bytecode_add_alu(bc, &alu);
if (r)
return r;
}
return 0;
}
static int cayman_emit_double_instr(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
int i, r;
struct r600_bytecode_alu alu;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
int t1 = ctx->temp_reg;
/* should only be one src regs */
assert(inst->Instruction.NumSrcRegs == 1);
/* only support one double at a time */
assert(inst->Dst[0].Register.WriteMask == TGSI_WRITEMASK_XY ||
inst->Dst[0].Register.WriteMask == TGSI_WRITEMASK_ZW);
r = cayman_emit_unary_double_raw(
ctx->bc, ctx->inst_info->op, t1,
&ctx->src[0],
ctx->parse.FullToken.FullInstruction.Instruction.Opcode == TGSI_OPCODE_DRSQ ||
ctx->parse.FullToken.FullInstruction.Instruction.Opcode == TGSI_OPCODE_DSQRT);
if (r)
return r;
for (i = 0 ; i <= lasti; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = t1;
alu.src[0].chan = (i == 0 || i == 2) ? 0 : 1;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.write = 1;
if (i == lasti)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int cayman_emit_float_instr(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
int i, j, r;
struct r600_bytecode_alu alu;
int last_slot = (inst->Dst[0].Register.WriteMask & 0x8) ? 4 : 3;
for (i = 0 ; i < last_slot; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
for (j = 0; j < inst->Instruction.NumSrcRegs; j++) {
r600_bytecode_src(&alu.src[j], &ctx->src[j], 0);
/* RSQ should take the absolute value of src */
if (inst->Instruction.Opcode == TGSI_OPCODE_RSQ) {
r600_bytecode_src_set_abs(&alu.src[j]);
}
}
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.write = (inst->Dst[0].Register.WriteMask >> i) & 1;
if (i == last_slot - 1)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int cayman_mul_int_instr(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
int i, j, k, r;
struct r600_bytecode_alu alu;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
int t1 = ctx->temp_reg;
for (k = 0; k <= lasti; k++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << k)))
continue;
for (i = 0 ; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
for (j = 0; j < inst->Instruction.NumSrcRegs; j++) {
r600_bytecode_src(&alu.src[j], &ctx->src[j], k);
}
alu.dst.sel = t1;
alu.dst.chan = i;
alu.dst.write = (i == k);
if (i == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
}
for (i = 0 ; i <= lasti; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = t1;
alu.src[0].chan = i;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.write = 1;
if (i == lasti)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int cayman_mul_double_instr(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
int i, j, k, r;
struct r600_bytecode_alu alu;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
int t1 = ctx->temp_reg;
/* t1 would get overwritten below if we actually tried to
* multiply two pairs of doubles at a time. */
assert(inst->Dst[0].Register.WriteMask == TGSI_WRITEMASK_XY ||
inst->Dst[0].Register.WriteMask == TGSI_WRITEMASK_ZW);
k = inst->Dst[0].Register.WriteMask == TGSI_WRITEMASK_XY ? 0 : 1;
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
for (j = 0; j < inst->Instruction.NumSrcRegs; j++) {
r600_bytecode_src(&alu.src[j], &ctx->src[j], k * 2 + ((i == 3) ? 0 : 1));
}
alu.dst.sel = t1;
alu.dst.chan = i;
alu.dst.write = 1;
if (i == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
for (i = 0; i <= lasti; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = t1;
alu.src[0].chan = i;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.write = 1;
if (i == lasti)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
/*
* Emit RECIP_64 + MUL_64 to implement division.
*/
static int cayman_ddiv_instr(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
int r;
struct r600_bytecode_alu alu;
int t1 = ctx->temp_reg;
int k;
/* Only support one double at a time. This is the same constraint as
* in DMUL lowering. */
assert(inst->Dst[0].Register.WriteMask == TGSI_WRITEMASK_XY ||
inst->Dst[0].Register.WriteMask == TGSI_WRITEMASK_ZW);
k = inst->Dst[0].Register.WriteMask == TGSI_WRITEMASK_XY ? 0 : 1;
r = cayman_emit_unary_double_raw(ctx->bc, ALU_OP2_RECIP_64, t1, &ctx->src[1], false);
if (r)
return r;
for (int i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MUL_64;
r600_bytecode_src(&alu.src[0], &ctx->src[0], k * 2 + ((i == 3) ? 0 : 1));
alu.src[1].sel = t1;
alu.src[1].chan = (i == 3) ? 0 : 1;
alu.dst.sel = t1;
alu.dst.chan = i;
alu.dst.write = 1;
if (i == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
for (int i = 0; i < 2; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = t1;
alu.src[0].chan = i;
tgsi_dst(ctx, &inst->Dst[0], k * 2 + i, &alu.dst);
alu.dst.write = 1;
if (i == 1)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
/*
* r600 - trunc to -PI..PI range
* r700 - normalize by dividing by 2PI
* see fdo bug 27901
*/
static int tgsi_setup_trig(struct r600_shader_ctx *ctx)
{
int r;
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_MULADD;
alu.is_op3 = 1;
alu.dst.chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].chan = 0;
alu.src[1].value = u_bitcast_f2u(0.5f * M_1_PI);
alu.src[2].sel = V_SQ_ALU_SRC_0_5;
alu.src[2].chan = 0;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_FRACT;
alu.dst.chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 0;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_MULADD;
alu.is_op3 = 1;
alu.dst.chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 0;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].chan = 0;
alu.src[2].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[2].chan = 0;
if (ctx->bc->chip_class == R600) {
alu.src[1].value = u_bitcast_f2u(2.0f * M_PI);
alu.src[2].value = u_bitcast_f2u(-M_PI);
} else {
alu.src[1].sel = V_SQ_ALU_SRC_1;
alu.src[2].sel = V_SQ_ALU_SRC_0_5;
alu.src[2].neg = 1;
}
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
return 0;
}
static int cayman_trig(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int last_slot = (inst->Dst[0].Register.WriteMask & 0x8) ? 4 : 3;
int i, r;
r = tgsi_setup_trig(ctx);
if (r)
return r;
for (i = 0; i < last_slot; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
alu.dst.chan = i;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.write = (inst->Dst[0].Register.WriteMask >> i) & 1;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 0;
if (i == last_slot - 1)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_trig(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
r = tgsi_setup_trig(ctx);
if (r)
return r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
alu.dst.chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 0;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* replicate result */
for (i = 0; i < lasti + 1; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = ctx->temp_reg;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
if (i == lasti)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_kill(struct r600_shader_ctx *ctx)
{
const struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r;
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
alu.dst.chan = i;
alu.src[0].sel = V_SQ_ALU_SRC_0;
if (inst->Instruction.Opcode == TGSI_OPCODE_KILL) {
alu.src[1].sel = V_SQ_ALU_SRC_1;
alu.src[1].neg = 1;
} else {
r600_bytecode_src(&alu.src[1], &ctx->src[0], i);
}
if (i == 3) {
alu.last = 1;
}
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
/* kill must be last in ALU */
ctx->bc->force_add_cf = 1;
ctx->shader->uses_kill = TRUE;
return 0;
}
static int tgsi_lit(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int r;
/* tmp.x = max(src.y, 0.0) */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MAX;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 1);
alu.src[1].sel = V_SQ_ALU_SRC_0; /*0.0*/
alu.src[1].chan = 1;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
if (inst->Dst[0].Register.WriteMask & (1 << 2))
{
int chan;
int sel;
unsigned i;
if (ctx->bc->chip_class == CAYMAN) {
for (i = 0; i < 3; i++) {
/* tmp.z = log(tmp.x) */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_LOG_CLAMPED;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
if (i == 2) {
alu.dst.write = 1;
alu.last = 1;
} else
alu.dst.write = 0;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
} else {
/* tmp.z = log(tmp.x) */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_LOG_CLAMPED;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 2;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
chan = alu.dst.chan;
sel = alu.dst.sel;
/* tmp.x = amd MUL_LIT(tmp.z, src.w, src.x ) */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_MUL_LIT;
alu.src[0].sel = sel;
alu.src[0].chan = chan;
r600_bytecode_src(&alu.src[1], &ctx->src[0], 3);
r600_bytecode_src(&alu.src[2], &ctx->src[0], 0);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.is_op3 = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
if (ctx->bc->chip_class == CAYMAN) {
for (i = 0; i < 3; i++) {
/* dst.z = exp(tmp.x) */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_EXP_IEEE;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 0;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
if (i == 2) {
alu.dst.write = 1;
alu.last = 1;
} else
alu.dst.write = 0;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
} else {
/* dst.z = exp(tmp.x) */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_EXP_IEEE;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 0;
tgsi_dst(ctx, &inst->Dst[0], 2, &alu.dst);
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
}
/* dst.x, <- 1.0 */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = V_SQ_ALU_SRC_1; /*1.0*/
alu.src[0].chan = 0;
tgsi_dst(ctx, &inst->Dst[0], 0, &alu.dst);
alu.dst.write = (inst->Dst[0].Register.WriteMask >> 0) & 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* dst.y = max(src.x, 0.0) */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MAX;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
alu.src[1].sel = V_SQ_ALU_SRC_0; /*0.0*/
alu.src[1].chan = 0;
tgsi_dst(ctx, &inst->Dst[0], 1, &alu.dst);
alu.dst.write = (inst->Dst[0].Register.WriteMask >> 1) & 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* dst.w, <- 1.0 */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = V_SQ_ALU_SRC_1;
alu.src[0].chan = 0;
tgsi_dst(ctx, &inst->Dst[0], 3, &alu.dst);
alu.dst.write = (inst->Dst[0].Register.WriteMask >> 3) & 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
return 0;
}
static int tgsi_rsq(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_RECIPSQRT_IEEE;
for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
r600_bytecode_src(&alu.src[i], &ctx->src[i], 0);
r600_bytecode_src_set_abs(&alu.src[i]);
}
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* replicate result */
return tgsi_helper_tempx_replicate(ctx);
}
static int tgsi_helper_tempx_replicate(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r;
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.src[0].sel = ctx->temp_reg;
alu.op = ALU_OP1_MOV;
alu.dst.chan = i;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.write = (inst->Dst[0].Register.WriteMask >> i) & 1;
if (i == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_trans_srcx_replicate(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
r600_bytecode_src(&alu.src[i], &ctx->src[i], 0);
}
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* replicate result */
return tgsi_helper_tempx_replicate(ctx);
}
static int cayman_pow(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
int i, r;
struct r600_bytecode_alu alu;
int last_slot = (inst->Dst[0].Register.WriteMask & 0x8) ? 4 : 3;
for (i = 0; i < 3; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_LOG_IEEE;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
alu.dst.write = 1;
if (i == 2)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
/* b * LOG2(a) */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MUL;
r600_bytecode_src(&alu.src[0], &ctx->src[1], 0);
alu.src[1].sel = ctx->temp_reg;
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
for (i = 0; i < last_slot; i++) {
/* POW(a,b) = EXP2(b * LOG2(a))*/
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_EXP_IEEE;
alu.src[0].sel = ctx->temp_reg;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.write = (inst->Dst[0].Register.WriteMask >> i) & 1;
if (i == last_slot - 1)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_pow(struct r600_shader_ctx *ctx)
{
struct r600_bytecode_alu alu;
int r;
/* LOG2(a) */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_LOG_IEEE;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* b * LOG2(a) */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MUL;
r600_bytecode_src(&alu.src[0], &ctx->src[1], 0);
alu.src[1].sel = ctx->temp_reg;
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* POW(a,b) = EXP2(b * LOG2(a))*/
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_EXP_IEEE;
alu.src[0].sel = ctx->temp_reg;
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
return tgsi_helper_tempx_replicate(ctx);
}
static int tgsi_divmod(struct r600_shader_ctx *ctx, int mod, int signed_op)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r, j;
unsigned write_mask = inst->Dst[0].Register.WriteMask;
int tmp0 = ctx->temp_reg;
int tmp1 = r600_get_temp(ctx);
int tmp2 = r600_get_temp(ctx);
int tmp3 = r600_get_temp(ctx);
/* Unsigned path:
*
* we need to represent src1 as src2*q + r, where q - quotient, r - remainder
*
* 1. tmp0.x = rcp (src2) = 2^32/src2 + e, where e is rounding error
* 2. tmp0.z = lo (tmp0.x * src2)
* 3. tmp0.w = -tmp0.z
* 4. tmp0.y = hi (tmp0.x * src2)
* 5. tmp0.z = (tmp0.y == 0 ? tmp0.w : tmp0.z) = abs(lo(rcp*src2))
* 6. tmp0.w = hi (tmp0.z * tmp0.x) = e, rounding error
* 7. tmp1.x = tmp0.x - tmp0.w
* 8. tmp1.y = tmp0.x + tmp0.w
* 9. tmp0.x = (tmp0.y == 0 ? tmp1.y : tmp1.x)
* 10. tmp0.z = hi(tmp0.x * src1) = q
* 11. tmp0.y = lo (tmp0.z * src2) = src2*q = src1 - r
*
* 12. tmp0.w = src1 - tmp0.y = r
* 13. tmp1.x = tmp0.w >= src2 = r >= src2 (uint comparison)
* 14. tmp1.y = src1 >= tmp0.y = r >= 0 (uint comparison)
*
* if DIV
*
* 15. tmp1.z = tmp0.z + 1 = q + 1
* 16. tmp1.w = tmp0.z - 1 = q - 1
*
* else MOD
*
* 15. tmp1.z = tmp0.w - src2 = r - src2
* 16. tmp1.w = tmp0.w + src2 = r + src2
*
* endif
*
* 17. tmp1.x = tmp1.x & tmp1.y
*
* DIV: 18. tmp0.z = tmp1.x==0 ? tmp0.z : tmp1.z
* MOD: 18. tmp0.z = tmp1.x==0 ? tmp0.w : tmp1.z
*
* 19. tmp0.z = tmp1.y==0 ? tmp1.w : tmp0.z
* 20. dst = src2==0 ? MAX_UINT : tmp0.z
*
* Signed path:
*
* Same as unsigned, using abs values of the operands,
* and fixing the sign of the result in the end.
*/
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
if (signed_op) {
/* tmp2.x = -src0 */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_SUB_INT;
alu.dst.sel = tmp2;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.src[0].sel = V_SQ_ALU_SRC_0;
r600_bytecode_src(&alu.src[1], &ctx->src[0], i);
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* tmp2.y = -src1 */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_SUB_INT;
alu.dst.sel = tmp2;
alu.dst.chan = 1;
alu.dst.write = 1;
alu.src[0].sel = V_SQ_ALU_SRC_0;
r600_bytecode_src(&alu.src[1], &ctx->src[1], i);
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* tmp2.z sign bit is set if src0 and src2 signs are different */
/* it will be a sign of the quotient */
if (!mod) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_XOR_INT;
alu.dst.sel = tmp2;
alu.dst.chan = 2;
alu.dst.write = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
r600_bytecode_src(&alu.src[1], &ctx->src[1], i);
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
/* tmp2.x = |src0| */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDGE_INT;
alu.is_op3 = 1;
alu.dst.sel = tmp2;
alu.dst.chan = 0;
alu.dst.write = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
r600_bytecode_src(&alu.src[1], &ctx->src[0], i);
alu.src[2].sel = tmp2;
alu.src[2].chan = 0;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* tmp2.y = |src1| */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDGE_INT;
alu.is_op3 = 1;
alu.dst.sel = tmp2;
alu.dst.chan = 1;
alu.dst.write = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[1], i);
r600_bytecode_src(&alu.src[1], &ctx->src[1], i);
alu.src[2].sel = tmp2;
alu.src[2].chan = 1;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
/* 1. tmp0.x = rcp_u (src2) = 2^32/src2 + e, where e is rounding error */
if (ctx->bc->chip_class == CAYMAN) {
/* tmp3.x = u2f(src2) */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_UINT_TO_FLT;
alu.dst.sel = tmp3;
alu.dst.chan = 0;
alu.dst.write = 1;
if (signed_op) {
alu.src[0].sel = tmp2;
alu.src[0].chan = 1;
} else {
r600_bytecode_src(&alu.src[0], &ctx->src[1], i);
}
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* tmp0.x = recip(tmp3.x) */
for (j = 0 ; j < 3; j++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_RECIP_IEEE;
alu.dst.sel = tmp0;
alu.dst.chan = j;
alu.dst.write = (j == 0);
alu.src[0].sel = tmp3;
alu.src[0].chan = 0;
if (j == 2)
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MUL;
alu.src[0].sel = tmp0;
alu.src[0].chan = 0;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = 0x4f800000;
alu.dst.sel = tmp3;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_FLT_TO_UINT;
alu.dst.sel = tmp0;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.src[0].sel = tmp3;
alu.src[0].chan = 0;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_RECIP_UINT;
alu.dst.sel = tmp0;
alu.dst.chan = 0;
alu.dst.write = 1;
if (signed_op) {
alu.src[0].sel = tmp2;
alu.src[0].chan = 1;
} else {
r600_bytecode_src(&alu.src[0], &ctx->src[1], i);
}
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
/* 2. tmp0.z = lo (tmp0.x * src2) */
if (ctx->bc->chip_class == CAYMAN) {
for (j = 0 ; j < 4; j++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MULLO_UINT;
alu.dst.sel = tmp0;
alu.dst.chan = j;
alu.dst.write = (j == 2);
alu.src[0].sel = tmp0;
alu.src[0].chan = 0;
if (signed_op) {
alu.src[1].sel = tmp2;
alu.src[1].chan = 1;
} else {
r600_bytecode_src(&alu.src[1], &ctx->src[1], i);
}
alu.last = (j == 3);
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MULLO_UINT;
alu.dst.sel = tmp0;
alu.dst.chan = 2;
alu.dst.write = 1;
alu.src[0].sel = tmp0;
alu.src[0].chan = 0;
if (signed_op) {
alu.src[1].sel = tmp2;
alu.src[1].chan = 1;
} else {
r600_bytecode_src(&alu.src[1], &ctx->src[1], i);
}
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
/* 3. tmp0.w = -tmp0.z */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_SUB_INT;
alu.dst.sel = tmp0;
alu.dst.chan = 3;
alu.dst.write = 1;
alu.src[0].sel = V_SQ_ALU_SRC_0;
alu.src[1].sel = tmp0;
alu.src[1].chan = 2;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* 4. tmp0.y = hi (tmp0.x * src2) */
if (ctx->bc->chip_class == CAYMAN) {
for (j = 0 ; j < 4; j++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MULHI_UINT;
alu.dst.sel = tmp0;
alu.dst.chan = j;
alu.dst.write = (j == 1);
alu.src[0].sel = tmp0;
alu.src[0].chan = 0;
if (signed_op) {
alu.src[1].sel = tmp2;
alu.src[1].chan = 1;
} else {
r600_bytecode_src(&alu.src[1], &ctx->src[1], i);
}
alu.last = (j == 3);
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MULHI_UINT;
alu.dst.sel = tmp0;
alu.dst.chan = 1;
alu.dst.write = 1;
alu.src[0].sel = tmp0;
alu.src[0].chan = 0;
if (signed_op) {
alu.src[1].sel = tmp2;
alu.src[1].chan = 1;
} else {
r600_bytecode_src(&alu.src[1], &ctx->src[1], i);
}
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
/* 5. tmp0.z = (tmp0.y == 0 ? tmp0.w : tmp0.z) = abs(lo(rcp*src)) */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDE_INT;
alu.is_op3 = 1;
alu.dst.sel = tmp0;
alu.dst.chan = 2;
alu.dst.write = 1;
alu.src[0].sel = tmp0;
alu.src[0].chan = 1;
alu.src[1].sel = tmp0;
alu.src[1].chan = 3;
alu.src[2].sel = tmp0;
alu.src[2].chan = 2;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* 6. tmp0.w = hi (tmp0.z * tmp0.x) = e, rounding error */
if (ctx->bc->chip_class == CAYMAN) {
for (j = 0 ; j < 4; j++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MULHI_UINT;
alu.dst.sel = tmp0;
alu.dst.chan = j;
alu.dst.write = (j == 3);
alu.src[0].sel = tmp0;
alu.src[0].chan = 2;
alu.src[1].sel = tmp0;
alu.src[1].chan = 0;
alu.last = (j == 3);
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MULHI_UINT;
alu.dst.sel = tmp0;
alu.dst.chan = 3;
alu.dst.write = 1;
alu.src[0].sel = tmp0;
alu.src[0].chan = 2;
alu.src[1].sel = tmp0;
alu.src[1].chan = 0;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
/* 7. tmp1.x = tmp0.x - tmp0.w */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_SUB_INT;
alu.dst.sel = tmp1;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.src[0].sel = tmp0;
alu.src[0].chan = 0;
alu.src[1].sel = tmp0;
alu.src[1].chan = 3;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* 8. tmp1.y = tmp0.x + tmp0.w */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_ADD_INT;
alu.dst.sel = tmp1;
alu.dst.chan = 1;
alu.dst.write = 1;
alu.src[0].sel = tmp0;
alu.src[0].chan = 0;
alu.src[1].sel = tmp0;
alu.src[1].chan = 3;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* 9. tmp0.x = (tmp0.y == 0 ? tmp1.y : tmp1.x) */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDE_INT;
alu.is_op3 = 1;
alu.dst.sel = tmp0;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.src[0].sel = tmp0;
alu.src[0].chan = 1;
alu.src[1].sel = tmp1;
alu.src[1].chan = 1;
alu.src[2].sel = tmp1;
alu.src[2].chan = 0;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* 10. tmp0.z = hi(tmp0.x * src1) = q */
if (ctx->bc->chip_class == CAYMAN) {
for (j = 0 ; j < 4; j++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MULHI_UINT;
alu.dst.sel = tmp0;
alu.dst.chan = j;
alu.dst.write = (j == 2);
alu.src[0].sel = tmp0;
alu.src[0].chan = 0;
if (signed_op) {
alu.src[1].sel = tmp2;
alu.src[1].chan = 0;
} else {
r600_bytecode_src(&alu.src[1], &ctx->src[0], i);
}
alu.last = (j == 3);
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MULHI_UINT;
alu.dst.sel = tmp0;
alu.dst.chan = 2;
alu.dst.write = 1;
alu.src[0].sel = tmp0;
alu.src[0].chan = 0;
if (signed_op) {
alu.src[1].sel = tmp2;
alu.src[1].chan = 0;
} else {
r600_bytecode_src(&alu.src[1], &ctx->src[0], i);
}
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
/* 11. tmp0.y = lo (src2 * tmp0.z) = src2*q = src1 - r */
if (ctx->bc->chip_class == CAYMAN) {
for (j = 0 ; j < 4; j++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MULLO_UINT;
alu.dst.sel = tmp0;
alu.dst.chan = j;
alu.dst.write = (j == 1);
if (signed_op) {
alu.src[0].sel = tmp2;
alu.src[0].chan = 1;
} else {
r600_bytecode_src(&alu.src[0], &ctx->src[1], i);
}
alu.src[1].sel = tmp0;
alu.src[1].chan = 2;
alu.last = (j == 3);
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MULLO_UINT;
alu.dst.sel = tmp0;
alu.dst.chan = 1;
alu.dst.write = 1;
if (signed_op) {
alu.src[0].sel = tmp2;
alu.src[0].chan = 1;
} else {
r600_bytecode_src(&alu.src[0], &ctx->src[1], i);
}
alu.src[1].sel = tmp0;
alu.src[1].chan = 2;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
/* 12. tmp0.w = src1 - tmp0.y = r */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_SUB_INT;
alu.dst.sel = tmp0;
alu.dst.chan = 3;
alu.dst.write = 1;
if (signed_op) {
alu.src[0].sel = tmp2;
alu.src[0].chan = 0;
} else {
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
}
alu.src[1].sel = tmp0;
alu.src[1].chan = 1;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* 13. tmp1.x = tmp0.w >= src2 = r >= src2 */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_SETGE_UINT;
alu.dst.sel = tmp1;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.src[0].sel = tmp0;
alu.src[0].chan = 3;
if (signed_op) {
alu.src[1].sel = tmp2;
alu.src[1].chan = 1;
} else {
r600_bytecode_src(&alu.src[1], &ctx->src[1], i);
}
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* 14. tmp1.y = src1 >= tmp0.y = r >= 0 */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_SETGE_UINT;
alu.dst.sel = tmp1;
alu.dst.chan = 1;
alu.dst.write = 1;
if (signed_op) {
alu.src[0].sel = tmp2;
alu.src[0].chan = 0;
} else {
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
}
alu.src[1].sel = tmp0;
alu.src[1].chan = 1;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
if (mod) { /* UMOD */
/* 15. tmp1.z = tmp0.w - src2 = r - src2 */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_SUB_INT;
alu.dst.sel = tmp1;
alu.dst.chan = 2;
alu.dst.write = 1;
alu.src[0].sel = tmp0;
alu.src[0].chan = 3;
if (signed_op) {
alu.src[1].sel = tmp2;
alu.src[1].chan = 1;
} else {
r600_bytecode_src(&alu.src[1], &ctx->src[1], i);
}
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* 16. tmp1.w = tmp0.w + src2 = r + src2 */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_ADD_INT;
alu.dst.sel = tmp1;
alu.dst.chan = 3;
alu.dst.write = 1;
alu.src[0].sel = tmp0;
alu.src[0].chan = 3;
if (signed_op) {
alu.src[1].sel = tmp2;
alu.src[1].chan = 1;
} else {
r600_bytecode_src(&alu.src[1], &ctx->src[1], i);
}
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
} else { /* UDIV */
/* 15. tmp1.z = tmp0.z + 1 = q + 1 DIV */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_ADD_INT;
alu.dst.sel = tmp1;
alu.dst.chan = 2;
alu.dst.write = 1;
alu.src[0].sel = tmp0;
alu.src[0].chan = 2;
alu.src[1].sel = V_SQ_ALU_SRC_1_INT;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* 16. tmp1.w = tmp0.z - 1 = q - 1 */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_ADD_INT;
alu.dst.sel = tmp1;
alu.dst.chan = 3;
alu.dst.write = 1;
alu.src[0].sel = tmp0;
alu.src[0].chan = 2;
alu.src[1].sel = V_SQ_ALU_SRC_M_1_INT;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
/* 17. tmp1.x = tmp1.x & tmp1.y */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_AND_INT;
alu.dst.sel = tmp1;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.src[0].sel = tmp1;
alu.src[0].chan = 0;
alu.src[1].sel = tmp1;
alu.src[1].chan = 1;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* 18. tmp0.z = tmp1.x==0 ? tmp0.z : tmp1.z DIV */
/* 18. tmp0.z = tmp1.x==0 ? tmp0.w : tmp1.z MOD */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDE_INT;
alu.is_op3 = 1;
alu.dst.sel = tmp0;
alu.dst.chan = 2;
alu.dst.write = 1;
alu.src[0].sel = tmp1;
alu.src[0].chan = 0;
alu.src[1].sel = tmp0;
alu.src[1].chan = mod ? 3 : 2;
alu.src[2].sel = tmp1;
alu.src[2].chan = 2;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* 19. tmp0.z = tmp1.y==0 ? tmp1.w : tmp0.z */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDE_INT;
alu.is_op3 = 1;
if (signed_op) {
alu.dst.sel = tmp0;
alu.dst.chan = 2;
alu.dst.write = 1;
} else {
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
}
alu.src[0].sel = tmp1;
alu.src[0].chan = 1;
alu.src[1].sel = tmp1;
alu.src[1].chan = 3;
alu.src[2].sel = tmp0;
alu.src[2].chan = 2;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
if (signed_op) {
/* fix the sign of the result */
if (mod) {
/* tmp0.x = -tmp0.z */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_SUB_INT;
alu.dst.sel = tmp0;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.src[0].sel = V_SQ_ALU_SRC_0;
alu.src[1].sel = tmp0;
alu.src[1].chan = 2;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* sign of the remainder is the same as the sign of src0 */
/* tmp0.x = src0>=0 ? tmp0.z : tmp0.x */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDGE_INT;
alu.is_op3 = 1;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
alu.src[1].sel = tmp0;
alu.src[1].chan = 2;
alu.src[2].sel = tmp0;
alu.src[2].chan = 0;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
} else {
/* tmp0.x = -tmp0.z */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_SUB_INT;
alu.dst.sel = tmp0;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.src[0].sel = V_SQ_ALU_SRC_0;
alu.src[1].sel = tmp0;
alu.src[1].chan = 2;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
/* fix the quotient sign (same as the sign of src0*src1) */
/* tmp0.x = tmp2.z>=0 ? tmp0.z : tmp0.x */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDGE_INT;
alu.is_op3 = 1;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.src[0].sel = tmp2;
alu.src[0].chan = 2;
alu.src[1].sel = tmp0;
alu.src[1].chan = 2;
alu.src[2].sel = tmp0;
alu.src[2].chan = 0;
alu.last = 1;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
}
}
return 0;
}
static int tgsi_udiv(struct r600_shader_ctx *ctx)
{
return tgsi_divmod(ctx, 0, 0);
}
static int tgsi_umod(struct r600_shader_ctx *ctx)
{
return tgsi_divmod(ctx, 1, 0);
}
static int tgsi_idiv(struct r600_shader_ctx *ctx)
{
return tgsi_divmod(ctx, 0, 1);
}
static int tgsi_imod(struct r600_shader_ctx *ctx)
{
return tgsi_divmod(ctx, 1, 1);
}
static int tgsi_f2i(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r;
unsigned write_mask = inst->Dst[0].Register.WriteMask;
int last_inst = tgsi_last_instruction(write_mask);
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_TRUNC;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
alu.dst.write = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
if (i == last_inst)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = i;
if (i == last_inst || alu.op == ALU_OP1_FLT_TO_UINT)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_iabs(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r;
unsigned write_mask = inst->Dst[0].Register.WriteMask;
int last_inst = tgsi_last_instruction(write_mask);
/* tmp = -src */
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_SUB_INT;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
alu.dst.write = 1;
r600_bytecode_src(&alu.src[1], &ctx->src[0], i);
alu.src[0].sel = V_SQ_ALU_SRC_0;
if (i == last_inst)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
/* dst = (src >= 0 ? src : tmp) */
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDGE_INT;
alu.is_op3 = 1;
alu.dst.write = 1;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
r600_bytecode_src(&alu.src[1], &ctx->src[0], i);
alu.src[2].sel = ctx->temp_reg;
alu.src[2].chan = i;
if (i == last_inst)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_issg(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r;
unsigned write_mask = inst->Dst[0].Register.WriteMask;
int last_inst = tgsi_last_instruction(write_mask);
/* tmp = (src >= 0 ? src : -1) */
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDGE_INT;
alu.is_op3 = 1;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
alu.dst.write = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
r600_bytecode_src(&alu.src[1], &ctx->src[0], i);
alu.src[2].sel = V_SQ_ALU_SRC_M_1_INT;
if (i == last_inst)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
/* dst = (tmp > 0 ? 1 : tmp) */
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDGT_INT;
alu.is_op3 = 1;
alu.dst.write = 1;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = i;
alu.src[1].sel = V_SQ_ALU_SRC_1_INT;
alu.src[2].sel = ctx->temp_reg;
alu.src[2].chan = i;
if (i == last_inst)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_ssg(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r;
/* tmp = (src > 0 ? 1 : src) */
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDGT;
alu.is_op3 = 1;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
alu.src[1].sel = V_SQ_ALU_SRC_1;
r600_bytecode_src(&alu.src[2], &ctx->src[0], i);
if (i == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
/* dst = (-tmp > 0 ? -1 : tmp) */
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDGT;
alu.is_op3 = 1;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = i;
alu.src[0].neg = 1;
alu.src[1].sel = V_SQ_ALU_SRC_1;
alu.src[1].neg = 1;
alu.src[2].sel = ctx->temp_reg;
alu.src[2].chan = i;
if (i == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_bfi(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r, t1, t2;
unsigned write_mask = inst->Dst[0].Register.WriteMask;
int last_inst = tgsi_last_instruction(write_mask);
t1 = r600_get_temp(ctx);
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_SETGE_INT;
r600_bytecode_src(&alu.src[0], &ctx->src[3], i);
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = 32;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
alu.dst.write = 1;
alu.last = i == last_inst;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
/* create mask tmp */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_BFM_INT;
alu.dst.sel = t1;
alu.dst.chan = i;
alu.dst.write = 1;
alu.last = i == last_inst;
r600_bytecode_src(&alu.src[0], &ctx->src[3], i);
r600_bytecode_src(&alu.src[1], &ctx->src[2], i);
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
t2 = r600_get_temp(ctx);
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
/* shift insert left */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_LSHL_INT;
alu.dst.sel = t2;
alu.dst.chan = i;
alu.dst.write = 1;
alu.last = i == last_inst;
r600_bytecode_src(&alu.src[0], &ctx->src[1], i);
r600_bytecode_src(&alu.src[1], &ctx->src[2], i);
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
/* actual bitfield insert */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_BFI_INT;
alu.is_op3 = 1;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.chan = i;
alu.dst.write = 1;
alu.last = i == last_inst;
alu.src[0].sel = t1;
alu.src[0].chan = i;
alu.src[1].sel = t2;
alu.src[1].chan = i;
r600_bytecode_src(&alu.src[2], &ctx->src[0], i);
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDE_INT;
alu.is_op3 = 1;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = i;
r600_bytecode_src(&alu.src[2], &ctx->src[1], i);
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.src[1].sel = alu.dst.sel;
alu.src[1].chan = i;
alu.last = i == last_inst;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_msb(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r, t1, t2;
unsigned write_mask = inst->Dst[0].Register.WriteMask;
int last_inst = tgsi_last_instruction(write_mask);
assert(ctx->inst_info->op == ALU_OP1_FFBH_INT ||
ctx->inst_info->op == ALU_OP1_FFBH_UINT);
t1 = ctx->temp_reg;
/* bit position is indexed from lsb by TGSI, and from msb by the hardware */
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
/* t1 = FFBH_INT / FFBH_UINT */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ctx->inst_info->op;
alu.dst.sel = t1;
alu.dst.chan = i;
alu.dst.write = 1;
alu.last = i == last_inst;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
t2 = r600_get_temp(ctx);
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
/* t2 = 31 - t1 */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_SUB_INT;
alu.dst.sel = t2;
alu.dst.chan = i;
alu.dst.write = 1;
alu.last = i == last_inst;
alu.src[0].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[0].value = 31;
alu.src[1].sel = t1;
alu.src[1].chan = i;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
for (i = 0; i < 4; i++) {
if (!(write_mask & (1<<i)))
continue;
/* result = t1 >= 0 ? t2 : t1 */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDGE_INT;
alu.is_op3 = 1;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.chan = i;
alu.dst.write = 1;
alu.last = i == last_inst;
alu.src[0].sel = t1;
alu.src[0].chan = i;
alu.src[1].sel = t2;
alu.src[1].chan = i;
alu.src[2].sel = t1;
alu.src[2].chan = i;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_interp_egcm(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int r, i = 0, k, interp_gpr, interp_base_chan, tmp, lasti;
unsigned location;
const int input = inst->Src[0].Register.Index + ctx->shader->nsys_inputs;
assert(inst->Src[0].Register.File == TGSI_FILE_INPUT);
/* Interpolators have been marked for use already by allocate_system_value_inputs */
if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
location = TGSI_INTERPOLATE_LOC_CENTER; /* sample offset will be added explicitly */
}
else {
location = TGSI_INTERPOLATE_LOC_CENTROID;
}
k = eg_get_interpolator_index(ctx->shader->input[input].interpolate, location);
if (k < 0)
k = 0;
interp_gpr = ctx->eg_interpolators[k].ij_index / 2;
interp_base_chan = 2 * (ctx->eg_interpolators[k].ij_index % 2);
/* NOTE: currently offset is not perspective correct */
if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
int sample_gpr = -1;
int gradientsH, gradientsV;
struct r600_bytecode_tex tex;
if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
sample_gpr = load_sample_position(ctx, &ctx->src[1], ctx->src[1].swizzle[0]);
}
gradientsH = r600_get_temp(ctx);
gradientsV = r600_get_temp(ctx);
for (i = 0; i < 2; i++) {
memset(&tex, 0, sizeof(struct r600_bytecode_tex));
tex.op = i == 0 ? FETCH_OP_GET_GRADIENTS_H : FETCH_OP_GET_GRADIENTS_V;
tex.src_gpr = interp_gpr;
tex.src_sel_x = interp_base_chan + 0;
tex.src_sel_y = interp_base_chan + 1;
tex.src_sel_z = 0;
tex.src_sel_w = 0;
tex.dst_gpr = i == 0 ? gradientsH : gradientsV;
tex.dst_sel_x = 0;
tex.dst_sel_y = 1;
tex.dst_sel_z = 7;
tex.dst_sel_w = 7;
tex.inst_mod = 1; // Use per pixel gradient calculation
tex.sampler_id = 0;
tex.resource_id = tex.sampler_id;
r = r600_bytecode_add_tex(ctx->bc, &tex);
if (r)
return r;
}
for (i = 0; i < 2; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_MULADD;
alu.is_op3 = 1;
alu.src[0].sel = gradientsH;
alu.src[0].chan = i;
if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
alu.src[1].sel = sample_gpr;
alu.src[1].chan = 2;
}
else {
r600_bytecode_src(&alu.src[1], &ctx->src[1], 0);
}
alu.src[2].sel = interp_gpr;
alu.src[2].chan = interp_base_chan + i;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
alu.last = i == 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
for (i = 0; i < 2; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_MULADD;
alu.is_op3 = 1;
alu.src[0].sel = gradientsV;
alu.src[0].chan = i;
if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
alu.src[1].sel = sample_gpr;
alu.src[1].chan = 3;
}
else {
r600_bytecode_src(&alu.src[1], &ctx->src[1], 1);
}
alu.src[2].sel = ctx->temp_reg;
alu.src[2].chan = i;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
alu.last = i == 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
}
tmp = r600_get_temp(ctx);
for (i = 0; i < 8; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = i < 4 ? ALU_OP2_INTERP_ZW : ALU_OP2_INTERP_XY;
alu.dst.sel = tmp;
if ((i > 1 && i < 6)) {
alu.dst.write = 1;
}
else {
alu.dst.write = 0;
}
alu.dst.chan = i % 4;
if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 1 - (i % 2);
} else {
alu.src[0].sel = interp_gpr;
alu.src[0].chan = interp_base_chan + 1 - (i % 2);
}
alu.src[1].sel = V_SQ_ALU_SRC_PARAM_BASE + ctx->shader->input[input].lds_pos;
alu.src[1].chan = 0;
alu.last = i % 4 == 3;
alu.bank_swizzle_force = SQ_ALU_VEC_210;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
// INTERP can't swizzle dst
lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
for (i = 0; i <= lasti; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = tmp;
alu.src[0].chan = ctx->src[0].swizzle[i];
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.write = 1;
alu.last = i == lasti;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_helper_copy(struct r600_shader_ctx *ctx, struct tgsi_full_instruction *inst)
{
struct r600_bytecode_alu alu;
int i, r;
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
if (!(inst->Dst[0].Register.WriteMask & (1 << i))) {
alu.op = ALU_OP0_NOP;
alu.dst.chan = i;
} else {
alu.op = ALU_OP1_MOV;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = i;
}
if (i == 3) {
alu.last = 1;
}
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_make_src_for_op3(struct r600_shader_ctx *ctx,
unsigned temp, int chan,
struct r600_bytecode_alu_src *bc_src,
const struct r600_shader_src *shader_src)
{
struct r600_bytecode_alu alu;
int r;
r600_bytecode_src(bc_src, shader_src, chan);
/* op3 operands don't support abs modifier */
if (bc_src->abs) {
assert(temp!=0); /* we actually need the extra register, make sure it is allocated. */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.dst.sel = temp;
alu.dst.chan = chan;
alu.dst.write = 1;
alu.src[0] = *bc_src;
alu.last = true; // sufficient?
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
memset(bc_src, 0, sizeof(*bc_src));
bc_src->sel = temp;
bc_src->chan = chan;
}
return 0;
}
static int tgsi_op3_dst(struct r600_shader_ctx *ctx, int dst)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, j, r;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
int temp_regs[4];
unsigned op = ctx->inst_info->op;
if (op == ALU_OP3_MULADD_IEEE &&
ctx->info.properties[TGSI_PROPERTY_MUL_ZERO_WINS])
op = ALU_OP3_MULADD;
for (j = 0; j < inst->Instruction.NumSrcRegs; j++) {
temp_regs[j] = 0;
if (ctx->src[j].abs)
temp_regs[j] = r600_get_temp(ctx);
}
for (i = 0; i < lasti + 1; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = op;
for (j = 0; j < inst->Instruction.NumSrcRegs; j++) {
r = tgsi_make_src_for_op3(ctx, temp_regs[j], i, &alu.src[j], &ctx->src[j]);
if (r)
return r;
}
if (dst == -1) {
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
} else {
alu.dst.sel = dst;
}
alu.dst.chan = i;
alu.dst.write = 1;
alu.is_op3 = 1;
if (i == lasti) {
alu.last = 1;
}
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_op3(struct r600_shader_ctx *ctx)
{
return tgsi_op3_dst(ctx, -1);
}
static int tgsi_dp(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, j, r;
unsigned op = ctx->inst_info->op;
if (op == ALU_OP2_DOT4_IEEE &&
ctx->info.properties[TGSI_PROPERTY_MUL_ZERO_WINS])
op = ALU_OP2_DOT4;
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = op;
for (j = 0; j < inst->Instruction.NumSrcRegs; j++) {
r600_bytecode_src(&alu.src[j], &ctx->src[j], i);
}
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.chan = i;
alu.dst.write = (inst->Dst[0].Register.WriteMask >> i) & 1;
/* handle some special cases */
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_DP2:
if (i > 1) {
alu.src[0].sel = alu.src[1].sel = V_SQ_ALU_SRC_0;
alu.src[0].chan = alu.src[1].chan = 0;
}
break;
case TGSI_OPCODE_DP3:
if (i > 2) {
alu.src[0].sel = alu.src[1].sel = V_SQ_ALU_SRC_0;
alu.src[0].chan = alu.src[1].chan = 0;
}
break;
default:
break;
}
if (i == 3) {
alu.last = 1;
}
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static inline boolean tgsi_tex_src_requires_loading(struct r600_shader_ctx *ctx,
unsigned index)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
return (inst->Src[index].Register.File != TGSI_FILE_TEMPORARY &&
inst->Src[index].Register.File != TGSI_FILE_INPUT &&
inst->Src[index].Register.File != TGSI_FILE_OUTPUT) ||
ctx->src[index].neg || ctx->src[index].abs ||
(inst->Src[index].Register.File == TGSI_FILE_INPUT && ctx->type == PIPE_SHADER_GEOMETRY);
}
static inline unsigned tgsi_tex_get_src_gpr(struct r600_shader_ctx *ctx,
unsigned index)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
return ctx->file_offset[inst->Src[index].Register.File] + inst->Src[index].Register.Index;
}
static int do_vtx_fetch_inst(struct r600_shader_ctx *ctx, boolean src_requires_loading)
{
struct r600_bytecode_vtx vtx;
struct r600_bytecode_alu alu;
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
int src_gpr, r, i;
int id = tgsi_tex_get_src_gpr(ctx, 1);
int sampler_index_mode = inst->Src[1].Indirect.Index == 2 ? 2 : 0; // CF_INDEX_1 : CF_INDEX_NONE
src_gpr = tgsi_tex_get_src_gpr(ctx, 0);
if (src_requires_loading) {
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
if (i == 3)
alu.last = 1;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
src_gpr = ctx->temp_reg;
}
memset(&vtx, 0, sizeof(vtx));
vtx.op = FETCH_OP_VFETCH;
vtx.buffer_id = id + R600_MAX_CONST_BUFFERS;
vtx.fetch_type = SQ_VTX_FETCH_NO_INDEX_OFFSET;
vtx.src_gpr = src_gpr;
vtx.mega_fetch_count = 16;
vtx.dst_gpr = ctx->file_offset[inst->Dst[0].Register.File] + inst->Dst[0].Register.Index;
vtx.dst_sel_x = (inst->Dst[0].Register.WriteMask & 1) ? 0 : 7; /* SEL_X */
vtx.dst_sel_y = (inst->Dst[0].Register.WriteMask & 2) ? 1 : 7; /* SEL_Y */
vtx.dst_sel_z = (inst->Dst[0].Register.WriteMask & 4) ? 2 : 7; /* SEL_Z */
vtx.dst_sel_w = (inst->Dst[0].Register.WriteMask & 8) ? 3 : 7; /* SEL_W */
vtx.use_const_fields = 1;
vtx.buffer_index_mode = sampler_index_mode;
if ((r = r600_bytecode_add_vtx(ctx->bc, &vtx)))
return r;
if (ctx->bc->chip_class >= EVERGREEN)
return 0;
for (i = 0; i < 4; i++) {
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_AND_INT;
alu.dst.chan = i;
alu.dst.sel = vtx.dst_gpr;
alu.dst.write = 1;
alu.src[0].sel = vtx.dst_gpr;
alu.src[0].chan = i;
alu.src[1].sel = R600_SHADER_BUFFER_INFO_SEL;
alu.src[1].sel += (id * 2);
alu.src[1].chan = i % 4;
alu.src[1].kc_bank = R600_BUFFER_INFO_CONST_BUFFER;
if (i == lasti)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
if (inst->Dst[0].Register.WriteMask & 3) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_OR_INT;
alu.dst.chan = 3;
alu.dst.sel = vtx.dst_gpr;
alu.dst.write = 1;
alu.src[0].sel = vtx.dst_gpr;
alu.src[0].chan = 3;
alu.src[1].sel = R600_SHADER_BUFFER_INFO_SEL + (id * 2) + 1;
alu.src[1].chan = 0;
alu.src[1].kc_bank = R600_BUFFER_INFO_CONST_BUFFER;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int r600_do_buffer_txq(struct r600_shader_ctx *ctx, int reg_idx, int offset)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
int r;
int id = tgsi_tex_get_src_gpr(ctx, reg_idx) + offset;
int sampler_index_mode = inst->Src[reg_idx].Indirect.Index == 2 ? 2 : 0; // CF_INDEX_1 : CF_INDEX_NONE
if (ctx->bc->chip_class < EVERGREEN) {
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = R600_SHADER_BUFFER_INFO_SEL;
/* r600 we have them at channel 2 of the second dword */
alu.src[0].sel += (id * 2) + 1;
alu.src[0].chan = 1;
alu.src[0].kc_bank = R600_BUFFER_INFO_CONST_BUFFER;
tgsi_dst(ctx, &inst->Dst[0], 0, &alu.dst);
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
return 0;
} else {
struct r600_bytecode_vtx vtx;
memset(&vtx, 0, sizeof(vtx));
vtx.op = FETCH_OP_GDS_MIN_UINT; /* aka GET_BUFFER_RESINFO */
vtx.buffer_id = id + R600_MAX_CONST_BUFFERS;
vtx.fetch_type = SQ_VTX_FETCH_NO_INDEX_OFFSET;
vtx.src_gpr = 0;
vtx.mega_fetch_count = 16; /* no idea here really... */
vtx.dst_gpr = ctx->file_offset[inst->Dst[0].Register.File] + inst->Dst[0].Register.Index;
vtx.dst_sel_x = (inst->Dst[0].Register.WriteMask & 1) ? 0 : 7; /* SEL_X */
vtx.dst_sel_y = (inst->Dst[0].Register.WriteMask & 2) ? 4 : 7; /* SEL_Y */
vtx.dst_sel_z = (inst->Dst[0].Register.WriteMask & 4) ? 4 : 7; /* SEL_Z */
vtx.dst_sel_w = (inst->Dst[0].Register.WriteMask & 8) ? 4 : 7; /* SEL_W */
vtx.data_format = FMT_32_32_32_32;
vtx.buffer_index_mode = sampler_index_mode;
if ((r = r600_bytecode_add_vtx_tc(ctx->bc, &vtx)))
return r;
return 0;
}
}
static int tgsi_tex(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_tex tex;
struct r600_bytecode_alu alu;
unsigned src_gpr;
int r, i, j;
int opcode;
bool read_compressed_msaa = ctx->bc->has_compressed_msaa_texturing &&
inst->Instruction.Opcode == TGSI_OPCODE_TXF &&
(inst->Texture.Texture == TGSI_TEXTURE_2D_MSAA ||
inst->Texture.Texture == TGSI_TEXTURE_2D_ARRAY_MSAA);
bool txf_add_offsets = inst->Texture.NumOffsets &&
inst->Instruction.Opcode == TGSI_OPCODE_TXF &&
inst->Texture.Texture != TGSI_TEXTURE_BUFFER;
/* Texture fetch instructions can only use gprs as source.
* Also they cannot negate the source or take the absolute value */
const boolean src_requires_loading = (inst->Instruction.Opcode != TGSI_OPCODE_TXQS &&
tgsi_tex_src_requires_loading(ctx, 0)) ||
read_compressed_msaa || txf_add_offsets;
boolean src_loaded = FALSE;
unsigned sampler_src_reg = 1;
int8_t offset_x = 0, offset_y = 0, offset_z = 0;
boolean has_txq_cube_array_z = false;
unsigned sampler_index_mode;
if (inst->Instruction.Opcode == TGSI_OPCODE_TXQ &&
((inst->Texture.Texture == TGSI_TEXTURE_CUBE_ARRAY ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE_ARRAY)))
if (inst->Dst[0].Register.WriteMask & 4) {
ctx->shader->has_txq_cube_array_z_comp = true;
has_txq_cube_array_z = true;
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TEX2 ||
inst->Instruction.Opcode == TGSI_OPCODE_TXB2 ||
inst->Instruction.Opcode == TGSI_OPCODE_TXL2 ||
inst->Instruction.Opcode == TGSI_OPCODE_TG4)
sampler_src_reg = 2;
/* TGSI moves the sampler to src reg 3 for TXD */
if (inst->Instruction.Opcode == TGSI_OPCODE_TXD)
sampler_src_reg = 3;
sampler_index_mode = inst->Src[sampler_src_reg].Indirect.Index == 2 ? 2 : 0; // CF_INDEX_1 : CF_INDEX_NONE
src_gpr = tgsi_tex_get_src_gpr(ctx, 0);
if (inst->Texture.Texture == TGSI_TEXTURE_BUFFER) {
if (inst->Instruction.Opcode == TGSI_OPCODE_TXQ) {
if (ctx->bc->chip_class < EVERGREEN)
ctx->shader->uses_tex_buffers = true;
return r600_do_buffer_txq(ctx, 1, 0);
}
else if (inst->Instruction.Opcode == TGSI_OPCODE_TXF) {
if (ctx->bc->chip_class < EVERGREEN)
ctx->shader->uses_tex_buffers = true;
return do_vtx_fetch_inst(ctx, src_requires_loading);
}
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TXP) {
int out_chan;
/* Add perspective divide */
if (ctx->bc->chip_class == CAYMAN) {
out_chan = 2;
for (i = 0; i < 3; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_RECIP_IEEE;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 3);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
if (i == 2)
alu.last = 1;
if (out_chan == i)
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
} else {
out_chan = 3;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_RECIP_IEEE;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 3);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = out_chan;
alu.last = 1;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
for (i = 0; i < 3; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MUL;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = out_chan;
r600_bytecode_src(&alu.src[1], &ctx->src[0], i);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = V_SQ_ALU_SRC_1;
alu.src[0].chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 3;
alu.last = 1;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
src_loaded = TRUE;
src_gpr = ctx->temp_reg;
}
if ((inst->Texture.Texture == TGSI_TEXTURE_CUBE ||
inst->Texture.Texture == TGSI_TEXTURE_CUBE_ARRAY ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE_ARRAY) &&
inst->Instruction.Opcode != TGSI_OPCODE_TXQ) {
static const unsigned src0_swizzle[] = {2, 2, 0, 1};
static const unsigned src1_swizzle[] = {1, 0, 2, 2};
/* tmp1.xyzw = CUBE(R0.zzxy, R0.yxzz) */
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_CUBE;
r600_bytecode_src(&alu.src[0], &ctx->src[0], src0_swizzle[i]);
r600_bytecode_src(&alu.src[1], &ctx->src[0], src1_swizzle[i]);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
if (i == 3)
alu.last = 1;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
/* tmp1.z = RCP_e(|tmp1.z|) */
if (ctx->bc->chip_class == CAYMAN) {
for (i = 0; i < 3; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_RECIP_IEEE;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 2;
alu.src[0].abs = 1;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
if (i == 2)
alu.dst.write = 1;
if (i == 2)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_RECIP_IEEE;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 2;
alu.src[0].abs = 1;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 2;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
/* MULADD R0.x, R0.x, PS1, (0x3FC00000, 1.5f).x
* MULADD R0.y, R0.y, PS1, (0x3FC00000, 1.5f).x
* muladd has no writemask, have to use another temp
*/
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_MULADD;
alu.is_op3 = 1;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 0;
alu.src[1].sel = ctx->temp_reg;
alu.src[1].chan = 2;
alu.src[2].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[2].chan = 0;
alu.src[2].value = u_bitcast_f2u(1.5f);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 0;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_MULADD;
alu.is_op3 = 1;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 1;
alu.src[1].sel = ctx->temp_reg;
alu.src[1].chan = 2;
alu.src[2].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[2].chan = 0;
alu.src[2].value = u_bitcast_f2u(1.5f);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 1;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* write initial compare value into Z component
- W src 0 for shadow cube
- X src 1 for shadow cube array */
if (inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
if (inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE_ARRAY)
r600_bytecode_src(&alu.src[0], &ctx->src[1], 0);
else
r600_bytecode_src(&alu.src[0], &ctx->src[0], 3);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 2;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
if (inst->Texture.Texture == TGSI_TEXTURE_CUBE_ARRAY ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
if (ctx->bc->chip_class >= EVERGREEN) {
int mytmp = r600_get_temp(ctx);
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 3;
alu.dst.sel = mytmp;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* have to multiply original layer by 8 and add to face id (temp.w) in Z */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_MULADD;
alu.is_op3 = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 3);
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].chan = 0;
alu.src[1].value = u_bitcast_f2u(8.0f);
alu.src[2].sel = mytmp;
alu.src[2].chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 3;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
} else if (ctx->bc->chip_class < EVERGREEN) {
memset(&tex, 0, sizeof(struct r600_bytecode_tex));
tex.op = FETCH_OP_SET_CUBEMAP_INDEX;
tex.sampler_id = tgsi_tex_get_src_gpr(ctx, sampler_src_reg);
tex.resource_id = tex.sampler_id + R600_MAX_CONST_BUFFERS;
tex.src_gpr = r600_get_temp(ctx);
tex.src_sel_x = 0;
tex.src_sel_y = 0;
tex.src_sel_z = 0;
tex.src_sel_w = 0;
tex.dst_sel_x = tex.dst_sel_y = tex.dst_sel_z = tex.dst_sel_w = 7;
tex.coord_type_x = 1;
tex.coord_type_y = 1;
tex.coord_type_z = 1;
tex.coord_type_w = 1;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 3);
alu.dst.sel = tex.src_gpr;
alu.dst.chan = 0;
alu.last = 1;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
r = r600_bytecode_add_tex(ctx->bc, &tex);
if (r)
return r;
}
}
/* for cube forms of lod and bias we need to route things */
if (inst->Instruction.Opcode == TGSI_OPCODE_TXB ||
inst->Instruction.Opcode == TGSI_OPCODE_TXL ||
inst->Instruction.Opcode == TGSI_OPCODE_TXB2 ||
inst->Instruction.Opcode == TGSI_OPCODE_TXL2) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
if (inst->Instruction.Opcode == TGSI_OPCODE_TXB2 ||
inst->Instruction.Opcode == TGSI_OPCODE_TXL2)
r600_bytecode_src(&alu.src[0], &ctx->src[1], 0);
else
r600_bytecode_src(&alu.src[0], &ctx->src[0], 3);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 2;
alu.last = 1;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
src_loaded = TRUE;
src_gpr = ctx->temp_reg;
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TXD) {
int temp_h = 0, temp_v = 0;
int start_val = 0;
/* if we've already loaded the src (i.e. CUBE don't reload it). */
if (src_loaded == TRUE)
start_val = 1;
else
src_loaded = TRUE;
for (i = start_val; i < 3; i++) {
int treg = r600_get_temp(ctx);
if (i == 0)
src_gpr = treg;
else if (i == 1)
temp_h = treg;
else
temp_v = treg;
for (j = 0; j < 4; j++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
r600_bytecode_src(&alu.src[0], &ctx->src[i], j);
alu.dst.sel = treg;
alu.dst.chan = j;
if (j == 3)
alu.last = 1;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
}
for (i = 1; i < 3; i++) {
/* set gradients h/v */
memset(&tex, 0, sizeof(struct r600_bytecode_tex));
tex.op = (i == 1) ? FETCH_OP_SET_GRADIENTS_H :
FETCH_OP_SET_GRADIENTS_V;
tex.sampler_id = tgsi_tex_get_src_gpr(ctx, sampler_src_reg);
tex.sampler_index_mode = sampler_index_mode;
tex.resource_id = tex.sampler_id + R600_MAX_CONST_BUFFERS;
tex.resource_index_mode = sampler_index_mode;
tex.src_gpr = (i == 1) ? temp_h : temp_v;
tex.src_sel_x = 0;
tex.src_sel_y = 1;
tex.src_sel_z = 2;
tex.src_sel_w = 3;
tex.dst_gpr = r600_get_temp(ctx); /* just to avoid confusing the asm scheduler */
tex.dst_sel_x = tex.dst_sel_y = tex.dst_sel_z = tex.dst_sel_w = 7;
if (inst->Texture.Texture != TGSI_TEXTURE_RECT) {
tex.coord_type_x = 1;
tex.coord_type_y = 1;
tex.coord_type_z = 1;
tex.coord_type_w = 1;
}
r = r600_bytecode_add_tex(ctx->bc, &tex);
if (r)
return r;
}
}
if (src_requires_loading && !src_loaded) {
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
if (i == 3)
alu.last = 1;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
src_loaded = TRUE;
src_gpr = ctx->temp_reg;
}
/* get offset values */
if (inst->Texture.NumOffsets) {
assert(inst->Texture.NumOffsets == 1);
/* The texture offset feature doesn't work with the TXF instruction
* and must be emulated by adding the offset to the texture coordinates. */
if (txf_add_offsets) {
const struct tgsi_texture_offset *off = inst->TexOffsets;
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_3D:
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_ADD_INT;
alu.src[0].sel = src_gpr;
alu.src[0].chan = 2;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = ctx->literals[4 * off[0].Index + off[0].SwizzleZ];
alu.dst.sel = src_gpr;
alu.dst.chan = 2;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* fall through */
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_ADD_INT;
alu.src[0].sel = src_gpr;
alu.src[0].chan = 1;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = ctx->literals[4 * off[0].Index + off[0].SwizzleY];
alu.dst.sel = src_gpr;
alu.dst.chan = 1;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* fall through */
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_ADD_INT;
alu.src[0].sel = src_gpr;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = ctx->literals[4 * off[0].Index + off[0].SwizzleX];
alu.dst.sel = src_gpr;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
break;
/* texture offsets do not apply to other texture targets */
}
} else {
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_3D:
offset_z = ctx->literals[4 * inst->TexOffsets[0].Index + inst->TexOffsets[0].SwizzleZ] << 1;
/* fallthrough */
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
offset_y = ctx->literals[4 * inst->TexOffsets[0].Index + inst->TexOffsets[0].SwizzleY] << 1;
/* fallthrough */
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
offset_x = ctx->literals[4 * inst->TexOffsets[0].Index + inst->TexOffsets[0].SwizzleX] << 1;
}
}
}
/* Obtain the sample index for reading a compressed MSAA color texture.
* To read the FMASK, we use the ldfptr instruction, which tells us
* where the samples are stored.
* For uncompressed 8x MSAA surfaces, ldfptr should return 0x76543210,
* which is the identity mapping. Each nibble says which physical sample
* should be fetched to get that sample.
*
* Assume src.z contains the sample index. It should be modified like this:
* src.z = (ldfptr() >> (src.z * 4)) & 0xF;
* Then fetch the texel with src.
*/
if (read_compressed_msaa) {
unsigned sample_chan = 3;
unsigned temp = r600_get_temp(ctx);
assert(src_loaded);
/* temp.w = ldfptr() */
memset(&tex, 0, sizeof(struct r600_bytecode_tex));
tex.op = FETCH_OP_LD;
tex.inst_mod = 1; /* to indicate this is ldfptr */
tex.sampler_id = tgsi_tex_get_src_gpr(ctx, sampler_src_reg);
tex.sampler_index_mode = sampler_index_mode;
tex.resource_id = tex.sampler_id + R600_MAX_CONST_BUFFERS;
tex.resource_index_mode = sampler_index_mode;
tex.src_gpr = src_gpr;
tex.dst_gpr = temp;
tex.dst_sel_x = 7; /* mask out these components */
tex.dst_sel_y = 7;
tex.dst_sel_z = 7;
tex.dst_sel_w = 0; /* store X */
tex.src_sel_x = 0;
tex.src_sel_y = 1;
tex.src_sel_z = 2;
tex.src_sel_w = 3;
tex.offset_x = offset_x;
tex.offset_y = offset_y;
tex.offset_z = offset_z;
r = r600_bytecode_add_tex(ctx->bc, &tex);
if (r)
return r;
/* temp.x = sample_index*4 */
if (ctx->bc->chip_class == CAYMAN) {
for (i = 0 ; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MULLO_INT;
alu.src[0].sel = src_gpr;
alu.src[0].chan = sample_chan;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = 4;
alu.dst.sel = temp;
alu.dst.chan = i;
alu.dst.write = i == 0;
if (i == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MULLO_INT;
alu.src[0].sel = src_gpr;
alu.src[0].chan = sample_chan;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = 4;
alu.dst.sel = temp;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
/* sample_index = temp.w >> temp.x */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_LSHR_INT;
alu.src[0].sel = temp;
alu.src[0].chan = 3;
alu.src[1].sel = temp;
alu.src[1].chan = 0;
alu.dst.sel = src_gpr;
alu.dst.chan = sample_chan;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* sample_index & 0xF */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_AND_INT;
alu.src[0].sel = src_gpr;
alu.src[0].chan = sample_chan;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = 0xF;
alu.dst.sel = src_gpr;
alu.dst.chan = sample_chan;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
#if 0
/* visualize the FMASK */
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_INT_TO_FLT;
alu.src[0].sel = src_gpr;
alu.src[0].chan = sample_chan;
alu.dst.sel = ctx->file_offset[inst->Dst[0].Register.File] + inst->Dst[0].Register.Index;
alu.dst.chan = i;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
#endif
}
/* does this shader want a num layers from TXQ for a cube array? */
if (has_txq_cube_array_z) {
int id = tgsi_tex_get_src_gpr(ctx, sampler_src_reg);
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = R600_SHADER_BUFFER_INFO_SEL;
if (ctx->bc->chip_class >= EVERGREEN) {
/* with eg each dword is number of cubes */
alu.src[0].sel += id / 4;
alu.src[0].chan = id % 4;
} else {
/* r600 we have them at channel 2 of the second dword */
alu.src[0].sel += (id * 2) + 1;
alu.src[0].chan = 2;
}
alu.src[0].kc_bank = R600_BUFFER_INFO_CONST_BUFFER;
tgsi_dst(ctx, &inst->Dst[0], 2, &alu.dst);
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* disable writemask from texture instruction */
inst->Dst[0].Register.WriteMask &= ~4;
}
opcode = ctx->inst_info->op;
if (opcode == FETCH_OP_GATHER4 &&
inst->TexOffsets[0].File != TGSI_FILE_NULL &&
inst->TexOffsets[0].File != TGSI_FILE_IMMEDIATE) {
opcode = FETCH_OP_GATHER4_O;
/* GATHER4_O/GATHER4_C_O use offset values loaded by
SET_TEXTURE_OFFSETS instruction. The immediate offset values
encoded in the instruction are ignored. */
memset(&tex, 0, sizeof(struct r600_bytecode_tex));
tex.op = FETCH_OP_SET_TEXTURE_OFFSETS;
tex.sampler_id = tgsi_tex_get_src_gpr(ctx, sampler_src_reg);
tex.sampler_index_mode = sampler_index_mode;
tex.resource_id = tex.sampler_id + R600_MAX_CONST_BUFFERS;
tex.resource_index_mode = sampler_index_mode;
tex.src_gpr = ctx->file_offset[inst->TexOffsets[0].File] + inst->TexOffsets[0].Index;
tex.src_sel_x = inst->TexOffsets[0].SwizzleX;
tex.src_sel_y = inst->TexOffsets[0].SwizzleY;
tex.src_sel_z = inst->TexOffsets[0].SwizzleZ;
tex.src_sel_w = 4;
tex.dst_sel_x = 7;
tex.dst_sel_y = 7;
tex.dst_sel_z = 7;
tex.dst_sel_w = 7;
r = r600_bytecode_add_tex(ctx->bc, &tex);
if (r)
return r;
}
if (inst->Texture.Texture == TGSI_TEXTURE_SHADOW1D ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOW2D ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOWRECT ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOW1D_ARRAY ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOW2D_ARRAY ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
switch (opcode) {
case FETCH_OP_SAMPLE:
opcode = FETCH_OP_SAMPLE_C;
break;
case FETCH_OP_SAMPLE_L:
opcode = FETCH_OP_SAMPLE_C_L;
break;
case FETCH_OP_SAMPLE_LB:
opcode = FETCH_OP_SAMPLE_C_LB;
break;
case FETCH_OP_SAMPLE_G:
opcode = FETCH_OP_SAMPLE_C_G;
break;
/* Texture gather variants */
case FETCH_OP_GATHER4:
opcode = FETCH_OP_GATHER4_C;
break;
case FETCH_OP_GATHER4_O:
opcode = FETCH_OP_GATHER4_C_O;
break;
}
}
memset(&tex, 0, sizeof(struct r600_bytecode_tex));
tex.op = opcode;
tex.sampler_id = tgsi_tex_get_src_gpr(ctx, sampler_src_reg);
tex.sampler_index_mode = sampler_index_mode;
tex.resource_id = tex.sampler_id + R600_MAX_CONST_BUFFERS;
tex.resource_index_mode = sampler_index_mode;
tex.src_gpr = src_gpr;
tex.dst_gpr = ctx->file_offset[inst->Dst[0].Register.File] + inst->Dst[0].Register.Index;
if (inst->Instruction.Opcode == TGSI_OPCODE_DDX_FINE ||
inst->Instruction.Opcode == TGSI_OPCODE_DDY_FINE) {
tex.inst_mod = 1; /* per pixel gradient calculation instead of per 2x2 quad */
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TG4) {
int8_t texture_component_select = ctx->literals[4 * inst->Src[1].Register.Index + inst->Src[1].Register.SwizzleX];
tex.inst_mod = texture_component_select;
if (ctx->bc->chip_class == CAYMAN) {
/* GATHER4 result order is different from TGSI TG4 */
tex.dst_sel_x = (inst->Dst[0].Register.WriteMask & 2) ? 0 : 7;
tex.dst_sel_y = (inst->Dst[0].Register.WriteMask & 4) ? 1 : 7;
tex.dst_sel_z = (inst->Dst[0].Register.WriteMask & 1) ? 2 : 7;
tex.dst_sel_w = (inst->Dst[0].Register.WriteMask & 8) ? 3 : 7;
} else {
tex.dst_sel_x = (inst->Dst[0].Register.WriteMask & 2) ? 1 : 7;
tex.dst_sel_y = (inst->Dst[0].Register.WriteMask & 4) ? 2 : 7;
tex.dst_sel_z = (inst->Dst[0].Register.WriteMask & 1) ? 0 : 7;
tex.dst_sel_w = (inst->Dst[0].Register.WriteMask & 8) ? 3 : 7;
}
}
else if (inst->Instruction.Opcode == TGSI_OPCODE_LODQ) {
tex.dst_sel_x = (inst->Dst[0].Register.WriteMask & 2) ? 1 : 7;
tex.dst_sel_y = (inst->Dst[0].Register.WriteMask & 1) ? 0 : 7;
tex.dst_sel_z = 7;
tex.dst_sel_w = 7;
}
else if (inst->Instruction.Opcode == TGSI_OPCODE_TXQS) {
tex.dst_sel_x = 3;
tex.dst_sel_y = 7;
tex.dst_sel_z = 7;
tex.dst_sel_w = 7;
}
else {
tex.dst_sel_x = (inst->Dst[0].Register.WriteMask & 1) ? 0 : 7;
tex.dst_sel_y = (inst->Dst[0].Register.WriteMask & 2) ? 1 : 7;
tex.dst_sel_z = (inst->Dst[0].Register.WriteMask & 4) ? 2 : 7;
tex.dst_sel_w = (inst->Dst[0].Register.WriteMask & 8) ? 3 : 7;
}
if (inst->Instruction.Opcode == TGSI_OPCODE_TXQS) {
tex.src_sel_x = 4;
tex.src_sel_y = 4;
tex.src_sel_z = 4;
tex.src_sel_w = 4;
} else if (src_loaded) {
tex.src_sel_x = 0;
tex.src_sel_y = 1;
tex.src_sel_z = 2;
tex.src_sel_w = 3;
} else {
tex.src_sel_x = ctx->src[0].swizzle[0];
tex.src_sel_y = ctx->src[0].swizzle[1];
tex.src_sel_z = ctx->src[0].swizzle[2];
tex.src_sel_w = ctx->src[0].swizzle[3];
tex.src_rel = ctx->src[0].rel;
}
if (inst->Texture.Texture == TGSI_TEXTURE_CUBE ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE ||
inst->Texture.Texture == TGSI_TEXTURE_CUBE_ARRAY ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
tex.src_sel_x = 1;
tex.src_sel_y = 0;
tex.src_sel_z = 3;
tex.src_sel_w = 2; /* route Z compare or Lod value into W */
}
if (inst->Texture.Texture != TGSI_TEXTURE_RECT &&
inst->Texture.Texture != TGSI_TEXTURE_SHADOWRECT) {
tex.coord_type_x = 1;
tex.coord_type_y = 1;
}
tex.coord_type_z = 1;
tex.coord_type_w = 1;
tex.offset_x = offset_x;
tex.offset_y = offset_y;
if (inst->Instruction.Opcode == TGSI_OPCODE_TG4 &&
(inst->Texture.Texture == TGSI_TEXTURE_2D_ARRAY ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOW2D_ARRAY)) {
tex.offset_z = 0;
}
else {
tex.offset_z = offset_z;
}
/* Put the depth for comparison in W.
* TGSI_TEXTURE_SHADOW2D_ARRAY already has the depth in W.
* Some instructions expect the depth in Z. */
if ((inst->Texture.Texture == TGSI_TEXTURE_SHADOW1D ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOW2D ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOWRECT ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOW1D_ARRAY) &&
opcode != FETCH_OP_SAMPLE_C_L &&
opcode != FETCH_OP_SAMPLE_C_LB) {
tex.src_sel_w = tex.src_sel_z;
}
if (inst->Texture.Texture == TGSI_TEXTURE_1D_ARRAY ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOW1D_ARRAY) {
if (opcode == FETCH_OP_SAMPLE_C_L ||
opcode == FETCH_OP_SAMPLE_C_LB) {
/* the array index is read from Y */
tex.coord_type_y = 0;
} else {
/* the array index is read from Z */
tex.coord_type_z = 0;
tex.src_sel_z = tex.src_sel_y;
}
} else if (inst->Texture.Texture == TGSI_TEXTURE_2D_ARRAY ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOW2D_ARRAY ||
((inst->Texture.Texture == TGSI_TEXTURE_CUBE_ARRAY ||
inst->Texture.Texture == TGSI_TEXTURE_SHADOWCUBE_ARRAY) &&
(ctx->bc->chip_class >= EVERGREEN)))
/* the array index is read from Z */
tex.coord_type_z = 0;
/* mask unused source components */
if (opcode == FETCH_OP_SAMPLE || opcode == FETCH_OP_GATHER4) {
switch (inst->Texture.Texture) {
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_RECT:
tex.src_sel_z = 7;
tex.src_sel_w = 7;
break;
case TGSI_TEXTURE_1D_ARRAY:
tex.src_sel_y = 7;
tex.src_sel_w = 7;
break;
case TGSI_TEXTURE_1D:
tex.src_sel_y = 7;
tex.src_sel_z = 7;
tex.src_sel_w = 7;
break;
}
}
r = r600_bytecode_add_tex(ctx->bc, &tex);
if (r)
return r;
/* add shadow ambient support - gallium doesn't do it yet */
return 0;
}
static int find_hw_atomic_counter(struct r600_shader_ctx *ctx,
struct tgsi_full_src_register *src)
{
unsigned i;
if (src->Register.Indirect) {
for (i = 0; i < ctx->shader->nhwatomic_ranges; i++) {
if (src->Indirect.ArrayID == ctx->shader->atomics[i].array_id)
return ctx->shader->atomics[i].hw_idx;
}
} else {
uint32_t index = src->Register.Index;
for (i = 0; i < ctx->shader->nhwatomic_ranges; i++) {
if (ctx->shader->atomics[i].buffer_id != (unsigned)src->Dimension.Index)
continue;
if (index > ctx->shader->atomics[i].end)
continue;
if (index < ctx->shader->atomics[i].start)
continue;
uint32_t offset = (index - ctx->shader->atomics[i].start);
return ctx->shader->atomics[i].hw_idx + offset;
}
}
assert(0);
return -1;
}
static int tgsi_set_gds_temp(struct r600_shader_ctx *ctx,
int *uav_id_p, int *uav_index_mode_p)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
int uav_id, uav_index_mode = 0;
int r;
bool is_cm = (ctx->bc->chip_class == CAYMAN);
uav_id = find_hw_atomic_counter(ctx, &inst->Src[0]);
if (inst->Src[0].Register.Indirect) {
if (is_cm) {
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_LSHL_INT;
alu.src[0].sel = get_address_file_reg(ctx, inst->Src[0].Indirect.Index);
alu.src[0].chan = 0;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = 2;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
r = single_alu_op2(ctx, ALU_OP2_ADD_INT,
ctx->temp_reg, 0,
ctx->temp_reg, 0,
V_SQ_ALU_SRC_LITERAL, uav_id * 4);
if (r)
return r;
} else
uav_index_mode = 2;
} else if (is_cm) {
r = single_alu_op2(ctx, ALU_OP1_MOV,
ctx->temp_reg, 0,
V_SQ_ALU_SRC_LITERAL, uav_id * 4,
0, 0);
if (r)
return r;
}
*uav_id_p = uav_id;
*uav_index_mode_p = uav_index_mode;
return 0;
}
static int tgsi_load_gds(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
int r;
struct r600_bytecode_gds gds;
int uav_id = 0;
int uav_index_mode = 0;
bool is_cm = (ctx->bc->chip_class == CAYMAN);
r = tgsi_set_gds_temp(ctx, &uav_id, &uav_index_mode);
if (r)
return r;
memset(&gds, 0, sizeof(struct r600_bytecode_gds));
gds.op = FETCH_OP_GDS_READ_RET;
gds.dst_gpr = ctx->file_offset[inst->Dst[0].Register.File] + inst->Dst[0].Register.Index;
gds.uav_id = is_cm ? 0 : uav_id;
gds.uav_index_mode = is_cm ? 0 : uav_index_mode;
gds.src_gpr = ctx->temp_reg;
gds.src_sel_x = (is_cm) ? 0 : 4;
gds.src_sel_y = 4;
gds.src_sel_z = 4;
gds.dst_sel_x = 0;
gds.dst_sel_y = 7;
gds.dst_sel_z = 7;
gds.dst_sel_w = 7;
gds.src_gpr2 = 0;
gds.alloc_consume = !is_cm;
r = r600_bytecode_add_gds(ctx->bc, &gds);
if (r)
return r;
ctx->bc->cf_last->vpm = 1;
return 0;
}
/* this fixes up 1D arrays properly */
static int load_index_src(struct r600_shader_ctx *ctx, int src_index, int *idx_gpr)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
int r, i;
struct r600_bytecode_alu alu;
int temp_reg = r600_get_temp(ctx);
for (i = 0; i < 4; i++) {
bool def_val = true, write_zero = false;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.dst.sel = temp_reg;
alu.dst.chan = i;
switch (inst->Memory.Texture) {
case TGSI_TEXTURE_BUFFER:
case TGSI_TEXTURE_1D:
if (i == 1 || i == 2 || i == 3) {
write_zero = true;
}
break;
case TGSI_TEXTURE_1D_ARRAY:
if (i == 1 || i == 3)
write_zero = true;
else if (i == 2) {
r600_bytecode_src(&alu.src[0], &ctx->src[src_index], 1);
def_val = false;
}
break;
case TGSI_TEXTURE_2D:
if (i == 2 || i == 3)
write_zero = true;
break;
default:
if (i == 3)
write_zero = true;
break;
}
if (write_zero) {
alu.src[0].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[0].value = 0;
} else if (def_val) {
r600_bytecode_src(&alu.src[0], &ctx->src[src_index], i);
}
if (i == 3)
alu.last = 1;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
*idx_gpr = temp_reg;
return 0;
}
static int load_buffer_coord(struct r600_shader_ctx *ctx, int src_idx,
int temp_reg)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
int r;
if (inst->Src[src_idx].Register.File == TGSI_FILE_IMMEDIATE) {
int value = (ctx->literals[4 * inst->Src[src_idx].Register.Index + inst->Src[src_idx].Register.SwizzleX]);
r = single_alu_op2(ctx, ALU_OP1_MOV,
temp_reg, 0,
V_SQ_ALU_SRC_LITERAL, value >> 2,
0, 0);
if (r)
return r;
} else {
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_LSHR_INT;
r600_bytecode_src(&alu.src[0], &ctx->src[src_idx], 0);
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = 2;
alu.dst.sel = temp_reg;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_load_buffer(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
/* have to work out the offset into the RAT immediate return buffer */
struct r600_bytecode_vtx vtx;
struct r600_bytecode_cf *cf;
int r;
int temp_reg = r600_get_temp(ctx);
unsigned rat_index_mode;
unsigned base;
rat_index_mode = inst->Src[0].Indirect.Index == 2 ? 2 : 0; // CF_INDEX_1 : CF_INDEX_NONE
base = R600_IMAGE_REAL_RESOURCE_OFFSET + ctx->info.file_count[TGSI_FILE_IMAGE];
r = load_buffer_coord(ctx, 1, temp_reg);
if (r)
return r;
ctx->bc->cf_last->barrier = 1;
memset(&vtx, 0, sizeof(struct r600_bytecode_vtx));
vtx.op = FETCH_OP_VFETCH;
vtx.buffer_id = inst->Src[0].Register.Index + base;
vtx.buffer_index_mode = rat_index_mode;
vtx.fetch_type = SQ_VTX_FETCH_NO_INDEX_OFFSET;
vtx.src_gpr = temp_reg;
vtx.src_sel_x = 0;
vtx.dst_gpr = ctx->file_offset[inst->Dst[0].Register.File] + inst->Dst[0].Register.Index;
vtx.dst_sel_x = (inst->Dst[0].Register.WriteMask & 1) ? 0 : 7; /* SEL_X */
vtx.dst_sel_y = (inst->Dst[0].Register.WriteMask & 2) ? 1 : 7; /* SEL_Y */
vtx.dst_sel_z = (inst->Dst[0].Register.WriteMask & 4) ? 2 : 7; /* SEL_Z */
vtx.dst_sel_w = (inst->Dst[0].Register.WriteMask & 8) ? 3 : 7; /* SEL_W */
vtx.num_format_all = 1;
vtx.format_comp_all = 1;
vtx.srf_mode_all = 0;
if (inst->Dst[0].Register.WriteMask & 8) {
vtx.data_format = FMT_32_32_32_32;
vtx.use_const_fields = 0;
} else if (inst->Dst[0].Register.WriteMask & 4) {
vtx.data_format = FMT_32_32_32;
vtx.use_const_fields = 0;
} else if (inst->Dst[0].Register.WriteMask & 2) {
vtx.data_format = FMT_32_32;
vtx.use_const_fields = 0;
} else {
vtx.data_format = FMT_32;
vtx.use_const_fields = 0;
}
r = r600_bytecode_add_vtx_tc(ctx->bc, &vtx);
if (r)
return r;
cf = ctx->bc->cf_last;
cf->barrier = 1;
return 0;
}
static int tgsi_load_rat(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
/* have to work out the offset into the RAT immediate return buffer */
struct r600_bytecode_vtx vtx;
struct r600_bytecode_cf *cf;
int r;
int idx_gpr;
unsigned format, num_format, format_comp, endian;
const struct util_format_description *desc;
unsigned rat_index_mode;
unsigned immed_base;
r = load_thread_id_gpr(ctx);
if (r)
return r;
rat_index_mode = inst->Src[0].Indirect.Index == 2 ? 2 : 0; // CF_INDEX_1 : CF_INDEX_NONE
immed_base = R600_IMAGE_IMMED_RESOURCE_OFFSET;
r = load_index_src(ctx, 1, &idx_gpr);
if (r)
return r;
if (rat_index_mode)
egcm_load_index_reg(ctx->bc, 1, false);
r600_bytecode_add_cfinst(ctx->bc, CF_OP_MEM_RAT);
cf = ctx->bc->cf_last;
cf->rat.id = ctx->shader->rat_base + inst->Src[0].Register.Index;
cf->rat.inst = V_RAT_INST_NOP_RTN;
cf->rat.index_mode = rat_index_mode;
cf->output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_READ_IND;
cf->output.gpr = ctx->thread_id_gpr;
cf->output.index_gpr = idx_gpr;
cf->output.comp_mask = 0xf;
cf->output.burst_count = 1;
cf->vpm = 1;
cf->barrier = 1;
cf->mark = 1;
cf->output.elem_size = 0;
r600_bytecode_add_cfinst(ctx->bc, CF_OP_WAIT_ACK);
cf = ctx->bc->cf_last;
cf->barrier = 1;
desc = util_format_description(inst->Memory.Format);
r600_vertex_data_type(inst->Memory.Format,
&format, &num_format, &format_comp, &endian);
memset(&vtx, 0, sizeof(struct r600_bytecode_vtx));
vtx.op = FETCH_OP_VFETCH;
vtx.buffer_id = immed_base + inst->Src[0].Register.Index;
vtx.buffer_index_mode = rat_index_mode;
vtx.fetch_type = SQ_VTX_FETCH_NO_INDEX_OFFSET;
vtx.src_gpr = ctx->thread_id_gpr;
vtx.src_sel_x = 1;
vtx.dst_gpr = ctx->file_offset[inst->Dst[0].Register.File] + inst->Dst[0].Register.Index;
vtx.dst_sel_x = desc->swizzle[0];
vtx.dst_sel_y = desc->swizzle[1];
vtx.dst_sel_z = desc->swizzle[2];
vtx.dst_sel_w = desc->swizzle[3];
vtx.srf_mode_all = 1;
vtx.data_format = format;
vtx.num_format_all = num_format;
vtx.format_comp_all = format_comp;
vtx.endian = endian;
vtx.offset = 0;
vtx.mega_fetch_count = 3;
r = r600_bytecode_add_vtx_tc(ctx->bc, &vtx);
if (r)
return r;
cf = ctx->bc->cf_last;
cf->barrier = 1;
return 0;
}
static int tgsi_load_lds(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int r;
int temp_reg = r600_get_temp(ctx);
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
r600_bytecode_src(&alu.src[0], &ctx->src[1], 0);
alu.dst.sel = temp_reg;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
r = do_lds_fetch_values(ctx, temp_reg,
ctx->file_offset[inst->Dst[0].Register.File] + inst->Dst[0].Register.Index, inst->Dst[0].Register.WriteMask);
if (r)
return r;
return 0;
}
static int tgsi_load(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
return tgsi_load_rat(ctx);
if (inst->Src[0].Register.File == TGSI_FILE_HW_ATOMIC)
return tgsi_load_gds(ctx);
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER)
return tgsi_load_buffer(ctx);
if (inst->Src[0].Register.File == TGSI_FILE_MEMORY)
return tgsi_load_lds(ctx);
return 0;
}
static int tgsi_store_buffer_rat(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_cf *cf;
int r, i;
unsigned rat_index_mode;
int lasti;
int temp_reg = r600_get_temp(ctx), treg2 = r600_get_temp(ctx);
r = load_buffer_coord(ctx, 0, treg2);
if (r)
return r;
rat_index_mode = inst->Dst[0].Indirect.Index == 2 ? 2 : 0; // CF_INDEX_1 : CF_INDEX_NONE
if (rat_index_mode)
egcm_load_index_reg(ctx->bc, 1, false);
for (i = 0; i <= 3; i++) {
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.dst.sel = temp_reg;
alu.dst.chan = i;
alu.src[0].sel = V_SQ_ALU_SRC_0;
alu.last = (i == 3);
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
for (i = 0; i <= lasti; i++) {
struct r600_bytecode_alu alu;
if (!((1 << i) & inst->Dst[0].Register.WriteMask))
continue;
r = single_alu_op2(ctx, ALU_OP2_ADD_INT,
temp_reg, 0,
treg2, 0,
V_SQ_ALU_SRC_LITERAL, i);
if (r)
return r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 0;
r600_bytecode_src(&alu.src[0], &ctx->src[1], i);
alu.last = 1;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
r600_bytecode_add_cfinst(ctx->bc, CF_OP_MEM_RAT);
cf = ctx->bc->cf_last;
cf->rat.id = ctx->shader->rat_base + inst->Dst[0].Register.Index + ctx->info.file_count[TGSI_FILE_IMAGE];
cf->rat.inst = V_RAT_INST_STORE_TYPED;
cf->rat.index_mode = rat_index_mode;
cf->output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND;
cf->output.gpr = ctx->temp_reg;
cf->output.index_gpr = temp_reg;
cf->output.comp_mask = 1;
cf->output.burst_count = 1;
cf->vpm = 1;
cf->barrier = 1;
cf->output.elem_size = 0;
}
return 0;
}
static int tgsi_store_rat(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_cf *cf;
bool src_requires_loading = false;
int val_gpr, idx_gpr;
int r, i;
unsigned rat_index_mode;
rat_index_mode = inst->Dst[0].Indirect.Index == 2 ? 2 : 0; // CF_INDEX_1 : CF_INDEX_NONE
r = load_index_src(ctx, 0, &idx_gpr);
if (r)
return r;
if (inst->Src[1].Register.File != TGSI_FILE_TEMPORARY)
src_requires_loading = true;
if (src_requires_loading) {
struct r600_bytecode_alu alu;
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
r600_bytecode_src(&alu.src[0], &ctx->src[1], i);
if (i == 3)
alu.last = 1;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
val_gpr = ctx->temp_reg;
} else
val_gpr = tgsi_tex_get_src_gpr(ctx, 1);
if (rat_index_mode)
egcm_load_index_reg(ctx->bc, 1, false);
r600_bytecode_add_cfinst(ctx->bc, CF_OP_MEM_RAT);
cf = ctx->bc->cf_last;
cf->rat.id = ctx->shader->rat_base + inst->Dst[0].Register.Index;
cf->rat.inst = V_RAT_INST_STORE_TYPED;
cf->rat.index_mode = rat_index_mode;
cf->output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND;
cf->output.gpr = val_gpr;
cf->output.index_gpr = idx_gpr;
cf->output.comp_mask = 0xf;
cf->output.burst_count = 1;
cf->vpm = 1;
cf->barrier = 1;
cf->output.elem_size = 0;
return 0;
}
static int tgsi_store_lds(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int r, i, lasti;
int write_mask = inst->Dst[0].Register.WriteMask;
int temp_reg = r600_get_temp(ctx);
/* LDS write */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
alu.dst.sel = temp_reg;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
lasti = tgsi_last_instruction(write_mask);
for (i = 1; i <= lasti; i++) {
if (!(write_mask & (1 << i)))
continue;
r = single_alu_op2(ctx, ALU_OP2_ADD_INT,
temp_reg, i,
temp_reg, 0,
V_SQ_ALU_SRC_LITERAL, 4 * i);
if (r)
return r;
}
for (i = 0; i <= lasti; i++) {
if (!(write_mask & (1 << i)))
continue;
if ((i == 0 && ((write_mask & 3) == 3)) ||
(i == 2 && ((write_mask & 0xc) == 0xc))) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = LDS_OP3_LDS_WRITE_REL;
alu.src[0].sel = temp_reg;
alu.src[0].chan = i;
r600_bytecode_src(&alu.src[1], &ctx->src[1], i);
r600_bytecode_src(&alu.src[2], &ctx->src[1], i + 1);
alu.last = 1;
alu.is_lds_idx_op = true;
alu.lds_idx = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
i += 1;
continue;
}
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = LDS_OP2_LDS_WRITE;
alu.src[0].sel = temp_reg;
alu.src[0].chan = i;
r600_bytecode_src(&alu.src[1], &ctx->src[1], i);
alu.last = 1;
alu.is_lds_idx_op = true;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_store(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER)
return tgsi_store_buffer_rat(ctx);
else if (inst->Dst[0].Register.File == TGSI_FILE_MEMORY)
return tgsi_store_lds(ctx);
else
return tgsi_store_rat(ctx);
}
static int tgsi_atomic_op_rat(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
/* have to work out the offset into the RAT immediate return buffer */
struct r600_bytecode_alu alu;
struct r600_bytecode_vtx vtx;
struct r600_bytecode_cf *cf;
int r;
int idx_gpr;
unsigned format, num_format, format_comp, endian;
const struct util_format_description *desc;
unsigned rat_index_mode;
unsigned immed_base;
unsigned rat_base;
immed_base = R600_IMAGE_IMMED_RESOURCE_OFFSET;
rat_base = ctx->shader->rat_base;
r = load_thread_id_gpr(ctx);
if (r)
return r;
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
immed_base += ctx->info.file_count[TGSI_FILE_IMAGE];
rat_base += ctx->info.file_count[TGSI_FILE_IMAGE];
r = load_buffer_coord(ctx, 1, ctx->temp_reg);
if (r)
return r;
idx_gpr = ctx->temp_reg;
} else {
r = load_index_src(ctx, 1, &idx_gpr);
if (r)
return r;
}
rat_index_mode = inst->Src[0].Indirect.Index == 2 ? 2 : 0; // CF_INDEX_1 : CF_INDEX_NONE
if (ctx->inst_info->op == V_RAT_INST_CMPXCHG_INT_RTN) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.dst.sel = ctx->thread_id_gpr;
alu.dst.chan = 0;
alu.dst.write = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[3], 0);
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.dst.sel = ctx->thread_id_gpr;
if (ctx->bc->chip_class == CAYMAN)
alu.dst.chan = 2;
else
alu.dst.chan = 3;
alu.dst.write = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[2], 0);
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.dst.sel = ctx->thread_id_gpr;
alu.dst.chan = 0;
alu.dst.write = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[2], 0);
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
if (rat_index_mode)
egcm_load_index_reg(ctx->bc, 1, false);
r600_bytecode_add_cfinst(ctx->bc, CF_OP_MEM_RAT);
cf = ctx->bc->cf_last;
cf->rat.id = rat_base + inst->Src[0].Register.Index;
cf->rat.inst = ctx->inst_info->op;
cf->rat.index_mode = rat_index_mode;
cf->output.type = V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_READ_IND;
cf->output.gpr = ctx->thread_id_gpr;
cf->output.index_gpr = idx_gpr;
cf->output.comp_mask = 0xf;
cf->output.burst_count = 1;
cf->vpm = 1;
cf->barrier = 1;
cf->mark = 1;
cf->output.elem_size = 0;
r600_bytecode_add_cfinst(ctx->bc, CF_OP_WAIT_ACK);
cf = ctx->bc->cf_last;
cf->barrier = 1;
cf->cf_addr = 1;
memset(&vtx, 0, sizeof(struct r600_bytecode_vtx));
if (inst->Src[0].Register.File == TGSI_FILE_IMAGE) {
desc = util_format_description(inst->Memory.Format);
r600_vertex_data_type(inst->Memory.Format,
&format, &num_format, &format_comp, &endian);
vtx.dst_sel_x = desc->swizzle[0];
} else {
format = FMT_32;
num_format = 1;
format_comp = 0;
endian = 0;
vtx.dst_sel_x = 0;
}
vtx.op = FETCH_OP_VFETCH;
vtx.buffer_id = immed_base + inst->Src[0].Register.Index;
vtx.buffer_index_mode = rat_index_mode;
vtx.fetch_type = SQ_VTX_FETCH_NO_INDEX_OFFSET;
vtx.src_gpr = ctx->thread_id_gpr;
vtx.src_sel_x = 1;
vtx.dst_gpr = ctx->file_offset[inst->Dst[0].Register.File] + inst->Dst[0].Register.Index;
vtx.dst_sel_y = 7;
vtx.dst_sel_z = 7;
vtx.dst_sel_w = 7;
vtx.use_const_fields = 0;
vtx.srf_mode_all = 1;
vtx.data_format = format;
vtx.num_format_all = num_format;
vtx.format_comp_all = format_comp;
vtx.endian = endian;
vtx.offset = 0;
vtx.mega_fetch_count = 0xf;
r = r600_bytecode_add_vtx_tc(ctx->bc, &vtx);
if (r)
return r;
cf = ctx->bc->cf_last;
cf->vpm = 1;
cf->barrier = 1;
return 0;
}
static int get_gds_op(int opcode)
{
switch (opcode) {
case TGSI_OPCODE_ATOMUADD:
return FETCH_OP_GDS_ADD_RET;
case TGSI_OPCODE_ATOMAND:
return FETCH_OP_GDS_AND_RET;
case TGSI_OPCODE_ATOMOR:
return FETCH_OP_GDS_OR_RET;
case TGSI_OPCODE_ATOMXOR:
return FETCH_OP_GDS_XOR_RET;
case TGSI_OPCODE_ATOMUMIN:
return FETCH_OP_GDS_MIN_UINT_RET;
case TGSI_OPCODE_ATOMUMAX:
return FETCH_OP_GDS_MAX_UINT_RET;
case TGSI_OPCODE_ATOMXCHG:
return FETCH_OP_GDS_XCHG_RET;
case TGSI_OPCODE_ATOMCAS:
return FETCH_OP_GDS_CMP_XCHG_RET;
default:
return -1;
}
}
static int tgsi_atomic_op_gds(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_gds gds;
struct r600_bytecode_alu alu;
int gds_op = get_gds_op(inst->Instruction.Opcode);
int r;
int uav_id = 0;
int uav_index_mode = 0;
bool is_cm = (ctx->bc->chip_class == CAYMAN);
if (gds_op == -1) {
fprintf(stderr, "unknown GDS op for opcode %d\n", inst->Instruction.Opcode);
return -1;
}
r = tgsi_set_gds_temp(ctx, &uav_id, &uav_index_mode);
if (r)
return r;
if (inst->Src[2].Register.File == TGSI_FILE_IMMEDIATE) {
int value = (ctx->literals[4 * inst->Src[2].Register.Index + inst->Src[2].Register.SwizzleX]);
int abs_value = abs(value);
if (abs_value != value && gds_op == FETCH_OP_GDS_ADD_RET)
gds_op = FETCH_OP_GDS_SUB_RET;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = is_cm ? 1 : 0;
alu.src[0].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[0].value = abs_value;
alu.last = 1;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = is_cm ? 1 : 0;
r600_bytecode_src(&alu.src[0], &ctx->src[2], 0);
alu.last = 1;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
memset(&gds, 0, sizeof(struct r600_bytecode_gds));
gds.op = gds_op;
gds.dst_gpr = ctx->file_offset[inst->Dst[0].Register.File] + inst->Dst[0].Register.Index;
gds.uav_id = is_cm ? 0 : uav_id;
gds.uav_index_mode = is_cm ? 0 : uav_index_mode;
gds.src_gpr = ctx->temp_reg;
gds.src_gpr2 = 0;
gds.src_sel_x = is_cm ? 0 : 4;
gds.src_sel_y = is_cm ? 1 : 0;
gds.src_sel_z = 7;
gds.dst_sel_x = 0;
gds.dst_sel_y = 7;
gds.dst_sel_z = 7;
gds.dst_sel_w = 7;
gds.alloc_consume = !is_cm;
r = r600_bytecode_add_gds(ctx->bc, &gds);
if (r)
return r;
ctx->bc->cf_last->vpm = 1;
return 0;
}
static int get_lds_op(int opcode)
{
switch (opcode) {
case TGSI_OPCODE_ATOMUADD:
return LDS_OP2_LDS_ADD_RET;
case TGSI_OPCODE_ATOMAND:
return LDS_OP2_LDS_AND_RET;
case TGSI_OPCODE_ATOMOR:
return LDS_OP2_LDS_OR_RET;
case TGSI_OPCODE_ATOMXOR:
return LDS_OP2_LDS_XOR_RET;
case TGSI_OPCODE_ATOMUMIN:
return LDS_OP2_LDS_MIN_UINT_RET;
case TGSI_OPCODE_ATOMUMAX:
return LDS_OP2_LDS_MAX_UINT_RET;
case TGSI_OPCODE_ATOMIMIN:
return LDS_OP2_LDS_MIN_INT_RET;
case TGSI_OPCODE_ATOMIMAX:
return LDS_OP2_LDS_MAX_INT_RET;
case TGSI_OPCODE_ATOMXCHG:
return LDS_OP2_LDS_XCHG_RET;
case TGSI_OPCODE_ATOMCAS:
return LDS_OP3_LDS_CMP_XCHG_RET;
default:
return -1;
}
}
static int tgsi_atomic_op_lds(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
int lds_op = get_lds_op(inst->Instruction.Opcode);
int r;
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = lds_op;
alu.is_lds_idx_op = true;
alu.last = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[1], 0);
r600_bytecode_src(&alu.src[1], &ctx->src[2], 0);
if (lds_op == LDS_OP3_LDS_CMP_XCHG_RET)
r600_bytecode_src(&alu.src[2], &ctx->src[3], 0);
else
alu.src[2].sel = V_SQ_ALU_SRC_0;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* then read from LDS_OQ_A_POP */
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = EG_V_SQ_ALU_SRC_LDS_OQ_A_POP;
alu.src[0].chan = 0;
tgsi_dst(ctx, &inst->Dst[0], 0, &alu.dst);
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
return 0;
}
static int tgsi_atomic_op(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
return tgsi_atomic_op_rat(ctx);
if (inst->Src[0].Register.File == TGSI_FILE_HW_ATOMIC)
return tgsi_atomic_op_gds(ctx);
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER)
return tgsi_atomic_op_rat(ctx);
if (inst->Src[0].Register.File == TGSI_FILE_MEMORY)
return tgsi_atomic_op_lds(ctx);
return 0;
}
static int tgsi_resq(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
unsigned sampler_index_mode;
struct r600_bytecode_tex tex;
int r;
boolean has_txq_cube_array_z = false;
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER ||
(inst->Src[0].Register.File == TGSI_FILE_IMAGE && inst->Memory.Texture == TGSI_TEXTURE_BUFFER)) {
if (ctx->bc->chip_class < EVERGREEN)
ctx->shader->uses_tex_buffers = true;
return r600_do_buffer_txq(ctx, 0, ctx->shader->image_size_const_offset);
}
if (inst->Memory.Texture == TGSI_TEXTURE_CUBE_ARRAY &&
inst->Dst[0].Register.WriteMask & 4) {
ctx->shader->has_txq_cube_array_z_comp = true;
has_txq_cube_array_z = true;
}
sampler_index_mode = inst->Src[0].Indirect.Index == 2 ? 2 : 0; // CF_INDEX_1 : CF_INDEX_NONE
if (sampler_index_mode)
egcm_load_index_reg(ctx->bc, 1, false);
/* does this shader want a num layers from TXQ for a cube array? */
if (has_txq_cube_array_z) {
int id = tgsi_tex_get_src_gpr(ctx, 0) + ctx->shader->image_size_const_offset;
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = R600_SHADER_BUFFER_INFO_SEL;
/* with eg each dword is either number of cubes */
alu.src[0].sel += id / 4;
alu.src[0].chan = id % 4;
alu.src[0].kc_bank = R600_BUFFER_INFO_CONST_BUFFER;
tgsi_dst(ctx, &inst->Dst[0], 2, &alu.dst);
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* disable writemask from texture instruction */
inst->Dst[0].Register.WriteMask &= ~4;
}
memset(&tex, 0, sizeof(struct r600_bytecode_tex));
tex.op = ctx->inst_info->op;
tex.sampler_id = R600_IMAGE_REAL_RESOURCE_OFFSET + inst->Src[0].Register.Index;
tex.sampler_index_mode = sampler_index_mode;
tex.resource_id = tex.sampler_id;
tex.resource_index_mode = sampler_index_mode;
tex.src_sel_x = 4;
tex.src_sel_y = 4;
tex.src_sel_z = 4;
tex.src_sel_w = 4;
tex.dst_sel_x = (inst->Dst[0].Register.WriteMask & 1) ? 0 : 7;
tex.dst_sel_y = (inst->Dst[0].Register.WriteMask & 2) ? 1 : 7;
tex.dst_sel_z = (inst->Dst[0].Register.WriteMask & 4) ? 2 : 7;
tex.dst_sel_w = (inst->Dst[0].Register.WriteMask & 8) ? 3 : 7;
tex.dst_gpr = ctx->file_offset[inst->Dst[0].Register.File] + inst->Dst[0].Register.Index;
r = r600_bytecode_add_tex(ctx->bc, &tex);
if (r)
return r;
return 0;
}
static int tgsi_lrp(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
unsigned lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
unsigned i, temp_regs[2];
int r;
/* optimize if it's just an equal balance */
if (ctx->src[0].sel == V_SQ_ALU_SRC_0_5) {
for (i = 0; i < lasti + 1; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_ADD;
r600_bytecode_src(&alu.src[0], &ctx->src[1], i);
r600_bytecode_src(&alu.src[1], &ctx->src[2], i);
alu.omod = 3;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.chan = i;
if (i == lasti) {
alu.last = 1;
}
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
/* 1 - src0 */
for (i = 0; i < lasti + 1; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_ADD;
alu.src[0].sel = V_SQ_ALU_SRC_1;
alu.src[0].chan = 0;
r600_bytecode_src(&alu.src[1], &ctx->src[0], i);
r600_bytecode_src_toggle_neg(&alu.src[1]);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
if (i == lasti) {
alu.last = 1;
}
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
/* (1 - src0) * src2 */
for (i = 0; i < lasti + 1; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MUL;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = i;
r600_bytecode_src(&alu.src[1], &ctx->src[2], i);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
if (i == lasti) {
alu.last = 1;
}
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
/* src0 * src1 + (1 - src0) * src2 */
if (ctx->src[0].abs)
temp_regs[0] = r600_get_temp(ctx);
else
temp_regs[0] = 0;
if (ctx->src[1].abs)
temp_regs[1] = r600_get_temp(ctx);
else
temp_regs[1] = 0;
for (i = 0; i < lasti + 1; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_MULADD;
alu.is_op3 = 1;
r = tgsi_make_src_for_op3(ctx, temp_regs[0], i, &alu.src[0], &ctx->src[0]);
if (r)
return r;
r = tgsi_make_src_for_op3(ctx, temp_regs[1], i, &alu.src[1], &ctx->src[1]);
if (r)
return r;
alu.src[2].sel = ctx->temp_reg;
alu.src[2].chan = i;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.chan = i;
if (i == lasti) {
alu.last = 1;
}
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_cmp(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r, j;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
int temp_regs[3];
unsigned op;
if (ctx->src[0].abs && ctx->src[0].neg) {
op = ALU_OP3_CNDE;
ctx->src[0].abs = 0;
ctx->src[0].neg = 0;
} else {
op = ALU_OP3_CNDGE;
}
for (j = 0; j < inst->Instruction.NumSrcRegs; j++) {
temp_regs[j] = 0;
if (ctx->src[j].abs)
temp_regs[j] = r600_get_temp(ctx);
}
for (i = 0; i < lasti + 1; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = op;
r = tgsi_make_src_for_op3(ctx, temp_regs[0], i, &alu.src[0], &ctx->src[0]);
if (r)
return r;
r = tgsi_make_src_for_op3(ctx, temp_regs[2], i, &alu.src[1], &ctx->src[2]);
if (r)
return r;
r = tgsi_make_src_for_op3(ctx, temp_regs[1], i, &alu.src[2], &ctx->src[1]);
if (r)
return r;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.chan = i;
alu.dst.write = 1;
alu.is_op3 = 1;
if (i == lasti)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_ucmp(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
for (i = 0; i < lasti + 1; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDE_INT;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
r600_bytecode_src(&alu.src[1], &ctx->src[2], i);
r600_bytecode_src(&alu.src[2], &ctx->src[1], i);
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.dst.chan = i;
alu.dst.write = 1;
alu.is_op3 = 1;
if (i == lasti)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_exp(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int r;
unsigned i;
/* result.x = 2^floor(src); */
if (inst->Dst[0].Register.WriteMask & 1) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_FLOOR;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
if (ctx->bc->chip_class == CAYMAN) {
for (i = 0; i < 3; i++) {
alu.op = ALU_OP1_EXP_IEEE;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
alu.dst.write = i == 0;
alu.last = i == 2;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
} else {
alu.op = ALU_OP1_EXP_IEEE;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
}
/* result.y = tmp - floor(tmp); */
if ((inst->Dst[0].Register.WriteMask >> 1) & 1) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_FRACT;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
alu.dst.sel = ctx->temp_reg;
#if 0
r = tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
if (r)
return r;
#endif
alu.dst.write = 1;
alu.dst.chan = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
/* result.z = RoughApprox2ToX(tmp);*/
if ((inst->Dst[0].Register.WriteMask >> 2) & 0x1) {
if (ctx->bc->chip_class == CAYMAN) {
for (i = 0; i < 3; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_EXP_IEEE;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
if (i == 2) {
alu.dst.write = 1;
alu.last = 1;
}
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_EXP_IEEE;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
alu.dst.chan = 2;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
}
/* result.w = 1.0;*/
if ((inst->Dst[0].Register.WriteMask >> 3) & 0x1) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = V_SQ_ALU_SRC_1;
alu.src[0].chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 3;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return tgsi_helper_copy(ctx, inst);
}
static int tgsi_log(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int r;
unsigned i;
/* result.x = floor(log2(|src|)); */
if (inst->Dst[0].Register.WriteMask & 1) {
if (ctx->bc->chip_class == CAYMAN) {
for (i = 0; i < 3; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_LOG_IEEE;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
r600_bytecode_src_set_abs(&alu.src[0]);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
if (i == 0)
alu.dst.write = 1;
if (i == 2)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_LOG_IEEE;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
r600_bytecode_src_set_abs(&alu.src[0]);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
alu.op = ALU_OP1_FLOOR;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 0;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
/* result.y = |src.x| / (2 ^ floor(log2(|src.x|))); */
if ((inst->Dst[0].Register.WriteMask >> 1) & 1) {
if (ctx->bc->chip_class == CAYMAN) {
for (i = 0; i < 3; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_LOG_IEEE;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
r600_bytecode_src_set_abs(&alu.src[0]);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
if (i == 1)
alu.dst.write = 1;
if (i == 2)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_LOG_IEEE;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
r600_bytecode_src_set_abs(&alu.src[0]);
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 1;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_FLOOR;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 1;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 1;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
if (ctx->bc->chip_class == CAYMAN) {
for (i = 0; i < 3; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_EXP_IEEE;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 1;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
if (i == 1)
alu.dst.write = 1;
if (i == 2)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_EXP_IEEE;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 1;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 1;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
if (ctx->bc->chip_class == CAYMAN) {
for (i = 0; i < 3; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_RECIP_IEEE;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 1;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
if (i == 1)
alu.dst.write = 1;
if (i == 2)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_RECIP_IEEE;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 1;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 1;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MUL;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
r600_bytecode_src_set_abs(&alu.src[0]);
alu.src[1].sel = ctx->temp_reg;
alu.src[1].chan = 1;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 1;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
/* result.z = log2(|src|);*/
if ((inst->Dst[0].Register.WriteMask >> 2) & 1) {
if (ctx->bc->chip_class == CAYMAN) {
for (i = 0; i < 3; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_LOG_IEEE;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
r600_bytecode_src_set_abs(&alu.src[0]);
alu.dst.sel = ctx->temp_reg;
if (i == 2)
alu.dst.write = 1;
alu.dst.chan = i;
if (i == 2)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_LOG_IEEE;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
r600_bytecode_src_set_abs(&alu.src[0]);
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
alu.dst.chan = 2;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
}
/* result.w = 1.0; */
if ((inst->Dst[0].Register.WriteMask >> 3) & 1) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.src[0].sel = V_SQ_ALU_SRC_1;
alu.src[0].chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = 3;
alu.dst.write = 1;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return tgsi_helper_copy(ctx, inst);
}
static int tgsi_eg_arl(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int r;
int i, lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
unsigned reg = get_address_file_reg(ctx, inst->Dst[0].Register.Index);
assert(inst->Dst[0].Register.Index < 3);
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_ARL:
alu.op = ALU_OP1_FLT_TO_INT_FLOOR;
break;
case TGSI_OPCODE_ARR:
alu.op = ALU_OP1_FLT_TO_INT;
break;
case TGSI_OPCODE_UARL:
alu.op = ALU_OP1_MOV;
break;
default:
assert(0);
return -1;
}
for (i = 0; i <= lasti; ++i) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
alu.last = i == lasti;
alu.dst.sel = reg;
alu.dst.chan = i;
alu.dst.write = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
if (inst->Dst[0].Register.Index > 0)
ctx->bc->index_loaded[inst->Dst[0].Register.Index - 1] = 0;
else
ctx->bc->ar_loaded = 0;
return 0;
}
static int tgsi_r600_arl(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int r;
int i, lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
switch (inst->Instruction.Opcode) {
case TGSI_OPCODE_ARL:
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP1_FLOOR;
alu.dst.sel = ctx->bc->ar_reg;
alu.dst.write = 1;
for (i = 0; i <= lasti; ++i) {
if (inst->Dst[0].Register.WriteMask & (1 << i)) {
alu.dst.chan = i;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
alu.last = i == lasti;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
}
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP1_FLT_TO_INT;
alu.src[0].sel = ctx->bc->ar_reg;
alu.dst.sel = ctx->bc->ar_reg;
alu.dst.write = 1;
/* FLT_TO_INT is trans-only on r600/r700 */
alu.last = TRUE;
for (i = 0; i <= lasti; ++i) {
alu.dst.chan = i;
alu.src[0].chan = i;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
break;
case TGSI_OPCODE_ARR:
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP1_FLT_TO_INT;
alu.dst.sel = ctx->bc->ar_reg;
alu.dst.write = 1;
/* FLT_TO_INT is trans-only on r600/r700 */
alu.last = TRUE;
for (i = 0; i <= lasti; ++i) {
if (inst->Dst[0].Register.WriteMask & (1 << i)) {
alu.dst.chan = i;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
}
break;
case TGSI_OPCODE_UARL:
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP1_MOV;
alu.dst.sel = ctx->bc->ar_reg;
alu.dst.write = 1;
for (i = 0; i <= lasti; ++i) {
if (inst->Dst[0].Register.WriteMask & (1 << i)) {
alu.dst.chan = i;
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
alu.last = i == lasti;
if ((r = r600_bytecode_add_alu(ctx->bc, &alu)))
return r;
}
}
break;
default:
assert(0);
return -1;
}
ctx->bc->ar_loaded = 0;
return 0;
}
static int tgsi_opdst(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, r = 0;
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MUL;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
if (i == 0 || i == 3) {
alu.src[0].sel = V_SQ_ALU_SRC_1;
} else {
r600_bytecode_src(&alu.src[0], &ctx->src[0], i);
}
if (i == 0 || i == 2) {
alu.src[1].sel = V_SQ_ALU_SRC_1;
} else {
r600_bytecode_src(&alu.src[1], &ctx->src[1], i);
}
if (i == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int emit_logic_pred(struct r600_shader_ctx *ctx, int opcode, int alu_type)
{
struct r600_bytecode_alu alu;
int r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = opcode;
alu.execute_mask = 1;
alu.update_pred = 1;
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
alu.dst.chan = 0;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
alu.src[1].sel = V_SQ_ALU_SRC_0;
alu.src[1].chan = 0;
alu.last = 1;
r = r600_bytecode_add_alu_type(ctx->bc, &alu, alu_type);
if (r)
return r;
return 0;
}
static int pops(struct r600_shader_ctx *ctx, int pops)
{
unsigned force_pop = ctx->bc->force_add_cf;
if (!force_pop) {
int alu_pop = 3;
if (ctx->bc->cf_last) {
if (ctx->bc->cf_last->op == CF_OP_ALU)
alu_pop = 0;
else if (ctx->bc->cf_last->op == CF_OP_ALU_POP_AFTER)
alu_pop = 1;
}
alu_pop += pops;
if (alu_pop == 1) {
ctx->bc->cf_last->op = CF_OP_ALU_POP_AFTER;
ctx->bc->force_add_cf = 1;
} else if (alu_pop == 2) {
ctx->bc->cf_last->op = CF_OP_ALU_POP2_AFTER;
ctx->bc->force_add_cf = 1;
} else {
force_pop = 1;
}
}
if (force_pop) {
r600_bytecode_add_cfinst(ctx->bc, CF_OP_POP);
ctx->bc->cf_last->pop_count = pops;
ctx->bc->cf_last->cf_addr = ctx->bc->cf_last->id + 2;
}
return 0;
}
static inline int callstack_update_max_depth(struct r600_shader_ctx *ctx,
unsigned reason)
{
struct r600_stack_info *stack = &ctx->bc->stack;
unsigned elements;
int entries;
unsigned entry_size = stack->entry_size;
elements = (stack->loop + stack->push_wqm ) * entry_size;
elements += stack->push;
switch (ctx->bc->chip_class) {
case R600:
case R700:
/* pre-r8xx: if any non-WQM PUSH instruction is invoked, 2 elements on
* the stack must be reserved to hold the current active/continue
* masks */
if (reason == FC_PUSH_VPM || stack->push > 0) {
elements += 2;
}
break;
case CAYMAN:
/* r9xx: any stack operation on empty stack consumes 2 additional
* elements */
elements += 2;
/* fallthrough */
/* FIXME: do the two elements added above cover the cases for the
* r8xx+ below? */
case EVERGREEN:
/* r8xx+: 2 extra elements are not always required, but one extra
* element must be added for each of the following cases:
* 1. There is an ALU_ELSE_AFTER instruction at the point of greatest
* stack usage.
* (Currently we don't use ALU_ELSE_AFTER.)
* 2. There are LOOP/WQM frames on the stack when any flavor of non-WQM
* PUSH instruction executed.
*
* NOTE: it seems we also need to reserve additional element in some
* other cases, e.g. when we have 4 levels of PUSH_VPM in the shader,
* then STACK_SIZE should be 2 instead of 1 */
if (reason == FC_PUSH_VPM || stack->push > 0) {
elements += 1;
}
break;
default:
assert(0);
break;
}
/* NOTE: it seems STACK_SIZE is interpreted by hw as if entry_size is 4
* for all chips, so we use 4 in the final formula, not the real entry_size
* for the chip */
entry_size = 4;
entries = (elements + (entry_size - 1)) / entry_size;
if (entries > stack->max_entries)
stack->max_entries = entries;
return elements;
}
static inline void callstack_pop(struct r600_shader_ctx *ctx, unsigned reason)
{
switch(reason) {
case FC_PUSH_VPM:
--ctx->bc->stack.push;
assert(ctx->bc->stack.push >= 0);
break;
case FC_PUSH_WQM:
--ctx->bc->stack.push_wqm;
assert(ctx->bc->stack.push_wqm >= 0);
break;
case FC_LOOP:
--ctx->bc->stack.loop;
assert(ctx->bc->stack.loop >= 0);
break;
default:
assert(0);
break;
}
}
static inline int callstack_push(struct r600_shader_ctx *ctx, unsigned reason)
{
switch (reason) {
case FC_PUSH_VPM:
++ctx->bc->stack.push;
break;
case FC_PUSH_WQM:
++ctx->bc->stack.push_wqm;
break;
case FC_LOOP:
++ctx->bc->stack.loop;
break;
default:
assert(0);
}
return callstack_update_max_depth(ctx, reason);
}
static void fc_set_mid(struct r600_shader_ctx *ctx, int fc_sp)
{
struct r600_cf_stack_entry *sp = &ctx->bc->fc_stack[fc_sp];
sp->mid = realloc((void *)sp->mid,
sizeof(struct r600_bytecode_cf *) * (sp->num_mid + 1));
sp->mid[sp->num_mid] = ctx->bc->cf_last;
sp->num_mid++;
}
static void fc_pushlevel(struct r600_shader_ctx *ctx, int type)
{
assert(ctx->bc->fc_sp < ARRAY_SIZE(ctx->bc->fc_stack));
ctx->bc->fc_stack[ctx->bc->fc_sp].type = type;
ctx->bc->fc_stack[ctx->bc->fc_sp].start = ctx->bc->cf_last;
ctx->bc->fc_sp++;
}
static void fc_poplevel(struct r600_shader_ctx *ctx)
{
struct r600_cf_stack_entry *sp = &ctx->bc->fc_stack[ctx->bc->fc_sp - 1];
free(sp->mid);
sp->mid = NULL;
sp->num_mid = 0;
sp->start = NULL;
sp->type = 0;
ctx->bc->fc_sp--;
}
#if 0
static int emit_return(struct r600_shader_ctx *ctx)
{
r600_bytecode_add_cfinst(ctx->bc, CF_OP_RETURN));
return 0;
}
static int emit_jump_to_offset(struct r600_shader_ctx *ctx, int pops, int offset)
{
r600_bytecode_add_cfinst(ctx->bc, CF_OP_JUMP));
ctx->bc->cf_last->pop_count = pops;
/* XXX work out offset */
return 0;
}
static int emit_setret_in_loop_flag(struct r600_shader_ctx *ctx, unsigned flag_value)
{
return 0;
}
static void emit_testflag(struct r600_shader_ctx *ctx)
{
}
static void emit_return_on_flag(struct r600_shader_ctx *ctx, unsigned ifidx)
{
emit_testflag(ctx);
emit_jump_to_offset(ctx, 1, 4);
emit_setret_in_loop_flag(ctx, V_SQ_ALU_SRC_0);
pops(ctx, ifidx + 1);
emit_return(ctx);
}
static void break_loop_on_flag(struct r600_shader_ctx *ctx, unsigned fc_sp)
{
emit_testflag(ctx);
r600_bytecode_add_cfinst(ctx->bc, ctx->inst_info->op);
ctx->bc->cf_last->pop_count = 1;
fc_set_mid(ctx, fc_sp);
pops(ctx, 1);
}
#endif
static int emit_if(struct r600_shader_ctx *ctx, int opcode)
{
int alu_type = CF_OP_ALU_PUSH_BEFORE;
bool needs_workaround = false;
int elems = callstack_push(ctx, FC_PUSH_VPM);
if (ctx->bc->chip_class == CAYMAN && ctx->bc->stack.loop > 1)
needs_workaround = true;
if (ctx->bc->chip_class == EVERGREEN && ctx_needs_stack_workaround_8xx(ctx)) {
unsigned dmod1 = (elems - 1) % ctx->bc->stack.entry_size;
unsigned dmod2 = (elems) % ctx->bc->stack.entry_size;
if (elems && (!dmod1 || !dmod2))
needs_workaround = true;
}
/* There is a hardware bug on Cayman where a BREAK/CONTINUE followed by
* LOOP_STARTxxx for nested loops may put the branch stack into a state
* such that ALU_PUSH_BEFORE doesn't work as expected. Workaround this
* by replacing the ALU_PUSH_BEFORE with a PUSH + ALU */
if (needs_workaround) {
r600_bytecode_add_cfinst(ctx->bc, CF_OP_PUSH);
ctx->bc->cf_last->cf_addr = ctx->bc->cf_last->id + 2;
alu_type = CF_OP_ALU;
}
emit_logic_pred(ctx, opcode, alu_type);
r600_bytecode_add_cfinst(ctx->bc, CF_OP_JUMP);
fc_pushlevel(ctx, FC_IF);
return 0;
}
static int tgsi_if(struct r600_shader_ctx *ctx)
{
return emit_if(ctx, ALU_OP2_PRED_SETNE);
}
static int tgsi_uif(struct r600_shader_ctx *ctx)
{
return emit_if(ctx, ALU_OP2_PRED_SETNE_INT);
}
static int tgsi_else(struct r600_shader_ctx *ctx)
{
r600_bytecode_add_cfinst(ctx->bc, CF_OP_ELSE);
ctx->bc->cf_last->pop_count = 1;
fc_set_mid(ctx, ctx->bc->fc_sp - 1);
ctx->bc->fc_stack[ctx->bc->fc_sp - 1].start->cf_addr = ctx->bc->cf_last->id;
return 0;
}
static int tgsi_endif(struct r600_shader_ctx *ctx)
{
int offset = 2;
pops(ctx, 1);
if (ctx->bc->fc_stack[ctx->bc->fc_sp - 1].type != FC_IF) {
R600_ERR("if/endif unbalanced in shader\n");
return -1;
}
/* ALU_EXTENDED needs 4 DWords instead of two, adjust jump target offset accordingly */
if (ctx->bc->cf_last->eg_alu_extended)
offset += 2;
if (ctx->bc->fc_stack[ctx->bc->fc_sp - 1].mid == NULL) {
ctx->bc->fc_stack[ctx->bc->fc_sp - 1].start->cf_addr = ctx->bc->cf_last->id + offset;
ctx->bc->fc_stack[ctx->bc->fc_sp - 1].start->pop_count = 1;
} else {
ctx->bc->fc_stack[ctx->bc->fc_sp - 1].mid[0]->cf_addr = ctx->bc->cf_last->id + offset;
}
fc_poplevel(ctx);
callstack_pop(ctx, FC_PUSH_VPM);
return 0;
}
static int tgsi_bgnloop(struct r600_shader_ctx *ctx)
{
/* LOOP_START_DX10 ignores the LOOP_CONFIG* registers, so it is not
* limited to 4096 iterations, like the other LOOP_* instructions. */
r600_bytecode_add_cfinst(ctx->bc, CF_OP_LOOP_START_DX10);
fc_pushlevel(ctx, FC_LOOP);
/* check stack depth */
callstack_push(ctx, FC_LOOP);
return 0;
}
static int tgsi_endloop(struct r600_shader_ctx *ctx)
{
int i;
r600_bytecode_add_cfinst(ctx->bc, CF_OP_LOOP_END);
if (ctx->bc->fc_stack[ctx->bc->fc_sp - 1].type != FC_LOOP) {
R600_ERR("loop/endloop in shader code are not paired.\n");
return -EINVAL;
}
/* fixup loop pointers - from r600isa
LOOP END points to CF after LOOP START,
LOOP START point to CF after LOOP END
BRK/CONT point to LOOP END CF
*/
ctx->bc->cf_last->cf_addr = ctx->bc->fc_stack[ctx->bc->fc_sp - 1].start->id + 2;
ctx->bc->fc_stack[ctx->bc->fc_sp - 1].start->cf_addr = ctx->bc->cf_last->id + 2;
for (i = 0; i < ctx->bc->fc_stack[ctx->bc->fc_sp - 1].num_mid; i++) {
ctx->bc->fc_stack[ctx->bc->fc_sp - 1].mid[i]->cf_addr = ctx->bc->cf_last->id;
}
/* XXX add LOOPRET support */
fc_poplevel(ctx);
callstack_pop(ctx, FC_LOOP);
return 0;
}
static int tgsi_loop_brk_cont(struct r600_shader_ctx *ctx)
{
unsigned int fscp;
for (fscp = ctx->bc->fc_sp; fscp > 0; fscp--)
{
if (FC_LOOP == ctx->bc->fc_stack[fscp - 1].type)
break;
}
if (fscp == 0) {
R600_ERR("Break not inside loop/endloop pair\n");
return -EINVAL;
}
r600_bytecode_add_cfinst(ctx->bc, ctx->inst_info->op);
fc_set_mid(ctx, fscp - 1);
return 0;
}
static int tgsi_gs_emit(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
int stream = ctx->literals[inst->Src[0].Register.Index * 4 + inst->Src[0].Register.SwizzleX];
int r;
if (ctx->inst_info->op == CF_OP_EMIT_VERTEX)
emit_gs_ring_writes(ctx, ctx->gs_stream_output_info, stream, TRUE);
r = r600_bytecode_add_cfinst(ctx->bc, ctx->inst_info->op);
if (!r) {
ctx->bc->cf_last->count = stream; // Count field for CUT/EMIT_VERTEX indicates which stream
if (ctx->inst_info->op == CF_OP_EMIT_VERTEX)
return emit_inc_ring_offset(ctx, stream, TRUE);
}
return r;
}
static int tgsi_umad(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int i, j, k, r;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
/* src0 * src1 */
for (i = 0; i < lasti + 1; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
if (ctx->bc->chip_class == CAYMAN) {
for (j = 0 ; j < 4; j++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_MULLO_UINT;
for (k = 0; k < inst->Instruction.NumSrcRegs; k++) {
r600_bytecode_src(&alu.src[k], &ctx->src[k], i);
}
alu.dst.chan = j;
alu.dst.sel = ctx->temp_reg;
alu.dst.write = (j == i);
if (j == 3)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
} else {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.dst.chan = i;
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
alu.op = ALU_OP2_MULLO_UINT;
for (j = 0; j < 2; j++) {
r600_bytecode_src(&alu.src[j], &ctx->src[j], i);
}
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
}
for (i = 0; i < lasti + 1; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.op = ALU_OP2_ADD_INT;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = i;
r600_bytecode_src(&alu.src[1], &ctx->src[2], i);
if (i == lasti) {
alu.last = 1;
}
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_pk2h(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int r, i;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
/* temp.xy = f32_to_f16(src) */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_FLT32_TO_FLT16;
alu.dst.chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
alu.dst.chan = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 1);
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* dst.x = temp.y * 0x10000 + temp.x */
for (i = 0; i < lasti + 1; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_MULADD_UINT24;
alu.is_op3 = 1;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.last = i == lasti;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = 1;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = 0x10000;
alu.src[2].sel = ctx->temp_reg;
alu.src[2].chan = 0;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_up2h(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int r, i;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
/* temp.x = src.x */
/* note: no need to mask out the high bits */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
alu.dst.chan = 0;
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* temp.y = src.x >> 16 */
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_LSHR_INT;
alu.dst.chan = 1;
alu.dst.sel = ctx->temp_reg;
alu.dst.write = 1;
r600_bytecode_src(&alu.src[0], &ctx->src[0], 0);
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = 16;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
/* dst.wz = dst.xy = f16_to_f32(temp.xy) */
for (i = 0; i < lasti + 1; i++) {
if (!(inst->Dst[0].Register.WriteMask & (1 << i)))
continue;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
alu.op = ALU_OP1_FLT16_TO_FLT32;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = i % 2;
alu.last = i == lasti;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_bfe(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int lasti = tgsi_last_instruction(inst->Dst[0].Register.WriteMask);
int r, i;
int dst = -1;
if ((inst->Src[0].Register.File == inst->Dst[0].Register.File &&
inst->Src[0].Register.Index == inst->Dst[0].Register.Index) ||
(inst->Src[2].Register.File == inst->Dst[0].Register.File &&
inst->Src[2].Register.Index == inst->Dst[0].Register.Index))
dst = r600_get_temp(ctx);
r = tgsi_op3_dst(ctx, dst);
if (r)
return r;
for (i = 0; i < lasti + 1; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP2_SETGE_INT;
r600_bytecode_src(&alu.src[0], &ctx->src[2], i);
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = 32;
alu.dst.sel = ctx->temp_reg;
alu.dst.chan = i;
alu.dst.write = 1;
if (i == lasti)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
for (i = 0; i < lasti + 1; i++) {
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP3_CNDE_INT;
alu.is_op3 = 1;
alu.src[0].sel = ctx->temp_reg;
alu.src[0].chan = i;
tgsi_dst(ctx, &inst->Dst[0], i, &alu.dst);
if (dst != -1)
alu.src[1].sel = dst;
else
alu.src[1].sel = alu.dst.sel;
alu.src[1].chan = i;
r600_bytecode_src(&alu.src[2], &ctx->src[0], i);
alu.dst.write = 1;
if (i == lasti)
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
}
return 0;
}
static int tgsi_clock(struct r600_shader_ctx *ctx)
{
struct tgsi_full_instruction *inst = &ctx->parse.FullToken.FullInstruction;
struct r600_bytecode_alu alu;
int r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
tgsi_dst(ctx, &inst->Dst[0], 0, &alu.dst);
alu.src[0].sel = EG_V_SQ_ALU_SRC_TIME_LO;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
memset(&alu, 0, sizeof(struct r600_bytecode_alu));
alu.op = ALU_OP1_MOV;
tgsi_dst(ctx, &inst->Dst[0], 1, &alu.dst);
alu.src[0].sel = EG_V_SQ_ALU_SRC_TIME_HI;
alu.last = 1;
r = r600_bytecode_add_alu(ctx->bc, &alu);
if (r)
return r;
return 0;
}
static const struct r600_shader_tgsi_instruction r600_shader_tgsi_instruction[] = {
[TGSI_OPCODE_ARL] = { ALU_OP0_NOP, tgsi_r600_arl},
[TGSI_OPCODE_MOV] = { ALU_OP1_MOV, tgsi_op2},
[TGSI_OPCODE_LIT] = { ALU_OP0_NOP, tgsi_lit},
[TGSI_OPCODE_RCP] = { ALU_OP1_RECIP_IEEE, tgsi_trans_srcx_replicate},
[TGSI_OPCODE_RSQ] = { ALU_OP0_NOP, tgsi_rsq},
[TGSI_OPCODE_EXP] = { ALU_OP0_NOP, tgsi_exp},
[TGSI_OPCODE_LOG] = { ALU_OP0_NOP, tgsi_log},
[TGSI_OPCODE_MUL] = { ALU_OP2_MUL_IEEE, tgsi_op2},
[TGSI_OPCODE_ADD] = { ALU_OP2_ADD, tgsi_op2},
[TGSI_OPCODE_DP3] = { ALU_OP2_DOT4_IEEE, tgsi_dp},
[TGSI_OPCODE_DP4] = { ALU_OP2_DOT4_IEEE, tgsi_dp},
[TGSI_OPCODE_DST] = { ALU_OP0_NOP, tgsi_opdst},
/* MIN_DX10 returns non-nan result if one src is NaN, MIN returns NaN */
[TGSI_OPCODE_MIN] = { ALU_OP2_MIN_DX10, tgsi_op2},
[TGSI_OPCODE_MAX] = { ALU_OP2_MAX_DX10, tgsi_op2},
[TGSI_OPCODE_SLT] = { ALU_OP2_SETGT, tgsi_op2_swap},
[TGSI_OPCODE_SGE] = { ALU_OP2_SETGE, tgsi_op2},
[TGSI_OPCODE_MAD] = { ALU_OP3_MULADD_IEEE, tgsi_op3},
[TGSI_OPCODE_LRP] = { ALU_OP0_NOP, tgsi_lrp},
[TGSI_OPCODE_FMA] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_SQRT] = { ALU_OP1_SQRT_IEEE, tgsi_trans_srcx_replicate},
[21] = { ALU_OP0_NOP, tgsi_unsupported},
[22] = { ALU_OP0_NOP, tgsi_unsupported},
[23] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_FRC] = { ALU_OP1_FRACT, tgsi_op2},
[25] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_FLR] = { ALU_OP1_FLOOR, tgsi_op2},
[TGSI_OPCODE_ROUND] = { ALU_OP1_RNDNE, tgsi_op2},
[TGSI_OPCODE_EX2] = { ALU_OP1_EXP_IEEE, tgsi_trans_srcx_replicate},
[TGSI_OPCODE_LG2] = { ALU_OP1_LOG_IEEE, tgsi_trans_srcx_replicate},
[TGSI_OPCODE_POW] = { ALU_OP0_NOP, tgsi_pow},
[31] = { ALU_OP0_NOP, tgsi_unsupported},
[32] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_CLOCK] = { ALU_OP0_NOP, tgsi_unsupported},
[34] = { ALU_OP0_NOP, tgsi_unsupported},
[35] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_COS] = { ALU_OP1_COS, tgsi_trig},
[TGSI_OPCODE_DDX] = { FETCH_OP_GET_GRADIENTS_H, tgsi_tex},
[TGSI_OPCODE_DDY] = { FETCH_OP_GET_GRADIENTS_V, tgsi_tex},
[TGSI_OPCODE_KILL] = { ALU_OP2_KILLGT, tgsi_kill}, /* unconditional kill */
[TGSI_OPCODE_PK2H] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_PK2US] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_PK4B] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_PK4UB] = { ALU_OP0_NOP, tgsi_unsupported},
[44] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_SEQ] = { ALU_OP2_SETE, tgsi_op2},
[46] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_SGT] = { ALU_OP2_SETGT, tgsi_op2},
[TGSI_OPCODE_SIN] = { ALU_OP1_SIN, tgsi_trig},
[TGSI_OPCODE_SLE] = { ALU_OP2_SETGE, tgsi_op2_swap},
[TGSI_OPCODE_SNE] = { ALU_OP2_SETNE, tgsi_op2},
[51] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_TEX] = { FETCH_OP_SAMPLE, tgsi_tex},
[TGSI_OPCODE_TXD] = { FETCH_OP_SAMPLE_G, tgsi_tex},
[TGSI_OPCODE_TXP] = { FETCH_OP_SAMPLE, tgsi_tex},
[TGSI_OPCODE_UP2H] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_UP2US] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_UP4B] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_UP4UB] = { ALU_OP0_NOP, tgsi_unsupported},
[59] = { ALU_OP0_NOP, tgsi_unsupported},
[60] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ARR] = { ALU_OP0_NOP, tgsi_r600_arl},
[62] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_CAL] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_RET] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_SSG] = { ALU_OP0_NOP, tgsi_ssg},
[TGSI_OPCODE_CMP] = { ALU_OP0_NOP, tgsi_cmp},
[67] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_TXB] = { FETCH_OP_SAMPLE_LB, tgsi_tex},
[69] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_DIV] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_DP2] = { ALU_OP2_DOT4_IEEE, tgsi_dp},
[TGSI_OPCODE_TXL] = { FETCH_OP_SAMPLE_L, tgsi_tex},
[TGSI_OPCODE_BRK] = { CF_OP_LOOP_BREAK, tgsi_loop_brk_cont},
[TGSI_OPCODE_IF] = { ALU_OP0_NOP, tgsi_if},
[TGSI_OPCODE_UIF] = { ALU_OP0_NOP, tgsi_uif},
[76] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ELSE] = { ALU_OP0_NOP, tgsi_else},
[TGSI_OPCODE_ENDIF] = { ALU_OP0_NOP, tgsi_endif},
[TGSI_OPCODE_DDX_FINE] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_DDY_FINE] = { ALU_OP0_NOP, tgsi_unsupported},
[81] = { ALU_OP0_NOP, tgsi_unsupported},
[82] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_CEIL] = { ALU_OP1_CEIL, tgsi_op2},
[TGSI_OPCODE_I2F] = { ALU_OP1_INT_TO_FLT, tgsi_op2_trans},
[TGSI_OPCODE_NOT] = { ALU_OP1_NOT_INT, tgsi_op2},
[TGSI_OPCODE_TRUNC] = { ALU_OP1_TRUNC, tgsi_op2},
[TGSI_OPCODE_SHL] = { ALU_OP2_LSHL_INT, tgsi_op2_trans},
[88] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_AND] = { ALU_OP2_AND_INT, tgsi_op2},
[TGSI_OPCODE_OR] = { ALU_OP2_OR_INT, tgsi_op2},
[TGSI_OPCODE_MOD] = { ALU_OP0_NOP, tgsi_imod},
[TGSI_OPCODE_XOR] = { ALU_OP2_XOR_INT, tgsi_op2},
[93] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_TXF] = { FETCH_OP_LD, tgsi_tex},
[TGSI_OPCODE_TXQ] = { FETCH_OP_GET_TEXTURE_RESINFO, tgsi_tex},
[TGSI_OPCODE_CONT] = { CF_OP_LOOP_CONTINUE, tgsi_loop_brk_cont},
[TGSI_OPCODE_EMIT] = { CF_OP_EMIT_VERTEX, tgsi_gs_emit},
[TGSI_OPCODE_ENDPRIM] = { CF_OP_CUT_VERTEX, tgsi_gs_emit},
[TGSI_OPCODE_BGNLOOP] = { ALU_OP0_NOP, tgsi_bgnloop},
[TGSI_OPCODE_BGNSUB] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ENDLOOP] = { ALU_OP0_NOP, tgsi_endloop},
[TGSI_OPCODE_ENDSUB] = { ALU_OP0_NOP, tgsi_unsupported},
[103] = { FETCH_OP_GET_TEXTURE_RESINFO, tgsi_tex},
[TGSI_OPCODE_TXQS] = { FETCH_OP_GET_NUMBER_OF_SAMPLES, tgsi_tex},
[TGSI_OPCODE_RESQ] = { ALU_OP0_NOP, tgsi_unsupported},
[106] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_NOP] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_FSEQ] = { ALU_OP2_SETE_DX10, tgsi_op2},
[TGSI_OPCODE_FSGE] = { ALU_OP2_SETGE_DX10, tgsi_op2},
[TGSI_OPCODE_FSLT] = { ALU_OP2_SETGT_DX10, tgsi_op2_swap},
[TGSI_OPCODE_FSNE] = { ALU_OP2_SETNE_DX10, tgsi_op2_swap},
[TGSI_OPCODE_MEMBAR] = { ALU_OP0_NOP, tgsi_unsupported},
[113] = { ALU_OP0_NOP, tgsi_unsupported},
[114] = { ALU_OP0_NOP, tgsi_unsupported},
[115] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_KILL_IF] = { ALU_OP2_KILLGT, tgsi_kill}, /* conditional kill */
[TGSI_OPCODE_END] = { ALU_OP0_NOP, tgsi_end}, /* aka HALT */
[TGSI_OPCODE_DFMA] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_F2I] = { ALU_OP1_FLT_TO_INT, tgsi_op2_trans},
[TGSI_OPCODE_IDIV] = { ALU_OP0_NOP, tgsi_idiv},
[TGSI_OPCODE_IMAX] = { ALU_OP2_MAX_INT, tgsi_op2},
[TGSI_OPCODE_IMIN] = { ALU_OP2_MIN_INT, tgsi_op2},
[TGSI_OPCODE_INEG] = { ALU_OP2_SUB_INT, tgsi_ineg},
[TGSI_OPCODE_ISGE] = { ALU_OP2_SETGE_INT, tgsi_op2},
[TGSI_OPCODE_ISHR] = { ALU_OP2_ASHR_INT, tgsi_op2_trans},
[TGSI_OPCODE_ISLT] = { ALU_OP2_SETGT_INT, tgsi_op2_swap},
[TGSI_OPCODE_F2U] = { ALU_OP1_FLT_TO_UINT, tgsi_op2_trans},
[TGSI_OPCODE_U2F] = { ALU_OP1_UINT_TO_FLT, tgsi_op2_trans},
[TGSI_OPCODE_UADD] = { ALU_OP2_ADD_INT, tgsi_op2},
[TGSI_OPCODE_UDIV] = { ALU_OP0_NOP, tgsi_udiv},
[TGSI_OPCODE_UMAD] = { ALU_OP0_NOP, tgsi_umad},
[TGSI_OPCODE_UMAX] = { ALU_OP2_MAX_UINT, tgsi_op2},
[TGSI_OPCODE_UMIN] = { ALU_OP2_MIN_UINT, tgsi_op2},
[TGSI_OPCODE_UMOD] = { ALU_OP0_NOP, tgsi_umod},
[TGSI_OPCODE_UMUL] = { ALU_OP2_MULLO_UINT, tgsi_op2_trans},
[TGSI_OPCODE_USEQ] = { ALU_OP2_SETE_INT, tgsi_op2},
[TGSI_OPCODE_USGE] = { ALU_OP2_SETGE_UINT, tgsi_op2},
[TGSI_OPCODE_USHR] = { ALU_OP2_LSHR_INT, tgsi_op2_trans},
[TGSI_OPCODE_USLT] = { ALU_OP2_SETGT_UINT, tgsi_op2_swap},
[TGSI_OPCODE_USNE] = { ALU_OP2_SETNE_INT, tgsi_op2_swap},
[TGSI_OPCODE_SWITCH] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_CASE] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_DEFAULT] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ENDSWITCH] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_I] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_I_MS] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_B] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_C] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_C_LZ] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_D] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_L] = { 0, tgsi_unsupported},
[TGSI_OPCODE_GATHER4] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SVIEWINFO] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_POS] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_INFO] = { 0, tgsi_unsupported},
[TGSI_OPCODE_UARL] = { ALU_OP1_MOVA_INT, tgsi_r600_arl},
[TGSI_OPCODE_UCMP] = { ALU_OP0_NOP, tgsi_ucmp},
[TGSI_OPCODE_IABS] = { 0, tgsi_iabs},
[TGSI_OPCODE_ISSG] = { 0, tgsi_issg},
[TGSI_OPCODE_LOAD] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_STORE] = { ALU_OP0_NOP, tgsi_unsupported},
[163] = { ALU_OP0_NOP, tgsi_unsupported},
[164] = { ALU_OP0_NOP, tgsi_unsupported},
[165] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_BARRIER] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ATOMUADD] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ATOMXCHG] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ATOMCAS] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ATOMAND] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ATOMOR] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ATOMXOR] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ATOMUMIN] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ATOMUMAX] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ATOMIMIN] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ATOMIMAX] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_TEX2] = { FETCH_OP_SAMPLE, tgsi_tex},
[TGSI_OPCODE_TXB2] = { FETCH_OP_SAMPLE_LB, tgsi_tex},
[TGSI_OPCODE_TXL2] = { FETCH_OP_SAMPLE_L, tgsi_tex},
[TGSI_OPCODE_IMUL_HI] = { ALU_OP2_MULHI_INT, tgsi_op2_trans},
[TGSI_OPCODE_UMUL_HI] = { ALU_OP2_MULHI_UINT, tgsi_op2_trans},
[TGSI_OPCODE_TG4] = { FETCH_OP_GATHER4, tgsi_unsupported},
[TGSI_OPCODE_LODQ] = { FETCH_OP_GET_LOD, tgsi_unsupported},
[TGSI_OPCODE_IBFE] = { ALU_OP3_BFE_INT, tgsi_unsupported},
[TGSI_OPCODE_UBFE] = { ALU_OP3_BFE_UINT, tgsi_unsupported},
[TGSI_OPCODE_BFI] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_BREV] = { ALU_OP1_BFREV_INT, tgsi_unsupported},
[TGSI_OPCODE_POPC] = { ALU_OP1_BCNT_INT, tgsi_unsupported},
[TGSI_OPCODE_LSB] = { ALU_OP1_FFBL_INT, tgsi_unsupported},
[TGSI_OPCODE_IMSB] = { ALU_OP1_FFBH_INT, tgsi_unsupported},
[TGSI_OPCODE_UMSB] = { ALU_OP1_FFBH_UINT, tgsi_unsupported},
[TGSI_OPCODE_INTERP_CENTROID] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_INTERP_SAMPLE] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_INTERP_OFFSET] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_LAST] = { ALU_OP0_NOP, tgsi_unsupported},
};
static const struct r600_shader_tgsi_instruction eg_shader_tgsi_instruction[] = {
[TGSI_OPCODE_ARL] = { ALU_OP0_NOP, tgsi_eg_arl},
[TGSI_OPCODE_MOV] = { ALU_OP1_MOV, tgsi_op2},
[TGSI_OPCODE_LIT] = { ALU_OP0_NOP, tgsi_lit},
[TGSI_OPCODE_RCP] = { ALU_OP1_RECIP_IEEE, tgsi_trans_srcx_replicate},
[TGSI_OPCODE_RSQ] = { ALU_OP0_NOP, tgsi_rsq},
[TGSI_OPCODE_EXP] = { ALU_OP0_NOP, tgsi_exp},
[TGSI_OPCODE_LOG] = { ALU_OP0_NOP, tgsi_log},
[TGSI_OPCODE_MUL] = { ALU_OP2_MUL_IEEE, tgsi_op2},
[TGSI_OPCODE_ADD] = { ALU_OP2_ADD, tgsi_op2},
[TGSI_OPCODE_DP3] = { ALU_OP2_DOT4_IEEE, tgsi_dp},
[TGSI_OPCODE_DP4] = { ALU_OP2_DOT4_IEEE, tgsi_dp},
[TGSI_OPCODE_DST] = { ALU_OP0_NOP, tgsi_opdst},
[TGSI_OPCODE_MIN] = { ALU_OP2_MIN_DX10, tgsi_op2},
[TGSI_OPCODE_MAX] = { ALU_OP2_MAX_DX10, tgsi_op2},
[TGSI_OPCODE_SLT] = { ALU_OP2_SETGT, tgsi_op2_swap},
[TGSI_OPCODE_SGE] = { ALU_OP2_SETGE, tgsi_op2},
[TGSI_OPCODE_MAD] = { ALU_OP3_MULADD_IEEE, tgsi_op3},
[TGSI_OPCODE_LRP] = { ALU_OP0_NOP, tgsi_lrp},
[TGSI_OPCODE_FMA] = { ALU_OP3_FMA, tgsi_op3},
[TGSI_OPCODE_SQRT] = { ALU_OP1_SQRT_IEEE, tgsi_trans_srcx_replicate},
[21] = { ALU_OP0_NOP, tgsi_unsupported},
[22] = { ALU_OP0_NOP, tgsi_unsupported},
[23] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_FRC] = { ALU_OP1_FRACT, tgsi_op2},
[25] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_FLR] = { ALU_OP1_FLOOR, tgsi_op2},
[TGSI_OPCODE_ROUND] = { ALU_OP1_RNDNE, tgsi_op2},
[TGSI_OPCODE_EX2] = { ALU_OP1_EXP_IEEE, tgsi_trans_srcx_replicate},
[TGSI_OPCODE_LG2] = { ALU_OP1_LOG_IEEE, tgsi_trans_srcx_replicate},
[TGSI_OPCODE_POW] = { ALU_OP0_NOP, tgsi_pow},
[31] = { ALU_OP0_NOP, tgsi_unsupported},
[32] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_CLOCK] = { ALU_OP0_NOP, tgsi_clock},
[34] = { ALU_OP0_NOP, tgsi_unsupported},
[35] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_COS] = { ALU_OP1_COS, tgsi_trig},
[TGSI_OPCODE_DDX] = { FETCH_OP_GET_GRADIENTS_H, tgsi_tex},
[TGSI_OPCODE_DDY] = { FETCH_OP_GET_GRADIENTS_V, tgsi_tex},
[TGSI_OPCODE_KILL] = { ALU_OP2_KILLGT, tgsi_kill}, /* unconditional kill */
[TGSI_OPCODE_PK2H] = { ALU_OP0_NOP, tgsi_pk2h},
[TGSI_OPCODE_PK2US] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_PK4B] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_PK4UB] = { ALU_OP0_NOP, tgsi_unsupported},
[44] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_SEQ] = { ALU_OP2_SETE, tgsi_op2},
[46] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_SGT] = { ALU_OP2_SETGT, tgsi_op2},
[TGSI_OPCODE_SIN] = { ALU_OP1_SIN, tgsi_trig},
[TGSI_OPCODE_SLE] = { ALU_OP2_SETGE, tgsi_op2_swap},
[TGSI_OPCODE_SNE] = { ALU_OP2_SETNE, tgsi_op2},
[51] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_TEX] = { FETCH_OP_SAMPLE, tgsi_tex},
[TGSI_OPCODE_TXD] = { FETCH_OP_SAMPLE_G, tgsi_tex},
[TGSI_OPCODE_TXP] = { FETCH_OP_SAMPLE, tgsi_tex},
[TGSI_OPCODE_UP2H] = { ALU_OP0_NOP, tgsi_up2h},
[TGSI_OPCODE_UP2US] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_UP4B] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_UP4UB] = { ALU_OP0_NOP, tgsi_unsupported},
[59] = { ALU_OP0_NOP, tgsi_unsupported},
[60] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ARR] = { ALU_OP0_NOP, tgsi_eg_arl},
[62] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_CAL] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_RET] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_SSG] = { ALU_OP0_NOP, tgsi_ssg},
[TGSI_OPCODE_CMP] = { ALU_OP0_NOP, tgsi_cmp},
[67] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_TXB] = { FETCH_OP_SAMPLE_LB, tgsi_tex},
[69] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_DIV] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_DP2] = { ALU_OP2_DOT4_IEEE, tgsi_dp},
[TGSI_OPCODE_TXL] = { FETCH_OP_SAMPLE_L, tgsi_tex},
[TGSI_OPCODE_BRK] = { CF_OP_LOOP_BREAK, tgsi_loop_brk_cont},
[TGSI_OPCODE_IF] = { ALU_OP0_NOP, tgsi_if},
[TGSI_OPCODE_UIF] = { ALU_OP0_NOP, tgsi_uif},
[76] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ELSE] = { ALU_OP0_NOP, tgsi_else},
[TGSI_OPCODE_ENDIF] = { ALU_OP0_NOP, tgsi_endif},
[TGSI_OPCODE_DDX_FINE] = { FETCH_OP_GET_GRADIENTS_H, tgsi_tex},
[TGSI_OPCODE_DDY_FINE] = { FETCH_OP_GET_GRADIENTS_V, tgsi_tex},
[82] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_CEIL] = { ALU_OP1_CEIL, tgsi_op2},
[TGSI_OPCODE_I2F] = { ALU_OP1_INT_TO_FLT, tgsi_op2_trans},
[TGSI_OPCODE_NOT] = { ALU_OP1_NOT_INT, tgsi_op2},
[TGSI_OPCODE_TRUNC] = { ALU_OP1_TRUNC, tgsi_op2},
[TGSI_OPCODE_SHL] = { ALU_OP2_LSHL_INT, tgsi_op2},
[88] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_AND] = { ALU_OP2_AND_INT, tgsi_op2},
[TGSI_OPCODE_OR] = { ALU_OP2_OR_INT, tgsi_op2},
[TGSI_OPCODE_MOD] = { ALU_OP0_NOP, tgsi_imod},
[TGSI_OPCODE_XOR] = { ALU_OP2_XOR_INT, tgsi_op2},
[93] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_TXF] = { FETCH_OP_LD, tgsi_tex},
[TGSI_OPCODE_TXQ] = { FETCH_OP_GET_TEXTURE_RESINFO, tgsi_tex},
[TGSI_OPCODE_CONT] = { CF_OP_LOOP_CONTINUE, tgsi_loop_brk_cont},
[TGSI_OPCODE_EMIT] = { CF_OP_EMIT_VERTEX, tgsi_gs_emit},
[TGSI_OPCODE_ENDPRIM] = { CF_OP_CUT_VERTEX, tgsi_gs_emit},
[TGSI_OPCODE_BGNLOOP] = { ALU_OP0_NOP, tgsi_bgnloop},
[TGSI_OPCODE_BGNSUB] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ENDLOOP] = { ALU_OP0_NOP, tgsi_endloop},
[TGSI_OPCODE_ENDSUB] = { ALU_OP0_NOP, tgsi_unsupported},
[103] = { FETCH_OP_GET_TEXTURE_RESINFO, tgsi_tex},
[TGSI_OPCODE_TXQS] = { FETCH_OP_GET_NUMBER_OF_SAMPLES, tgsi_tex},
[TGSI_OPCODE_RESQ] = { FETCH_OP_GET_TEXTURE_RESINFO, tgsi_resq},
[106] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_NOP] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_FSEQ] = { ALU_OP2_SETE_DX10, tgsi_op2},
[TGSI_OPCODE_FSGE] = { ALU_OP2_SETGE_DX10, tgsi_op2},
[TGSI_OPCODE_FSLT] = { ALU_OP2_SETGT_DX10, tgsi_op2_swap},
[TGSI_OPCODE_FSNE] = { ALU_OP2_SETNE_DX10, tgsi_op2_swap},
[TGSI_OPCODE_MEMBAR] = { ALU_OP0_GROUP_BARRIER, tgsi_barrier},
[113] = { ALU_OP0_NOP, tgsi_unsupported},
[114] = { ALU_OP0_NOP, tgsi_unsupported},
[115] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_KILL_IF] = { ALU_OP2_KILLGT, tgsi_kill}, /* conditional kill */
[TGSI_OPCODE_END] = { ALU_OP0_NOP, tgsi_end}, /* aka HALT */
/* Refer below for TGSI_OPCODE_DFMA */
[TGSI_OPCODE_F2I] = { ALU_OP1_FLT_TO_INT, tgsi_f2i},
[TGSI_OPCODE_IDIV] = { ALU_OP0_NOP, tgsi_idiv},
[TGSI_OPCODE_IMAX] = { ALU_OP2_MAX_INT, tgsi_op2},
[TGSI_OPCODE_IMIN] = { ALU_OP2_MIN_INT, tgsi_op2},
[TGSI_OPCODE_INEG] = { ALU_OP2_SUB_INT, tgsi_ineg},
[TGSI_OPCODE_ISGE] = { ALU_OP2_SETGE_INT, tgsi_op2},
[TGSI_OPCODE_ISHR] = { ALU_OP2_ASHR_INT, tgsi_op2},
[TGSI_OPCODE_ISLT] = { ALU_OP2_SETGT_INT, tgsi_op2_swap},
[TGSI_OPCODE_F2U] = { ALU_OP1_FLT_TO_UINT, tgsi_f2i},
[TGSI_OPCODE_U2F] = { ALU_OP1_UINT_TO_FLT, tgsi_op2_trans},
[TGSI_OPCODE_UADD] = { ALU_OP2_ADD_INT, tgsi_op2},
[TGSI_OPCODE_UDIV] = { ALU_OP0_NOP, tgsi_udiv},
[TGSI_OPCODE_UMAD] = { ALU_OP0_NOP, tgsi_umad},
[TGSI_OPCODE_UMAX] = { ALU_OP2_MAX_UINT, tgsi_op2},
[TGSI_OPCODE_UMIN] = { ALU_OP2_MIN_UINT, tgsi_op2},
[TGSI_OPCODE_UMOD] = { ALU_OP0_NOP, tgsi_umod},
[TGSI_OPCODE_UMUL] = { ALU_OP2_MULLO_UINT, tgsi_op2_trans},
[TGSI_OPCODE_USEQ] = { ALU_OP2_SETE_INT, tgsi_op2},
[TGSI_OPCODE_USGE] = { ALU_OP2_SETGE_UINT, tgsi_op2},
[TGSI_OPCODE_USHR] = { ALU_OP2_LSHR_INT, tgsi_op2},
[TGSI_OPCODE_USLT] = { ALU_OP2_SETGT_UINT, tgsi_op2_swap},
[TGSI_OPCODE_USNE] = { ALU_OP2_SETNE_INT, tgsi_op2},
[TGSI_OPCODE_SWITCH] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_CASE] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_DEFAULT] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ENDSWITCH] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_I] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_I_MS] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_B] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_C] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_C_LZ] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_D] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_L] = { 0, tgsi_unsupported},
[TGSI_OPCODE_GATHER4] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SVIEWINFO] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_POS] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_INFO] = { 0, tgsi_unsupported},
[TGSI_OPCODE_UARL] = { ALU_OP1_MOVA_INT, tgsi_eg_arl},
[TGSI_OPCODE_UCMP] = { ALU_OP0_NOP, tgsi_ucmp},
[TGSI_OPCODE_IABS] = { 0, tgsi_iabs},
[TGSI_OPCODE_ISSG] = { 0, tgsi_issg},
[TGSI_OPCODE_LOAD] = { ALU_OP0_NOP, tgsi_load},
[TGSI_OPCODE_STORE] = { ALU_OP0_NOP, tgsi_store},
[163] = { ALU_OP0_NOP, tgsi_unsupported},
[164] = { ALU_OP0_NOP, tgsi_unsupported},
[165] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_BARRIER] = { ALU_OP0_GROUP_BARRIER, tgsi_barrier},
[TGSI_OPCODE_ATOMUADD] = { V_RAT_INST_ADD_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMXCHG] = { V_RAT_INST_XCHG_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMCAS] = { V_RAT_INST_CMPXCHG_INT_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMAND] = { V_RAT_INST_AND_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMOR] = { V_RAT_INST_OR_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMXOR] = { V_RAT_INST_XOR_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMUMIN] = { V_RAT_INST_MIN_UINT_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMUMAX] = { V_RAT_INST_MAX_UINT_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMIMIN] = { V_RAT_INST_MIN_INT_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMIMAX] = { V_RAT_INST_MAX_INT_RTN, tgsi_atomic_op},
[TGSI_OPCODE_TEX2] = { FETCH_OP_SAMPLE, tgsi_tex},
[TGSI_OPCODE_TXB2] = { FETCH_OP_SAMPLE_LB, tgsi_tex},
[TGSI_OPCODE_TXL2] = { FETCH_OP_SAMPLE_L, tgsi_tex},
[TGSI_OPCODE_IMUL_HI] = { ALU_OP2_MULHI_INT, tgsi_op2_trans},
[TGSI_OPCODE_UMUL_HI] = { ALU_OP2_MULHI_UINT, tgsi_op2_trans},
[TGSI_OPCODE_TG4] = { FETCH_OP_GATHER4, tgsi_tex},
[TGSI_OPCODE_LODQ] = { FETCH_OP_GET_LOD, tgsi_tex},
[TGSI_OPCODE_IBFE] = { ALU_OP3_BFE_INT, tgsi_bfe},
[TGSI_OPCODE_UBFE] = { ALU_OP3_BFE_UINT, tgsi_bfe},
[TGSI_OPCODE_BFI] = { ALU_OP0_NOP, tgsi_bfi},
[TGSI_OPCODE_BREV] = { ALU_OP1_BFREV_INT, tgsi_op2},
[TGSI_OPCODE_POPC] = { ALU_OP1_BCNT_INT, tgsi_op2},
[TGSI_OPCODE_LSB] = { ALU_OP1_FFBL_INT, tgsi_op2},
[TGSI_OPCODE_IMSB] = { ALU_OP1_FFBH_INT, tgsi_msb},
[TGSI_OPCODE_UMSB] = { ALU_OP1_FFBH_UINT, tgsi_msb},
[TGSI_OPCODE_INTERP_CENTROID] = { ALU_OP0_NOP, tgsi_interp_egcm},
[TGSI_OPCODE_INTERP_SAMPLE] = { ALU_OP0_NOP, tgsi_interp_egcm},
[TGSI_OPCODE_INTERP_OFFSET] = { ALU_OP0_NOP, tgsi_interp_egcm},
[TGSI_OPCODE_F2D] = { ALU_OP1_FLT32_TO_FLT64, tgsi_op2_64},
[TGSI_OPCODE_D2F] = { ALU_OP1_FLT64_TO_FLT32, tgsi_op2_64_single_dest},
[TGSI_OPCODE_DABS] = { ALU_OP1_MOV, tgsi_op2_64},
[TGSI_OPCODE_DNEG] = { ALU_OP2_ADD_64, tgsi_dneg},
[TGSI_OPCODE_DADD] = { ALU_OP2_ADD_64, tgsi_op2_64},
[TGSI_OPCODE_DMUL] = { ALU_OP2_MUL_64, cayman_mul_double_instr},
[TGSI_OPCODE_DDIV] = { 0, cayman_ddiv_instr },
[TGSI_OPCODE_DMAX] = { ALU_OP2_MAX_64, tgsi_op2_64},
[TGSI_OPCODE_DMIN] = { ALU_OP2_MIN_64, tgsi_op2_64},
[TGSI_OPCODE_DSLT] = { ALU_OP2_SETGT_64, tgsi_op2_64_single_dest_s},
[TGSI_OPCODE_DSGE] = { ALU_OP2_SETGE_64, tgsi_op2_64_single_dest},
[TGSI_OPCODE_DSEQ] = { ALU_OP2_SETE_64, tgsi_op2_64_single_dest},
[TGSI_OPCODE_DSNE] = { ALU_OP2_SETNE_64, tgsi_op2_64_single_dest},
[TGSI_OPCODE_DRCP] = { ALU_OP2_RECIP_64, cayman_emit_double_instr},
[TGSI_OPCODE_DSQRT] = { ALU_OP2_SQRT_64, cayman_emit_double_instr},
[TGSI_OPCODE_DMAD] = { ALU_OP3_FMA_64, tgsi_op3_64},
[TGSI_OPCODE_DFMA] = { ALU_OP3_FMA_64, tgsi_op3_64},
[TGSI_OPCODE_DFRAC] = { ALU_OP1_FRACT_64, tgsi_op2_64},
[TGSI_OPCODE_DLDEXP] = { ALU_OP2_LDEXP_64, tgsi_op2_64},
[TGSI_OPCODE_DFRACEXP] = { ALU_OP1_FREXP_64, tgsi_dfracexp},
[TGSI_OPCODE_D2I] = { ALU_OP1_FLT_TO_INT, egcm_double_to_int},
[TGSI_OPCODE_I2D] = { ALU_OP1_INT_TO_FLT, egcm_int_to_double},
[TGSI_OPCODE_D2U] = { ALU_OP1_FLT_TO_UINT, egcm_double_to_int},
[TGSI_OPCODE_U2D] = { ALU_OP1_UINT_TO_FLT, egcm_int_to_double},
[TGSI_OPCODE_DRSQ] = { ALU_OP2_RECIPSQRT_64, cayman_emit_double_instr},
[TGSI_OPCODE_LAST] = { ALU_OP0_NOP, tgsi_unsupported},
};
static const struct r600_shader_tgsi_instruction cm_shader_tgsi_instruction[] = {
[TGSI_OPCODE_ARL] = { ALU_OP0_NOP, tgsi_eg_arl},
[TGSI_OPCODE_MOV] = { ALU_OP1_MOV, tgsi_op2},
[TGSI_OPCODE_LIT] = { ALU_OP0_NOP, tgsi_lit},
[TGSI_OPCODE_RCP] = { ALU_OP1_RECIP_IEEE, cayman_emit_float_instr},
[TGSI_OPCODE_RSQ] = { ALU_OP1_RECIPSQRT_IEEE, cayman_emit_float_instr},
[TGSI_OPCODE_EXP] = { ALU_OP0_NOP, tgsi_exp},
[TGSI_OPCODE_LOG] = { ALU_OP0_NOP, tgsi_log},
[TGSI_OPCODE_MUL] = { ALU_OP2_MUL_IEEE, tgsi_op2},
[TGSI_OPCODE_ADD] = { ALU_OP2_ADD, tgsi_op2},
[TGSI_OPCODE_DP3] = { ALU_OP2_DOT4_IEEE, tgsi_dp},
[TGSI_OPCODE_DP4] = { ALU_OP2_DOT4_IEEE, tgsi_dp},
[TGSI_OPCODE_DST] = { ALU_OP0_NOP, tgsi_opdst},
[TGSI_OPCODE_MIN] = { ALU_OP2_MIN_DX10, tgsi_op2},
[TGSI_OPCODE_MAX] = { ALU_OP2_MAX_DX10, tgsi_op2},
[TGSI_OPCODE_SLT] = { ALU_OP2_SETGT, tgsi_op2_swap},
[TGSI_OPCODE_SGE] = { ALU_OP2_SETGE, tgsi_op2},
[TGSI_OPCODE_MAD] = { ALU_OP3_MULADD_IEEE, tgsi_op3},
[TGSI_OPCODE_LRP] = { ALU_OP0_NOP, tgsi_lrp},
[TGSI_OPCODE_FMA] = { ALU_OP3_FMA, tgsi_op3},
[TGSI_OPCODE_SQRT] = { ALU_OP1_SQRT_IEEE, cayman_emit_float_instr},
[21] = { ALU_OP0_NOP, tgsi_unsupported},
[22] = { ALU_OP0_NOP, tgsi_unsupported},
[23] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_FRC] = { ALU_OP1_FRACT, tgsi_op2},
[25] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_FLR] = { ALU_OP1_FLOOR, tgsi_op2},
[TGSI_OPCODE_ROUND] = { ALU_OP1_RNDNE, tgsi_op2},
[TGSI_OPCODE_EX2] = { ALU_OP1_EXP_IEEE, cayman_emit_float_instr},
[TGSI_OPCODE_LG2] = { ALU_OP1_LOG_IEEE, cayman_emit_float_instr},
[TGSI_OPCODE_POW] = { ALU_OP0_NOP, cayman_pow},
[31] = { ALU_OP0_NOP, tgsi_unsupported},
[32] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_CLOCK] = { ALU_OP0_NOP, tgsi_clock},
[34] = { ALU_OP0_NOP, tgsi_unsupported},
[35] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_COS] = { ALU_OP1_COS, cayman_trig},
[TGSI_OPCODE_DDX] = { FETCH_OP_GET_GRADIENTS_H, tgsi_tex},
[TGSI_OPCODE_DDY] = { FETCH_OP_GET_GRADIENTS_V, tgsi_tex},
[TGSI_OPCODE_KILL] = { ALU_OP2_KILLGT, tgsi_kill}, /* unconditional kill */
[TGSI_OPCODE_PK2H] = { ALU_OP0_NOP, tgsi_pk2h},
[TGSI_OPCODE_PK2US] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_PK4B] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_PK4UB] = { ALU_OP0_NOP, tgsi_unsupported},
[44] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_SEQ] = { ALU_OP2_SETE, tgsi_op2},
[46] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_SGT] = { ALU_OP2_SETGT, tgsi_op2},
[TGSI_OPCODE_SIN] = { ALU_OP1_SIN, cayman_trig},
[TGSI_OPCODE_SLE] = { ALU_OP2_SETGE, tgsi_op2_swap},
[TGSI_OPCODE_SNE] = { ALU_OP2_SETNE, tgsi_op2},
[51] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_TEX] = { FETCH_OP_SAMPLE, tgsi_tex},
[TGSI_OPCODE_TXD] = { FETCH_OP_SAMPLE_G, tgsi_tex},
[TGSI_OPCODE_TXP] = { FETCH_OP_SAMPLE, tgsi_tex},
[TGSI_OPCODE_UP2H] = { ALU_OP0_NOP, tgsi_up2h},
[TGSI_OPCODE_UP2US] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_UP4B] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_UP4UB] = { ALU_OP0_NOP, tgsi_unsupported},
[59] = { ALU_OP0_NOP, tgsi_unsupported},
[60] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ARR] = { ALU_OP0_NOP, tgsi_eg_arl},
[62] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_CAL] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_RET] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_SSG] = { ALU_OP0_NOP, tgsi_ssg},
[TGSI_OPCODE_CMP] = { ALU_OP0_NOP, tgsi_cmp},
[67] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_TXB] = { FETCH_OP_SAMPLE_LB, tgsi_tex},
[69] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_DIV] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_DP2] = { ALU_OP2_DOT4_IEEE, tgsi_dp},
[TGSI_OPCODE_TXL] = { FETCH_OP_SAMPLE_L, tgsi_tex},
[TGSI_OPCODE_BRK] = { CF_OP_LOOP_BREAK, tgsi_loop_brk_cont},
[TGSI_OPCODE_IF] = { ALU_OP0_NOP, tgsi_if},
[TGSI_OPCODE_UIF] = { ALU_OP0_NOP, tgsi_uif},
[76] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ELSE] = { ALU_OP0_NOP, tgsi_else},
[TGSI_OPCODE_ENDIF] = { ALU_OP0_NOP, tgsi_endif},
[TGSI_OPCODE_DDX_FINE] = { FETCH_OP_GET_GRADIENTS_H, tgsi_tex},
[TGSI_OPCODE_DDY_FINE] = { FETCH_OP_GET_GRADIENTS_V, tgsi_tex},
[82] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_CEIL] = { ALU_OP1_CEIL, tgsi_op2},
[TGSI_OPCODE_I2F] = { ALU_OP1_INT_TO_FLT, tgsi_op2},
[TGSI_OPCODE_NOT] = { ALU_OP1_NOT_INT, tgsi_op2},
[TGSI_OPCODE_TRUNC] = { ALU_OP1_TRUNC, tgsi_op2},
[TGSI_OPCODE_SHL] = { ALU_OP2_LSHL_INT, tgsi_op2},
[88] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_AND] = { ALU_OP2_AND_INT, tgsi_op2},
[TGSI_OPCODE_OR] = { ALU_OP2_OR_INT, tgsi_op2},
[TGSI_OPCODE_MOD] = { ALU_OP0_NOP, tgsi_imod},
[TGSI_OPCODE_XOR] = { ALU_OP2_XOR_INT, tgsi_op2},
[93] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_TXF] = { FETCH_OP_LD, tgsi_tex},
[TGSI_OPCODE_TXQ] = { FETCH_OP_GET_TEXTURE_RESINFO, tgsi_tex},
[TGSI_OPCODE_CONT] = { CF_OP_LOOP_CONTINUE, tgsi_loop_brk_cont},
[TGSI_OPCODE_EMIT] = { CF_OP_EMIT_VERTEX, tgsi_gs_emit},
[TGSI_OPCODE_ENDPRIM] = { CF_OP_CUT_VERTEX, tgsi_gs_emit},
[TGSI_OPCODE_BGNLOOP] = { ALU_OP0_NOP, tgsi_bgnloop},
[TGSI_OPCODE_BGNSUB] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ENDLOOP] = { ALU_OP0_NOP, tgsi_endloop},
[TGSI_OPCODE_ENDSUB] = { ALU_OP0_NOP, tgsi_unsupported},
[103] = { FETCH_OP_GET_TEXTURE_RESINFO, tgsi_tex},
[TGSI_OPCODE_TXQS] = { FETCH_OP_GET_NUMBER_OF_SAMPLES, tgsi_tex},
[TGSI_OPCODE_RESQ] = { FETCH_OP_GET_TEXTURE_RESINFO, tgsi_resq},
[106] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_NOP] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_FSEQ] = { ALU_OP2_SETE_DX10, tgsi_op2},
[TGSI_OPCODE_FSGE] = { ALU_OP2_SETGE_DX10, tgsi_op2},
[TGSI_OPCODE_FSLT] = { ALU_OP2_SETGT_DX10, tgsi_op2_swap},
[TGSI_OPCODE_FSNE] = { ALU_OP2_SETNE_DX10, tgsi_op2_swap},
[TGSI_OPCODE_MEMBAR] = { ALU_OP0_GROUP_BARRIER, tgsi_barrier},
[113] = { ALU_OP0_NOP, tgsi_unsupported},
[114] = { ALU_OP0_NOP, tgsi_unsupported},
[115] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_KILL_IF] = { ALU_OP2_KILLGT, tgsi_kill}, /* conditional kill */
[TGSI_OPCODE_END] = { ALU_OP0_NOP, tgsi_end}, /* aka HALT */
/* Refer below for TGSI_OPCODE_DFMA */
[TGSI_OPCODE_F2I] = { ALU_OP1_FLT_TO_INT, tgsi_op2},
[TGSI_OPCODE_IDIV] = { ALU_OP0_NOP, tgsi_idiv},
[TGSI_OPCODE_IMAX] = { ALU_OP2_MAX_INT, tgsi_op2},
[TGSI_OPCODE_IMIN] = { ALU_OP2_MIN_INT, tgsi_op2},
[TGSI_OPCODE_INEG] = { ALU_OP2_SUB_INT, tgsi_ineg},
[TGSI_OPCODE_ISGE] = { ALU_OP2_SETGE_INT, tgsi_op2},
[TGSI_OPCODE_ISHR] = { ALU_OP2_ASHR_INT, tgsi_op2},
[TGSI_OPCODE_ISLT] = { ALU_OP2_SETGT_INT, tgsi_op2_swap},
[TGSI_OPCODE_F2U] = { ALU_OP1_FLT_TO_UINT, tgsi_op2},
[TGSI_OPCODE_U2F] = { ALU_OP1_UINT_TO_FLT, tgsi_op2},
[TGSI_OPCODE_UADD] = { ALU_OP2_ADD_INT, tgsi_op2},
[TGSI_OPCODE_UDIV] = { ALU_OP0_NOP, tgsi_udiv},
[TGSI_OPCODE_UMAD] = { ALU_OP0_NOP, tgsi_umad},
[TGSI_OPCODE_UMAX] = { ALU_OP2_MAX_UINT, tgsi_op2},
[TGSI_OPCODE_UMIN] = { ALU_OP2_MIN_UINT, tgsi_op2},
[TGSI_OPCODE_UMOD] = { ALU_OP0_NOP, tgsi_umod},
[TGSI_OPCODE_UMUL] = { ALU_OP2_MULLO_INT, cayman_mul_int_instr},
[TGSI_OPCODE_USEQ] = { ALU_OP2_SETE_INT, tgsi_op2},
[TGSI_OPCODE_USGE] = { ALU_OP2_SETGE_UINT, tgsi_op2},
[TGSI_OPCODE_USHR] = { ALU_OP2_LSHR_INT, tgsi_op2},
[TGSI_OPCODE_USLT] = { ALU_OP2_SETGT_UINT, tgsi_op2_swap},
[TGSI_OPCODE_USNE] = { ALU_OP2_SETNE_INT, tgsi_op2},
[TGSI_OPCODE_SWITCH] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_CASE] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_DEFAULT] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_ENDSWITCH] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_I] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_I_MS] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_B] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_C] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_C_LZ] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_D] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_L] = { 0, tgsi_unsupported},
[TGSI_OPCODE_GATHER4] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SVIEWINFO] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_POS] = { 0, tgsi_unsupported},
[TGSI_OPCODE_SAMPLE_INFO] = { 0, tgsi_unsupported},
[TGSI_OPCODE_UARL] = { ALU_OP1_MOVA_INT, tgsi_eg_arl},
[TGSI_OPCODE_UCMP] = { ALU_OP0_NOP, tgsi_ucmp},
[TGSI_OPCODE_IABS] = { 0, tgsi_iabs},
[TGSI_OPCODE_ISSG] = { 0, tgsi_issg},
[TGSI_OPCODE_LOAD] = { ALU_OP0_NOP, tgsi_load},
[TGSI_OPCODE_STORE] = { ALU_OP0_NOP, tgsi_store},
[163] = { ALU_OP0_NOP, tgsi_unsupported},
[164] = { ALU_OP0_NOP, tgsi_unsupported},
[165] = { ALU_OP0_NOP, tgsi_unsupported},
[TGSI_OPCODE_BARRIER] = { ALU_OP0_GROUP_BARRIER, tgsi_barrier},
[TGSI_OPCODE_ATOMUADD] = { V_RAT_INST_ADD_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMXCHG] = { V_RAT_INST_XCHG_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMCAS] = { V_RAT_INST_CMPXCHG_INT_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMAND] = { V_RAT_INST_AND_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMOR] = { V_RAT_INST_OR_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMXOR] = { V_RAT_INST_XOR_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMUMIN] = { V_RAT_INST_MIN_UINT_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMUMAX] = { V_RAT_INST_MAX_UINT_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMIMIN] = { V_RAT_INST_MIN_INT_RTN, tgsi_atomic_op},
[TGSI_OPCODE_ATOMIMAX] = { V_RAT_INST_MAX_INT_RTN, tgsi_atomic_op},
[TGSI_OPCODE_TEX2] = { FETCH_OP_SAMPLE, tgsi_tex},
[TGSI_OPCODE_TXB2] = { FETCH_OP_SAMPLE_LB, tgsi_tex},
[TGSI_OPCODE_TXL2] = { FETCH_OP_SAMPLE_L, tgsi_tex},
[TGSI_OPCODE_IMUL_HI] = { ALU_OP2_MULHI_INT, cayman_mul_int_instr},
[TGSI_OPCODE_UMUL_HI] = { ALU_OP2_MULHI_UINT, cayman_mul_int_instr},
[TGSI_OPCODE_TG4] = { FETCH_OP_GATHER4, tgsi_tex},
[TGSI_OPCODE_LODQ] = { FETCH_OP_GET_LOD, tgsi_tex},
[TGSI_OPCODE_IBFE] = { ALU_OP3_BFE_INT, tgsi_bfe},
[TGSI_OPCODE_UBFE] = { ALU_OP3_BFE_UINT, tgsi_bfe},
[TGSI_OPCODE_BFI] = { ALU_OP0_NOP, tgsi_bfi},
[TGSI_OPCODE_BREV] = { ALU_OP1_BFREV_INT, tgsi_op2},
[TGSI_OPCODE_POPC] = { ALU_OP1_BCNT_INT, tgsi_op2},
[TGSI_OPCODE_LSB] = { ALU_OP1_FFBL_INT, tgsi_op2},
[TGSI_OPCODE_IMSB] = { ALU_OP1_FFBH_INT, tgsi_msb},
[TGSI_OPCODE_UMSB] = { ALU_OP1_FFBH_UINT, tgsi_msb},
[TGSI_OPCODE_INTERP_CENTROID] = { ALU_OP0_NOP, tgsi_interp_egcm},
[TGSI_OPCODE_INTERP_SAMPLE] = { ALU_OP0_NOP, tgsi_interp_egcm},
[TGSI_OPCODE_INTERP_OFFSET] = { ALU_OP0_NOP, tgsi_interp_egcm},
[TGSI_OPCODE_F2D] = { ALU_OP1_FLT32_TO_FLT64, tgsi_op2_64},
[TGSI_OPCODE_D2F] = { ALU_OP1_FLT64_TO_FLT32, tgsi_op2_64_single_dest},
[TGSI_OPCODE_DABS] = { ALU_OP1_MOV, tgsi_op2_64},
[TGSI_OPCODE_DNEG] = { ALU_OP2_ADD_64, tgsi_dneg},
[TGSI_OPCODE_DADD] = { ALU_OP2_ADD_64, tgsi_op2_64},
[TGSI_OPCODE_DMUL] = { ALU_OP2_MUL_64, cayman_mul_double_instr},
[TGSI_OPCODE_DDIV] = { 0, cayman_ddiv_instr },
[TGSI_OPCODE_DMAX] = { ALU_OP2_MAX_64, tgsi_op2_64},
[TGSI_OPCODE_DMIN] = { ALU_OP2_MIN_64, tgsi_op2_64},
[TGSI_OPCODE_DSLT] = { ALU_OP2_SETGT_64, tgsi_op2_64_single_dest_s},
[TGSI_OPCODE_DSGE] = { ALU_OP2_SETGE_64, tgsi_op2_64_single_dest},
[TGSI_OPCODE_DSEQ] = { ALU_OP2_SETE_64, tgsi_op2_64_single_dest},
[TGSI_OPCODE_DSNE] = { ALU_OP2_SETNE_64, tgsi_op2_64_single_dest},
[TGSI_OPCODE_DRCP] = { ALU_OP2_RECIP_64, cayman_emit_double_instr},
[TGSI_OPCODE_DSQRT] = { ALU_OP2_SQRT_64, cayman_emit_double_instr},
[TGSI_OPCODE_DMAD] = { ALU_OP3_FMA_64, tgsi_op3_64},
[TGSI_OPCODE_DFMA] = { ALU_OP3_FMA_64, tgsi_op3_64},
[TGSI_OPCODE_DFRAC] = { ALU_OP1_FRACT_64, tgsi_op2_64},
[TGSI_OPCODE_DLDEXP] = { ALU_OP2_LDEXP_64, tgsi_op2_64},
[TGSI_OPCODE_DFRACEXP] = { ALU_OP1_FREXP_64, tgsi_dfracexp},
[TGSI_OPCODE_D2I] = { ALU_OP1_FLT_TO_INT, egcm_double_to_int},
[TGSI_OPCODE_I2D] = { ALU_OP1_INT_TO_FLT, egcm_int_to_double},
[TGSI_OPCODE_D2U] = { ALU_OP1_FLT_TO_UINT, egcm_double_to_int},
[TGSI_OPCODE_U2D] = { ALU_OP1_UINT_TO_FLT, egcm_int_to_double},
[TGSI_OPCODE_DRSQ] = { ALU_OP2_RECIPSQRT_64, cayman_emit_double_instr},
[TGSI_OPCODE_LAST] = { ALU_OP0_NOP, tgsi_unsupported},
};