blob: 92c2bdf27ca6b6a6461fd28a3280390d77e41005 [file] [log] [blame]
/*
* Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "r600_sq.h"
#include "r600_opcodes.h"
#include "r600_formats.h"
#include "r600_shader.h"
#include "r600d.h"
#include <errno.h>
#include "util/u_bitcast.h"
#include "util/u_dump.h"
#include "util/u_memory.h"
#include "util/u_math.h"
#include "pipe/p_shader_tokens.h"
#include "sb/sb_public.h"
#define NUM_OF_CYCLES 3
#define NUM_OF_COMPONENTS 4
static inline bool alu_writes(struct r600_bytecode_alu *alu)
{
return alu->dst.write || alu->is_op3;
}
static inline unsigned int r600_bytecode_get_num_operands(const struct r600_bytecode_alu *alu)
{
return r600_isa_alu(alu->op)->src_count;
}
static struct r600_bytecode_cf *r600_bytecode_cf(void)
{
struct r600_bytecode_cf *cf = CALLOC_STRUCT(r600_bytecode_cf);
if (!cf)
return NULL;
LIST_INITHEAD(&cf->list);
LIST_INITHEAD(&cf->alu);
LIST_INITHEAD(&cf->vtx);
LIST_INITHEAD(&cf->tex);
LIST_INITHEAD(&cf->gds);
return cf;
}
static struct r600_bytecode_alu *r600_bytecode_alu(void)
{
struct r600_bytecode_alu *alu = CALLOC_STRUCT(r600_bytecode_alu);
if (!alu)
return NULL;
LIST_INITHEAD(&alu->list);
return alu;
}
static struct r600_bytecode_vtx *r600_bytecode_vtx(void)
{
struct r600_bytecode_vtx *vtx = CALLOC_STRUCT(r600_bytecode_vtx);
if (!vtx)
return NULL;
LIST_INITHEAD(&vtx->list);
return vtx;
}
static struct r600_bytecode_tex *r600_bytecode_tex(void)
{
struct r600_bytecode_tex *tex = CALLOC_STRUCT(r600_bytecode_tex);
if (!tex)
return NULL;
LIST_INITHEAD(&tex->list);
return tex;
}
static struct r600_bytecode_gds *r600_bytecode_gds(void)
{
struct r600_bytecode_gds *gds = CALLOC_STRUCT(r600_bytecode_gds);
if (gds == NULL)
return NULL;
LIST_INITHEAD(&gds->list);
return gds;
}
static unsigned stack_entry_size(enum radeon_family chip) {
/* Wavefront size:
* 64: R600/RV670/RV770/Cypress/R740/Barts/Turks/Caicos/
* Aruba/Sumo/Sumo2/redwood/juniper
* 32: R630/R730/R710/Palm/Cedar
* 16: R610/Rs780
*
* Stack row size:
* Wavefront Size 16 32 48 64
* Columns per Row (R6xx/R7xx/R8xx only) 8 8 4 4
* Columns per Row (R9xx+) 8 4 4 4 */
switch (chip) {
/* FIXME: are some chips missing here? */
/* wavefront size 16 */
case CHIP_RV610:
case CHIP_RS780:
case CHIP_RV620:
case CHIP_RS880:
/* wavefront size 32 */
case CHIP_RV630:
case CHIP_RV635:
case CHIP_RV730:
case CHIP_RV710:
case CHIP_PALM:
case CHIP_CEDAR:
return 8;
/* wavefront size 64 */
default:
return 4;
}
}
void r600_bytecode_init(struct r600_bytecode *bc,
enum chip_class chip_class,
enum radeon_family family,
bool has_compressed_msaa_texturing)
{
static unsigned next_shader_id = 0;
bc->debug_id = ++next_shader_id;
if ((chip_class == R600) &&
(family != CHIP_RV670 && family != CHIP_RS780 && family != CHIP_RS880)) {
bc->ar_handling = AR_HANDLE_RV6XX;
bc->r6xx_nop_after_rel_dst = 1;
} else {
bc->ar_handling = AR_HANDLE_NORMAL;
bc->r6xx_nop_after_rel_dst = 0;
}
LIST_INITHEAD(&bc->cf);
bc->chip_class = chip_class;
bc->family = family;
bc->has_compressed_msaa_texturing = has_compressed_msaa_texturing;
bc->stack.entry_size = stack_entry_size(family);
}
int r600_bytecode_add_cf(struct r600_bytecode *bc)
{
struct r600_bytecode_cf *cf = r600_bytecode_cf();
if (!cf)
return -ENOMEM;
LIST_ADDTAIL(&cf->list, &bc->cf);
if (bc->cf_last) {
cf->id = bc->cf_last->id + 2;
if (bc->cf_last->eg_alu_extended) {
/* take into account extended alu size */
cf->id += 2;
bc->ndw += 2;
}
}
bc->cf_last = cf;
bc->ncf++;
bc->ndw += 2;
bc->force_add_cf = 0;
bc->ar_loaded = 0;
return 0;
}
int r600_bytecode_add_output(struct r600_bytecode *bc,
const struct r600_bytecode_output *output)
{
int r;
if (output->gpr >= bc->ngpr)
bc->ngpr = output->gpr + 1;
if (bc->cf_last && (bc->cf_last->op == output->op ||
(bc->cf_last->op == CF_OP_EXPORT &&
output->op == CF_OP_EXPORT_DONE)) &&
output->type == bc->cf_last->output.type &&
output->elem_size == bc->cf_last->output.elem_size &&
output->swizzle_x == bc->cf_last->output.swizzle_x &&
output->swizzle_y == bc->cf_last->output.swizzle_y &&
output->swizzle_z == bc->cf_last->output.swizzle_z &&
output->swizzle_w == bc->cf_last->output.swizzle_w &&
output->comp_mask == bc->cf_last->output.comp_mask &&
(output->burst_count + bc->cf_last->output.burst_count) <= 16) {
if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr &&
(output->array_base + output->burst_count) == bc->cf_last->output.array_base) {
bc->cf_last->op = bc->cf_last->output.op = output->op;
bc->cf_last->output.gpr = output->gpr;
bc->cf_last->output.array_base = output->array_base;
bc->cf_last->output.burst_count += output->burst_count;
return 0;
} else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) &&
output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) {
bc->cf_last->op = bc->cf_last->output.op = output->op;
bc->cf_last->output.burst_count += output->burst_count;
return 0;
}
}
r = r600_bytecode_add_cf(bc);
if (r)
return r;
bc->cf_last->op = output->op;
memcpy(&bc->cf_last->output, output, sizeof(struct r600_bytecode_output));
bc->cf_last->barrier = 1;
return 0;
}
/* alu instructions that can ony exits once per group */
static int is_alu_once_inst(struct r600_bytecode_alu *alu)
{
return r600_isa_alu(alu->op)->flags & (AF_KILL | AF_PRED) || alu->is_lds_idx_op || alu->op == ALU_OP0_GROUP_BARRIER;
}
static int is_alu_reduction_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
{
return (r600_isa_alu(alu->op)->flags & AF_REPL) &&
(r600_isa_alu_slots(bc->isa->hw_class, alu->op) == AF_4V);
}
static int is_alu_mova_inst(struct r600_bytecode_alu *alu)
{
return r600_isa_alu(alu->op)->flags & AF_MOVA;
}
static int alu_uses_rel(struct r600_bytecode_alu *alu)
{
unsigned num_src = r600_bytecode_get_num_operands(alu);
unsigned src;
if (alu->dst.rel) {
return 1;
}
for (src = 0; src < num_src; ++src) {
if (alu->src[src].rel) {
return 1;
}
}
return 0;
}
static int is_lds_read(int sel)
{
return sel == EG_V_SQ_ALU_SRC_LDS_OQ_A_POP || sel == EG_V_SQ_ALU_SRC_LDS_OQ_B_POP;
}
static int alu_uses_lds(struct r600_bytecode_alu *alu)
{
unsigned num_src = r600_bytecode_get_num_operands(alu);
unsigned src;
for (src = 0; src < num_src; ++src) {
if (is_lds_read(alu->src[src].sel)) {
return 1;
}
}
return 0;
}
static int is_alu_64bit_inst(struct r600_bytecode_alu *alu)
{
const struct alu_op_info *op = r600_isa_alu(alu->op);
return (op->flags & AF_64);
}
static int is_alu_vec_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
{
unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
return !(slots & AF_S);
}
static int is_alu_trans_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
{
unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
return !(slots & AF_V);
}
/* alu instructions that can execute on any unit */
static int is_alu_any_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
{
unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
return slots == AF_VS;
}
static int is_nop_inst(struct r600_bytecode_alu *alu)
{
return alu->op == ALU_OP0_NOP;
}
static int assign_alu_units(struct r600_bytecode *bc, struct r600_bytecode_alu *alu_first,
struct r600_bytecode_alu *assignment[5])
{
struct r600_bytecode_alu *alu;
unsigned i, chan, trans;
int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
for (i = 0; i < max_slots; i++)
assignment[i] = NULL;
for (alu = alu_first; alu; alu = LIST_ENTRY(struct r600_bytecode_alu, alu->list.next, list)) {
chan = alu->dst.chan;
if (max_slots == 4)
trans = 0;
else if (is_alu_trans_unit_inst(bc, alu))
trans = 1;
else if (is_alu_vec_unit_inst(bc, alu))
trans = 0;
else if (assignment[chan])
trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */
else
trans = 0;
if (trans) {
if (assignment[4]) {
assert(0); /* ALU.Trans has already been allocated. */
return -1;
}
assignment[4] = alu;
} else {
if (assignment[chan]) {
assert(0); /* ALU.chan has already been allocated. */
return -1;
}
assignment[chan] = alu;
}
if (alu->last)
break;
}
return 0;
}
struct alu_bank_swizzle {
int hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS];
int hw_cfile_addr[4];
int hw_cfile_elem[4];
};
static const unsigned cycle_for_bank_swizzle_vec[][3] = {
[SQ_ALU_VEC_012] = { 0, 1, 2 },
[SQ_ALU_VEC_021] = { 0, 2, 1 },
[SQ_ALU_VEC_120] = { 1, 2, 0 },
[SQ_ALU_VEC_102] = { 1, 0, 2 },
[SQ_ALU_VEC_201] = { 2, 0, 1 },
[SQ_ALU_VEC_210] = { 2, 1, 0 }
};
static const unsigned cycle_for_bank_swizzle_scl[][3] = {
[SQ_ALU_SCL_210] = { 2, 1, 0 },
[SQ_ALU_SCL_122] = { 1, 2, 2 },
[SQ_ALU_SCL_212] = { 2, 1, 2 },
[SQ_ALU_SCL_221] = { 2, 2, 1 }
};
static void init_bank_swizzle(struct alu_bank_swizzle *bs)
{
int i, cycle, component;
/* set up gpr use */
for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++)
for (component = 0; component < NUM_OF_COMPONENTS; component++)
bs->hw_gpr[cycle][component] = -1;
for (i = 0; i < 4; i++)
bs->hw_cfile_addr[i] = -1;
for (i = 0; i < 4; i++)
bs->hw_cfile_elem[i] = -1;
}
static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle)
{
if (bs->hw_gpr[cycle][chan] == -1)
bs->hw_gpr[cycle][chan] = sel;
else if (bs->hw_gpr[cycle][chan] != (int)sel) {
/* Another scalar operation has already used the GPR read port for the channel. */
return -1;
}
return 0;
}
static int reserve_cfile(const struct r600_bytecode *bc,
struct alu_bank_swizzle *bs, unsigned sel, unsigned chan)
{
int res, num_res = 4;
if (bc->chip_class >= R700) {
num_res = 2;
chan /= 2;
}
for (res = 0; res < num_res; ++res) {
if (bs->hw_cfile_addr[res] == -1) {
bs->hw_cfile_addr[res] = sel;
bs->hw_cfile_elem[res] = chan;
return 0;
} else if (bs->hw_cfile_addr[res] == sel &&
bs->hw_cfile_elem[res] == chan)
return 0; /* Read for this scalar element already reserved, nothing to do here. */
}
/* All cfile read ports are used, cannot reference vector element. */
return -1;
}
static int is_gpr(unsigned sel)
{
return (sel <= 127);
}
/* CB constants start at 512, and get translated to a kcache index when ALU
* clauses are constructed. Note that we handle kcache constants the same way
* as (the now gone) cfile constants, is that really required? */
static int is_cfile(unsigned sel)
{
return (sel > 255 && sel < 512) ||
(sel > 511 && sel < 4607) || /* Kcache before translation. */
(sel > 127 && sel < 192); /* Kcache after translation. */
}
static int is_const(int sel)
{
return is_cfile(sel) ||
(sel >= V_SQ_ALU_SRC_0 &&
sel <= V_SQ_ALU_SRC_LITERAL);
}
static int check_vector(const struct r600_bytecode *bc, const struct r600_bytecode_alu *alu,
struct alu_bank_swizzle *bs, int bank_swizzle)
{
int r, src, num_src, sel, elem, cycle;
num_src = r600_bytecode_get_num_operands(alu);
for (src = 0; src < num_src; src++) {
sel = alu->src[src].sel;
elem = alu->src[src].chan;
if (is_gpr(sel)) {
cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src];
if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan)
/* Nothing to do; special-case optimization,
* second source uses first source’s reservation. */
continue;
else {
r = reserve_gpr(bs, sel, elem, cycle);
if (r)
return r;
}
} else if (is_cfile(sel)) {
r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
if (r)
return r;
}
/* No restrictions on PV, PS, literal or special constants. */
}
return 0;
}
static int check_scalar(const struct r600_bytecode *bc, const struct r600_bytecode_alu *alu,
struct alu_bank_swizzle *bs, int bank_swizzle)
{
int r, src, num_src, const_count, sel, elem, cycle;
num_src = r600_bytecode_get_num_operands(alu);
for (const_count = 0, src = 0; src < num_src; ++src) {
sel = alu->src[src].sel;
elem = alu->src[src].chan;
if (is_const(sel)) { /* Any constant, including literal and inline constants. */
if (const_count >= 2)
/* More than two references to a constant in
* transcendental operation. */
return -1;
else
const_count++;
}
if (is_cfile(sel)) {
r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
if (r)
return r;
}
}
for (src = 0; src < num_src; ++src) {
sel = alu->src[src].sel;
elem = alu->src[src].chan;
if (is_gpr(sel)) {
cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
if (cycle < const_count)
/* Cycle for GPR load conflicts with
* constant load in transcendental operation. */
return -1;
r = reserve_gpr(bs, sel, elem, cycle);
if (r)
return r;
}
/* PV PS restrictions */
if (const_count && (sel == 254 || sel == 255)) {
cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
if (cycle < const_count)
return -1;
}
}
return 0;
}
static int check_and_set_bank_swizzle(const struct r600_bytecode *bc,
struct r600_bytecode_alu *slots[5])
{
struct alu_bank_swizzle bs;
int bank_swizzle[5];
int i, r = 0, forced = 1;
boolean scalar_only = bc->chip_class == CAYMAN ? false : true;
int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
for (i = 0; i < max_slots; i++) {
if (slots[i]) {
if (slots[i]->bank_swizzle_force) {
slots[i]->bank_swizzle = slots[i]->bank_swizzle_force;
} else {
forced = 0;
}
}
if (i < 4 && slots[i])
scalar_only = false;
}
if (forced)
return 0;
/* Just check every possible combination of bank swizzle.
* Not very efficent, but works on the first try in most of the cases. */
for (i = 0; i < 4; i++)
if (!slots[i] || !slots[i]->bank_swizzle_force)
bank_swizzle[i] = SQ_ALU_VEC_012;
else
bank_swizzle[i] = slots[i]->bank_swizzle;
bank_swizzle[4] = SQ_ALU_SCL_210;
while(bank_swizzle[4] <= SQ_ALU_SCL_221) {
init_bank_swizzle(&bs);
if (scalar_only == false) {
for (i = 0; i < 4; i++) {
if (slots[i]) {
r = check_vector(bc, slots[i], &bs, bank_swizzle[i]);
if (r)
break;
}
}
} else
r = 0;
if (!r && max_slots == 5 && slots[4]) {
r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]);
}
if (!r) {
for (i = 0; i < max_slots; i++) {
if (slots[i])
slots[i]->bank_swizzle = bank_swizzle[i];
}
return 0;
}
if (scalar_only) {
bank_swizzle[4]++;
} else {
for (i = 0; i < max_slots; i++) {
if (!slots[i] || !slots[i]->bank_swizzle_force) {
bank_swizzle[i]++;
if (bank_swizzle[i] <= SQ_ALU_VEC_210)
break;
else if (i < max_slots - 1)
bank_swizzle[i] = SQ_ALU_VEC_012;
else
return -1;
}
}
}
}
/* Couldn't find a working swizzle. */
return -1;
}
static int replace_gpr_with_pv_ps(struct r600_bytecode *bc,
struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev)
{
struct r600_bytecode_alu *prev[5];
int gpr[5], chan[5];
int i, j, r, src, num_src;
int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
r = assign_alu_units(bc, alu_prev, prev);
if (r)
return r;
for (i = 0; i < max_slots; ++i) {
if (prev[i] && alu_writes(prev[i]) && !prev[i]->dst.rel) {
if (is_alu_64bit_inst(prev[i])) {
gpr[i] = -1;
continue;
}
gpr[i] = prev[i]->dst.sel;
/* cube writes more than PV.X */
if (is_alu_reduction_inst(bc, prev[i]))
chan[i] = 0;
else
chan[i] = prev[i]->dst.chan;
} else
gpr[i] = -1;
}
for (i = 0; i < max_slots; ++i) {
struct r600_bytecode_alu *alu = slots[i];
if (!alu)
continue;
if (is_alu_64bit_inst(alu))
continue;
num_src = r600_bytecode_get_num_operands(alu);
for (src = 0; src < num_src; ++src) {
if (!is_gpr(alu->src[src].sel) || alu->src[src].rel)
continue;
if (bc->chip_class < CAYMAN) {
if (alu->src[src].sel == gpr[4] &&
alu->src[src].chan == chan[4] &&
alu_prev->pred_sel == alu->pred_sel) {
alu->src[src].sel = V_SQ_ALU_SRC_PS;
alu->src[src].chan = 0;
continue;
}
}
for (j = 0; j < 4; ++j) {
if (alu->src[src].sel == gpr[j] &&
alu->src[src].chan == j &&
alu_prev->pred_sel == alu->pred_sel) {
alu->src[src].sel = V_SQ_ALU_SRC_PV;
alu->src[src].chan = chan[j];
break;
}
}
}
}
return 0;
}
void r600_bytecode_special_constants(uint32_t value, unsigned *sel, unsigned *neg, unsigned abs)
{
switch(value) {
case 0:
*sel = V_SQ_ALU_SRC_0;
break;
case 1:
*sel = V_SQ_ALU_SRC_1_INT;
break;
case -1:
*sel = V_SQ_ALU_SRC_M_1_INT;
break;
case 0x3F800000: /* 1.0f */
*sel = V_SQ_ALU_SRC_1;
break;
case 0x3F000000: /* 0.5f */
*sel = V_SQ_ALU_SRC_0_5;
break;
case 0xBF800000: /* -1.0f */
*sel = V_SQ_ALU_SRC_1;
*neg ^= !abs;
break;
case 0xBF000000: /* -0.5f */
*sel = V_SQ_ALU_SRC_0_5;
*neg ^= !abs;
break;
default:
*sel = V_SQ_ALU_SRC_LITERAL;
break;
}
}
/* compute how many literal are needed */
static int r600_bytecode_alu_nliterals(struct r600_bytecode_alu *alu,
uint32_t literal[4], unsigned *nliteral)
{
unsigned num_src = r600_bytecode_get_num_operands(alu);
unsigned i, j;
for (i = 0; i < num_src; ++i) {
if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
uint32_t value = alu->src[i].value;
unsigned found = 0;
for (j = 0; j < *nliteral; ++j) {
if (literal[j] == value) {
found = 1;
break;
}
}
if (!found) {
if (*nliteral >= 4)
return -EINVAL;
literal[(*nliteral)++] = value;
}
}
}
return 0;
}
static void r600_bytecode_alu_adjust_literals(struct r600_bytecode_alu *alu,
uint32_t literal[4], unsigned nliteral)
{
unsigned num_src = r600_bytecode_get_num_operands(alu);
unsigned i, j;
for (i = 0; i < num_src; ++i) {
if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
uint32_t value = alu->src[i].value;
for (j = 0; j < nliteral; ++j) {
if (literal[j] == value) {
alu->src[i].chan = j;
break;
}
}
}
}
}
static int merge_inst_groups(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5],
struct r600_bytecode_alu *alu_prev)
{
struct r600_bytecode_alu *prev[5];
struct r600_bytecode_alu *result[5] = { NULL };
uint32_t literal[4], prev_literal[4];
unsigned nliteral = 0, prev_nliteral = 0;
int i, j, r, src, num_src;
int num_once_inst = 0;
int have_mova = 0, have_rel = 0;
int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
r = assign_alu_units(bc, alu_prev, prev);
if (r)
return r;
for (i = 0; i < max_slots; ++i) {
if (prev[i]) {
if (prev[i]->pred_sel)
return 0;
if (is_alu_once_inst(prev[i]))
return 0;
}
if (slots[i]) {
if (slots[i]->pred_sel)
return 0;
if (is_alu_once_inst(slots[i]))
return 0;
}
}
for (i = 0; i < max_slots; ++i) {
struct r600_bytecode_alu *alu;
if (num_once_inst > 0)
return 0;
/* check number of literals */
if (prev[i]) {
if (r600_bytecode_alu_nliterals(prev[i], literal, &nliteral))
return 0;
if (r600_bytecode_alu_nliterals(prev[i], prev_literal, &prev_nliteral))
return 0;
if (is_alu_mova_inst(prev[i])) {
if (have_rel)
return 0;
have_mova = 1;
}
if (alu_uses_rel(prev[i])) {
if (have_mova) {
return 0;
}
have_rel = 1;
}
if (alu_uses_lds(prev[i]))
return 0;
num_once_inst += is_alu_once_inst(prev[i]);
}
if (slots[i] && r600_bytecode_alu_nliterals(slots[i], literal, &nliteral))
return 0;
/* Let's check used slots. */
if (prev[i] && !slots[i]) {
result[i] = prev[i];
continue;
} else if (prev[i] && slots[i]) {
if (max_slots == 5 && result[4] == NULL && prev[4] == NULL && slots[4] == NULL) {
/* Trans unit is still free try to use it. */
if (is_alu_any_unit_inst(bc, slots[i]) && !alu_uses_lds(slots[i])) {
result[i] = prev[i];
result[4] = slots[i];
} else if (is_alu_any_unit_inst(bc, prev[i])) {
if (slots[i]->dst.sel == prev[i]->dst.sel &&
alu_writes(slots[i]) &&
alu_writes(prev[i]))
return 0;
result[i] = slots[i];
result[4] = prev[i];
} else
return 0;
} else
return 0;
} else if(!slots[i]) {
continue;
} else {
if (max_slots == 5 && slots[i] && prev[4] &&
slots[i]->dst.sel == prev[4]->dst.sel &&
slots[i]->dst.chan == prev[4]->dst.chan &&
alu_writes(slots[i]) &&
alu_writes(prev[4]))
return 0;
result[i] = slots[i];
}
alu = slots[i];
num_once_inst += is_alu_once_inst(alu);
/* don't reschedule NOPs */
if (is_nop_inst(alu))
return 0;
if (is_alu_mova_inst(alu)) {
if (have_rel) {
return 0;
}
have_mova = 1;
}
if (alu_uses_rel(alu)) {
if (have_mova) {
return 0;
}
have_rel = 1;
}
if (alu->op == ALU_OP0_SET_CF_IDX0 ||
alu->op == ALU_OP0_SET_CF_IDX1)
return 0; /* data hazard with MOVA */
/* Let's check source gprs */
num_src = r600_bytecode_get_num_operands(alu);
for (src = 0; src < num_src; ++src) {
/* Constants don't matter. */
if (!is_gpr(alu->src[src].sel))
continue;
for (j = 0; j < max_slots; ++j) {
if (!prev[j] || !alu_writes(prev[j]))
continue;
/* If it's relative then we can't determin which gpr is really used. */
if (prev[j]->dst.chan == alu->src[src].chan &&
(prev[j]->dst.sel == alu->src[src].sel ||
prev[j]->dst.rel || alu->src[src].rel))
return 0;
}
}
}
/* more than one PRED_ or KILL_ ? */
if (num_once_inst > 1)
return 0;
/* check if the result can still be swizzlet */
r = check_and_set_bank_swizzle(bc, result);
if (r)
return 0;
/* looks like everything worked out right, apply the changes */
/* undo adding previus literals */
bc->cf_last->ndw -= align(prev_nliteral, 2);
/* sort instructions */
for (i = 0; i < max_slots; ++i) {
slots[i] = result[i];
if (result[i]) {
LIST_DEL(&result[i]->list);
result[i]->last = 0;
LIST_ADDTAIL(&result[i]->list, &bc->cf_last->alu);
}
}
/* determine new last instruction */
LIST_ENTRY(struct r600_bytecode_alu, bc->cf_last->alu.prev, list)->last = 1;
/* determine new first instruction */
for (i = 0; i < max_slots; ++i) {
if (result[i]) {
bc->cf_last->curr_bs_head = result[i];
break;
}
}
bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head;
bc->cf_last->prev2_bs_head = NULL;
return 0;
}
/* we'll keep kcache sets sorted by bank & addr */
static int r600_bytecode_alloc_kcache_line(struct r600_bytecode *bc,
struct r600_bytecode_kcache *kcache,
unsigned bank, unsigned line, unsigned index_mode)
{
int i, kcache_banks = bc->chip_class >= EVERGREEN ? 4 : 2;
for (i = 0; i < kcache_banks; i++) {
if (kcache[i].mode) {
int d;
if (kcache[i].bank < bank)
continue;
if ((kcache[i].bank == bank && kcache[i].addr > line+1) ||
kcache[i].bank > bank) {
/* try to insert new line */
if (kcache[kcache_banks-1].mode) {
/* all sets are in use */
return -ENOMEM;
}
memmove(&kcache[i+1],&kcache[i], (kcache_banks-i-1)*sizeof(struct r600_bytecode_kcache));
kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
kcache[i].bank = bank;
kcache[i].addr = line;
kcache[i].index_mode = index_mode;
return 0;
}
d = line - kcache[i].addr;
if (d == -1) {
kcache[i].addr--;
if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_2) {
/* we are prepending the line to the current set,
* discarding the existing second line,
* so we'll have to insert line+2 after it */
line += 2;
continue;
} else if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_1) {
kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
return 0;
} else {
/* V_SQ_CF_KCACHE_LOCK_LOOP_INDEX is not supported */
return -ENOMEM;
}
} else if (d == 1) {
kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
return 0;
} else if (d == 0)
return 0;
} else { /* free kcache set - use it */
kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
kcache[i].bank = bank;
kcache[i].addr = line;
kcache[i].index_mode = index_mode;
return 0;
}
}
return -ENOMEM;
}
static int r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode *bc,
struct r600_bytecode_kcache *kcache,
struct r600_bytecode_alu *alu)
{
int i, r;
for (i = 0; i < 3; i++) {
unsigned bank, line, sel = alu->src[i].sel, index_mode;
if (sel < 512)
continue;
bank = alu->src[i].kc_bank;
assert(bank < R600_MAX_HW_CONST_BUFFERS);
line = (sel-512)>>4;
index_mode = alu->src[i].kc_rel ? 1 : 0; // V_SQ_CF_INDEX_0 / V_SQ_CF_INDEX_NONE
if ((r = r600_bytecode_alloc_kcache_line(bc, kcache, bank, line, index_mode)))
return r;
}
return 0;
}
static int r600_bytecode_assign_kcache_banks(
struct r600_bytecode_alu *alu,
struct r600_bytecode_kcache * kcache)
{
int i, j;
/* Alter the src operands to refer to the kcache. */
for (i = 0; i < 3; ++i) {
static const unsigned int base[] = {128, 160, 256, 288};
unsigned int line, sel = alu->src[i].sel, found = 0;
if (sel < 512)
continue;
sel -= 512;
line = sel>>4;
for (j = 0; j < 4 && !found; ++j) {
switch (kcache[j].mode) {
case V_SQ_CF_KCACHE_NOP:
case V_SQ_CF_KCACHE_LOCK_LOOP_INDEX:
R600_ERR("unexpected kcache line mode\n");
return -ENOMEM;
default:
if (kcache[j].bank == alu->src[i].kc_bank &&
kcache[j].addr <= line &&
line < kcache[j].addr + kcache[j].mode) {
alu->src[i].sel = sel - (kcache[j].addr<<4);
alu->src[i].sel += base[j];
found=1;
}
}
}
}
return 0;
}
static int r600_bytecode_alloc_kcache_lines(struct r600_bytecode *bc,
struct r600_bytecode_alu *alu,
unsigned type)
{
struct r600_bytecode_kcache kcache_sets[4];
struct r600_bytecode_kcache *kcache = kcache_sets;
int r;
memcpy(kcache, bc->cf_last->kcache, 4 * sizeof(struct r600_bytecode_kcache));
if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
/* can't alloc, need to start new clause */
if ((r = r600_bytecode_add_cf(bc))) {
return r;
}
bc->cf_last->op = type;
/* retry with the new clause */
kcache = bc->cf_last->kcache;
if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
/* can't alloc again- should never happen */
return r;
}
} else {
/* update kcache sets */
memcpy(bc->cf_last->kcache, kcache, 4 * sizeof(struct r600_bytecode_kcache));
}
/* if we actually used more than 2 kcache sets, or have relative indexing - use ALU_EXTENDED on eg+ */
if (kcache[2].mode != V_SQ_CF_KCACHE_NOP ||
kcache[0].index_mode || kcache[1].index_mode || kcache[2].index_mode || kcache[3].index_mode) {
if (bc->chip_class < EVERGREEN)
return -ENOMEM;
bc->cf_last->eg_alu_extended = 1;
}
return 0;
}
static int insert_nop_r6xx(struct r600_bytecode *bc)
{
struct r600_bytecode_alu alu;
int r, i;
for (i = 0; i < 4; i++) {
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP0_NOP;
alu.src[0].chan = i;
alu.dst.chan = i;
alu.last = (i == 3);
r = r600_bytecode_add_alu(bc, &alu);
if (r)
return r;
}
return 0;
}
/* load AR register from gpr (bc->ar_reg) with MOVA_INT */
static int load_ar_r6xx(struct r600_bytecode *bc)
{
struct r600_bytecode_alu alu;
int r;
if (bc->ar_loaded)
return 0;
/* hack to avoid making MOVA the last instruction in the clause */
if ((bc->cf_last->ndw>>1) >= 110)
bc->force_add_cf = 1;
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP1_MOVA_GPR_INT;
alu.src[0].sel = bc->ar_reg;
alu.src[0].chan = bc->ar_chan;
alu.last = 1;
alu.index_mode = INDEX_MODE_LOOP;
r = r600_bytecode_add_alu(bc, &alu);
if (r)
return r;
/* no requirement to set uses waterfall on MOVA_GPR_INT */
bc->ar_loaded = 1;
return 0;
}
/* load AR register from gpr (bc->ar_reg) with MOVA_INT */
static int load_ar(struct r600_bytecode *bc)
{
struct r600_bytecode_alu alu;
int r;
if (bc->ar_handling)
return load_ar_r6xx(bc);
if (bc->ar_loaded)
return 0;
/* hack to avoid making MOVA the last instruction in the clause */
if ((bc->cf_last->ndw>>1) >= 110)
bc->force_add_cf = 1;
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP1_MOVA_INT;
alu.src[0].sel = bc->ar_reg;
alu.src[0].chan = bc->ar_chan;
alu.last = 1;
r = r600_bytecode_add_alu(bc, &alu);
if (r)
return r;
bc->cf_last->r6xx_uses_waterfall = 1;
bc->ar_loaded = 1;
return 0;
}
int r600_bytecode_add_alu_type(struct r600_bytecode *bc,
const struct r600_bytecode_alu *alu, unsigned type)
{
struct r600_bytecode_alu *nalu = r600_bytecode_alu();
struct r600_bytecode_alu *lalu;
int i, r;
if (!nalu)
return -ENOMEM;
memcpy(nalu, alu, sizeof(struct r600_bytecode_alu));
if (alu->is_op3) {
/* will fail later since alu does not support it. */
assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
}
if (bc->cf_last != NULL && bc->cf_last->op != type) {
/* check if we could add it anyway */
if (bc->cf_last->op == CF_OP_ALU &&
type == CF_OP_ALU_PUSH_BEFORE) {
LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) {
if (lalu->execute_mask) {
bc->force_add_cf = 1;
break;
}
}
} else
bc->force_add_cf = 1;
}
/* cf can contains only alu or only vtx or only tex */
if (bc->cf_last == NULL || bc->force_add_cf) {
r = r600_bytecode_add_cf(bc);
if (r) {
free(nalu);
return r;
}
}
bc->cf_last->op = type;
/* Load index register if required */
if (bc->chip_class >= EVERGREEN) {
for (i = 0; i < 3; i++)
if (nalu->src[i].kc_bank && nalu->src[i].kc_rel)
egcm_load_index_reg(bc, 0, true);
}
/* Check AR usage and load it if required */
for (i = 0; i < 3; i++)
if (nalu->src[i].rel && !bc->ar_loaded)
load_ar(bc);
if (nalu->dst.rel && !bc->ar_loaded)
load_ar(bc);
/* Setup the kcache for this ALU instruction. This will start a new
* ALU clause if needed. */
if ((r = r600_bytecode_alloc_kcache_lines(bc, nalu, type))) {
free(nalu);
return r;
}
if (!bc->cf_last->curr_bs_head) {
bc->cf_last->curr_bs_head = nalu;
}
/* number of gpr == the last gpr used in any alu */
for (i = 0; i < 3; i++) {
if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 128) {
bc->ngpr = nalu->src[i].sel + 1;
}
if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL)
r600_bytecode_special_constants(nalu->src[i].value,
&nalu->src[i].sel, &nalu->src[i].neg, nalu->src[i].abs);
}
if (nalu->dst.sel >= bc->ngpr) {
bc->ngpr = nalu->dst.sel + 1;
}
LIST_ADDTAIL(&nalu->list, &bc->cf_last->alu);
/* each alu use 2 dwords */
bc->cf_last->ndw += 2;
bc->ndw += 2;
/* process cur ALU instructions for bank swizzle */
if (nalu->last) {
uint32_t literal[4];
unsigned nliteral;
struct r600_bytecode_alu *slots[5];
int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots);
if (r)
return r;
if (bc->cf_last->prev_bs_head) {
r = merge_inst_groups(bc, slots, bc->cf_last->prev_bs_head);
if (r)
return r;
}
if (bc->cf_last->prev_bs_head) {
r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head);
if (r)
return r;
}
r = check_and_set_bank_swizzle(bc, slots);
if (r)
return r;
for (i = 0, nliteral = 0; i < max_slots; i++) {
if (slots[i]) {
r = r600_bytecode_alu_nliterals(slots[i], literal, &nliteral);
if (r)
return r;
}
}
bc->cf_last->ndw += align(nliteral, 2);
/* at most 128 slots, one add alu can add 5 slots + 4 constants(2 slots)
* worst case */
if ((bc->cf_last->ndw >> 1) >= 120) {
bc->force_add_cf = 1;
}
bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head;
bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head;
bc->cf_last->curr_bs_head = NULL;
}
if (nalu->dst.rel && bc->r6xx_nop_after_rel_dst)
insert_nop_r6xx(bc);
return 0;
}
int r600_bytecode_add_alu(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu)
{
return r600_bytecode_add_alu_type(bc, alu, CF_OP_ALU);
}
static unsigned r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode *bc)
{
switch (bc->chip_class) {
case R600:
return 8;
case R700:
case EVERGREEN:
case CAYMAN:
return 16;
default:
R600_ERR("Unknown chip class %d.\n", bc->chip_class);
return 8;
}
}
static inline boolean last_inst_was_not_vtx_fetch(struct r600_bytecode *bc)
{
return !((r600_isa_cf(bc->cf_last->op)->flags & CF_FETCH) &&
bc->cf_last->op != CF_OP_GDS &&
(bc->chip_class == CAYMAN ||
bc->cf_last->op != CF_OP_TEX));
}
static int r600_bytecode_add_vtx_internal(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx,
bool use_tc)
{
struct r600_bytecode_vtx *nvtx = r600_bytecode_vtx();
int r;
if (!nvtx)
return -ENOMEM;
memcpy(nvtx, vtx, sizeof(struct r600_bytecode_vtx));
/* Load index register if required */
if (bc->chip_class >= EVERGREEN) {
if (vtx->buffer_index_mode)
egcm_load_index_reg(bc, vtx->buffer_index_mode - 1, false);
}
/* cf can contains only alu or only vtx or only tex */
if (bc->cf_last == NULL ||
last_inst_was_not_vtx_fetch(bc) ||
bc->force_add_cf) {
r = r600_bytecode_add_cf(bc);
if (r) {
free(nvtx);
return r;
}
switch (bc->chip_class) {
case R600:
case R700:
bc->cf_last->op = CF_OP_VTX;
break;
case EVERGREEN:
if (use_tc)
bc->cf_last->op = CF_OP_TEX;
else
bc->cf_last->op = CF_OP_VTX;
break;
case CAYMAN:
bc->cf_last->op = CF_OP_TEX;
break;
default:
R600_ERR("Unknown chip class %d.\n", bc->chip_class);
free(nvtx);
return -EINVAL;
}
}
LIST_ADDTAIL(&nvtx->list, &bc->cf_last->vtx);
/* each fetch use 4 dwords */
bc->cf_last->ndw += 4;
bc->ndw += 4;
if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
bc->force_add_cf = 1;
bc->ngpr = MAX2(bc->ngpr, vtx->src_gpr + 1);
bc->ngpr = MAX2(bc->ngpr, vtx->dst_gpr + 1);
return 0;
}
int r600_bytecode_add_vtx(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
{
return r600_bytecode_add_vtx_internal(bc, vtx, false);
}
int r600_bytecode_add_vtx_tc(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
{
return r600_bytecode_add_vtx_internal(bc, vtx, true);
}
int r600_bytecode_add_tex(struct r600_bytecode *bc, const struct r600_bytecode_tex *tex)
{
struct r600_bytecode_tex *ntex = r600_bytecode_tex();
int r;
if (!ntex)
return -ENOMEM;
memcpy(ntex, tex, sizeof(struct r600_bytecode_tex));
/* Load index register if required */
if (bc->chip_class >= EVERGREEN) {
if (tex->sampler_index_mode || tex->resource_index_mode)
egcm_load_index_reg(bc, 1, false);
}
/* we can't fetch data und use it as texture lookup address in the same TEX clause */
if (bc->cf_last != NULL &&
bc->cf_last->op == CF_OP_TEX) {
struct r600_bytecode_tex *ttex;
LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) {
if (ttex->dst_gpr == ntex->src_gpr) {
bc->force_add_cf = 1;
break;
}
}
/* slight hack to make gradients always go into same cf */
if (ntex->op == FETCH_OP_SET_GRADIENTS_H)
bc->force_add_cf = 1;
}
/* cf can contains only alu or only vtx or only tex */
if (bc->cf_last == NULL ||
bc->cf_last->op != CF_OP_TEX ||
bc->force_add_cf) {
r = r600_bytecode_add_cf(bc);
if (r) {
free(ntex);
return r;
}
bc->cf_last->op = CF_OP_TEX;
}
if (ntex->src_gpr >= bc->ngpr) {
bc->ngpr = ntex->src_gpr + 1;
}
if (ntex->dst_gpr >= bc->ngpr) {
bc->ngpr = ntex->dst_gpr + 1;
}
LIST_ADDTAIL(&ntex->list, &bc->cf_last->tex);
/* each texture fetch use 4 dwords */
bc->cf_last->ndw += 4;
bc->ndw += 4;
if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
bc->force_add_cf = 1;
return 0;
}
int r600_bytecode_add_gds(struct r600_bytecode *bc, const struct r600_bytecode_gds *gds)
{
struct r600_bytecode_gds *ngds = r600_bytecode_gds();
int r;
if (ngds == NULL)
return -ENOMEM;
memcpy(ngds, gds, sizeof(struct r600_bytecode_gds));
if (bc->chip_class >= EVERGREEN) {
if (gds->uav_index_mode)
egcm_load_index_reg(bc, gds->uav_index_mode - 1, false);
}
if (bc->cf_last == NULL ||
bc->cf_last->op != CF_OP_GDS ||
bc->force_add_cf) {
r = r600_bytecode_add_cf(bc);
if (r) {
free(ngds);
return r;
}
bc->cf_last->op = CF_OP_GDS;
}
LIST_ADDTAIL(&ngds->list, &bc->cf_last->gds);
bc->cf_last->ndw += 4; /* each GDS uses 4 dwords */
if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
bc->force_add_cf = 1;
return 0;
}
int r600_bytecode_add_cfinst(struct r600_bytecode *bc, unsigned op)
{
int r;
r = r600_bytecode_add_cf(bc);
if (r)
return r;
bc->cf_last->cond = V_SQ_CF_COND_ACTIVE;
bc->cf_last->op = op;
return 0;
}
int cm_bytecode_add_cf_end(struct r600_bytecode *bc)
{
return r600_bytecode_add_cfinst(bc, CF_OP_CF_END);
}
/* common to all 3 families */
static int r600_bytecode_vtx_build(struct r600_bytecode *bc, struct r600_bytecode_vtx *vtx, unsigned id)
{
bc->bytecode[id] = S_SQ_VTX_WORD0_VTX_INST(vtx->op) |
S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) |
S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) |
S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) |
S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x);
if (bc->chip_class < CAYMAN)
bc->bytecode[id] |= S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count);
id++;
bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) |
S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) |
S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) |
S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) |
S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) |
S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) |
S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) |
S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) |
S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) |
S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr);
bc->bytecode[id] = S_SQ_VTX_WORD2_OFFSET(vtx->offset)|
S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian);
if (bc->chip_class >= EVERGREEN)
bc->bytecode[id] |= ((vtx->buffer_index_mode & 0x3) << 21); // S_SQ_VTX_WORD2_BIM(vtx->buffer_index_mode);
if (bc->chip_class < CAYMAN)
bc->bytecode[id] |= S_SQ_VTX_WORD2_MEGA_FETCH(1);
id++;
bc->bytecode[id++] = 0;
return 0;
}
/* common to all 3 families */
static int r600_bytecode_tex_build(struct r600_bytecode *bc, struct r600_bytecode_tex *tex, unsigned id)
{
bc->bytecode[id] = S_SQ_TEX_WORD0_TEX_INST(
r600_isa_fetch_opcode(bc->isa->hw_class, tex->op)) |
EG_S_SQ_TEX_WORD0_INST_MOD(tex->inst_mod) |
S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) |
S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) |
S_SQ_TEX_WORD0_SRC_REL(tex->src_rel);
if (bc->chip_class >= EVERGREEN)
bc->bytecode[id] |= ((tex->sampler_index_mode & 0x3) << 27) | // S_SQ_TEX_WORD0_SIM(tex->sampler_index_mode);
((tex->resource_index_mode & 0x3) << 25); // S_SQ_TEX_WORD0_RIM(tex->resource_index_mode)
id++;
bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) |
S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) |
S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) |
S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) |
S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) |
S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) |
S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) |
S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) |
S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) |
S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) |
S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w);
bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) |
S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) |
S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) |
S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) |
S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) |
S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) |
S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) |
S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w);
bc->bytecode[id++] = 0;
return 0;
}
/* r600 only, r700/eg bits in r700_asm.c */
static int r600_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id)
{
unsigned opcode = r600_isa_alu_opcode(bc->isa->hw_class, alu->op);
/* don't replace gpr by pv or ps for destination register */
bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) |
S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) |
S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) |
S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) |
S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) |
S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) |
S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) |
S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) |
S_SQ_ALU_WORD0_INDEX_MODE(alu->index_mode) |
S_SQ_ALU_WORD0_PRED_SEL(alu->pred_sel) |
S_SQ_ALU_WORD0_LAST(alu->last);
if (alu->is_op3) {
assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) |
S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) |
S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) |
S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) |
S_SQ_ALU_WORD1_OP3_ALU_INST(opcode) |
S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle);
} else {
bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) |
S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) |
S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) |
S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) |
S_SQ_ALU_WORD1_OP2_ALU_INST(opcode) |
S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) |
S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->execute_mask) |
S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->update_pred);
}
return 0;
}
static void r600_bytecode_cf_vtx_build(uint32_t *bytecode, const struct r600_bytecode_cf *cf)
{
*bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1);
*bytecode++ = S_SQ_CF_WORD1_CF_INST(r600_isa_cf_opcode(ISA_CC_R600, cf->op)) |
S_SQ_CF_WORD1_BARRIER(1) |
S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1)|
S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
}
/* common for r600/r700 - eg in eg_asm.c */
static int r600_bytecode_cf_build(struct r600_bytecode *bc, struct r600_bytecode_cf *cf)
{
unsigned id = cf->id;
const struct cf_op_info *cfop = r600_isa_cf(cf->op);
unsigned opcode = r600_isa_cf_opcode(bc->isa->hw_class, cf->op);
if (cf->op == CF_NATIVE) {
bc->bytecode[id++] = cf->isa[0];
bc->bytecode[id++] = cf->isa[1];
} else if (cfop->flags & CF_ALU) {
bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) |
S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) |
S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) |
S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank);
bc->bytecode[id++] = S_SQ_CF_ALU_WORD1_CF_INST(opcode) |
S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) |
S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) |
S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) |
S_SQ_CF_ALU_WORD1_BARRIER(1) |
S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->chip_class == R600 ? cf->r6xx_uses_waterfall : 0) |
S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1);
} else if (cfop->flags & CF_FETCH) {
if (bc->chip_class == R700)
r700_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
else
r600_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
} else if (cfop->flags & CF_EXP) {
bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) |
S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) |
S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) |
S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) |
S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program);
} else if (cfop->flags & CF_MEM) {
bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program) |
S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(cf->output.array_size) |
S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(cf->output.comp_mask);
} else {
bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1);
bc->bytecode[id++] = S_SQ_CF_WORD1_CF_INST(opcode) |
S_SQ_CF_WORD1_BARRIER(1) |
S_SQ_CF_WORD1_COND(cf->cond) |
S_SQ_CF_WORD1_POP_COUNT(cf->pop_count) |
S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
}
return 0;
}
int r600_bytecode_build(struct r600_bytecode *bc)
{
struct r600_bytecode_cf *cf;
struct r600_bytecode_alu *alu;
struct r600_bytecode_vtx *vtx;
struct r600_bytecode_tex *tex;
struct r600_bytecode_gds *gds;
uint32_t literal[4];
unsigned nliteral;
unsigned addr;
int i, r;
if (!bc->nstack) { // If not 0, Stack_size already provided by llvm
if (bc->stack.max_entries)
bc->nstack = bc->stack.max_entries;
else if (bc->type == PIPE_SHADER_VERTEX ||
bc->type == PIPE_SHADER_TESS_EVAL ||
bc->type == PIPE_SHADER_TESS_CTRL)
bc->nstack = 1;
}
/* first path compute addr of each CF block */
/* addr start after all the CF instructions */
addr = bc->cf_last->id + 2;
LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
if (r600_isa_cf(cf->op)->flags & CF_FETCH) {
addr += 3;
addr &= 0xFFFFFFFCUL;
}
cf->addr = addr;
addr += cf->ndw;
bc->ndw = cf->addr + cf->ndw;
}
free(bc->bytecode);
bc->bytecode = calloc(4, bc->ndw);
if (bc->bytecode == NULL)
return -ENOMEM;
LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
const struct cf_op_info *cfop = r600_isa_cf(cf->op);
addr = cf->addr;
if (bc->chip_class >= EVERGREEN)
r = eg_bytecode_cf_build(bc, cf);
else
r = r600_bytecode_cf_build(bc, cf);
if (r)
return r;
if (cfop->flags & CF_ALU) {
nliteral = 0;
memset(literal, 0, sizeof(literal));
LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
r = r600_bytecode_alu_nliterals(alu, literal, &nliteral);
if (r)
return r;
r600_bytecode_alu_adjust_literals(alu, literal, nliteral);
r600_bytecode_assign_kcache_banks(alu, cf->kcache);
switch(bc->chip_class) {
case R600:
r = r600_bytecode_alu_build(bc, alu, addr);
break;
case R700:
r = r700_bytecode_alu_build(bc, alu, addr);
break;
case EVERGREEN:
case CAYMAN:
r = eg_bytecode_alu_build(bc, alu, addr);
break;
default:
R600_ERR("unknown chip class %d.\n", bc->chip_class);
return -EINVAL;
}
if (r)
return r;
addr += 2;
if (alu->last) {
for (i = 0; i < align(nliteral, 2); ++i) {
bc->bytecode[addr++] = literal[i];
}
nliteral = 0;
memset(literal, 0, sizeof(literal));
}
}
} else if (cf->op == CF_OP_VTX) {
LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
r = r600_bytecode_vtx_build(bc, vtx, addr);
if (r)
return r;
addr += 4;
}
} else if (cf->op == CF_OP_GDS) {
assert(bc->chip_class >= EVERGREEN);
LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
r = eg_bytecode_gds_build(bc, gds, addr);
if (r)
return r;
addr += 4;
}
} else if (cf->op == CF_OP_TEX) {
LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
assert(bc->chip_class >= EVERGREEN);
r = r600_bytecode_vtx_build(bc, vtx, addr);
if (r)
return r;
addr += 4;
}
LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
r = r600_bytecode_tex_build(bc, tex, addr);
if (r)
return r;
addr += 4;
}
}
}
return 0;
}
void r600_bytecode_clear(struct r600_bytecode *bc)
{
struct r600_bytecode_cf *cf = NULL, *next_cf;
free(bc->bytecode);
bc->bytecode = NULL;
LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) {
struct r600_bytecode_alu *alu = NULL, *next_alu;
struct r600_bytecode_tex *tex = NULL, *next_tex;
struct r600_bytecode_tex *vtx = NULL, *next_vtx;
struct r600_bytecode_gds *gds = NULL, *next_gds;
LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) {
free(alu);
}
LIST_INITHEAD(&cf->alu);
LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) {
free(tex);
}
LIST_INITHEAD(&cf->tex);
LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) {
free(vtx);
}
LIST_INITHEAD(&cf->vtx);
LIST_FOR_EACH_ENTRY_SAFE(gds, next_gds, &cf->gds, list) {
free(gds);
}
LIST_INITHEAD(&cf->gds);
free(cf);
}
LIST_INITHEAD(&cf->list);
}
static int print_swizzle(unsigned swz)
{
const char * swzchars = "xyzw01?_";
assert(swz<8 && swz != 6);
return fprintf(stderr, "%c", swzchars[swz]);
}
static int print_sel(unsigned sel, unsigned rel, unsigned index_mode,
unsigned need_brackets)
{
int o = 0;
if (rel && index_mode >= 5 && sel < 128)
o += fprintf(stderr, "G");
if (rel || need_brackets) {
o += fprintf(stderr, "[");
}
o += fprintf(stderr, "%d", sel);
if (rel) {
if (index_mode == 0 || index_mode == 6)
o += fprintf(stderr, "+AR");
else if (index_mode == 4)
o += fprintf(stderr, "+AL");
}
if (rel || need_brackets) {
o += fprintf(stderr, "]");
}
return o;
}
static int print_dst(struct r600_bytecode_alu *alu)
{
int o = 0;
unsigned sel = alu->dst.sel;
char reg_char = 'R';
if (sel > 128 - 4) { /* clause temporary gpr */
sel -= 128 - 4;
reg_char = 'T';
}
if (alu_writes(alu)) {
o += fprintf(stderr, "%c", reg_char);
o += print_sel(alu->dst.sel, alu->dst.rel, alu->index_mode, 0);
} else {
o += fprintf(stderr, "__");
}
o += fprintf(stderr, ".");
o += print_swizzle(alu->dst.chan);
return o;
}
static int print_src(struct r600_bytecode_alu *alu, unsigned idx)
{
int o = 0;
struct r600_bytecode_alu_src *src = &alu->src[idx];
unsigned sel = src->sel, need_sel = 1, need_chan = 1, need_brackets = 0;
if (src->neg)
o += fprintf(stderr,"-");
if (src->abs)
o += fprintf(stderr,"|");
if (sel < 128 - 4) {
o += fprintf(stderr, "R");
} else if (sel < 128) {
o += fprintf(stderr, "T");
sel -= 128 - 4;
} else if (sel < 160) {
o += fprintf(stderr, "KC0");
need_brackets = 1;
sel -= 128;
} else if (sel < 192) {
o += fprintf(stderr, "KC1");
need_brackets = 1;
sel -= 160;
} else if (sel >= 512) {
o += fprintf(stderr, "C%d", src->kc_bank);
need_brackets = 1;
sel -= 512;
} else if (sel >= 448) {
o += fprintf(stderr, "Param");
sel -= 448;
need_chan = 0;
} else if (sel >= 288) {
o += fprintf(stderr, "KC3");
need_brackets = 1;
sel -= 288;
} else if (sel >= 256) {
o += fprintf(stderr, "KC2");
need_brackets = 1;
sel -= 256;
} else {
need_sel = 0;
need_chan = 0;
switch (sel) {
case EG_V_SQ_ALU_SRC_LDS_DIRECT_A:
o += fprintf(stderr, "LDS_A[0x%08X]", src->value);
break;
case EG_V_SQ_ALU_SRC_LDS_DIRECT_B:
o += fprintf(stderr, "LDS_B[0x%08X]", src->value);
break;
case EG_V_SQ_ALU_SRC_LDS_OQ_A:
o += fprintf(stderr, "LDS_OQ_A");
need_chan = 1;
break;
case EG_V_SQ_ALU_SRC_LDS_OQ_B:
o += fprintf(stderr, "LDS_OQ_B");
need_chan = 1;
break;
case EG_V_SQ_ALU_SRC_LDS_OQ_A_POP:
o += fprintf(stderr, "LDS_OQ_A_POP");
need_chan = 1;
break;
case EG_V_SQ_ALU_SRC_LDS_OQ_B_POP:
o += fprintf(stderr, "LDS_OQ_B_POP");
need_chan = 1;
break;
case EG_V_SQ_ALU_SRC_SE_ID:
o += fprintf(stderr, "SE_ID");
break;
case EG_V_SQ_ALU_SRC_SIMD_ID:
o += fprintf(stderr, "SIMD_ID");
break;
case EG_V_SQ_ALU_SRC_HW_WAVE_ID:
o += fprintf(stderr, "HW_WAVE_ID");
break;
case V_SQ_ALU_SRC_PS:
o += fprintf(stderr, "PS");
break;
case V_SQ_ALU_SRC_PV:
o += fprintf(stderr, "PV");
need_chan = 1;
break;
case V_SQ_ALU_SRC_LITERAL:
o += fprintf(stderr, "[0x%08X %f]", src->value, u_bitcast_u2f(src->value));
break;
case V_SQ_ALU_SRC_0_5:
o += fprintf(stderr, "0.5");
break;
case V_SQ_ALU_SRC_M_1_INT:
o += fprintf(stderr, "-1");
break;
case V_SQ_ALU_SRC_1_INT:
o += fprintf(stderr, "1");
break;
case V_SQ_ALU_SRC_1:
o += fprintf(stderr, "1.0");
break;
case V_SQ_ALU_SRC_0:
o += fprintf(stderr, "0");
break;
default:
o += fprintf(stderr, "??IMM_%d", sel);
break;
}
}
if (need_sel)
o += print_sel(sel, src->rel, alu->index_mode, need_brackets);
if (need_chan) {
o += fprintf(stderr, ".");
o += print_swizzle(src->chan);
}
if (src->abs)
o += fprintf(stderr,"|");
return o;
}
static int print_indent(int p, int c)
{
int o = 0;
while (p++ < c)
o += fprintf(stderr, " ");
return o;
}
void r600_bytecode_disasm(struct r600_bytecode *bc)
{
const char *index_mode[] = {"CF_INDEX_NONE", "CF_INDEX_0", "CF_INDEX_1"};
static int index = 0;
struct r600_bytecode_cf *cf = NULL;
struct r600_bytecode_alu *alu = NULL;
struct r600_bytecode_vtx *vtx = NULL;
struct r600_bytecode_tex *tex = NULL;
struct r600_bytecode_gds *gds = NULL;
unsigned i, id, ngr = 0, last;
uint32_t literal[4];
unsigned nliteral;
char chip = '6';
switch (bc->chip_class) {
case R700:
chip = '7';
break;
case EVERGREEN:
chip = 'E';
break;
case CAYMAN:
chip = 'C';
break;
case R600:
default:
chip = '6';
break;
}
fprintf(stderr, "bytecode %d dw -- %d gprs -- %d nstack -------------\n",
bc->ndw, bc->ngpr, bc->nstack);
fprintf(stderr, "shader %d -- %c\n", index++, chip);
LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
id = cf->id;
if (cf->op == CF_NATIVE) {
fprintf(stderr, "%04d %08X %08X CF_NATIVE\n", id, bc->bytecode[id],
bc->bytecode[id + 1]);
} else {
const struct cf_op_info *cfop = r600_isa_cf(cf->op);
if (cfop->flags & CF_ALU) {
if (cf->eg_alu_extended) {
fprintf(stderr, "%04d %08X %08X %s\n", id, bc->bytecode[id],
bc->bytecode[id + 1], "ALU_EXT");
id += 2;
}
fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
bc->bytecode[id + 1], cfop->name);
fprintf(stderr, "%d @%d ", cf->ndw / 2, cf->addr);
for (i = 0; i < 4; ++i) {
if (cf->kcache[i].mode) {
int c_start = (cf->kcache[i].addr << 4);
int c_end = c_start + (cf->kcache[i].mode << 4);
fprintf(stderr, "KC%d[CB%d:%d-%d%s%s] ",
i, cf->kcache[i].bank, c_start, c_end,
cf->kcache[i].index_mode ? " " : "",
cf->kcache[i].index_mode ? index_mode[cf->kcache[i].index_mode] : "");
}
}
fprintf(stderr, "\n");
} else if (cfop->flags & CF_FETCH) {
fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
bc->bytecode[id + 1], cfop->name);
fprintf(stderr, "%d @%d ", cf->ndw / 4, cf->addr);
fprintf(stderr, "\n");
if (cf->end_of_program)
fprintf(stderr, "EOP ");
} else if (cfop->flags & CF_EXP) {
int o = 0;
const char *exp_type[] = {"PIXEL", "POS ", "PARAM"};
o += fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
bc->bytecode[id + 1], cfop->name);
o += print_indent(o, 43);
o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
if (cf->output.burst_count > 1) {
o += fprintf(stderr, "%d-%d ", cf->output.array_base,
cf->output.array_base + cf->output.burst_count - 1);
o += print_indent(o, 55);
o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
cf->output.gpr + cf->output.burst_count - 1);
} else {
o += fprintf(stderr, "%d ", cf->output.array_base);
o += print_indent(o, 55);
o += fprintf(stderr, "R%d.", cf->output.gpr);
}
o += print_swizzle(cf->output.swizzle_x);
o += print_swizzle(cf->output.swizzle_y);
o += print_swizzle(cf->output.swizzle_z);
o += print_swizzle(cf->output.swizzle_w);
print_indent(o, 67);
fprintf(stderr, " ES:%X ", cf->output.elem_size);
if (cf->mark)
fprintf(stderr, "MARK ");
if (!cf->barrier)
fprintf(stderr, "NO_BARRIER ");
if (cf->end_of_program)
fprintf(stderr, "EOP ");
fprintf(stderr, "\n");
} else if (r600_isa_cf(cf->op)->flags & CF_MEM) {
int o = 0;
const char *exp_type[] = {"WRITE", "WRITE_IND", "WRITE_ACK",
"WRITE_IND_ACK"};
o += fprintf(stderr, "%04d %08X %08X %s ", id,
bc->bytecode[id], bc->bytecode[id + 1], cfop->name);
o += print_indent(o, 43);
o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
if (r600_isa_cf(cf->op)->flags & CF_RAT) {
o += fprintf(stderr, "RAT%d", cf->rat.id);
if (cf->rat.index_mode) {
o += fprintf(stderr, "[IDX%d]", cf->rat.index_mode - 1);
}
o += fprintf(stderr, " INST: %d ", cf->rat.inst);
}
if (cf->output.burst_count > 1) {
o += fprintf(stderr, "%d-%d ", cf->output.array_base,
cf->output.array_base + cf->output.burst_count - 1);
o += print_indent(o, 55);
o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
cf->output.gpr + cf->output.burst_count - 1);
} else {
o += fprintf(stderr, "%d ", cf->output.array_base);
o += print_indent(o, 55);
o += fprintf(stderr, "R%d.", cf->output.gpr);
}
for (i = 0; i < 4; ++i) {
if (cf->output.comp_mask & (1 << i))
o += print_swizzle(i);
else
o += print_swizzle(7);
}
if (cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND ||
cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_READ_IND)
o += fprintf(stderr, " R%d", cf->output.index_gpr);
o += print_indent(o, 67);
fprintf(stderr, " ES:%i ", cf->output.elem_size);
if (cf->output.array_size != 0xFFF)
fprintf(stderr, "AS:%i ", cf->output.array_size);
if (cf->mark)
fprintf(stderr, "MARK ");
if (!cf->barrier)
fprintf(stderr, "NO_BARRIER ");
if (cf->end_of_program)
fprintf(stderr, "EOP ");
fprintf(stderr, "\n");
} else {
fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
bc->bytecode[id + 1], cfop->name);
fprintf(stderr, "@%d ", cf->cf_addr);
if (cf->cond)
fprintf(stderr, "CND:%X ", cf->cond);
if (cf->pop_count)
fprintf(stderr, "POP:%X ", cf->pop_count);
if (cf->count && (cfop->flags & CF_EMIT))
fprintf(stderr, "STREAM%d ", cf->count);
if (cf->end_of_program)
fprintf(stderr, "EOP ");
fprintf(stderr, "\n");
}
}
id = cf->addr;
nliteral = 0;
last = 1;
LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
const char *omod_str[] = {"","*2","*4","/2"};
const struct alu_op_info *aop = r600_isa_alu(alu->op);
int o = 0;
r600_bytecode_alu_nliterals(alu, literal, &nliteral);
o += fprintf(stderr, " %04d %08X %08X ", id, bc->bytecode[id], bc->bytecode[id+1]);
if (last)
o += fprintf(stderr, "%4d ", ++ngr);
else
o += fprintf(stderr, " ");
o += fprintf(stderr, "%c%c %c ", alu->execute_mask ? 'M':' ',
alu->update_pred ? 'P':' ',
alu->pred_sel ? alu->pred_sel==2 ? '0':'1':' ');
o += fprintf(stderr, "%s%s%s ", aop->name,
omod_str[alu->omod], alu->dst.clamp ? "_sat":"");
o += print_indent(o,60);
o += print_dst(alu);
for (i = 0; i < aop->src_count; ++i) {
o += fprintf(stderr, i == 0 ? ", ": ", ");
o += print_src(alu, i);
}
if (alu->bank_swizzle) {
o += print_indent(o,75);
o += fprintf(stderr, " BS:%d", alu->bank_swizzle);
}
fprintf(stderr, "\n");
id += 2;
if (alu->last) {
for (i = 0; i < nliteral; i++, id++) {
float *f = (float*)(bc->bytecode + id);
o = fprintf(stderr, " %04d %08X", id, bc->bytecode[id]);
print_indent(o, 60);
fprintf(stderr, " %f (%d)\n", *f, *(bc->bytecode + id));
}
id += nliteral & 1;
nliteral = 0;
}
last = alu->last;
}
LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
int o = 0;
o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id],
bc->bytecode[id + 1], bc->bytecode[id + 2]);
o += fprintf(stderr, "%s ", r600_isa_fetch(tex->op)->name);
o += print_indent(o, 50);
o += fprintf(stderr, "R%d.", tex->dst_gpr);
o += print_swizzle(tex->dst_sel_x);
o += print_swizzle(tex->dst_sel_y);
o += print_swizzle(tex->dst_sel_z);
o += print_swizzle(tex->dst_sel_w);
o += fprintf(stderr, ", R%d.", tex->src_gpr);
o += print_swizzle(tex->src_sel_x);
o += print_swizzle(tex->src_sel_y);
o += print_swizzle(tex->src_sel_z);
o += print_swizzle(tex->src_sel_w);
o += fprintf(stderr, ", RID:%d", tex->resource_id);
o += fprintf(stderr, ", SID:%d ", tex->sampler_id);
if (tex->sampler_index_mode)
fprintf(stderr, "SQ_%s ", index_mode[tex->sampler_index_mode]);
if (tex->lod_bias)
fprintf(stderr, "LB:%d ", tex->lod_bias);
fprintf(stderr, "CT:%c%c%c%c ",
tex->coord_type_x ? 'N' : 'U',
tex->coord_type_y ? 'N' : 'U',
tex->coord_type_z ? 'N' : 'U',
tex->coord_type_w ? 'N' : 'U');
if (tex->offset_x)
fprintf(stderr, "OX:%d ", tex->offset_x);
if (tex->offset_y)
fprintf(stderr, "OY:%d ", tex->offset_y);
if (tex->offset_z)
fprintf(stderr, "OZ:%d ", tex->offset_z);
id += 4;
fprintf(stderr, "\n");
}
LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
int o = 0;
const char * fetch_type[] = {"VERTEX", "INSTANCE", ""};
o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id],
bc->bytecode[id + 1], bc->bytecode[id + 2]);
o += fprintf(stderr, "%s ", r600_isa_fetch(vtx->op)->name);
o += print_indent(o, 50);
o += fprintf(stderr, "R%d.", vtx->dst_gpr);
o += print_swizzle(vtx->dst_sel_x);
o += print_swizzle(vtx->dst_sel_y);
o += print_swizzle(vtx->dst_sel_z);
o += print_swizzle(vtx->dst_sel_w);
o += fprintf(stderr, ", R%d.", vtx->src_gpr);
o += print_swizzle(vtx->src_sel_x);
if (vtx->offset)
fprintf(stderr, " +%db", vtx->offset);
o += print_indent(o, 55);
fprintf(stderr, ", RID:%d ", vtx->buffer_id);
fprintf(stderr, "%s ", fetch_type[vtx->fetch_type]);
if (bc->chip_class < CAYMAN && vtx->mega_fetch_count)
fprintf(stderr, "MFC:%d ", vtx->mega_fetch_count);
if (bc->chip_class >= EVERGREEN && vtx->buffer_index_mode)
fprintf(stderr, "SQ_%s ", index_mode[vtx->buffer_index_mode]);
fprintf(stderr, "UCF:%d ", vtx->use_const_fields);
fprintf(stderr, "FMT(DTA:%d ", vtx->data_format);
fprintf(stderr, "NUM:%d ", vtx->num_format_all);
fprintf(stderr, "COMP:%d ", vtx->format_comp_all);
fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all);
id += 4;
}
LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
int o = 0;
o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id],
bc->bytecode[id + 1], bc->bytecode[id + 2]);
o += fprintf(stderr, "%s ", r600_isa_fetch(gds->op)->name);
if (gds->op != FETCH_OP_TF_WRITE) {
o += fprintf(stderr, "R%d.", gds->dst_gpr);
o += print_swizzle(gds->dst_sel_x);
o += print_swizzle(gds->dst_sel_y);
o += print_swizzle(gds->dst_sel_z);
o += print_swizzle(gds->dst_sel_w);
}
o += fprintf(stderr, ", R%d.", gds->src_gpr);
o += print_swizzle(gds->src_sel_x);
o += print_swizzle(gds->src_sel_y);
o += print_swizzle(gds->src_sel_z);
if (gds->op != FETCH_OP_TF_WRITE) {
o += fprintf(stderr, ", R%d.", gds->src_gpr2);
}
if (gds->alloc_consume) {
o += fprintf(stderr, " UAV: %d", gds->uav_id);
if (gds->uav_index_mode)
o += fprintf(stderr, "[%s]", index_mode[gds->uav_index_mode]);
}
fprintf(stderr, "\n");
id += 4;
}
}
fprintf(stderr, "--------------------------------------\n");
}
void r600_vertex_data_type(enum pipe_format pformat,
unsigned *format,
unsigned *num_format, unsigned *format_comp, unsigned *endian)
{
const struct util_format_description *desc;
unsigned i;
*format = 0;
*num_format = 0;
*format_comp = 0;
*endian = ENDIAN_NONE;
if (pformat == PIPE_FORMAT_R11G11B10_FLOAT) {
*format = FMT_10_11_11_FLOAT;
*endian = r600_endian_swap(32);
return;
}
if (pformat == PIPE_FORMAT_B5G6R5_UNORM) {
*format = FMT_5_6_5;
*endian = r600_endian_swap(16);
return;
}
if (pformat == PIPE_FORMAT_B5G5R5A1_UNORM) {
*format = FMT_1_5_5_5;
*endian = r600_endian_swap(16);
return;
}
desc = util_format_description(pformat);
if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) {
goto out_unknown;
}
/* Find the first non-VOID channel. */
for (i = 0; i < 4; i++) {
if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) {
break;
}
}
*endian = r600_endian_swap(desc->channel[i].size);
switch (desc->channel[i].type) {
/* Half-floats, floats, ints */
case UTIL_FORMAT_TYPE_FLOAT:
switch (desc->channel[i].size) {
case 16:
switch (desc->nr_channels) {
case 1:
*format = FMT_16_FLOAT;
break;
case 2:
*format = FMT_16_16_FLOAT;
break;
case 3:
case 4:
*format = FMT_16_16_16_16_FLOAT;
break;
}
break;
case 32:
switch (desc->nr_channels) {
case 1:
*format = FMT_32_FLOAT;
break;
case 2:
*format = FMT_32_32_FLOAT;
break;
case 3:
*format = FMT_32_32_32_FLOAT;
break;
case 4:
*format = FMT_32_32_32_32_FLOAT;
break;
}
break;
default:
goto out_unknown;
}
break;
/* Unsigned ints */
case UTIL_FORMAT_TYPE_UNSIGNED:
/* Signed ints */
case UTIL_FORMAT_TYPE_SIGNED:
switch (desc->channel[i].size) {
case 8:
switch (desc->nr_channels) {
case 1:
*format = FMT_8;
break;
case 2:
*format = FMT_8_8;
break;
case 3:
case 4:
*format = FMT_8_8_8_8;
break;
}
break;
case 10:
if (desc->nr_channels != 4)
goto out_unknown;
*format = FMT_2_10_10_10;
break;
case 16:
switch (desc->nr_channels) {
case 1:
*format = FMT_16;
break;
case 2:
*format = FMT_16_16;
break;
case 3:
case 4:
*format = FMT_16_16_16_16;
break;
}
break;
case 32:
switch (desc->nr_channels) {
case 1:
*format = FMT_32;
break;
case 2:
*format = FMT_32_32;
break;
case 3:
*format = FMT_32_32_32;
break;
case 4:
*format = FMT_32_32_32_32;
break;
}
break;
default:
goto out_unknown;
}
break;
default:
goto out_unknown;
}
if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
*format_comp = 1;
}
*num_format = 0;
if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED ||
desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
if (!desc->channel[i].normalized) {
if (desc->channel[i].pure_integer)
*num_format = 1;
else
*num_format = 2;
}
}
return;
out_unknown:
R600_ERR("unsupported vertex format %s\n", util_format_name(pformat));
}
void *r600_create_vertex_fetch_shader(struct pipe_context *ctx,
unsigned count,
const struct pipe_vertex_element *elements)
{
struct r600_context *rctx = (struct r600_context *)ctx;
struct r600_bytecode bc;
struct r600_bytecode_vtx vtx;
const struct util_format_description *desc;
unsigned fetch_resource_start = rctx->b.chip_class >= EVERGREEN ? 0 : 160;
unsigned format, num_format, format_comp, endian;
uint32_t *bytecode;
int i, j, r, fs_size;
struct r600_fetch_shader *shader;
unsigned no_sb = rctx->screen->b.debug_flags & DBG_NO_SB;
unsigned sb_disasm = !no_sb || (rctx->screen->b.debug_flags & DBG_SB_DISASM);
assert(count < 32);
memset(&bc, 0, sizeof(bc));
r600_bytecode_init(&bc, rctx->b.chip_class, rctx->b.family,
rctx->screen->has_compressed_msaa_texturing);
bc.isa = rctx->isa;
for (i = 0; i < count; i++) {
if (elements[i].instance_divisor > 1) {
if (rctx->b.chip_class == CAYMAN) {
for (j = 0; j < 4; j++) {
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP2_MULHI_UINT;
alu.src[0].sel = 0;
alu.src[0].chan = 3;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
alu.dst.sel = i + 1;
alu.dst.chan = j;
alu.dst.write = j == 3;
alu.last = j == 3;
if ((r = r600_bytecode_add_alu(&bc, &alu))) {
r600_bytecode_clear(&bc);
return NULL;
}
}
} else {
struct r600_bytecode_alu alu;
memset(&alu, 0, sizeof(alu));
alu.op = ALU_OP2_MULHI_UINT;
alu.src[0].sel = 0;
alu.src[0].chan = 3;
alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
alu.dst.sel = i + 1;
alu.dst.chan = 3;
alu.dst.write = 1;
alu.last = 1;
if ((r = r600_bytecode_add_alu(&bc, &alu))) {
r600_bytecode_clear(&bc);
return NULL;
}
}
}
}
for (i = 0; i < count; i++) {
r600_vertex_data_type(elements[i].src_format,
&format, &num_format, &format_comp, &endian);
desc = util_format_description(elements[i].src_format);
if (!desc) {
r600_bytecode_clear(&bc);
R600_ERR("unknown format %d\n", elements[i].src_format);
return NULL;
}
if (elements[i].src_offset > 65535) {
r600_bytecode_clear(&bc);
R600_ERR("too big src_offset: %u\n", elements[i].src_offset);
return NULL;
}
memset(&vtx, 0, sizeof(vtx));
vtx.buffer_id = elements[i].vertex_buffer_index + fetch_resource_start;
vtx.fetch_type = elements[i].instance_divisor ? SQ_VTX_FETCH_INSTANCE_DATA : SQ_VTX_FETCH_VERTEX_DATA;
vtx.src_gpr = elements[i].instance_divisor > 1 ? i + 1 : 0;
vtx.src_sel_x = elements[i].instance_divisor ? 3 : 0;
vtx.mega_fetch_count = 0x1F;
vtx.dst_gpr = i + 1;
vtx.dst_sel_x = desc->swizzle[0];
vtx.dst_sel_y = desc->swizzle[1];
vtx.dst_sel_z = desc->swizzle[2];
vtx.dst_sel_w = desc->swizzle[3];
vtx.data_format = format;
vtx.num_format_all = num_format;
vtx.format_comp_all = format_comp;
vtx.offset = elements[i].src_offset;
vtx.endian = endian;
if ((r = r600_bytecode_add_vtx(&bc, &vtx))) {
r600_bytecode_clear(&bc);
return NULL;
}
}
r600_bytecode_add_cfinst(&bc, CF_OP_RET);
if ((r = r600_bytecode_build(&bc))) {
r600_bytecode_clear(&bc);
return NULL;
}
if (rctx->screen->b.debug_flags & DBG_FS) {
fprintf(stderr, "--------------------------------------------------------------\n");
fprintf(stderr, "Vertex elements state:\n");
for (i = 0; i < count; i++) {
fprintf(stderr, " ");
util_dump_vertex_element(stderr, elements+i);
fprintf(stderr, "\n");
}
if (!sb_disasm) {
r600_bytecode_disasm(&bc);
fprintf(stderr, "______________________________________________________________\n");
} else {
r600_sb_bytecode_process(rctx, &bc, NULL, 1 /*dump*/, 0 /*optimize*/);
}
}
fs_size = bc.ndw*4;
/* Allocate the CSO. */
shader = CALLOC_STRUCT(r600_fetch_shader);
if (!shader) {
r600_bytecode_clear(&bc);
return NULL;
}
u_suballocator_alloc(rctx->allocator_fetch_shader, fs_size, 256,
&shader->offset,
(struct pipe_resource**)&shader->buffer);
if (!shader->buffer) {
r600_bytecode_clear(&bc);
FREE(shader);
return NULL;
}
bytecode = r600_buffer_map_sync_with_rings(&rctx->b, shader->buffer, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_UNSYNCHRONIZED);
bytecode += shader->offset / 4;
if (R600_BIG_ENDIAN) {
for (i = 0; i < fs_size / 4; ++i) {
bytecode[i] = util_cpu_to_le32(bc.bytecode[i]);
}
} else {
memcpy(bytecode, bc.bytecode, fs_size);
}
rctx->b.ws->buffer_unmap(shader->buffer->buf);
r600_bytecode_clear(&bc);
return shader;
}
void r600_bytecode_alu_read(struct r600_bytecode *bc,
struct r600_bytecode_alu *alu, uint32_t word0, uint32_t word1)
{
/* WORD0 */
alu->src[0].sel = G_SQ_ALU_WORD0_SRC0_SEL(word0);
alu->src[0].rel = G_SQ_ALU_WORD0_SRC0_REL(word0);
alu->src[0].chan = G_SQ_ALU_WORD0_SRC0_CHAN(word0);
alu->src[0].neg = G_SQ_ALU_WORD0_SRC0_NEG(word0);
alu->src[1].sel = G_SQ_ALU_WORD0_SRC1_SEL(word0);
alu->src[1].rel = G_SQ_ALU_WORD0_SRC1_REL(word0);
alu->src[1].chan = G_SQ_ALU_WORD0_SRC1_CHAN(word0);
alu->src[1].neg = G_SQ_ALU_WORD0_SRC1_NEG(word0);
alu->index_mode = G_SQ_ALU_WORD0_INDEX_MODE(word0);
alu->pred_sel = G_SQ_ALU_WORD0_PRED_SEL(word0);
alu->last = G_SQ_ALU_WORD0_LAST(word0);
/* WORD1 */
alu->bank_swizzle = G_SQ_ALU_WORD1_BANK_SWIZZLE(word1);
if (alu->bank_swizzle)
alu->bank_swizzle_force = alu->bank_swizzle;
alu->dst.sel = G_SQ_ALU_WORD1_DST_GPR(word1);
alu->dst.rel = G_SQ_ALU_WORD1_DST_REL(word1);
alu->dst.chan = G_SQ_ALU_WORD1_DST_CHAN(word1);
alu->dst.clamp = G_SQ_ALU_WORD1_CLAMP(word1);
if (G_SQ_ALU_WORD1_ENCODING(word1)) /*ALU_DWORD1_OP3*/
{
alu->is_op3 = 1;
alu->src[2].sel = G_SQ_ALU_WORD1_OP3_SRC2_SEL(word1);
alu->src[2].rel = G_SQ_ALU_WORD1_OP3_SRC2_REL(word1);
alu->src[2].chan = G_SQ_ALU_WORD1_OP3_SRC2_CHAN(word1);
alu->src[2].neg = G_SQ_ALU_WORD1_OP3_SRC2_NEG(word1);
alu->op = r600_isa_alu_by_opcode(bc->isa,
G_SQ_ALU_WORD1_OP3_ALU_INST(word1), /* is_op3 = */ 1);
}
else /*ALU_DWORD1_OP2*/
{
alu->src[0].abs = G_SQ_ALU_WORD1_OP2_SRC0_ABS(word1);
alu->src[1].abs = G_SQ_ALU_WORD1_OP2_SRC1_ABS(word1);
alu->op = r600_isa_alu_by_opcode(bc->isa,
G_SQ_ALU_WORD1_OP2_ALU_INST(word1), /* is_op3 = */ 0);
alu->omod = G_SQ_ALU_WORD1_OP2_OMOD(word1);
alu->dst.write = G_SQ_ALU_WORD1_OP2_WRITE_MASK(word1);
alu->update_pred = G_SQ_ALU_WORD1_OP2_UPDATE_PRED(word1);
alu->execute_mask =
G_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(word1);
}
}
#if 0
void r600_bytecode_export_read(struct r600_bytecode *bc,
struct r600_bytecode_output *output, uint32_t word0, uint32_t word1)
{
output->array_base = G_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(word0);
output->type = G_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(word0);
output->gpr = G_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(word0);
output->elem_size = G_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(word0);
output->swizzle_x = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(word1);
output->swizzle_y = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(word1);
output->swizzle_z = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(word1);
output->swizzle_w = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(word1);
output->burst_count = G_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(word1);
output->end_of_program = G_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(word1);
output->op = r600_isa_cf_by_opcode(bc->isa,
G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(word1), 0);
output->barrier = G_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(word1);
output->array_size = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(word1);
output->comp_mask = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(word1);
}
#endif