blob: 0df528f60cb276da6c5ea9fb27e66bdd45061c37 [file] [log] [blame]
/*
* Copyright 2011 Christoph Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "codegen/nv50_ir_target_nvc0.h"
namespace nv50_ir {
Target *getTargetNVC0(unsigned int chipset)
{
return new TargetNVC0(chipset);
}
TargetNVC0::TargetNVC0(unsigned int card) :
Target(card < 0x110, false, card >= 0xe4)
{
chipset = card;
initOpInfo();
}
// BULTINS / LIBRARY FUNCTIONS:
// lazyness -> will just hardcode everything for the time being
#include "lib/gf100.asm.h"
#include "lib/gk104.asm.h"
#include "lib/gk110.asm.h"
void
TargetNVC0::getBuiltinCode(const uint32_t **code, uint32_t *size) const
{
switch (chipset & ~0xf) {
case 0xe0:
if (chipset < NVISA_GK20A_CHIPSET) {
*code = (const uint32_t *)&gk104_builtin_code[0];
*size = sizeof(gk104_builtin_code);
break;
}
/* fall-through for GK20A */
case 0xf0:
case 0x100:
*code = (const uint32_t *)&gk110_builtin_code[0];
*size = sizeof(gk110_builtin_code);
break;
default:
*code = (const uint32_t *)&gf100_builtin_code[0];
*size = sizeof(gf100_builtin_code);
break;
}
}
uint32_t
TargetNVC0::getBuiltinOffset(int builtin) const
{
assert(builtin < NVC0_BUILTIN_COUNT);
switch (chipset & ~0xf) {
case 0xe0:
if (chipset < NVISA_GK20A_CHIPSET)
return gk104_builtin_offsets[builtin];
/* fall-through for GK20A */
case 0xf0:
case 0x100:
return gk110_builtin_offsets[builtin];
default:
return gf100_builtin_offsets[builtin];
}
}
struct opProperties
{
operation op;
unsigned int mNeg : 4;
unsigned int mAbs : 4;
unsigned int mNot : 4;
unsigned int mSat : 4;
unsigned int fConst : 3;
unsigned int fImmd : 4; // last bit indicates if full immediate is suppoted
};
static const struct opProperties _initProps[] =
{
// neg abs not sat c[] imm
{ OP_ADD, 0x3, 0x3, 0x0, 0x8, 0x2, 0x2 | 0x8 },
{ OP_SUB, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 | 0x8 },
{ OP_MUL, 0x3, 0x0, 0x0, 0x8, 0x2, 0x2 | 0x8 },
{ OP_MAX, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
{ OP_MIN, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
{ OP_MAD, 0x7, 0x0, 0x0, 0x8, 0x6, 0x2 }, // special c[] constraint
{ OP_FMA, 0x7, 0x0, 0x0, 0x8, 0x6, 0x2 }, // keep the same as OP_MAD
{ OP_SHLADD, 0x5, 0x0, 0x0, 0x0, 0x4, 0x6 },
{ OP_MADSP, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
{ OP_ABS, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
{ OP_NEG, 0x0, 0x1, 0x0, 0x0, 0x1, 0x0 },
{ OP_CVT, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
{ OP_CEIL, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
{ OP_FLOOR, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
{ OP_TRUNC, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
{ OP_AND, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
{ OP_OR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
{ OP_XOR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
{ OP_SHL, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
{ OP_SHR, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
{ OP_SET, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
{ OP_SLCT, 0x4, 0x0, 0x0, 0x0, 0x6, 0x2 }, // special c[] constraint
{ OP_PREEX2, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
{ OP_PRESIN, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
{ OP_COS, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
{ OP_SIN, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
{ OP_EX2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
{ OP_LG2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
{ OP_RCP, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
{ OP_RSQ, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
{ OP_DFDX, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
{ OP_DFDY, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
{ OP_CALL, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
{ OP_POPCNT, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 },
{ OP_INSBF, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
{ OP_EXTBF, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
{ OP_BFIND, 0x0, 0x0, 0x1, 0x0, 0x1, 0x1 },
{ OP_PERMT, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
{ OP_SET_AND, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
{ OP_SET_OR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
{ OP_SET_XOR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
// saturate only:
{ OP_LINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
{ OP_PINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
// nve4 ops:
{ OP_SULDB, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
{ OP_SUSTB, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
{ OP_SUSTP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
{ OP_SUCLAMP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
{ OP_SUBFM, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
{ OP_SUEAU, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 }
};
void TargetNVC0::initOpInfo()
{
unsigned int i, j;
static const uint32_t commutative[(OP_LAST + 31) / 32] =
{
// ADD, MUL, MAD, FMA, AND, OR, XOR, MAX, MIN, SET_AND, SET_OR, SET_XOR,
// SET, SELP, SLCT
0x0ce0ca00, 0x0000007e, 0x00000000, 0x00000000
};
static const uint32_t shortForm[(OP_LAST + 31) / 32] =
{
// ADD, MUL, MAD, FMA, AND, OR, XOR, MAX, MIN
0x0ce0ca00, 0x00000000, 0x00000000, 0x00000000
};
static const operation noDest[] =
{
OP_STORE, OP_WRSV, OP_EXPORT, OP_BRA, OP_CALL, OP_RET, OP_EXIT,
OP_DISCARD, OP_CONT, OP_BREAK, OP_PRECONT, OP_PREBREAK, OP_PRERET,
OP_JOIN, OP_JOINAT, OP_BRKPT, OP_MEMBAR, OP_EMIT, OP_RESTART,
OP_QUADON, OP_QUADPOP, OP_TEXBAR, OP_SUSTB, OP_SUSTP, OP_SUREDP,
OP_SUREDB, OP_BAR
};
static const operation noPred[] =
{
OP_CALL, OP_PRERET, OP_QUADON, OP_QUADPOP,
OP_JOINAT, OP_PREBREAK, OP_PRECONT, OP_BRKPT
};
for (i = 0; i < DATA_FILE_COUNT; ++i)
nativeFileMap[i] = (DataFile)i;
nativeFileMap[FILE_ADDRESS] = FILE_GPR;
for (i = 0; i < OP_LAST; ++i) {
opInfo[i].variants = NULL;
opInfo[i].op = (operation)i;
opInfo[i].srcTypes = 1 << (int)TYPE_F32;
opInfo[i].dstTypes = 1 << (int)TYPE_F32;
opInfo[i].immdBits = 0;
opInfo[i].srcNr = operationSrcNr[i];
for (j = 0; j < opInfo[i].srcNr; ++j) {
opInfo[i].srcMods[j] = 0;
opInfo[i].srcFiles[j] = 1 << (int)FILE_GPR;
}
opInfo[i].dstMods = 0;
opInfo[i].dstFiles = 1 << (int)FILE_GPR;
opInfo[i].hasDest = 1;
opInfo[i].vector = (i >= OP_TEX && i <= OP_TEXCSAA);
opInfo[i].commutative = (commutative[i / 32] >> (i % 32)) & 1;
opInfo[i].pseudo = (i < OP_MOV);
opInfo[i].predicate = !opInfo[i].pseudo;
opInfo[i].flow = (i >= OP_BRA && i <= OP_JOIN);
opInfo[i].minEncSize = (shortForm[i / 32] & (1 << (i % 32))) ? 4 : 8;
}
for (i = 0; i < sizeof(noDest) / sizeof(noDest[0]); ++i)
opInfo[noDest[i]].hasDest = 0;
for (i = 0; i < sizeof(noPred) / sizeof(noPred[0]); ++i)
opInfo[noPred[i]].predicate = 0;
for (i = 0; i < sizeof(_initProps) / sizeof(_initProps[0]); ++i) {
const struct opProperties *prop = &_initProps[i];
for (int s = 0; s < 3; ++s) {
if (prop->mNeg & (1 << s))
opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NEG;
if (prop->mAbs & (1 << s))
opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_ABS;
if (prop->mNot & (1 << s))
opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NOT;
if (prop->fConst & (1 << s))
opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_CONST;
if (prop->fImmd & (1 << s))
opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_IMMEDIATE;
if (prop->fImmd & 8)
opInfo[prop->op].immdBits = 0xffffffff;
}
if (prop->mSat & 8)
opInfo[prop->op].dstMods = NV50_IR_MOD_SAT;
}
}
unsigned int
TargetNVC0::getFileSize(DataFile file) const
{
const unsigned int gprs = (chipset >= NVISA_GK20A_CHIPSET) ? 255 : 63;
const unsigned int smregs = (chipset >= NVISA_GK104_CHIPSET) ? 65536 : 32768;
switch (file) {
case FILE_NULL: return 0;
case FILE_GPR: return MIN2(gprs, smregs / threads);
case FILE_PREDICATE: return 7;
case FILE_FLAGS: return 1;
case FILE_ADDRESS: return 0;
case FILE_IMMEDIATE: return 0;
case FILE_MEMORY_CONST: return 65536;
case FILE_SHADER_INPUT: return 0x400;
case FILE_SHADER_OUTPUT: return 0x400;
case FILE_MEMORY_BUFFER: return 0xffffffff;
case FILE_MEMORY_GLOBAL: return 0xffffffff;
case FILE_MEMORY_SHARED: return 16 << 10;
case FILE_MEMORY_LOCAL: return 48 << 10;
case FILE_SYSTEM_VALUE: return 32;
default:
assert(!"invalid file");
return 0;
}
}
unsigned int
TargetNVC0::getFileUnit(DataFile file) const
{
if (file == FILE_GPR || file == FILE_ADDRESS || file == FILE_SYSTEM_VALUE)
return 2;
return 0;
}
uint32_t
TargetNVC0::getSVAddress(DataFile shaderFile, const Symbol *sym) const
{
const int idx = sym->reg.data.sv.index;
const SVSemantic sv = sym->reg.data.sv.sv;
const bool isInput = shaderFile == FILE_SHADER_INPUT;
const bool kepler = getChipset() >= NVISA_GK104_CHIPSET;
switch (sv) {
case SV_POSITION: return 0x070 + idx * 4;
case SV_INSTANCE_ID: return 0x2f8;
case SV_VERTEX_ID: return 0x2fc;
case SV_PRIMITIVE_ID: return isInput ? 0x060 : 0x040;
case SV_LAYER: return 0x064;
case SV_VIEWPORT_INDEX: return 0x068;
case SV_POINT_SIZE: return 0x06c;
case SV_CLIP_DISTANCE: return 0x2c0 + idx * 4;
case SV_POINT_COORD: return 0x2e0 + idx * 4;
case SV_FACE: return 0x3fc;
case SV_TESS_OUTER: return 0x000 + idx * 4;
case SV_TESS_INNER: return 0x010 + idx * 4;
case SV_TESS_COORD: return 0x2f0 + idx * 4;
case SV_NTID: return kepler ? (0x00 + idx * 4) : ~0;
case SV_NCTAID: return kepler ? (0x0c + idx * 4) : ~0;
case SV_GRIDID: return kepler ? 0x18 : ~0;
case SV_WORK_DIM: return 0x1c;
case SV_SAMPLE_INDEX: return 0;
case SV_SAMPLE_POS: return 0;
case SV_SAMPLE_MASK: return 0;
case SV_BASEVERTEX: return 0;
case SV_BASEINSTANCE: return 0;
case SV_DRAWID: return 0;
default:
return 0xffffffff;
}
}
bool
TargetNVC0::insnCanLoad(const Instruction *i, int s,
const Instruction *ld) const
{
DataFile sf = ld->src(0).getFile();
// immediate 0 can be represented by GPR $r63/$r255
if (sf == FILE_IMMEDIATE && ld->getSrc(0)->reg.data.u64 == 0)
return (!i->isPseudo() &&
!i->asTex() &&
i->op != OP_EXPORT && i->op != OP_STORE);
if (s >= opInfo[i->op].srcNr)
return false;
if (!(opInfo[i->op].srcFiles[s] & (1 << (int)sf)))
return false;
// indirect loads can only be done by OP_LOAD/VFETCH/INTERP on nvc0
if (ld->src(0).isIndirect(0))
return false;
// these are implemented using shf.r and shf.l which can't load consts
if ((i->op == OP_SHL || i->op == OP_SHR) && typeSizeof(i->sType) == 8 &&
sf == FILE_MEMORY_CONST)
return false;
for (int k = 0; i->srcExists(k); ++k) {
if (i->src(k).getFile() == FILE_IMMEDIATE) {
if (k == 2 && i->op == OP_SUCLAMP) // special case
continue;
if (k == 1 && i->op == OP_SHLADD) // special case
continue;
if (i->getSrc(k)->reg.data.u64 != 0)
return false;
} else
if (i->src(k).getFile() != FILE_GPR &&
i->src(k).getFile() != FILE_PREDICATE &&
i->src(k).getFile() != FILE_FLAGS) {
return false;
}
}
// not all instructions support full 32 bit immediates
if (sf == FILE_IMMEDIATE) {
Storage &reg = ld->getSrc(0)->asImm()->reg;
if (opInfo[i->op].immdBits != 0xffffffff || typeSizeof(i->sType) > 4) {
switch (i->sType) {
case TYPE_F64:
if (reg.data.u64 & 0x00000fffffffffffULL)
return false;
break;
case TYPE_F32:
if (reg.data.u32 & 0xfff)
return false;
break;
case TYPE_S32:
case TYPE_U32:
// with u32, 0xfffff counts as 0xffffffff as well
if (reg.data.s32 > 0x7ffff || reg.data.s32 < -0x80000)
return false;
break;
case TYPE_U8:
case TYPE_S8:
case TYPE_U16:
case TYPE_S16:
case TYPE_F16:
break;
default:
return false;
}
} else
if (i->op == OP_ADD && i->sType == TYPE_F32) {
// add f32 LIMM cannot saturate
if (i->saturate && (reg.data.u32 & 0xfff))
return false;
}
}
return true;
}
bool
TargetNVC0::insnCanLoadOffset(const Instruction *insn, int s, int offset) const
{
const ValueRef& ref = insn->src(s);
if (ref.getFile() == FILE_MEMORY_CONST &&
(insn->op != OP_LOAD || insn->subOp != NV50_IR_SUBOP_LDC_IS))
return offset >= -0x8000 && offset < 0x8000;
return true;
}
bool
TargetNVC0::isAccessSupported(DataFile file, DataType ty) const
{
if (ty == TYPE_NONE)
return false;
if (file == FILE_MEMORY_CONST) {
if (getChipset() >= NVISA_GM107_CHIPSET)
return typeSizeof(ty) <= 4;
else
if (getChipset() >= NVISA_GK104_CHIPSET) // wrong encoding ?
return typeSizeof(ty) <= 8;
}
if (ty == TYPE_B96)
return false;
return true;
}
bool
TargetNVC0::isOpSupported(operation op, DataType ty) const
{
if (op == OP_SAD && ty != TYPE_S32 && ty != TYPE_U32)
return false;
if (op == OP_POW || op == OP_SQRT || op == OP_DIV || op == OP_MOD)
return false;
return true;
}
bool
TargetNVC0::isModSupported(const Instruction *insn, int s, Modifier mod) const
{
if (!isFloatType(insn->dType)) {
switch (insn->op) {
case OP_ABS:
case OP_NEG:
case OP_CVT:
case OP_CEIL:
case OP_FLOOR:
case OP_TRUNC:
case OP_AND:
case OP_OR:
case OP_XOR:
case OP_POPCNT:
case OP_BFIND:
break;
case OP_SET:
if (insn->sType != TYPE_F32)
return false;
break;
case OP_ADD:
if (mod.abs())
return false;
if (insn->src(s ? 0 : 1).mod.neg())
return false;
break;
case OP_SUB:
if (s == 0)
return insn->src(1).mod.neg() ? false : true;
break;
case OP_SHLADD:
if (s == 1)
return false;
if (insn->src(s ? 0 : 2).mod.neg())
return false;
break;
default:
return false;
}
}
if (s >= opInfo[insn->op].srcNr || s >= 3)
return false;
return (mod & Modifier(opInfo[insn->op].srcMods[s])) == mod;
}
bool
TargetNVC0::mayPredicate(const Instruction *insn, const Value *pred) const
{
if (insn->getPredicate())
return false;
return opInfo[insn->op].predicate;
}
bool
TargetNVC0::isSatSupported(const Instruction *insn) const
{
if (insn->op == OP_CVT)
return true;
if (!(opInfo[insn->op].dstMods & NV50_IR_MOD_SAT))
return false;
if (insn->dType == TYPE_U32)
return (insn->op == OP_ADD) || (insn->op == OP_MAD);
// add f32 LIMM cannot saturate
if (insn->op == OP_ADD && insn->sType == TYPE_F32) {
if (insn->getSrc(1)->asImm() &&
insn->getSrc(1)->reg.data.u32 & 0xfff)
return false;
}
return insn->dType == TYPE_F32;
}
bool
TargetNVC0::isPostMultiplySupported(operation op, float f, int& e) const
{
if (op != OP_MUL)
return false;
f = fabsf(f);
e = static_cast<int>(log2f(f));
if (e < -3 || e > 3)
return false;
return f == exp2f(static_cast<float>(e));
}
// TODO: better values
// this could be more precise, e.g. depending on the issue-to-read/write delay
// of the depending instruction, but it's good enough
int TargetNVC0::getLatency(const Instruction *i) const
{
if (chipset >= 0xe4) {
if (i->dType == TYPE_F64 || i->sType == TYPE_F64)
return 20;
switch (i->op) {
case OP_LINTERP:
case OP_PINTERP:
return 15;
case OP_LOAD:
if (i->src(0).getFile() == FILE_MEMORY_CONST)
return 9;
// fall through
case OP_VFETCH:
return 24;
default:
if (Target::getOpClass(i->op) == OPCLASS_TEXTURE)
return 17;
if (i->op == OP_MUL && i->dType != TYPE_F32)
return 15;
return 9;
}
} else {
if (i->op == OP_LOAD) {
if (i->cache == CACHE_CV)
return 700;
return 48;
}
return 24;
}
return 32;
}
// These are "inverse" throughput values, i.e. the number of cycles required
// to issue a specific instruction for a full warp (32 threads).
//
// Assuming we have more than 1 warp in flight, a higher issue latency results
// in a lower result latency since the MP will have spent more time with other
// warps.
// This also helps to determine the number of cycles between instructions in
// a single warp.
//
int TargetNVC0::getThroughput(const Instruction *i) const
{
// TODO: better values
if (i->dType == TYPE_F32) {
switch (i->op) {
case OP_ADD:
case OP_MUL:
case OP_MAD:
case OP_FMA:
return 1;
case OP_CVT:
case OP_CEIL:
case OP_FLOOR:
case OP_TRUNC:
case OP_SET:
case OP_SLCT:
case OP_MIN:
case OP_MAX:
return 2;
case OP_RCP:
case OP_RSQ:
case OP_LG2:
case OP_SIN:
case OP_COS:
case OP_PRESIN:
case OP_PREEX2:
default:
return 8;
}
} else
if (i->dType == TYPE_U32 || i->dType == TYPE_S32) {
switch (i->op) {
case OP_ADD:
case OP_AND:
case OP_OR:
case OP_XOR:
case OP_NOT:
return 1;
case OP_MUL:
case OP_MAD:
case OP_CVT:
case OP_SET:
case OP_SLCT:
case OP_SHL:
case OP_SHR:
case OP_NEG:
case OP_ABS:
case OP_MIN:
case OP_MAX:
default:
return 2;
}
} else
if (i->dType == TYPE_F64) {
return 2;
} else {
return 1;
}
}
bool TargetNVC0::canDualIssue(const Instruction *a, const Instruction *b) const
{
const OpClass clA = operationClass[a->op];
const OpClass clB = operationClass[b->op];
if (getChipset() >= 0xe4) {
// not texturing
// not if the 2nd instruction isn't necessarily executed
if (clA == OPCLASS_TEXTURE || clA == OPCLASS_FLOW)
return false;
// Check that a and b don't write to the same sources, nor that b reads
// anything that a writes.
if (!a->canCommuteDefDef(b) || !a->canCommuteDefSrc(b))
return false;
// anything with MOV
if (a->op == OP_MOV || b->op == OP_MOV)
return true;
if (clA == clB) {
switch (clA) {
// there might be more
case OPCLASS_COMPARE:
if ((a->op == OP_MIN || a->op == OP_MAX) &&
(b->op == OP_MIN || b->op == OP_MAX))
break;
return false;
case OPCLASS_ARITH:
break;
default:
return false;
}
// only F32 arith or integer additions
return (a->dType == TYPE_F32 || a->op == OP_ADD ||
b->dType == TYPE_F32 || b->op == OP_ADD);
}
// nothing with TEXBAR
if (a->op == OP_TEXBAR || b->op == OP_TEXBAR)
return false;
// no loads and stores accessing the same space
if ((clA == OPCLASS_LOAD && clB == OPCLASS_STORE) ||
(clB == OPCLASS_LOAD && clA == OPCLASS_STORE))
if (a->src(0).getFile() == b->src(0).getFile())
return false;
// no > 32-bit ops
if (typeSizeof(a->dType) > 4 || typeSizeof(b->dType) > 4 ||
typeSizeof(a->sType) > 4 || typeSizeof(b->sType) > 4)
return false;
return true;
} else {
return false; // info not needed (yet)
}
}
} // namespace nv50_ir