blob: e2bec8f94941b9cf02e1b6c7ff7b5ddc2ef54e10 [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <getopt.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <signal.h>
#include <errno.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/mman.h>
#include "util/macros.h"
#include "decoder.h"
#include "intel_aub.h"
#include "gen_disasm.h"
/* Below is the only command missing from intel_aub.h in libdrm
* So, reuse intel_aub.h from libdrm and #define the
* AUB_MI_BATCH_BUFFER_END as below
*/
#define AUB_MI_BATCH_BUFFER_END (0x0500 << 16)
#define CSI "\e["
#define BLUE_HEADER CSI "0;44m"
#define GREEN_HEADER CSI "1;42m"
#define NORMAL CSI "0m"
/* options */
static bool option_full_decode = true;
static bool option_print_offsets = true;
static enum { COLOR_AUTO, COLOR_ALWAYS, COLOR_NEVER } option_color;
/* state */
uint16_t pci_id = 0;
char *input_file = NULL, *xml_path = NULL;
struct gen_spec *spec;
struct gen_disasm *disasm;
uint64_t gtt_size, gtt_end;
void *gtt;
uint64_t general_state_base;
uint64_t surface_state_base;
uint64_t dynamic_state_base;
uint64_t instruction_base;
uint64_t instruction_bound;
static inline uint32_t
field(uint32_t value, int start, int end)
{
uint32_t mask;
mask = ~0U >> (31 - end + start);
return (value >> start) & mask;
}
struct brw_instruction;
static inline int
valid_offset(uint32_t offset)
{
return offset < gtt_end;
}
static void
print_dword_val(struct gen_field_iterator *iter, uint64_t offset,
int *dword_num)
{
struct gen_field *f;
f = iter->group->fields[iter->i - 1];
const int dword = f->start / 32;
if (*dword_num != dword) {
printf("0x%08"PRIx64": 0x%08x : Dword %d\n",
offset + 4 * dword, iter->p[dword], dword);
*dword_num = dword;
}
}
static char *
print_iterator_values(struct gen_field_iterator *iter, int *idx)
{
char *token = NULL;
if (strstr(iter->value, "struct") == NULL) {
if (strlen(iter->description) > 0) {
printf(" %s: %s (%s)\n",
iter->name, iter->value, iter->description);
} else {
printf(" %s: %s\n", iter->name, iter->value);
}
} else {
token = strtok(iter->value, " ");
if (token != NULL) {
token = strtok(NULL, " ");
*idx = atoi(strtok(NULL, ">"));
} else {
token = NULL;
}
printf(" %s:<struct %s>\n", iter->name, token);
}
return token;
}
static void
decode_structure(struct gen_spec *spec, struct gen_group *strct,
const uint32_t *p)
{
struct gen_field_iterator iter;
char *token = NULL;
int idx = 0, dword_num = 0;
uint64_t offset = 0;
if (option_print_offsets)
offset = (void *) p - gtt;
else
offset = 0;
gen_field_iterator_init(&iter, strct, p,
option_color == COLOR_ALWAYS);
while (gen_field_iterator_next(&iter)) {
idx = 0;
print_dword_val(&iter, offset, &dword_num);
token = print_iterator_values(&iter, &idx);
if (token != NULL) {
struct gen_group *struct_val = gen_spec_find_struct(spec, token);
decode_structure(spec, struct_val, &p[idx]);
token = NULL;
}
}
}
static void
handle_struct_decode(struct gen_spec *spec, char *struct_name, uint32_t *p)
{
if (struct_name == NULL)
return;
struct gen_group *struct_val = gen_spec_find_struct(spec, struct_name);
decode_structure(spec, struct_val, p);
}
static void
dump_binding_table(struct gen_spec *spec, uint32_t offset)
{
uint32_t *pointers, i;
uint64_t start;
struct gen_group *surface_state;
surface_state = gen_spec_find_struct(spec, "RENDER_SURFACE_STATE");
if (surface_state == NULL) {
printf("did not find RENDER_SURFACE_STATE info\n");
return;
}
start = surface_state_base + offset;
pointers = gtt + start;
for (i = 0; i < 16; i++) {
if (pointers[i] == 0)
continue;
start = pointers[i] + surface_state_base;
if (!valid_offset(start)) {
printf("pointer %u: %08x <not valid>\n",
i, pointers[i]);
continue;
} else {
printf("pointer %u: %08x\n", i, pointers[i]);
}
decode_structure(spec, surface_state, gtt + start);
}
}
static void
handle_3dstate_index_buffer(struct gen_spec *spec, uint32_t *p)
{
void *start;
uint32_t length, i, type, size;
start = gtt + p[2];
type = (p[1] >> 8) & 3;
size = 1 << type;
length = p[4] / size;
if (length > 10)
length = 10;
printf("\t");
for (i = 0; i < length; i++) {
switch (type) {
case 0:
printf("%3d ", ((uint8_t *)start)[i]);
break;
case 1:
printf("%3d ", ((uint16_t *)start)[i]);
break;
case 2:
printf("%3d ", ((uint32_t *)start)[i]);
break;
}
}
if (length < p[4] / size)
printf("...\n");
else
printf("\n");
}
static inline uint64_t
get_address(struct gen_spec *spec, uint32_t *p)
{
/* Addresses are always guaranteed to be page-aligned and sometimes
* hardware packets have extra stuff stuffed in the bottom 12 bits.
*/
uint64_t addr = p[0] & ~0xfffu;
if (gen_spec_get_gen(spec) >= gen_make_gen(8,0)) {
/* On Broadwell and above, we have 48-bit addresses which consume two
* dwords. Some packets require that these get stored in a "canonical
* form" which means that bit 47 is sign-extended through the upper
* bits. In order to correctly handle those aub dumps, we need to mask
* off the top 16 bits.
*/
addr |= ((uint64_t)p[1] & 0xffff) << 32;
}
return addr;
}
static inline uint64_t
get_offset(uint32_t *p, uint32_t start, uint32_t end)
{
assert(start <= end);
assert(end < 64);
uint64_t mask = (~0ull >> (64 - (end - start + 1))) << start;
uint64_t offset = p[0];
if (end >= 32)
offset |= (uint64_t) p[1] << 32;
return offset & mask;
}
static void
handle_state_base_address(struct gen_spec *spec, uint32_t *p)
{
if (gen_spec_get_gen(spec) >= gen_make_gen(8,0)) {
if (p[1] & 1)
general_state_base = get_address(spec, &p[1]);
if (p[4] & 1)
surface_state_base = get_address(spec, &p[4]);
if (p[6] & 1)
dynamic_state_base = get_address(spec, &p[6]);
if (p[10] & 1)
instruction_base = get_address(spec, &p[10]);
if (p[15] & 1)
instruction_bound = p[15] & 0xfff;
} else {
if (p[2] & 1)
surface_state_base = get_address(spec, &p[2]);
if (p[3] & 1)
dynamic_state_base = get_address(spec, &p[3]);
if (p[5] & 1)
instruction_base = get_address(spec, &p[5]);
if (p[9] & 1)
instruction_bound = get_address(spec, &p[9]);
}
}
static void
dump_samplers(struct gen_spec *spec, uint32_t offset)
{
uint32_t i;
uint64_t start;
struct gen_group *sampler_state;
sampler_state = gen_spec_find_struct(spec, "SAMPLER_STATE");
start = dynamic_state_base + offset;
for (i = 0; i < 4; i++) {
printf("sampler state %d\n", i);
decode_structure(spec, sampler_state, gtt + start + i * 16);
}
}
static void
handle_media_interface_descriptor_load(struct gen_spec *spec, uint32_t *p)
{
int i, length = p[2] / 32;
struct gen_group *descriptor_structure;
uint32_t *descriptors;
uint64_t start;
struct brw_instruction *insns;
descriptor_structure =
gen_spec_find_struct(spec, "INTERFACE_DESCRIPTOR_DATA");
if (descriptor_structure == NULL) {
printf("did not find INTERFACE_DESCRIPTOR_DATA info\n");
return;
}
start = dynamic_state_base + p[3];
descriptors = gtt + start;
for (i = 0; i < length; i++, descriptors += 8) {
printf("descriptor %u: %08x\n", i, *descriptors);
decode_structure(spec, descriptor_structure, descriptors);
start = instruction_base + descriptors[0];
if (!valid_offset(start)) {
printf("kernel: %08"PRIx64" <not valid>\n", start);
continue;
} else {
printf("kernel: %08"PRIx64"\n", start);
}
insns = (struct brw_instruction *) (gtt + start);
gen_disasm_disassemble(disasm, insns, 0, stdout);
dump_samplers(spec, descriptors[3] & ~0x1f);
dump_binding_table(spec, descriptors[4] & ~0x1f);
}
}
/* Heuristic to determine whether a uint32_t is probably actually a float
* (http://stackoverflow.com/a/2953466)
*/
static bool
probably_float(uint32_t bits)
{
int exp = ((bits & 0x7f800000U) >> 23) - 127;
uint32_t mant = bits & 0x007fffff;
/* +- 0.0 */
if (exp == -127 && mant == 0)
return true;
/* +- 1 billionth to 1 billion */
if (-30 <= exp && exp <= 30)
return true;
/* some value with only a few binary digits */
if ((mant & 0x0000ffff) == 0)
return true;
return false;
}
static void
handle_3dstate_vertex_buffers(struct gen_spec *spec, uint32_t *p)
{
uint32_t *end, *s, *dw, *dwend;
uint64_t offset;
int n, i, count, stride;
end = (p[0] & 0xff) + p + 2;
for (s = &p[1], n = 0; s < end; s += 4, n++) {
if (gen_spec_get_gen(spec) >= gen_make_gen(8, 0)) {
offset = *(uint64_t *) &s[1];
dwend = gtt + offset + s[3];
} else {
offset = s[1];
dwend = gtt + s[2] + 1;
}
stride = field(s[0], 0, 11);
count = 0;
printf("vertex buffer %d, size %d\n", n, s[3]);
for (dw = gtt + offset, i = 0; dw < dwend && i < 256; dw++) {
if (count == 0 && count % (8 * 4) == 0)
printf(" ");
if (probably_float(*dw))
printf(" %8.2f", *(float *) dw);
else
printf(" 0x%08x", *dw);
i++;
count += 4;
if (count == stride) {
printf("\n");
count = 0;
} else if (count % (8 * 4) == 0) {
printf("\n");
} else {
printf(" ");
}
}
if (count > 0 && count % (8 * 4) != 0)
printf("\n");
}
}
static void
handle_3dstate_vs(struct gen_spec *spec, uint32_t *p)
{
uint64_t start;
struct brw_instruction *insns;
int vs_enable;
if (gen_spec_get_gen(spec) >= gen_make_gen(8, 0)) {
start = get_offset(&p[1], 6, 63);
vs_enable = p[7] & 1;
} else {
start = get_offset(&p[1], 6, 31);
vs_enable = p[5] & 1;
}
if (vs_enable) {
printf("instruction_base %08"PRIx64", start %08"PRIx64"\n",
instruction_base, start);
insns = (struct brw_instruction *) (gtt + instruction_base + start);
gen_disasm_disassemble(disasm, insns, 0, stdout);
}
}
static void
handle_3dstate_hs(struct gen_spec *spec, uint32_t *p)
{
uint64_t start;
struct brw_instruction *insns;
int hs_enable;
if (gen_spec_get_gen(spec) >= gen_make_gen(8, 0)) {
start = get_offset(&p[3], 6, 63);
} else {
start = get_offset(&p[3], 6, 31);
}
hs_enable = p[2] & 0x80000000;
if (hs_enable) {
printf("instruction_base %08"PRIx64", start %08"PRIx64"\n",
instruction_base, start);
insns = (struct brw_instruction *) (gtt + instruction_base + start);
gen_disasm_disassemble(disasm, insns, 0, stdout);
}
}
static void
handle_3dstate_constant(struct gen_spec *spec, uint32_t *p)
{
int i, j, length;
uint32_t *dw;
float *f;
for (i = 0; i < 4; i++) {
length = (p[1 + i / 2] >> (i & 1) * 16) & 0xffff;
f = (float *) (gtt + p[3 + i * 2] + dynamic_state_base);
dw = (uint32_t *) f;
for (j = 0; j < length * 8; j++) {
if (probably_float(dw[j]))
printf(" %04.3f", f[j]);
else
printf(" 0x%08x", dw[j]);
if ((j & 7) == 7)
printf("\n");
}
}
}
static void
handle_3dstate_ps(struct gen_spec *spec, uint32_t *p)
{
uint32_t mask = ~((1 << 6) - 1);
uint64_t start;
struct brw_instruction *insns;
static const char unused[] = "unused";
static const char *pixel_type[3] = {"8 pixel", "16 pixel", "32 pixel"};
const char *k0, *k1, *k2;
uint32_t k_mask, k1_offset, k2_offset;
if (gen_spec_get_gen(spec) >= gen_make_gen(8, 0)) {
k_mask = p[6] & 7;
k1_offset = 8;
k2_offset = 10;
} else {
k_mask = p[4] & 7;
k1_offset = 6;
k2_offset = 7;
}
#define DISPATCH_8 1
#define DISPATCH_16 2
#define DISPATCH_32 4
switch (k_mask) {
case DISPATCH_8:
k0 = pixel_type[0];
k1 = unused;
k2 = unused;
break;
case DISPATCH_16:
k0 = pixel_type[1];
k1 = unused;
k2 = unused;
break;
case DISPATCH_8 | DISPATCH_16:
k0 = pixel_type[0];
k1 = unused;
k2 = pixel_type[1];
break;
case DISPATCH_32:
k0 = pixel_type[2];
k1 = unused;
k2 = unused;
break;
case DISPATCH_16 | DISPATCH_32:
k0 = unused;
k1 = pixel_type[2];
k2 = pixel_type[1];
break;
case DISPATCH_8 | DISPATCH_16 | DISPATCH_32:
k0 = pixel_type[0];
k1 = pixel_type[2];
k2 = pixel_type[1];
break;
default:
k0 = unused;
k1 = unused;
k2 = unused;
break;
}
start = instruction_base + (p[1] & mask);
printf(" Kernel[0] %s\n", k0);
if (k0 != unused) {
insns = (struct brw_instruction *) (gtt + start);
gen_disasm_disassemble(disasm, insns, 0, stdout);
}
start = instruction_base + (p[k1_offset] & mask);
printf(" Kernel[1] %s\n", k1);
if (k1 != unused) {
insns = (struct brw_instruction *) (gtt + start);
gen_disasm_disassemble(disasm, insns, 0, stdout);
}
start = instruction_base + (p[k2_offset] & mask);
printf(" Kernel[2] %s\n", k2);
if (k2 != unused) {
insns = (struct brw_instruction *) (gtt + start);
gen_disasm_disassemble(disasm, insns, 0, stdout);
}
}
static void
handle_3dstate_binding_table_pointers(struct gen_spec *spec, uint32_t *p)
{
dump_binding_table(spec, p[1]);
}
static void
handle_3dstate_sampler_state_pointers(struct gen_spec *spec, uint32_t *p)
{
dump_samplers(spec, p[1]);
}
static void
handle_3dstate_viewport_state_pointers_cc(struct gen_spec *spec, uint32_t *p)
{
uint64_t start;
struct gen_group *cc_viewport;
cc_viewport = gen_spec_find_struct(spec, "CC_VIEWPORT");
start = dynamic_state_base + (p[1] & ~0x1fu);
for (uint32_t i = 0; i < 4; i++) {
printf("viewport %d\n", i);
decode_structure(spec, cc_viewport, gtt + start + i * 8);
}
}
static void
handle_3dstate_viewport_state_pointers_sf_clip(struct gen_spec *spec,
uint32_t *p)
{
uint64_t start;
struct gen_group *sf_clip_viewport;
sf_clip_viewport = gen_spec_find_struct(spec, "SF_CLIP_VIEWPORT");
start = dynamic_state_base + (p[1] & ~0x3fu);
for (uint32_t i = 0; i < 4; i++) {
printf("viewport %d\n", i);
decode_structure(spec, sf_clip_viewport, gtt + start + i * 64);
}
}
static void
handle_3dstate_blend_state_pointers(struct gen_spec *spec, uint32_t *p)
{
uint64_t start;
struct gen_group *blend_state;
blend_state = gen_spec_find_struct(spec, "BLEND_STATE");
start = dynamic_state_base + (p[1] & ~0x3fu);
decode_structure(spec, blend_state, gtt + start);
}
static void
handle_3dstate_cc_state_pointers(struct gen_spec *spec, uint32_t *p)
{
uint64_t start;
struct gen_group *cc_state;
cc_state = gen_spec_find_struct(spec, "COLOR_CALC_STATE");
start = dynamic_state_base + (p[1] & ~0x3fu);
decode_structure(spec, cc_state, gtt + start);
}
static void
handle_3dstate_scissor_state_pointers(struct gen_spec *spec, uint32_t *p)
{
uint64_t start;
struct gen_group *scissor_rect;
scissor_rect = gen_spec_find_struct(spec, "SCISSOR_RECT");
start = dynamic_state_base + (p[1] & ~0x1fu);
decode_structure(spec, scissor_rect, gtt + start);
}
static void
handle_load_register_imm(struct gen_spec *spec, uint32_t *p)
{
struct gen_group *reg = gen_spec_find_register(spec, p[1]);
if (reg != NULL) {
printf("register %s (0x%x): 0x%x\n",
reg->name, reg->register_offset, p[2]);
decode_structure(spec, reg, &p[2]);
}
}
#define ARRAY_LENGTH(a) (sizeof (a) / sizeof (a)[0])
#define STATE_BASE_ADDRESS 0x61010000
#define MEDIA_INTERFACE_DESCRIPTOR_LOAD 0x70020000
#define _3DSTATE_INDEX_BUFFER 0x780a0000
#define _3DSTATE_VERTEX_BUFFERS 0x78080000
#define _3DSTATE_VS 0x78100000
#define _3DSTATE_GS 0x78110000
#define _3DSTATE_HS 0x781b0000
#define _3DSTATE_DS 0x781d0000
#define _3DSTATE_CONSTANT_VS 0x78150000
#define _3DSTATE_CONSTANT_GS 0x78160000
#define _3DSTATE_CONSTANT_PS 0x78170000
#define _3DSTATE_CONSTANT_HS 0x78190000
#define _3DSTATE_CONSTANT_DS 0x781A0000
#define _3DSTATE_PS 0x78200000
#define _3DSTATE_BINDING_TABLE_POINTERS_VS 0x78260000
#define _3DSTATE_BINDING_TABLE_POINTERS_HS 0x78270000
#define _3DSTATE_BINDING_TABLE_POINTERS_DS 0x78280000
#define _3DSTATE_BINDING_TABLE_POINTERS_GS 0x78290000
#define _3DSTATE_BINDING_TABLE_POINTERS_PS 0x782a0000
#define _3DSTATE_SAMPLER_STATE_POINTERS_VS 0x782b0000
#define _3DSTATE_SAMPLER_STATE_POINTERS_GS 0x782e0000
#define _3DSTATE_SAMPLER_STATE_POINTERS_PS 0x782f0000
#define _3DSTATE_VIEWPORT_STATE_POINTERS_CC 0x78230000
#define _3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP 0x78210000
#define _3DSTATE_BLEND_STATE_POINTERS 0x78240000
#define _3DSTATE_CC_STATE_POINTERS 0x780e0000
#define _3DSTATE_SCISSOR_STATE_POINTERS 0x780f0000
#define _MI_LOAD_REGISTER_IMM 0x11000000
struct custom_handler {
uint32_t opcode;
void (*handle)(struct gen_spec *spec, uint32_t *p);
} custom_handlers[] = {
{ STATE_BASE_ADDRESS, handle_state_base_address },
{ MEDIA_INTERFACE_DESCRIPTOR_LOAD, handle_media_interface_descriptor_load },
{ _3DSTATE_VERTEX_BUFFERS, handle_3dstate_vertex_buffers },
{ _3DSTATE_INDEX_BUFFER, handle_3dstate_index_buffer },
{ _3DSTATE_VS, handle_3dstate_vs },
{ _3DSTATE_GS, handle_3dstate_vs },
{ _3DSTATE_DS, handle_3dstate_vs },
{ _3DSTATE_HS, handle_3dstate_hs },
{ _3DSTATE_CONSTANT_VS, handle_3dstate_constant },
{ _3DSTATE_CONSTANT_GS, handle_3dstate_constant },
{ _3DSTATE_CONSTANT_PS, handle_3dstate_constant },
{ _3DSTATE_CONSTANT_HS, handle_3dstate_constant },
{ _3DSTATE_CONSTANT_DS, handle_3dstate_constant },
{ _3DSTATE_PS, handle_3dstate_ps },
{ _3DSTATE_BINDING_TABLE_POINTERS_VS, handle_3dstate_binding_table_pointers },
{ _3DSTATE_BINDING_TABLE_POINTERS_HS, handle_3dstate_binding_table_pointers },
{ _3DSTATE_BINDING_TABLE_POINTERS_DS, handle_3dstate_binding_table_pointers },
{ _3DSTATE_BINDING_TABLE_POINTERS_GS, handle_3dstate_binding_table_pointers },
{ _3DSTATE_BINDING_TABLE_POINTERS_PS, handle_3dstate_binding_table_pointers },
{ _3DSTATE_SAMPLER_STATE_POINTERS_VS, handle_3dstate_sampler_state_pointers },
{ _3DSTATE_SAMPLER_STATE_POINTERS_GS, handle_3dstate_sampler_state_pointers },
{ _3DSTATE_SAMPLER_STATE_POINTERS_PS, handle_3dstate_sampler_state_pointers },
{ _3DSTATE_VIEWPORT_STATE_POINTERS_CC, handle_3dstate_viewport_state_pointers_cc },
{ _3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, handle_3dstate_viewport_state_pointers_sf_clip },
{ _3DSTATE_BLEND_STATE_POINTERS, handle_3dstate_blend_state_pointers },
{ _3DSTATE_CC_STATE_POINTERS, handle_3dstate_cc_state_pointers },
{ _3DSTATE_SCISSOR_STATE_POINTERS, handle_3dstate_scissor_state_pointers },
{ _MI_LOAD_REGISTER_IMM, handle_load_register_imm }
};
static void
parse_commands(struct gen_spec *spec, uint32_t *cmds, int size, int engine)
{
uint32_t *p, *end = cmds + size / 4;
unsigned int length, i;
struct gen_group *inst;
for (p = cmds; p < end; p += length) {
inst = gen_spec_find_instruction(spec, p);
if (inst == NULL) {
printf("unknown instruction %08x\n", p[0]);
length = (p[0] & 0xff) + 2;
continue;
}
length = gen_group_get_length(inst, p);
const char *color, *reset_color = NORMAL;
uint64_t offset;
if (option_full_decode) {
if ((p[0] & 0xffff0000) == AUB_MI_BATCH_BUFFER_START ||
(p[0] & 0xffff0000) == AUB_MI_BATCH_BUFFER_END)
color = GREEN_HEADER;
else
color = BLUE_HEADER;
} else
color = NORMAL;
if (option_color == COLOR_NEVER) {
color = "";
reset_color = "";
}
if (option_print_offsets)
offset = (void *) p - gtt;
else
offset = 0;
printf("%s0x%08"PRIx64": 0x%08x: %-80s%s\n",
color, offset, p[0],
gen_group_get_name(inst), reset_color);
if (option_full_decode) {
struct gen_field_iterator iter;
char *token = NULL;
int idx = 0, dword_num = 0;
gen_field_iterator_init(&iter, inst, p,
option_color == COLOR_ALWAYS);
while (gen_field_iterator_next(&iter)) {
idx = 0;
print_dword_val(&iter, offset, &dword_num);
if (dword_num > 0)
token = print_iterator_values(&iter, &idx);
if (token != NULL) {
printf("0x%08"PRIx64": 0x%08x : Dword %d\n",
offset + 4 * idx, p[idx], idx);
handle_struct_decode(spec,token, &p[idx]);
token = NULL;
}
}
for (i = 0; i < ARRAY_LENGTH(custom_handlers); i++) {
if (gen_group_get_opcode(inst) ==
custom_handlers[i].opcode)
custom_handlers[i].handle(spec, p);
}
}
if ((p[0] & 0xffff0000) == AUB_MI_BATCH_BUFFER_START) {
uint64_t start = get_address(spec, &p[1]);
if (p[0] & (1 << 22)) {
/* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" set acts
* like a subroutine call. Commands that come afterwards get
* processed once the 2nd level batch buffer returns with
* MI_BATCH_BUFFER_END.
*/
parse_commands(spec, gtt + start, gtt_end - start, engine);
} else {
/* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" unset acts
* like a goto. Nothing after it will ever get processed. In
* order to prevent the recursion from growing, we just reset the
* loop and continue;
*/
p = gtt + start;
/* We don't know where secondaries end so use the GTT end */
end = gtt + gtt_end;
length = 0;
continue;
}
} else if ((p[0] & 0xffff0000) == AUB_MI_BATCH_BUFFER_END) {
break;
}
}
}
#define GEN_ENGINE_RENDER 1
#define GEN_ENGINE_BLITTER 2
static void
handle_trace_block(uint32_t *p)
{
int operation = p[1] & AUB_TRACE_OPERATION_MASK;
int type = p[1] & AUB_TRACE_TYPE_MASK;
int address_space = p[1] & AUB_TRACE_ADDRESS_SPACE_MASK;
uint64_t offset = p[3];
uint32_t size = p[4];
int header_length = p[0] & 0xffff;
uint32_t *data = p + header_length + 2;
int engine = GEN_ENGINE_RENDER;
if (gen_spec_get_gen(spec) >= gen_make_gen(8,0))
offset += (uint64_t) p[5] << 32;
switch (operation) {
case AUB_TRACE_OP_DATA_WRITE:
if (address_space != AUB_TRACE_MEMTYPE_GTT)
break;
if (gtt_size < offset + size) {
fprintf(stderr, "overflow gtt space: %s\n", strerror(errno));
exit(EXIT_FAILURE);
}
memcpy((char *) gtt + offset, data, size);
if (gtt_end < offset + size)
gtt_end = offset + size;
break;
case AUB_TRACE_OP_COMMAND_WRITE:
switch (type) {
case AUB_TRACE_TYPE_RING_PRB0:
engine = GEN_ENGINE_RENDER;
break;
case AUB_TRACE_TYPE_RING_PRB2:
engine = GEN_ENGINE_BLITTER;
break;
default:
printf("command write to unknown ring %d\n", type);
break;
}
parse_commands(spec, data, size, engine);
gtt_end = 0;
break;
}
}
static void
handle_trace_header(uint32_t *p)
{
/* The intel_aubdump tool from IGT is kind enough to put a PCI-ID= tag in
* the AUB header comment. If the user hasn't specified a hardware
* generation, try to use the one from the AUB file.
*/
uint32_t *end = p + (p[0] & 0xffff) + 2;
int aub_pci_id = 0;
if (end > &p[12] && p[12] > 0)
sscanf((char *)&p[13], "PCI-ID=%i", &aub_pci_id);
if (pci_id == 0)
pci_id = aub_pci_id;
struct gen_device_info devinfo;
if (!gen_get_device_info(pci_id, &devinfo)) {
fprintf(stderr, "can't find device information: pci_id=0x%x\n", pci_id);
exit(EXIT_FAILURE);
}
if (xml_path == NULL)
spec = gen_spec_load(&devinfo);
else
spec = gen_spec_load_from_path(&devinfo, xml_path);
disasm = gen_disasm_create(pci_id);
if (spec == NULL || disasm == NULL)
exit(EXIT_FAILURE);
printf("%sAubinator: Intel AUB file decoder.%-80s%s\n",
GREEN_HEADER, "", NORMAL);
if (input_file)
printf("File name: %s\n", input_file);
if (aub_pci_id)
printf("PCI ID: 0x%x\n", aub_pci_id);
char app_name[33];
strncpy(app_name, (char *)&p[2], 32);
app_name[32] = 0;
printf("Application name: %s\n", app_name);
printf("Decoding as: %s\n", gen_get_device_name(pci_id));
/* Throw in a new line before the first batch */
printf("\n");
}
struct aub_file {
FILE *stream;
uint32_t *map, *end, *cursor;
uint32_t *mem_end;
};
static struct aub_file *
aub_file_open(const char *filename)
{
struct aub_file *file;
struct stat sb;
int fd;
file = calloc(1, sizeof *file);
fd = open(filename, O_RDONLY);
if (fd == -1) {
fprintf(stderr, "open %s failed: %s\n", filename, strerror(errno));
exit(EXIT_FAILURE);
}
if (fstat(fd, &sb) == -1) {
fprintf(stderr, "stat failed: %s\n", strerror(errno));
exit(EXIT_FAILURE);
}
file->map = mmap(NULL, sb.st_size,
PROT_READ, MAP_SHARED, fd, 0);
if (file->map == MAP_FAILED) {
fprintf(stderr, "mmap failed: %s\n", strerror(errno));
exit(EXIT_FAILURE);
}
file->cursor = file->map;
file->end = file->map + sb.st_size / 4;
return file;
}
static struct aub_file *
aub_file_stdin(void)
{
struct aub_file *file;
file = calloc(1, sizeof *file);
file->stream = stdin;
return file;
}
#define TYPE(dw) (((dw) >> 29) & 7)
#define OPCODE(dw) (((dw) >> 23) & 0x3f)
#define SUBOPCODE(dw) (((dw) >> 16) & 0x7f)
#define MAKE_HEADER(type, opcode, subopcode) \
(((type) << 29) | ((opcode) << 23) | ((subopcode) << 16))
#define TYPE_AUB 0x7
/* Classic AUB opcodes */
#define OPCODE_AUB 0x01
#define SUBOPCODE_HEADER 0x05
#define SUBOPCODE_BLOCK 0x41
#define SUBOPCODE_BMP 0x1e
/* Newer version AUB opcode */
#define OPCODE_NEW_AUB 0x2e
#define SUBOPCODE_VERSION 0x00
#define SUBOPCODE_REG_WRITE 0x03
#define SUBOPCODE_MEM_POLL 0x05
#define SUBOPCODE_MEM_WRITE 0x06
#define MAKE_GEN(major, minor) ( ((major) << 8) | (minor) )
struct {
const char *name;
uint32_t gen;
} device_map[] = {
{ "bwr", MAKE_GEN(4, 0) },
{ "cln", MAKE_GEN(4, 0) },
{ "blc", MAKE_GEN(4, 0) },
{ "ctg", MAKE_GEN(4, 0) },
{ "el", MAKE_GEN(4, 0) },
{ "il", MAKE_GEN(4, 0) },
{ "sbr", MAKE_GEN(6, 0) },
{ "ivb", MAKE_GEN(7, 0) },
{ "lrb2", MAKE_GEN(0, 0) },
{ "hsw", MAKE_GEN(7, 5) },
{ "vlv", MAKE_GEN(7, 0) },
{ "bdw", MAKE_GEN(8, 0) },
{ "skl", MAKE_GEN(9, 0) },
{ "chv", MAKE_GEN(8, 0) },
{ "bxt", MAKE_GEN(9, 0) }
};
enum {
AUB_ITEM_DECODE_OK,
AUB_ITEM_DECODE_FAILED,
AUB_ITEM_DECODE_NEED_MORE_DATA,
};
static int
aub_file_decode_batch(struct aub_file *file)
{
uint32_t *p, h, device, data_type, *new_cursor;
int header_length, bias;
if (file->end - file->cursor < 1)
return AUB_ITEM_DECODE_NEED_MORE_DATA;
p = file->cursor;
h = *p;
header_length = h & 0xffff;
switch (OPCODE(h)) {
case OPCODE_AUB:
bias = 2;
break;
case OPCODE_NEW_AUB:
bias = 1;
break;
default:
printf("unknown opcode %d at %td/%td\n",
OPCODE(h), file->cursor - file->map,
file->end - file->map);
return AUB_ITEM_DECODE_FAILED;
}
new_cursor = p + header_length + bias;
if ((h & 0xffff0000) == MAKE_HEADER(TYPE_AUB, OPCODE_AUB, SUBOPCODE_BLOCK)) {
if (file->end - file->cursor < 4)
return AUB_ITEM_DECODE_NEED_MORE_DATA;
new_cursor += p[4] / 4;
}
if (new_cursor > file->end)
return AUB_ITEM_DECODE_NEED_MORE_DATA;
switch (h & 0xffff0000) {
case MAKE_HEADER(TYPE_AUB, OPCODE_AUB, SUBOPCODE_HEADER):
handle_trace_header(p);
break;
case MAKE_HEADER(TYPE_AUB, OPCODE_AUB, SUBOPCODE_BLOCK):
handle_trace_block(p);
break;
case MAKE_HEADER(TYPE_AUB, OPCODE_AUB, SUBOPCODE_BMP):
break;
case MAKE_HEADER(TYPE_AUB, OPCODE_NEW_AUB, SUBOPCODE_VERSION):
printf("version block: dw1 %08x\n", p[1]);
device = (p[1] >> 8) & 0xff;
printf(" device %s\n", device_map[device].name);
break;
case MAKE_HEADER(TYPE_AUB, OPCODE_NEW_AUB, SUBOPCODE_REG_WRITE):
printf("register write block: (dwords %d)\n", h & 0xffff);
printf(" reg 0x%x, data 0x%x\n", p[1], p[5]);
break;
case MAKE_HEADER(TYPE_AUB, OPCODE_NEW_AUB, SUBOPCODE_MEM_WRITE):
printf("memory write block (dwords %d):\n", h & 0xffff);
printf(" address 0x%"PRIx64"\n", *(uint64_t *) &p[1]);
data_type = (p[3] >> 20) & 0xff;
if (data_type != 0)
printf(" data type 0x%x\n", data_type);
printf(" address space 0x%x\n", (p[3] >> 28) & 0xf);
break;
case MAKE_HEADER(TYPE_AUB, OPCODE_NEW_AUB, SUBOPCODE_MEM_POLL):
printf("memory poll block (dwords %d):\n", h & 0xffff);
break;
default:
printf("unknown block type=0x%x, opcode=0x%x, "
"subopcode=0x%x (%08x)\n", TYPE(h), OPCODE(h), SUBOPCODE(h), h);
break;
}
file->cursor = new_cursor;
return AUB_ITEM_DECODE_OK;
}
static int
aub_file_more_stuff(struct aub_file *file)
{
return file->cursor < file->end || (file->stream && !feof(file->stream));
}
#define AUB_READ_BUFFER_SIZE (4096)
#define MAX(a, b) ((a) < (b) ? (b) : (a))
static void
aub_file_data_grow(struct aub_file *file)
{
size_t old_size = (file->mem_end - file->map) * 4;
size_t new_size = MAX(old_size * 2, AUB_READ_BUFFER_SIZE);
uint32_t *new_start = realloc(file->map, new_size);
file->cursor = new_start + (file->cursor - file->map);
file->end = new_start + (file->end - file->map);
file->map = new_start;
file->mem_end = file->map + (new_size / 4);
}
static bool
aub_file_data_load(struct aub_file *file)
{
size_t r;
if (file->stream == NULL)
return false;
/* First remove any consumed data */
if (file->cursor > file->map) {
memmove(file->map, file->cursor,
(file->end - file->cursor) * 4);
file->end -= file->cursor - file->map;
file->cursor = file->map;
}
/* Then load some new data in */
if ((file->mem_end - file->end) < (AUB_READ_BUFFER_SIZE / 4))
aub_file_data_grow(file);
r = fread(file->end, 1, (file->mem_end - file->end) * 4, file->stream);
file->end += r / 4;
return r != 0;
}
static void
setup_pager(void)
{
int fds[2];
pid_t pid;
if (!isatty(1))
return;
if (pipe(fds) == -1)
return;
pid = fork();
if (pid == -1)
return;
if (pid == 0) {
close(fds[1]);
dup2(fds[0], 0);
execlp("less", "less", "-FRSi", NULL);
}
close(fds[0]);
dup2(fds[1], 1);
close(fds[1]);
}
static void
print_help(const char *progname, FILE *file)
{
fprintf(file,
"Usage: %s [OPTION]... [FILE]\n"
"Decode aub file contents from either FILE or the standard input.\n\n"
"A valid --gen option must be provided.\n\n"
" --help display this help and exit\n"
" --gen=platform decode for given platform (ivb, byt, hsw, bdw, chv, skl, kbl or bxt)\n"
" --headers decode only command headers\n"
" --color[=WHEN] colorize the output; WHEN can be 'auto' (default\n"
" if omitted), 'always', or 'never'\n"
" --no-pager don't launch pager\n"
" --no-offsets don't print instruction offsets\n"
" --xml=DIR load hardware xml description from directory DIR\n",
progname);
}
int main(int argc, char *argv[])
{
struct aub_file *file;
int c, i;
bool help = false, pager = true;
const struct {
const char *name;
int pci_id;
} gens[] = {
{ "ivb", 0x0166 }, /* Intel(R) Ivybridge Mobile GT2 */
{ "hsw", 0x0416 }, /* Intel(R) Haswell Mobile GT2 */
{ "byt", 0x0155 }, /* Intel(R) Bay Trail */
{ "bdw", 0x1616 }, /* Intel(R) HD Graphics 5500 (Broadwell GT2) */
{ "chv", 0x22B3 }, /* Intel(R) HD Graphics (Cherryview) */
{ "skl", 0x1912 }, /* Intel(R) HD Graphics 530 (Skylake GT2) */
{ "kbl", 0x591D }, /* Intel(R) Kabylake GT2 */
{ "bxt", 0x0A84 } /* Intel(R) HD Graphics (Broxton) */
};
const struct option aubinator_opts[] = {
{ "help", no_argument, (int *) &help, true },
{ "no-pager", no_argument, (int *) &pager, false },
{ "no-offsets", no_argument, (int *) &option_print_offsets, false },
{ "gen", required_argument, NULL, 'g' },
{ "headers", no_argument, (int *) &option_full_decode, false },
{ "color", required_argument, NULL, 'c' },
{ "xml", required_argument, NULL, 'x' },
{ NULL, 0, NULL, 0 }
};
i = 0;
while ((c = getopt_long(argc, argv, "", aubinator_opts, &i)) != -1) {
switch (c) {
case 'g':
for (i = 0; i < ARRAY_SIZE(gens); i++) {
if (!strcmp(optarg, gens[i].name)) {
pci_id = gens[i].pci_id;
break;
}
}
if (i == ARRAY_SIZE(gens)) {
fprintf(stderr, "can't parse gen: '%s', expected ivb, byt, hsw, "
"bdw, chv, skl, kbl or bxt\n", optarg);
exit(EXIT_FAILURE);
}
break;
case 'c':
if (optarg == NULL || strcmp(optarg, "always") == 0)
option_color = COLOR_ALWAYS;
else if (strcmp(optarg, "never") == 0)
option_color = COLOR_NEVER;
else if (strcmp(optarg, "auto") == 0)
option_color = COLOR_AUTO;
else {
fprintf(stderr, "invalid value for --color: %s", optarg);
exit(EXIT_FAILURE);
}
break;
case 'x':
xml_path = strdup(optarg);
break;
default:
break;
}
}
if (help || argc == 1) {
print_help(argv[0], stderr);
exit(0);
}
if (optind < argc)
input_file = argv[optind];
/* Do this before we redirect stdout to pager. */
if (option_color == COLOR_AUTO)
option_color = isatty(1) ? COLOR_ALWAYS : COLOR_NEVER;
if (isatty(1) && pager)
setup_pager();
if (input_file == NULL)
file = aub_file_stdin();
else
file = aub_file_open(input_file);
/* mmap a terabyte for our gtt space. */
gtt_size = 1ull << 40;
gtt = mmap(NULL, gtt_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0);
if (gtt == MAP_FAILED) {
fprintf(stderr, "failed to alloc gtt space: %s\n", strerror(errno));
exit(EXIT_FAILURE);
}
while (aub_file_more_stuff(file)) {
switch (aub_file_decode_batch(file)) {
case AUB_ITEM_DECODE_OK:
break;
case AUB_ITEM_DECODE_NEED_MORE_DATA:
if (!file->stream) {
file->cursor = file->end;
break;
}
if (aub_file_more_stuff(file) && !aub_file_data_load(file)) {
fprintf(stderr, "failed to load data from stdin\n");
exit(EXIT_FAILURE);
}
break;
default:
fprintf(stderr, "failed to parse aubdump data\n");
exit(EXIT_FAILURE);
}
}
fflush(stdout);
/* close the stdout which is opened to write the output */
close(1);
free(xml_path);
wait(NULL);
return EXIT_SUCCESS;
}