blob: b58696967910744c249dd8fc6467383d9f0e99e9 [file] [log] [blame]
/*
* Copyright (C) 2020 Collabora Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors (Collabora):
* Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
*/
#include "compiler.h"
#include "bi_print.h"
#include "panfrost/util/lcra.h"
#include "util/u_memory.h"
static void
bi_compute_interference(bi_context *ctx, struct lcra_state *l)
{
bi_compute_liveness(ctx);
bi_foreach_block(ctx, _blk) {
bi_block *blk = (bi_block *) _blk;
uint16_t *live = mem_dup(_blk->live_out, l->node_count * sizeof(uint16_t));
bi_foreach_instr_in_block_rev(blk, ins) {
/* Mark all registers live after the instruction as
* interfering with the destination */
if (ins->dest && (ins->dest < l->node_count)) {
for (unsigned i = 1; i < l->node_count; ++i) {
if (live[i])
lcra_add_node_interference(l, ins->dest, bi_writemask(ins), i, live[i]);
}
}
/* Update live_in */
bi_liveness_ins_update(live, ins, l->node_count);
}
free(live);
}
}
enum {
BI_REG_CLASS_WORK = 0,
} bi_reg_class;
static struct lcra_state *
bi_allocate_registers(bi_context *ctx, bool *success)
{
unsigned node_count = bi_max_temp(ctx);
struct lcra_state *l =
lcra_alloc_equations(node_count, 1);
if (ctx->is_blend) {
/* R0-R3 are reserved for the blend input */
l->class_start[BI_REG_CLASS_WORK] = 4 * 4;
l->class_size[BI_REG_CLASS_WORK] = 64 * 4;
} else {
/* R0 - R63, all 32-bit */
l->class_start[BI_REG_CLASS_WORK] = 0;
l->class_size[BI_REG_CLASS_WORK] = 64 * 4;
}
bi_foreach_instr_global(ctx, ins) {
unsigned dest = ins->dest;
if (!dest || (dest >= node_count))
continue;
l->class[dest] = BI_REG_CLASS_WORK;
lcra_set_alignment(l, dest, 2, 16); /* 2^2 = 4 */
lcra_restrict_range(l, dest, 4);
}
bi_compute_interference(ctx, l);
*success = lcra_solve(l);
return l;
}
static unsigned
bi_reg_from_index(struct lcra_state *l, unsigned index, unsigned offset)
{
/* Did we run RA for this index at all */
if (index >= l->node_count)
return index;
/* LCRA didn't bother solving this index (how lazy!) */
signed solution = l->solutions[index];
if (solution < 0)
return index;
assert((solution & 0x3) == 0);
unsigned reg = solution / 4;
reg += offset;
return BIR_INDEX_REGISTER | reg;
}
static void
bi_adjust_src_ra(bi_instruction *ins, struct lcra_state *l, unsigned src)
{
if (ins->src[src] >= l->node_count)
return;
bool vector = (bi_class_props[ins->type] & BI_VECTOR) && src == 0;
unsigned offset = 0;
if (vector) {
/* TODO: Do we do anything here? */
} else {
/* Use the swizzle as component select */
unsigned components = bi_get_component_count(ins, src);
nir_alu_type T = ins->src_types[src];
unsigned size = nir_alu_type_get_type_size(T);
/* TODO: 64-bit? */
unsigned components_per_word = MAX2(32 / size, 1);
for (unsigned i = 0; i < components; ++i) {
unsigned off = ins->swizzle[src][i] / components_per_word;
/* We can't cross register boundaries in a swizzle */
if (i == 0)
offset = off;
else
assert(off == offset);
ins->swizzle[src][i] %= components_per_word;
}
}
ins->src[src] = bi_reg_from_index(l, ins->src[src], offset);
}
static void
bi_adjust_dest_ra(bi_instruction *ins, struct lcra_state *l)
{
if (ins->dest >= l->node_count)
return;
ins->dest = bi_reg_from_index(l, ins->dest, ins->dest_offset);
ins->dest_offset = 0;
}
static void
bi_install_registers(bi_context *ctx, struct lcra_state *l)
{
bi_foreach_instr_global(ctx, ins) {
bi_adjust_dest_ra(ins, l);
bi_foreach_src(ins, s)
bi_adjust_src_ra(ins, l, s);
}
}
static void
bi_rewrite_index_src_single(bi_instruction *ins, unsigned old, unsigned new)
{
bi_foreach_src(ins, i) {
if (ins->src[i] == old)
ins->src[i] = new;
}
}
static bi_instruction
bi_spill(unsigned node, uint64_t offset, unsigned channels)
{
bi_instruction store = {
.type = BI_STORE,
.segment = BI_SEGMENT_TLS,
.vector_channels = channels,
.src = {
node,
BIR_INDEX_CONSTANT,
BIR_INDEX_CONSTANT | 32,
},
.src_types = {
nir_type_uint32,
nir_type_uint32,
nir_type_uint32
},
.constant = { .u64 = offset },
};
return store;
}
static bi_instruction
bi_fill(unsigned node, uint64_t offset, unsigned channels)
{
bi_instruction load = {
.type = BI_LOAD,
.segment = BI_SEGMENT_TLS,
.vector_channels = channels,
.dest = node,
.dest_type = nir_type_uint32,
.src = {
BIR_INDEX_CONSTANT,
BIR_INDEX_CONSTANT | 32,
},
.src_types = {
nir_type_uint32,
nir_type_uint32
},
.constant = { .u64 = offset },
};
return load;
}
/* Get the single instruction in a singleton clause. Precondition: clause
* contains exactly 1 instruction.
*
* More complex scheduling implies tougher constraints on spilling. We'll cross
* that bridge when we get to it. For now, just grab the one and only
* instruction in the clause */
static bi_instruction *
bi_unwrap_singleton(bi_clause *clause)
{
assert(clause->bundle_count == 1);
assert((clause->bundles[0].fma != NULL) ^ (clause->bundles[0].add != NULL));
return clause->bundles[0].fma ? clause->bundles[0].fma
: clause->bundles[0].add;
}
static inline void
bi_insert_singleton(void *memctx, bi_clause *cursor, bi_block *block,
bi_instruction ins, bool before)
{
bi_instruction *uins = rzalloc(memctx, bi_instruction);
memcpy(uins, &ins, sizeof(ins));
/* Get the instruction to pivot around. Should be first/last of clause
* depending on before setting, those coincide for singletons */
bi_instruction *cursor_ins = bi_unwrap_singleton(cursor);
bi_clause *clause = bi_make_singleton(memctx, uins,
block, 0, (1 << 0), true);
if (before) {
list_addtail(&clause->link, &cursor->link);
list_addtail(&uins->link, &cursor_ins->link);
} else {
list_add(&clause->link, &cursor->link);
list_add(&uins->link, &cursor_ins->link);
}
}
/* If register allocation fails, find the best spill node */
static signed
bi_choose_spill_node(bi_context *ctx, struct lcra_state *l)
{
/* Pick a node satisfying bi_spill_register's preconditions */
bi_foreach_instr_global(ctx, ins) {
if (ins->no_spill)
lcra_set_node_spill_cost(l, ins->dest, -1);
}
for (unsigned i = PAN_IS_REG; i < l->node_count; i += 2)
lcra_set_node_spill_cost(l, i, -1);
return lcra_get_best_spill_node(l);
}
/* Once we've chosen a spill node, spill it. Precondition: node is a valid
* SSA node in the non-optimized scheduled IR that was not already
* spilled (enforced by bi_choose_spill_node). Returns bytes spilled */
static unsigned
bi_spill_register(bi_context *ctx, unsigned node, unsigned offset)
{
assert(!(node & PAN_IS_REG));
unsigned channels = 1;
/* Spill after every store */
bi_foreach_block(ctx, _block) {
bi_block *block = (bi_block *) _block;
bi_foreach_clause_in_block_safe(block, clause) {
bi_instruction *ins = bi_unwrap_singleton(clause);
if (ins->dest != node) continue;
ins->dest = bi_make_temp(ctx);
ins->no_spill = true;
channels = MAX2(channels, ins->vector_channels);
bi_instruction st = bi_spill(ins->dest, offset, channels);
bi_insert_singleton(ctx, clause, block, st, false);
ctx->spills++;
}
}
/* Fill before every use */
bi_foreach_block(ctx, _block) {
bi_block *block = (bi_block *) _block;
bi_foreach_clause_in_block_safe(block, clause) {
bi_instruction *ins = bi_unwrap_singleton(clause);
if (!bi_has_arg(ins, node)) continue;
/* Don't rewrite spills themselves */
if (ins->segment == BI_SEGMENT_TLS) continue;
unsigned index = bi_make_temp(ctx);
bi_instruction ld = bi_fill(index, offset, channels);
ld.no_spill = true;
bi_insert_singleton(ctx, clause, block, ld, true);
/* Rewrite to use */
bi_rewrite_index_src_single(ins, node, index);
ctx->fills++;
}
}
return (channels * 4);
}
void
bi_register_allocate(bi_context *ctx)
{
struct lcra_state *l = NULL;
bool success = false;
unsigned iter_count = 100; /* max iterations */
/* Number of bytes of memory we've spilled into */
unsigned spill_count = 0;
/* For instructions that both read and write from a data register, it's
* the *same* data register. We enforce that constraint by just doing a
* quick rewrite. TODO: are there cases where this causes RA to have no
* solutions due to copyprop? */
bi_foreach_instr_global(ctx, ins) {
unsigned props = bi_class_props[ins->type];
unsigned both = BI_DATA_REG_SRC | BI_DATA_REG_DEST;
if ((props & both) != both) continue;
bi_rewrite_uses(ctx, ins->dest, 0, ins->src[0], 0);
ins->dest = ins->src[0];
}
do {
if (l) {
signed spill_node = bi_choose_spill_node(ctx, l);
lcra_free(l);
l = NULL;
if (spill_node == -1)
unreachable("Failed to choose spill node\n");
spill_count += bi_spill_register(ctx, spill_node, spill_count);
}
bi_invalidate_liveness(ctx);
l = bi_allocate_registers(ctx, &success);
} while(!success && ((iter_count--) > 0));
assert(success);
bi_install_registers(ctx, l);
lcra_free(l);
}