blob: 3d8343007e979e63634b48b369470bf098561864 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include "anv_private.h"
#include "anv_measure.h"
#include "vk_render_pass.h"
#include "vk_util.h"
#include "util/format_srgb.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
#include "ds/intel_tracepoints.h"
#include "genX_mi_builder.h"
#include "genX_cmd_draw_generated_flush.h"
static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
uint32_t pipeline);
static enum anv_pipe_bits
convert_pc_to_bits(struct GENX(PIPE_CONTROL) *pc) {
enum anv_pipe_bits bits = 0;
bits |= (pc->DepthCacheFlushEnable) ? ANV_PIPE_DEPTH_CACHE_FLUSH_BIT : 0;
bits |= (pc->DCFlushEnable) ? ANV_PIPE_DATA_CACHE_FLUSH_BIT : 0;
#if GFX_VERx10 >= 125
bits |= (pc->PSSStallSyncEnable) ? ANV_PIPE_PSS_STALL_SYNC_BIT : 0;
#endif
#if GFX_VER == 12
bits |= (pc->TileCacheFlushEnable) ? ANV_PIPE_TILE_CACHE_FLUSH_BIT : 0;
bits |= (pc->L3FabricFlush) ? ANV_PIPE_L3_FABRIC_FLUSH_BIT : 0;
#endif
#if GFX_VER >= 12
bits |= (pc->HDCPipelineFlushEnable) ? ANV_PIPE_HDC_PIPELINE_FLUSH_BIT : 0;
#endif
bits |= (pc->RenderTargetCacheFlushEnable) ? ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT : 0;
bits |= (pc->VFCacheInvalidationEnable) ? ANV_PIPE_VF_CACHE_INVALIDATE_BIT : 0;
bits |= (pc->StateCacheInvalidationEnable) ? ANV_PIPE_STATE_CACHE_INVALIDATE_BIT : 0;
bits |= (pc->ConstantCacheInvalidationEnable) ? ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT : 0;
bits |= (pc->TextureCacheInvalidationEnable) ? ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT : 0;
bits |= (pc->InstructionCacheInvalidateEnable) ? ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT : 0;
bits |= (pc->StallAtPixelScoreboard) ? ANV_PIPE_STALL_AT_SCOREBOARD_BIT : 0;
bits |= (pc->DepthStallEnable) ? ANV_PIPE_DEPTH_STALL_BIT : 0;
bits |= (pc->CommandStreamerStallEnable) ? ANV_PIPE_CS_STALL_BIT : 0;
#if GFX_VERx10 >= 125
bits |= (pc->UntypedDataPortCacheFlushEnable) ? ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT : 0;
bits |= (pc->CCSFlushEnable) ? ANV_PIPE_CCS_CACHE_FLUSH_BIT : 0;
#endif
return bits;
}
#define anv_debug_dump_pc(pc, reason) \
if (INTEL_DEBUG(DEBUG_PIPE_CONTROL)) { \
fputs("pc : emit PC=( ", stdout); \
anv_dump_pipe_bits(convert_pc_to_bits(&(pc)), stdout); \
fprintf(stdout, ") reason: %s\n", reason); \
}
static inline void
fill_state_base_addr(struct anv_cmd_buffer *cmd_buffer,
struct GENX(STATE_BASE_ADDRESS) *sba)
{
struct anv_device *device = cmd_buffer->device;
const uint32_t mocs = isl_mocs(&device->isl_dev, 0, false);
/* If no API entry point selected the current mode (this can happen if the
* first operation in the command buffer is a , select BUFFER if
* EXT_descriptor_buffer is enabled, otherwise LEGACY.
*/
if (cmd_buffer->state.pending_db_mode ==
ANV_CMD_DESCRIPTOR_BUFFER_MODE_UNKNOWN) {
cmd_buffer->state.pending_db_mode =
cmd_buffer->device->vk.enabled_extensions.EXT_descriptor_buffer ?
ANV_CMD_DESCRIPTOR_BUFFER_MODE_BUFFER :
ANV_CMD_DESCRIPTOR_BUFFER_MODE_LEGACY;
}
*sba = (struct GENX(STATE_BASE_ADDRESS)) { GENX(STATE_BASE_ADDRESS_header), };
sba->GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
sba->GeneralStateMOCS = mocs;
sba->GeneralStateBufferSize = DIV_ROUND_UP(
device->physical->va.first_2mb.size +
device->physical->va.general_state_pool.size +
device->physical->va.low_heap.size, 4096);
sba->GeneralStateBaseAddressModifyEnable = true;
sba->GeneralStateBufferSizeModifyEnable = true;
#if GFX_VERx10 == 120
/* Since DG2, scratch surfaces have their own surface state with its own
* MOCS setting, but prior to that, the MOCS for scratch accesses are
* governed by SBA.StatelessDataPortAccessMOCS.
*/
const isl_surf_usage_flags_t protected_usage =
cmd_buffer->vk.pool->flags & VK_COMMAND_POOL_CREATE_PROTECTED_BIT ?
ISL_SURF_USAGE_PROTECTED_BIT : 0;
const uint32_t stateless_mocs = isl_mocs(&device->isl_dev, protected_usage, false);
#else
const uint32_t stateless_mocs = mocs;
#endif
sba->StatelessDataPortAccessMOCS = stateless_mocs;
#if GFX_VERx10 >= 125
sba->SurfaceStateBaseAddress =
(struct anv_address) { .offset =
device->physical->va.internal_surface_state_pool.addr,
};
#else
sba->SurfaceStateBaseAddress =
anv_cmd_buffer_surface_base_address(cmd_buffer);
#endif
sba->SurfaceStateMOCS = mocs;
sba->SurfaceStateBaseAddressModifyEnable = true;
sba->IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
sba->IndirectObjectMOCS = mocs;
sba->IndirectObjectBufferSize = 0xfffff;
sba->IndirectObjectBaseAddressModifyEnable = true;
sba->IndirectObjectBufferSizeModifyEnable = true;
sba->InstructionBaseAddress =
(struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
sba->InstructionMOCS = mocs;
sba->InstructionBufferSize =
device->physical->va.instruction_state_pool.size / 4096;
sba->InstructionBaseAddressModifyEnable = true;
sba->InstructionBuffersizeModifyEnable = true;
#if GFX_VER >= 11
sba->BindlessSamplerStateBaseAddress = ANV_NULL_ADDRESS;
sba->BindlessSamplerStateBufferSize = 0;
sba->BindlessSamplerStateMOCS = mocs;
sba->BindlessSamplerStateBaseAddressModifyEnable = true;
#endif
sba->DynamicStateBaseAddress = (struct anv_address) {
.offset = device->physical->va.dynamic_state_pool.addr,
};
sba->DynamicStateBufferSize =
(device->physical->va.dynamic_state_pool.size +
device->physical->va.dynamic_visible_pool.size +
device->physical->va.push_descriptor_buffer_pool.size) / 4096;
sba->DynamicStateMOCS = mocs;
sba->DynamicStateBaseAddressModifyEnable = true;
sba->DynamicStateBufferSizeModifyEnable = true;
if (cmd_buffer->state.pending_db_mode == ANV_CMD_DESCRIPTOR_BUFFER_MODE_BUFFER) {
#if GFX_VERx10 >= 125
sba->BindlessSurfaceStateBaseAddress = (struct anv_address) {
.offset = device->physical->va.dynamic_visible_pool.addr,
};
sba->BindlessSurfaceStateSize =
(device->physical->va.dynamic_visible_pool.size +
device->physical->va.push_descriptor_buffer_pool.size) - 1;
sba->BindlessSurfaceStateMOCS = mocs;
sba->BindlessSurfaceStateBaseAddressModifyEnable = true;
#else
/* We report descriptorBufferOffsetAlignment = 64, but
* STATE_BASE_ADDRESS::BindlessSurfaceStateBaseAddress needs to be
* aligned to 4096. Round down to 4096 here and add the remaining to the
* push constants descriptor set offsets in
* compute_descriptor_set_surface_offset().
*/
const uint64_t surfaces_addr =
ROUND_DOWN_TO(
cmd_buffer->state.descriptor_buffers.surfaces_address != 0 ?
cmd_buffer->state.descriptor_buffers.surfaces_address :
anv_address_physical(device->workaround_address),
4096);
const uint64_t surfaces_size =
cmd_buffer->state.descriptor_buffers.surfaces_address != 0 ?
MIN2(device->physical->va.dynamic_visible_pool.size -
(surfaces_addr - device->physical->va.dynamic_visible_pool.addr),
anv_physical_device_bindless_heap_size(device->physical, true)) :
(device->workaround_bo->size - device->workaround_address.offset);
sba->BindlessSurfaceStateBaseAddress = (struct anv_address) {
.offset = surfaces_addr,
};
sba->BindlessSurfaceStateSize = surfaces_size / ANV_SURFACE_STATE_SIZE - 1;
sba->BindlessSurfaceStateMOCS = mocs;
sba->BindlessSurfaceStateBaseAddressModifyEnable = true;
#endif /* GFX_VERx10 < 125 */
} else if (!device->physical->indirect_descriptors) {
#if GFX_VERx10 >= 125
sba->BindlessSurfaceStateBaseAddress = (struct anv_address) {
.offset = device->physical->va.internal_surface_state_pool.addr,
};
sba->BindlessSurfaceStateSize =
(device->physical->va.internal_surface_state_pool.size +
device->physical->va.bindless_surface_state_pool.size) - 1;
sba->BindlessSurfaceStateMOCS = mocs;
sba->BindlessSurfaceStateBaseAddressModifyEnable = true;
#else
unreachable("Direct descriptor not supported");
#endif
} else {
sba->BindlessSurfaceStateBaseAddress =
(struct anv_address) { .offset =
device->physical->va.bindless_surface_state_pool.addr,
};
sba->BindlessSurfaceStateSize =
anv_physical_device_bindless_heap_size(device->physical, false) /
ANV_SURFACE_STATE_SIZE - 1;
sba->BindlessSurfaceStateMOCS = mocs;
sba->BindlessSurfaceStateBaseAddressModifyEnable = true;
}
#if GFX_VERx10 >= 125
sba->L1CacheControl = L1CC_WB;
#endif
}
void
genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
{
if (anv_cmd_buffer_is_blitter_queue(cmd_buffer) ||
anv_cmd_buffer_is_video_queue(cmd_buffer))
return;
struct anv_device *device = cmd_buffer->device;
struct GENX(STATE_BASE_ADDRESS) sba = {};
fill_state_base_addr(cmd_buffer, &sba);
#if GFX_VERx10 >= 125
struct mi_builder b;
mi_builder_init(&b, device->info, &cmd_buffer->batch);
mi_builder_set_mocs(&b, isl_mocs(&device->isl_dev, 0, false));
struct mi_goto_target t = MI_GOTO_TARGET_INIT;
mi_goto_if(&b,
mi_ieq(&b, mi_reg64(ANV_BINDLESS_SURFACE_BASE_ADDR_REG),
mi_imm(sba.BindlessSurfaceStateBaseAddress.offset)),
&t);
#endif
/* Emit a render target cache flush.
*
* This isn't documented anywhere in the PRM. However, it seems to be
* necessary prior to changing the surface state base address. Without
* this, we get GPU hangs when using multi-level command buffers which
* clear depth, reset state base address, and then go render stuff.
*
* Render target cache flush before SBA is required by Wa_18039438632.
*/
genx_batch_emit_pipe_control(&cmd_buffer->batch, device->info,
cmd_buffer->state.current_pipeline,
#if GFX_VER >= 12
ANV_PIPE_HDC_PIPELINE_FLUSH_BIT |
#else
ANV_PIPE_DATA_CACHE_FLUSH_BIT |
#endif
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_CS_STALL_BIT);
#if INTEL_NEEDS_WA_1607854226
/* Wa_1607854226:
*
* Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
* mode by putting the pipeline temporarily in 3D mode.
*/
uint32_t gfx12_wa_pipeline = cmd_buffer->state.current_pipeline;
genX(flush_pipeline_select_3d)(cmd_buffer);
#endif
anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), _sba) {
_sba = sba;
}
if (cmd_buffer->state.current_db_mode != cmd_buffer->state.pending_db_mode)
cmd_buffer->state.current_db_mode = cmd_buffer->state.pending_db_mode;
#if INTEL_NEEDS_WA_1607854226
/* Wa_1607854226:
*
* Put the pipeline back into its current mode.
*/
if (gfx12_wa_pipeline != UINT32_MAX)
genX(flush_pipeline_select)(cmd_buffer, gfx12_wa_pipeline);
#endif
/* After re-setting the surface state base address, we have to do some
* cache flushing so that the sampler engine will pick up the new
* SURFACE_STATE objects and binding tables. From the Broadwell PRM,
* Shared Function > 3D Sampler > State > State Caching (page 96):
*
* Coherency with system memory in the state cache, like the texture
* cache is handled partially by software. It is expected that the
* command stream or shader will issue Cache Flush operation or
* Cache_Flush sampler message to ensure that the L1 cache remains
* coherent with system memory.
*
* [...]
*
* Whenever the value of the Dynamic_State_Base_Addr,
* Surface_State_Base_Addr are altered, the L1 state cache must be
* invalidated to ensure the new surface or sampler state is fetched
* from system memory.
*
* The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
* which, according the PIPE_CONTROL instruction documentation in the
* Broadwell PRM:
*
* Setting this bit is independent of any other bit in this packet.
* This bit controls the invalidation of the L1 and L2 state caches
* at the top of the pipe i.e. at the parsing time.
*
* Unfortunately, experimentation seems to indicate that state cache
* invalidation through a PIPE_CONTROL does nothing whatsoever in
* regards to surface state and binding tables. In stead, it seems that
* invalidating the texture cache is what is actually needed.
*
* XXX: As far as we have been able to determine through
* experimentation, shows that flush the texture cache appears to be
* sufficient. The theory here is that all of the sampling/rendering
* units cache the binding table in the texture cache. However, we have
* yet to be able to actually confirm this.
*
* Wa_14013910100:
*
* "DG2 128/256/512-A/B: S/W must program STATE_BASE_ADDRESS command twice
* or program pipe control with Instruction cache invalidate post
* STATE_BASE_ADDRESS command"
*/
enum anv_pipe_bits bits =
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT |
ANV_PIPE_STATE_CACHE_INVALIDATE_BIT |
(intel_needs_workaround(device->info, 16013000631) ?
ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT : 0);
genx_batch_emit_pipe_control(&cmd_buffer->batch, device->info,
cmd_buffer->state.current_pipeline,
bits);
assert(cmd_buffer->state.current_db_mode !=
ANV_CMD_DESCRIPTOR_BUFFER_MODE_UNKNOWN);
#if GFX_VERx10 >= 125
assert(sba.BindlessSurfaceStateBaseAddress.offset != 0);
mi_store(&b, mi_reg64(ANV_BINDLESS_SURFACE_BASE_ADDR_REG),
mi_imm(sba.BindlessSurfaceStateBaseAddress.offset));
mi_goto_target(&b, &t);
#endif
#if GFX_VERx10 >= 125
genX(cmd_buffer_emit_bt_pool_base_address)(cmd_buffer);
#endif
/* If we have emitted a new state base address we probably need to re-emit
* binding tables.
*/
cmd_buffer->state.descriptors_dirty |= ~0;
}
void
genX(cmd_buffer_emit_bt_pool_base_address)(struct anv_cmd_buffer *cmd_buffer)
{
if (!anv_cmd_buffer_is_render_or_compute_queue(cmd_buffer))
return;
/* If we are emitting a new state base address we probably need to re-emit
* binding tables.
*/
cmd_buffer->state.descriptors_dirty |= ~0;
#if GFX_VERx10 >= 125
struct anv_device *device = cmd_buffer->device;
const uint32_t mocs = isl_mocs(&device->isl_dev, 0, false);
/* We're changing base location of binding tables which affects the state
* cache. We're adding texture cache invalidation following a
* recommendation from the ICL PRMs, Volume 9: Render Engine, Coherency
* Mechanisms:
*
* "It is strongly recommended that a Texture cache invalidation be done
* whenever a State cache invalidation is done."
*
* Prior to do the invalidation, we need a CS_STALL to ensure that all work
* using surface states has completed.
*/
genx_batch_emit_pipe_control(&cmd_buffer->batch,
cmd_buffer->device->info,
cmd_buffer->state.current_pipeline,
ANV_PIPE_CS_STALL_BIT);
anv_batch_emit(
&cmd_buffer->batch, GENX(3DSTATE_BINDING_TABLE_POOL_ALLOC), btpa) {
btpa.BindingTablePoolBaseAddress =
anv_cmd_buffer_surface_base_address(cmd_buffer);
btpa.BindingTablePoolBufferSize = device->physical->va.binding_table_pool.size / 4096;
btpa.MOCS = mocs;
}
genx_batch_emit_pipe_control(&cmd_buffer->batch,
cmd_buffer->device->info,
cmd_buffer->state.current_pipeline,
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
ANV_PIPE_STATE_CACHE_INVALIDATE_BIT);
#else /* GFX_VERx10 < 125 */
genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
#endif
}
static void
add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
struct anv_address addr)
{
VkResult result = anv_reloc_list_add_bo(&cmd_buffer->surface_relocs,
addr.bo);
if (unlikely(result != VK_SUCCESS))
anv_batch_set_error(&cmd_buffer->batch, result);
}
static void
add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
const struct anv_surface_state *state)
{
assert(!anv_address_is_null(state->address));
add_surface_reloc(cmd_buffer, state->address);
if (!anv_address_is_null(state->aux_address)) {
VkResult result =
anv_reloc_list_add_bo(&cmd_buffer->surface_relocs,
state->aux_address.bo);
if (result != VK_SUCCESS)
anv_batch_set_error(&cmd_buffer->batch, result);
}
if (!anv_address_is_null(state->clear_address)) {
VkResult result =
anv_reloc_list_add_bo(&cmd_buffer->surface_relocs,
state->clear_address.bo);
if (result != VK_SUCCESS)
anv_batch_set_error(&cmd_buffer->batch, result);
}
}
/* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
* the initial layout is undefined, the HiZ buffer and depth buffer will
* represent the same data at the end of this operation.
*/
static void
transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
uint32_t base_level, uint32_t level_count,
uint32_t base_layer, uint32_t layer_count,
VkImageLayout initial_layout,
VkImageLayout final_layout,
bool will_full_fast_clear)
{
const uint32_t depth_plane =
anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_DEPTH_BIT);
if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE)
return;
/* Initialize the indirect clear color prior to first use. */
if (image->planes[depth_plane].fast_clear_memory_range.size > 0 &&
(initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
const enum isl_format depth_format =
image->planes[depth_plane].primary_surface.isl.format;
genX(set_fast_clear_state)(cmd_buffer, image, depth_format,
ISL_SWIZZLE_IDENTITY,
anv_image_hiz_clear_value(image));
}
/* If will_full_fast_clear is set, the caller promises to fast-clear the
* largest portion of the specified range as it can.
*/
if (will_full_fast_clear)
return;
const enum isl_aux_state initial_state =
anv_layout_to_aux_state(cmd_buffer->device->info, image,
VK_IMAGE_ASPECT_DEPTH_BIT,
initial_layout,
cmd_buffer->queue_family->queueFlags);
const enum isl_aux_state final_state =
anv_layout_to_aux_state(cmd_buffer->device->info, image,
VK_IMAGE_ASPECT_DEPTH_BIT,
final_layout,
cmd_buffer->queue_family->queueFlags);
const bool initial_depth_valid =
isl_aux_state_has_valid_primary(initial_state);
const bool initial_hiz_valid =
isl_aux_state_has_valid_aux(initial_state);
const bool final_needs_depth =
isl_aux_state_has_valid_primary(final_state);
const bool final_needs_hiz =
isl_aux_state_has_valid_aux(final_state);
/* Getting into the pass-through state for Depth is tricky and involves
* both a resolve and an ambiguate. We don't handle that state right now
* as anv_layout_to_aux_state never returns it.
*/
assert(final_state != ISL_AUX_STATE_PASS_THROUGH);
enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
if (final_needs_depth && !initial_depth_valid) {
assert(initial_hiz_valid);
hiz_op = ISL_AUX_OP_FULL_RESOLVE;
} else if (final_needs_hiz && !initial_hiz_valid) {
assert(initial_depth_valid);
hiz_op = ISL_AUX_OP_AMBIGUATE;
}
if (hiz_op != ISL_AUX_OP_NONE) {
for (uint32_t l = 0; l < level_count; l++) {
const uint32_t level = base_level + l;
uint32_t aux_layers =
anv_image_aux_layers(image, VK_IMAGE_ASPECT_DEPTH_BIT, level);
if (base_layer >= aux_layers)
break; /* We will only get fewer layers as level increases */
uint32_t level_layer_count =
MIN2(layer_count, aux_layers - base_layer);
anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
level, base_layer, level_layer_count, hiz_op);
}
}
/* Additional tile cache flush for MTL:
*
* https://gitlab.freedesktop.org/mesa/mesa/-/issues/10420
* https://gitlab.freedesktop.org/mesa/mesa/-/issues/10530
*/
if (intel_device_info_is_mtl(cmd_buffer->device->info) &&
image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_HIZ_CCS &&
final_needs_depth && !initial_depth_valid) {
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_TILE_CACHE_FLUSH_BIT,
"HIZ-CCS flush");
}
}
/* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
* the initial layout is undefined, the HiZ buffer and depth buffer will
* represent the same data at the end of this operation.
*/
static void
transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
uint32_t base_level, uint32_t level_count,
uint32_t base_layer, uint32_t layer_count,
VkImageLayout initial_layout,
VkImageLayout final_layout,
bool will_full_fast_clear)
{
#if GFX_VER == 12
const uint32_t plane =
anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT);
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
return;
if ((initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) &&
cmd_buffer->device->info->has_aux_map) {
/* If will_full_fast_clear is set, the caller promises to fast-clear the
* largest portion of the specified range as it can.
*/
if (will_full_fast_clear)
return;
for (uint32_t l = 0; l < level_count; l++) {
const uint32_t level = base_level + l;
const VkRect2D clear_rect = {
.offset.x = 0,
.offset.y = 0,
.extent.width = u_minify(image->vk.extent.width, level),
.extent.height = u_minify(image->vk.extent.height, level),
};
uint32_t aux_layers =
anv_image_aux_layers(image, VK_IMAGE_ASPECT_STENCIL_BIT, level);
if (base_layer >= aux_layers)
break; /* We will only get fewer layers as level increases */
uint32_t level_layer_count =
MIN2(layer_count, aux_layers - base_layer);
/* From Bspec's 3DSTATE_STENCIL_BUFFER_BODY > Stencil Compression
* Enable:
*
* "When enabled, Stencil Buffer needs to be initialized via
* stencil clear (HZ_OP) before any renderpass."
*/
const VkClearDepthStencilValue clear_value = {};
anv_image_hiz_clear(cmd_buffer, image, VK_IMAGE_ASPECT_STENCIL_BIT,
level, base_layer, level_layer_count,
clear_rect, &clear_value);
}
}
/* Additional tile cache flush for MTL:
*
* https://gitlab.freedesktop.org/mesa/mesa/-/issues/10420
* https://gitlab.freedesktop.org/mesa/mesa/-/issues/10530
*/
if (intel_device_info_is_mtl(cmd_buffer->device->info)) {
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_TILE_CACHE_FLUSH_BIT,
"HIZ-CCS flush");
}
#endif
}
#define MI_PREDICATE_SRC0 0x2400
#define MI_PREDICATE_SRC1 0x2408
#define MI_PREDICATE_RESULT 0x2418
static void
set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
uint32_t level,
uint32_t base_layer, uint32_t layer_count,
bool compressed)
{
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
/* We only have compression tracking for CCS_E */
if (!isl_aux_usage_has_ccs_e(image->planes[plane].aux_usage))
return;
struct anv_device *device = cmd_buffer->device;
struct mi_builder b;
mi_builder_init(&b, device->info, &cmd_buffer->batch);
mi_builder_set_mocs(&b, isl_mocs(&device->isl_dev, 0, false));
for (uint32_t a = 0; a < layer_count; a++) {
uint32_t layer = base_layer + a;
struct anv_address comp_state_addr =
anv_image_get_compression_state_addr(device,
image, aspect,
level, layer);
mi_store(&b, mi_mem32(comp_state_addr),
mi_imm(compressed ? UINT32_MAX : 0));
}
/* FCV_CCS_E images are automatically fast cleared to default value at
* render time. In order to account for this, anv should set the the
* appropriate fast clear state for level0/layer0.
*
* At the moment, tracking the fast clear state for higher levels/layers is
* neither supported, nor do we enter a situation where it is a concern.
*/
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_FCV_CCS_E &&
base_layer == 0 && level == 0) {
struct anv_address fc_type_addr =
anv_image_get_fast_clear_type_addr(device, image, aspect);
mi_store(&b, mi_mem32(fc_type_addr),
mi_imm(ANV_FAST_CLEAR_DEFAULT_VALUE));
}
}
static void
set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
enum anv_fast_clear_type fast_clear)
{
struct anv_device *device = cmd_buffer->device;
struct mi_builder b;
mi_builder_init(&b, device->info, &cmd_buffer->batch);
mi_builder_set_mocs(&b, isl_mocs(&device->isl_dev, 0, false));
struct anv_address fc_type_addr =
anv_image_get_fast_clear_type_addr(device, image, aspect);
mi_store(&b, mi_mem32(fc_type_addr), mi_imm(fast_clear));
/* Whenever we have fast-clear, we consider that slice to be compressed.
* This makes building predicates much easier.
*/
if (fast_clear != ANV_FAST_CLEAR_NONE)
set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
}
/* This is only really practical on haswell and above because it requires
* MI math in order to get it correct.
*/
static void
anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
uint32_t level, uint32_t array_layer,
enum isl_aux_op resolve_op,
enum anv_fast_clear_type fast_clear_supported)
{
struct anv_device *device = cmd_buffer->device;
struct anv_address addr =
anv_image_get_fast_clear_type_addr(device, image, aspect);
struct mi_builder b;
mi_builder_init(&b, device->info, &cmd_buffer->batch);
mi_builder_set_mocs(&b, isl_mocs(&device->isl_dev, 0, false));
const struct mi_value fast_clear_type = mi_mem32(addr);
if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
/* In this case, we're doing a full resolve which means we want the
* resolve to happen if any compression (including fast-clears) is
* present.
*
* In order to simplify the logic a bit, we make the assumption that,
* if the first slice has been fast-cleared, it is also marked as
* compressed. See also set_image_fast_clear_state.
*/
const struct mi_value compression_state =
mi_mem32(anv_image_get_compression_state_addr(device,
image, aspect,
level, array_layer));
mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), compression_state);
mi_store(&b, compression_state, mi_imm(0));
if (level == 0 && array_layer == 0) {
/* If the predicate is true, we want to write 0 to the fast clear type
* and, if it's false, leave it alone. We can do this by writing
*
* clear_type = clear_type & ~predicate;
*/
struct mi_value new_fast_clear_type =
mi_iand(&b, fast_clear_type,
mi_inot(&b, mi_reg64(MI_PREDICATE_SRC0)));
mi_store(&b, fast_clear_type, new_fast_clear_type);
}
} else if (level == 0 && array_layer == 0) {
/* In this case, we are doing a partial resolve to get rid of fast-clear
* colors. We don't care about the compression state but we do care
* about how much fast clear is allowed by the final layout.
*/
assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
/* We need to compute (fast_clear_supported < image->fast_clear) */
struct mi_value pred =
mi_ult(&b, mi_imm(fast_clear_supported), fast_clear_type);
mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), mi_value_ref(&b, pred));
/* If the predicate is true, we want to write 0 to the fast clear type
* and, if it's false, leave it alone. We can do this by writing
*
* clear_type = clear_type & ~predicate;
*/
struct mi_value new_fast_clear_type =
mi_iand(&b, fast_clear_type, mi_inot(&b, pred));
mi_store(&b, fast_clear_type, new_fast_clear_type);
} else {
/* In this case, we're trying to do a partial resolve on a slice that
* doesn't have clear color. There's nothing to do.
*/
assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
return;
}
/* Set src1 to 0 and use a != condition */
mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOADINV;
mip.CombineOperation = COMBINE_SET;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
}
static void
anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
enum isl_format format,
struct isl_swizzle swizzle,
VkImageAspectFlagBits aspect,
uint32_t level, uint32_t array_layer,
enum isl_aux_op resolve_op,
enum anv_fast_clear_type fast_clear_supported)
{
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
anv_cmd_compute_resolve_predicate(cmd_buffer, image,
aspect, level, array_layer,
resolve_op, fast_clear_supported);
/* CCS_D only supports full resolves and BLORP will assert on us if we try
* to do a partial resolve on a CCS_D surface.
*/
if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D)
resolve_op = ISL_AUX_OP_FULL_RESOLVE;
anv_image_ccs_op(cmd_buffer, image, format, swizzle, aspect,
level, array_layer, 1, resolve_op, NULL, true);
}
static void
anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
enum isl_format format,
struct isl_swizzle swizzle,
VkImageAspectFlagBits aspect,
uint32_t array_layer,
enum isl_aux_op resolve_op,
enum anv_fast_clear_type fast_clear_supported)
{
assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
anv_cmd_compute_resolve_predicate(cmd_buffer, image,
aspect, 0, array_layer,
resolve_op, fast_clear_supported);
anv_image_mcs_op(cmd_buffer, image, format, swizzle, aspect,
array_layer, 1, resolve_op, NULL, true);
}
void
genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
enum isl_aux_usage aux_usage,
uint32_t level,
uint32_t base_layer,
uint32_t layer_count)
{
#if GFX_VER < 20
/* The aspect must be exactly one of the image aspects. */
assert(util_bitcount(aspect) == 1 && (aspect & image->vk.aspects));
/* Filter out aux usages that don't have any compression tracking.
* Note: We only have compression tracking for CCS_E images, but it's
* possible for a CCS_E enabled image to have a subresource with a different
* aux usage.
*/
if (!isl_aux_usage_has_compression(aux_usage))
return;
set_image_compressed_bit(cmd_buffer, image, aspect,
level, base_layer, layer_count, true);
#endif
}
/* Copy the fast-clear value dword(s) between a surface state object and an
* image's fast clear state buffer.
*/
void
genX(cmd_buffer_load_clear_color)(struct anv_cmd_buffer *cmd_buffer,
struct anv_state surface_state,
const struct anv_image_view *iview)
{
#if GFX_VER < 10
struct anv_address ss_clear_addr =
anv_state_pool_state_address(
&cmd_buffer->device->internal_surface_state_pool,
(struct anv_state) {
.offset = surface_state.offset +
cmd_buffer->device->isl_dev.ss.clear_value_offset
});
const struct anv_address entry_addr =
anv_image_get_clear_color_addr(cmd_buffer->device, iview->image,
iview->planes[0].isl.format,
VK_IMAGE_ASPECT_COLOR_BIT, false);
unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
struct mi_builder b;
mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
mi_builder_set_write_check(&b, true);
mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
/* Updating a surface state object may require that the state cache be
* invalidated. From the SKL PRM, Shared Functions -> State -> State
* Caching:
*
* Whenever the RENDER_SURFACE_STATE object in memory pointed to by
* the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
* modified [...], the L1 state cache must be invalidated to ensure
* the new surface or sampler state is fetched from system memory.
*
* In testing, SKL doesn't actually seem to need this, but HSW does.
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_STATE_CACHE_INVALIDATE_BIT,
"after load_clear_color surface state update");
#endif
}
static void
set_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
const VkImageAspectFlags aspect,
const uint32_t *pixel)
{
for (int i = 0; i < image->num_view_formats; i++) {
union isl_color_value clear_color;
if (image->view_formats[i] == ISL_FORMAT_RAW) {
/* Only used for cross aspect copies (color <-> depth/stencil) */
assert(vk_format_is_color_depth_stencil_capable(image->vk.format));
assert(vk_format_get_blocksizebits(image->vk.format) <= 32);
memcpy(clear_color.u32, pixel, sizeof(clear_color.u32));
} else {
isl_color_value_unpack(&clear_color, image->view_formats[i], pixel);
}
const struct anv_address addr =
anv_image_get_clear_color_addr(cmd_buffer->device, image,
image->view_formats[i], aspect,
false);
assert(!anv_address_is_null(addr));
#if GFX_VER >= 11
assert(cmd_buffer->device->isl_dev.ss.clear_color_state_size == 32);
uint32_t *dw = anv_batch_emitn(&cmd_buffer->batch, 3 + 6,
GENX(MI_STORE_DATA_IMM),
.StoreQword = true, .Address = addr);
bool is_depth = aspect & VK_IMAGE_ASPECT_DEPTH_BIT;
uint64_t sampler_offset =
isl_get_sampler_clear_field_offset(cmd_buffer->device->info,
image->view_formats[i], is_depth);
dw[3] = clear_color.u32[0];
dw[4] = clear_color.u32[1];
dw[5] = clear_color.u32[2];
dw[6] = clear_color.u32[3];
dw[3 + sampler_offset / 4] = pixel[0];
dw[4 + sampler_offset / 4] = pixel[1];
#else
assert(cmd_buffer->device->isl_dev.ss.clear_color_state_size == 0);
assert(cmd_buffer->device->isl_dev.ss.clear_value_size == 16);
uint32_t *dw = anv_batch_emitn(&cmd_buffer->batch, 3 + 8,
GENX(MI_STORE_DATA_IMM),
.StoreQword = true, .Address = addr);
dw[3] = clear_color.u32[0];
dw[4] = clear_color.u32[1];
dw[5] = clear_color.u32[2];
dw[6] = clear_color.u32[3];
dw[7] = fui(util_format_linear_to_srgb_float(clear_color.f32[0]));
dw[8] = fui(util_format_linear_to_srgb_float(clear_color.f32[1]));
dw[9] = fui(util_format_linear_to_srgb_float(clear_color.f32[2]));
dw[10] = clear_color.u32[3];
#endif
}
}
void
genX(set_fast_clear_state)(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
const enum isl_format format,
const struct isl_swizzle swizzle,
union isl_color_value clear_color)
{
VkImageAspectFlagBits aspect = image->vk.aspects &
(VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT);
uint32_t pixel[4] = {};
union isl_color_value swiz_color =
isl_color_value_swizzle_inv(clear_color, swizzle);
isl_color_value_pack(&swiz_color, format, pixel);
set_image_clear_color(cmd_buffer, image, aspect, pixel);
if (isl_color_value_is_zero(clear_color, format)) {
/* This image has the auxiliary buffer enabled. We can mark the
* subresource as not needing a resolve because the clear color
* will match what's in every RENDER_SURFACE_STATE object when
* it's being used for sampling.
*/
set_image_fast_clear_state(cmd_buffer, image, aspect,
ANV_FAST_CLEAR_DEFAULT_VALUE);
} else {
set_image_fast_clear_state(cmd_buffer, image, aspect,
ANV_FAST_CLEAR_ANY);
}
}
static bool ATTRIBUTE_CONST
queue_family_is_external(uint32_t index)
{
return index == VK_QUEUE_FAMILY_FOREIGN_EXT ||
index == VK_QUEUE_FAMILY_EXTERNAL;
}
/**
* @brief Transitions a color buffer from one layout to another.
*
* See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
* more information.
*
* @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
* @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
* this represents the maximum layers to transition at each
* specified miplevel.
* @param acquire_unmodified True if
* VkExternalMemoryAcquireUnmodifiedEXT::acquireUnmodifiedMemory is set and
* relevant.
*/
static void
transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image *image,
VkImageAspectFlagBits aspect,
const uint32_t base_level, uint32_t level_count,
uint32_t base_layer, uint32_t layer_count,
VkImageLayout initial_layout,
VkImageLayout final_layout,
uint32_t src_queue_family,
uint32_t dst_queue_family,
bool will_full_fast_clear,
bool acquire_unmodified)
{
struct anv_device *device = cmd_buffer->device;
const struct intel_device_info *devinfo = device->info;
/* Validate the inputs. */
assert(cmd_buffer);
assert(image && image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
/* These values aren't supported for simplicity's sake. */
assert(level_count != VK_REMAINING_MIP_LEVELS &&
layer_count != VK_REMAINING_ARRAY_LAYERS);
/* Ensure the subresource range is valid. */
UNUSED uint64_t last_level_num = base_level + level_count;
const uint32_t max_depth = u_minify(image->vk.extent.depth, base_level);
UNUSED const uint32_t image_layers = MAX2(image->vk.array_layers, max_depth);
assert((uint64_t)base_layer + layer_count <= image_layers);
assert(last_level_num <= image->vk.mip_levels);
/* If there is a layout transfer, the final layout cannot be undefined or
* preinitialized (VUID-VkImageMemoryBarrier-newLayout-01198).
*/
assert(initial_layout == final_layout ||
(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED));
const struct isl_drm_modifier_info *isl_mod_info =
image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT
? isl_drm_modifier_get_info(image->vk.drm_format_mod)
: NULL;
/**
* Vulkan 1.4.313, 7.7.4. Queue Family Ownership Transfer:
*
* If the values of srcQueueFamilyIndex and dstQueueFamilyIndex are equal,
* no ownership transfer is performed, and the barrier operates as if they
* were both set to VK_QUEUE_FAMILY_IGNORED.
*/
if (src_queue_family == dst_queue_family)
src_queue_family = dst_queue_family = VK_QUEUE_FAMILY_IGNORED;
const bool src_queue_external = queue_family_is_external(src_queue_family);
const bool dst_queue_external = queue_family_is_external(dst_queue_family);
/* If the queues are external, consider the first queue family flags
* (should be the most capable)
*/
const VkQueueFlagBits src_queue_flags =
device->physical->queue.families[
(src_queue_external || src_queue_family == VK_QUEUE_FAMILY_IGNORED) ?
0 : src_queue_family].queueFlags;
const VkQueueFlagBits dst_queue_flags =
device->physical->queue.families[
(dst_queue_external || dst_queue_family == VK_QUEUE_FAMILY_IGNORED) ?
0 : dst_queue_family].queueFlags;
/* Simultaneous acquire and release on external queues is illegal. */
assert(!src_queue_external || !dst_queue_external);
/* Ownership transition on an external queue requires special action if we
* store any image data in a driver-private bo that is inaccessible to the
* external queue.
*/
const bool private_binding_acquire =
src_queue_external &&
anv_image_has_private_binding(image);
const bool private_binding_release =
dst_queue_external &&
anv_image_has_private_binding(image);
if (initial_layout == final_layout &&
!private_binding_acquire && !private_binding_release) {
/* No work is needed. */
return;
}
/**
* Section 7.7.4 of the Vulkan 1.3.260 spec says:
*
* If the transfer is via an image memory barrier, and an image layout
* transition is desired, then the values of oldLayout and newLayout in the
* release operation's memory barrier must be equal to values of oldLayout
* and newLayout in the acquire operation's memory barrier. Although the
* image layout transition is submitted twice, it will only be executed
* once. A layout transition specified in this way happens-after the
* release operation and happens-before the acquire operation.
*
* Because we know that we get match transition on each queue, we choose to
* only do the work on one queue type : RENDER. In the cases where we do
* transitions between COMPUTE & TRANSFER, we should have matching
* aux/fast_clear value which would trigger no work in the code below.
*/
if (!(src_queue_external || dst_queue_external) &&
src_queue_family != VK_QUEUE_FAMILY_IGNORED &&
dst_queue_family != VK_QUEUE_FAMILY_IGNORED &&
src_queue_family != dst_queue_family) {
enum intel_engine_class src_engine =
cmd_buffer->queue_family->engine_class;
if (src_engine != INTEL_ENGINE_CLASS_RENDER)
return;
}
const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
/* Early return for CPB surfaces, nothing to do */
if (isl_surf_usage_is_cpb(image->planes[plane].primary_surface.isl.usage))
return;
if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
return;
enum isl_aux_usage initial_aux_usage =
anv_layout_to_aux_usage(devinfo, image, aspect, 0,
initial_layout, src_queue_flags);
enum isl_aux_usage final_aux_usage =
anv_layout_to_aux_usage(devinfo, image, aspect, 0,
final_layout, dst_queue_flags);
enum anv_fast_clear_type initial_fast_clear =
anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout,
src_queue_flags);
enum anv_fast_clear_type final_fast_clear =
anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout,
dst_queue_flags);
/* We must override the anv_layout_to_* functions because they are unaware
* of acquire/release direction.
*/
if (private_binding_acquire) {
initial_aux_usage = isl_drm_modifier_has_aux(isl_mod_info->modifier) ?
image->planes[plane].aux_usage : ISL_AUX_USAGE_NONE;
initial_fast_clear = isl_mod_info->supports_clear_color ?
initial_fast_clear : ANV_FAST_CLEAR_NONE;
} else if (private_binding_release) {
final_aux_usage = isl_drm_modifier_has_aux(isl_mod_info->modifier) ?
image->planes[plane].aux_usage : ISL_AUX_USAGE_NONE;
final_fast_clear = isl_mod_info->supports_clear_color ?
final_fast_clear : ANV_FAST_CLEAR_NONE;
}
assert(image->planes[plane].primary_surface.isl.tiling != ISL_TILING_LINEAR);
/* The following layouts are equivalent for non-linear images. */
const bool initial_layout_undefined =
initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
bool must_init_fast_clear_state = false;
bool must_init_aux_surface = false;
if (initial_layout_undefined) {
/* The subresource may have been aliased and populated with arbitrary
* data, so we should initialize fast-clear state on platforms prior to
* Xe2. Xe2+ platforms don't need it thanks to the new design of fast-
* clear.
*/
must_init_fast_clear_state = devinfo->ver < 20;
if (isl_aux_usage_has_mcs(image->planes[plane].aux_usage) ||
devinfo->has_illegal_ccs_values) {
must_init_aux_surface = true;
} else {
assert(isl_aux_usage_has_ccs_e(image->planes[plane].aux_usage));
/* We can start using the CCS immediately without ambiguating. The
* two conditions that enable this are:
*
* 1) The device treats all possible CCS values as legal. In other
* words, we can't confuse the hardware with random bits in the
* CCS.
*
* 2) We enable compression on all writable image layouts. The CCS
* will receive all writes and will therefore always be in sync
* with the main surface.
*
* If we were to disable compression on some writable layouts, the
* CCS could get out of sync with the main surface and the app
* could lose the data it wrote previously. For example, this
* could happen if an app: transitions from UNDEFINED w/o
* ambiguating -> renders with AUX_NONE -> samples with AUX_CCS.
*
* The second condition is asserted below, but could be moved
* elsewhere for more coverage (we're only checking transitions from
* an undefined layout).
*/
assert(vk_image_layout_is_read_only(final_layout, aspect) ||
(final_aux_usage != ISL_AUX_USAGE_NONE));
must_init_aux_surface = false;
}
} else if (private_binding_acquire && !acquire_unmodified) {
/* The fast clear state lives in a driver-private bo, and therefore the
* external/foreign queue is unaware of it.
*
* If this is the first time we are accessing the image, then the fast
* clear state is uninitialized.
*
* If this is NOT the first time we are accessing the image, then the fast
* clear state may still be valid and correct due to the resolve during
* our most recent ownership release. However, we do not track the aux
* state with MI stores, and therefore must assume the worst-case: that
* this is the first time we are accessing the image.
*/
assert(image->planes[plane].fast_clear_memory_range.binding ==
ANV_IMAGE_MEMORY_BINDING_PRIVATE);
must_init_fast_clear_state = true;
if (anv_image_get_aux_memory_range(image, plane)->binding ==
ANV_IMAGE_MEMORY_BINDING_PRIVATE) {
/* The aux surface, like the fast clear state, lives in
* a driver-private bo. We must initialize the aux surface for the
* same reasons we must initialize the fast clear state.
*/
must_init_aux_surface = true;
} else {
/* The aux surface, unlike the fast clear state, lives in
* application-visible VkDeviceMemory and is shared with the
* external/foreign queue. Therefore, when we acquire ownership of the
* image with a defined VkImageLayout, the aux surface is valid and has
* the aux state required by the modifier.
*/
must_init_aux_surface = false;
}
} else if (private_binding_acquire && acquire_unmodified) {
/* The Vulkan 1.3.302 spec ensures we have previously initialized the
* image memory, and therefore initialized the fast clear state and aux
* surface, because initial_layout_undefined is false and
* acquireUnmodifiedMemory is true.
*
* Since the time of our most recent image ownership release and up
* until the current ownership re-acquisition, the externally-shared
* image memory has remained unmodified. Therefore the fast clear state
* and aux surface are valid and consistent with the image content.
*/
must_init_fast_clear_state = false;
must_init_aux_surface = false;
}
if (must_init_fast_clear_state) {
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_FCV_CCS_E) {
/* Ensure the raw and converted clear colors are in sync. */
const uint32_t zero_pixel[4] = {};
set_image_clear_color(cmd_buffer, image, aspect, zero_pixel);
}
if (base_level == 0 && base_layer == 0) {
set_image_fast_clear_state(cmd_buffer, image, aspect,
ANV_FAST_CLEAR_NONE);
}
}
if (must_init_aux_surface) {
assert(devinfo->ver >= 20 || must_init_fast_clear_state);
/* Initialize the aux buffers to enable correct rendering. In order to
* ensure that things such as storage images work correctly, aux buffers
* need to be initialized to valid data.
*
* Having an aux buffer with invalid data is a problem for two reasons:
*
* 1) Having an invalid value in the buffer can confuse the hardware.
* For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
* invalid and leads to the hardware doing strange things. It
* doesn't hang as far as we can tell but rendering corruption can
* occur.
*
* 2) If this transition is into the GENERAL layout and we then use the
* image as a storage image, then we must have the aux buffer in the
* pass-through state so that, if we then go to texture from the
* image, we get the results of our storage image writes and not the
* fast clear color or other random data.
*
* For CCS both of the problems above are real demonstrable issues. In
* that case, the only thing we can do is to perform an ambiguate to
* transition the aux surface into the pass-through state.
*
* For MCS, (2) is never an issue because we don't support multisampled
* storage images. In theory, issue (1) is a problem with MCS but we've
* never seen it in the wild. For 4x and 16x, all bit patterns could,
* in theory, be interpreted as something but we don't know that all bit
* patterns are actually valid. For 2x and 8x, you could easily end up
* with the MCS referring to an invalid plane because not all bits of
* the MCS value are actually used. Even though we've never seen issues
* in the wild, it's best to play it safe and initialize the MCS. We
* could use a fast-clear for MCS because we only ever touch from render
* and texture (no image load store). However, due to WA 14013111325,
* we choose to ambiguate MCS as well.
*/
if (image->vk.samples == 1) {
for (uint32_t l = 0; l < level_count; l++) {
const uint32_t level = base_level + l;
uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
if (base_layer >= aux_layers)
break; /* We will only get fewer layers as level increases */
uint32_t level_layer_count =
MIN2(layer_count, aux_layers - base_layer);
/* If will_full_fast_clear is set, the caller promises to
* fast-clear the largest portion of the specified range as it can.
* For color images, that means only the first LOD and array slice.
*/
if (level == 0 && base_layer == 0 && will_full_fast_clear) {
base_layer++;
level_layer_count--;
if (level_layer_count == 0)
continue;
}
anv_image_ccs_op(cmd_buffer, image,
image->planes[plane].primary_surface.isl.format,
ISL_SWIZZLE_IDENTITY,
aspect, level, base_layer, level_layer_count,
ISL_AUX_OP_AMBIGUATE, NULL, false);
set_image_compressed_bit(cmd_buffer, image, aspect, level,
base_layer, level_layer_count, false);
}
} else {
/* If will_full_fast_clear is set, the caller promises to fast-clear
* the largest portion of the specified range as it can.
*/
if (will_full_fast_clear)
return;
assert(base_level == 0 && level_count == 1);
anv_image_mcs_op(cmd_buffer, image,
image->planes[plane].primary_surface.isl.format,
ISL_SWIZZLE_IDENTITY,
aspect, base_layer, layer_count,
ISL_AUX_OP_AMBIGUATE, NULL, false);
}
return;
}
/* The current code assumes that there is no mixing of CCS_E and CCS_D.
* We can handle transitions between CCS_D/E to and from NONE. What we
* don't yet handle is switching between CCS_E and CCS_D within a given
* image. Doing so in a performant way requires more detailed aux state
* tracking such as what is done in i965. For now, just assume that we
* only have one type of compression.
*/
assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
final_aux_usage == ISL_AUX_USAGE_NONE ||
initial_aux_usage == final_aux_usage);
/* If initial aux usage is NONE, there is nothing to resolve */
if (initial_aux_usage == ISL_AUX_USAGE_NONE)
return;
enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
/* If the initial layout supports more fast clear than the final layout
* then we need at least a partial resolve.
*/
if (final_fast_clear < initial_fast_clear) {
/* Partial resolves will actually only occur on layer 0/level 0. This
* is generally okay because anv only allows explicit fast clears to
* the first subresource.
*
* The situation is a bit different with FCV_CCS_E. With that aux
* usage, implicit fast clears can occur on any layer and level.
* anv doesn't track fast clear states for more than the first
* subresource, so we need to assert that a layout transition doesn't
* attempt to partial resolve the other subresources.
*
* At the moment, we don't enter such a situation, and partial resolves
* for higher level/layer resources shouldn't be a concern.
*/
if (image->planes[plane].aux_usage == ISL_AUX_USAGE_FCV_CCS_E) {
assert(base_level == 0 && level_count == 1 &&
base_layer == 0 && layer_count == 1);
}
resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
}
if (isl_aux_usage_has_ccs_e(initial_aux_usage) &&
!isl_aux_usage_has_ccs_e(final_aux_usage))
resolve_op = ISL_AUX_OP_FULL_RESOLVE;
if (resolve_op == ISL_AUX_OP_NONE)
return;
for (uint32_t l = 0; l < level_count; l++) {
uint32_t level = base_level + l;
uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
if (base_layer >= aux_layers)
break; /* We will only get fewer layers as level increases */
uint32_t level_layer_count =
MIN2(layer_count, aux_layers - base_layer);
for (uint32_t a = 0; a < level_layer_count; a++) {
uint32_t array_layer = base_layer + a;
/* If will_full_fast_clear is set, the caller promises to fast-clear
* the largest portion of the specified range as it can. For color
* images, that means only the first LOD and array slice.
*/
if (level == 0 && array_layer == 0 && will_full_fast_clear)
continue;
if (image->vk.samples == 1) {
anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
image->planes[plane].primary_surface.isl.format,
ISL_SWIZZLE_IDENTITY,
aspect, level, array_layer, resolve_op,
final_fast_clear);
} else {
/* We only support fast-clear on the first layer so partial
* resolves should not be used on other layers as they will use
* the clear color stored in memory that is only valid for layer0.
*/
if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
array_layer != 0)
continue;
anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
image->planes[plane].primary_surface.isl.format,
ISL_SWIZZLE_IDENTITY,
aspect, array_layer, resolve_op,
final_fast_clear);
}
}
}
}
static MUST_CHECK VkResult
anv_cmd_buffer_init_attachments(struct anv_cmd_buffer *cmd_buffer,
uint32_t color_att_count)
{
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
/* Reserve one for the NULL state. */
unsigned num_states = 1 + color_att_count;
const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
const uint32_t ss_stride = align(isl_dev->ss.size, isl_dev->ss.align);
gfx->att_states =
anv_cmd_buffer_alloc_surface_states(cmd_buffer, num_states);
if (gfx->att_states.map == NULL)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
struct anv_state next_state = gfx->att_states;
next_state.alloc_size = isl_dev->ss.size;
gfx->null_surface_state = next_state;
next_state.offset += ss_stride;
next_state.map += ss_stride;
gfx->color_att_count = color_att_count;
for (uint32_t i = 0; i < color_att_count; i++) {
gfx->color_att[i] = (struct anv_attachment) {
.surface_state.state = next_state,
};
next_state.offset += ss_stride;
next_state.map += ss_stride;
}
gfx->depth_att = (struct anv_attachment) { };
gfx->stencil_att = (struct anv_attachment) { };
return VK_SUCCESS;
}
static void
anv_cmd_buffer_reset_rendering(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
gfx->render_area = (VkRect2D) { };
gfx->layer_count = 0;
gfx->samples = 0;
gfx->color_att_count = 0;
gfx->depth_att = (struct anv_attachment) { };
gfx->stencil_att = (struct anv_attachment) { };
gfx->null_surface_state = ANV_STATE_NULL;
}
/**
* Program the hardware to use the specified L3 configuration.
*/
void
genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
const struct intel_l3_config *cfg)
{
assert(cfg || GFX_VER >= 12);
if (cfg == cmd_buffer->state.current_l3_config)
return;
#if GFX_VER >= 11
/* On Gfx11+ we use only one config, so verify it remains the same and skip
* the stalling programming entirely.
*/
assert(cfg == cmd_buffer->device->l3_config);
#else
if (INTEL_DEBUG(DEBUG_L3)) {
mesa_logd("L3 config transition: ");
intel_dump_l3_config(cfg, stderr);
}
/* According to the hardware docs, the L3 partitioning can only be changed
* while the pipeline is completely drained and the caches are flushed,
* which involves a first PIPE_CONTROL flush which stalls the pipeline...
*/
genx_batch_emit_pipe_control(&cmd_buffer->batch, cmd_buffer->device->info,
cmd_buffer->state.current_pipeline,
ANV_PIPE_DATA_CACHE_FLUSH_BIT |
ANV_PIPE_CS_STALL_BIT);
/* ...followed by a second pipelined PIPE_CONTROL that initiates
* invalidation of the relevant caches. Note that because RO invalidation
* happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
* command is processed by the CS) we cannot combine it with the previous
* stalling flush as the hardware documentation suggests, because that
* would cause the CS to stall on previous rendering *after* RO
* invalidation and wouldn't prevent the RO caches from being polluted by
* concurrent rendering before the stall completes. This intentionally
* doesn't implement the SKL+ hardware workaround suggesting to enable CS
* stall on PIPE_CONTROLs with the texture cache invalidation bit set for
* GPGPU workloads because the previous and subsequent PIPE_CONTROLs
* already guarantee that there is no concurrent GPGPU kernel execution
* (see SKL HSD 2132585).
*/
genx_batch_emit_pipe_control(&cmd_buffer->batch, cmd_buffer->device->info,
cmd_buffer->state.current_pipeline,
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT |
ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT |
ANV_PIPE_STATE_CACHE_INVALIDATE_BIT);
/* Now send a third stalling flush to make sure that invalidation is
* complete when the L3 configuration registers are modified.
*/
genx_batch_emit_pipe_control(&cmd_buffer->batch, cmd_buffer->device->info,
cmd_buffer->state.current_pipeline,
ANV_PIPE_DATA_CACHE_FLUSH_BIT |
ANV_PIPE_CS_STALL_BIT);
genX(emit_l3_config)(&cmd_buffer->batch, cmd_buffer->device, cfg);
#endif /* GFX_VER >= 11 */
cmd_buffer->state.current_l3_config = cfg;
}
ALWAYS_INLINE void
genX(invalidate_aux_map)(struct anv_batch *batch,
struct anv_device *device,
enum intel_engine_class engine_class,
enum anv_pipe_bits bits)
{
#if GFX_VER == 12
if ((bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT) && device->info->has_aux_map) {
uint32_t register_addr = 0;
switch (engine_class) {
case INTEL_ENGINE_CLASS_COMPUTE:
register_addr = GENX(COMPCS0_CCS_AUX_INV_num);
break;
case INTEL_ENGINE_CLASS_COPY:
#if GFX_VERx10 >= 125
register_addr = GENX(BCS_CCS_AUX_INV_num);
#endif
break;
case INTEL_ENGINE_CLASS_VIDEO:
register_addr = GENX(VD0_CCS_AUX_INV_num);
break;
case INTEL_ENGINE_CLASS_RENDER:
default:
register_addr = GENX(GFX_CCS_AUX_INV_num);
break;
}
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = register_addr;
lri.DataDWord = 1;
}
/* Wa_16018063123 - emit fast color dummy blit before MI_FLUSH_DW. */
if (intel_needs_workaround(device->info, 16018063123) &&
engine_class == INTEL_ENGINE_CLASS_COPY) {
genX(batch_emit_fast_color_dummy_blit)(batch, device);
}
/* HSD 22012751911: SW Programming sequence when issuing aux invalidation:
*
* "Poll Aux Invalidation bit once the invalidation is set
* (Register 4208 bit 0)"
*/
anv_batch_emit(batch, GENX(MI_SEMAPHORE_WAIT), sem) {
sem.CompareOperation = COMPARE_SAD_EQUAL_SDD;
sem.WaitMode = PollingMode;
sem.RegisterPollMode = true;
sem.SemaphoreDataDword = 0x0;
sem.SemaphoreAddress =
anv_address_from_u64(register_addr);
}
}
#else
assert(!device->info->has_aux_map);
#endif
}
ALWAYS_INLINE enum anv_pipe_bits
genX(emit_apply_pipe_flushes)(struct anv_batch *batch,
struct anv_device *device,
uint32_t current_pipeline,
enum anv_pipe_bits bits,
enum anv_pipe_bits *emitted_flush_bits)
{
#if GFX_VER >= 12
/* From the TGL PRM, Volume 2a, "PIPE_CONTROL":
*
* "SW must follow below programming restrictions when programming
* PIPE_CONTROL command [for ComputeCS]:
* ...
* Following bits must not be set when programmed for ComputeCS:
* - "Render Target Cache Flush Enable", "Depth Cache Flush Enable"
* and "Tile Cache Flush Enable"
* - "Depth Stall Enable", Stall at Pixel Scoreboard and
* "PSD Sync Enable".
* - "OVR Tile 0 Flush", "TBIMR Force Batch Closure",
* "AMFS Flush Enable", "VF Cache Invalidation Enable" and
* "Global Snapshot Count Reset"."
*
* XXX: According to spec this should not be a concern for a regular
* RCS in GPGPU mode, but during testing it was found that at least
* "VF Cache Invalidation Enable" bit is ignored in such case.
* This can cause us to miss some important invalidations
* (e.g. from CmdPipelineBarriers) and have incoherent data.
*
* There is also a Wa_1606932921 "RCS is not waking up fixed function clock
* when specific 3d related bits are programmed in pipecontrol in
* compute mode" that suggests us not to use "RT Cache Flush" in GPGPU mode.
*
* The other bits are not confirmed to cause problems, but included here
* just to be safe, as they're also not really relevant in the GPGPU mode,
* and having them doesn't seem to cause any regressions.
*
* So if we're currently in GPGPU mode, we hide some bits from
* this flush, and will flush them only when we'll be able to.
* Similar thing with GPGPU-only bits.
*/
enum anv_pipe_bits defer_bits = bits &
(current_pipeline == GPGPU ? ANV_PIPE_GFX_BITS: ANV_PIPE_GPGPU_BITS);
bits &= ~defer_bits;
#endif
/*
* From Sandybridge PRM, volume 2, "1.7.2 End-of-Pipe Synchronization":
*
* Write synchronization is a special case of end-of-pipe
* synchronization that requires that the render cache and/or depth
* related caches are flushed to memory, where the data will become
* globally visible. This type of synchronization is required prior to
* SW (CPU) actually reading the result data from memory, or initiating
* an operation that will use as a read surface (such as a texture
* surface) a previous render target and/or depth/stencil buffer
*
*
* From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
*
* Exercising the write cache flush bits (Render Target Cache Flush
* Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only
* ensures the write caches are flushed and doesn't guarantee the data
* is globally visible.
*
* SW can track the completion of the end-of-pipe-synchronization by
* using "Notify Enable" and "PostSync Operation - Write Immediate
* Data" in the PIPE_CONTROL command.
*
* In other words, flushes are pipelined while invalidations are handled
* immediately. Therefore, if we're flushing anything then we need to
* schedule an end-of-pipe sync before any invalidations can happen.
*/
if (bits & ANV_PIPE_FLUSH_BITS)
bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
/* From Bspec 43904 (Register_CCSAuxiliaryTableInvalidate):
* RCS engine idle sequence:
*
* Gfx12+:
* PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall + Render
* Target Cache Flush + Depth Cache
*
* Gfx125+:
* PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall + Render
* Target Cache Flush + Depth Cache + CCS flush
*
* Compute engine idle sequence:
*
* Gfx12+:
* PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall
*
* Gfx125+:
* PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall + CCS flush
*/
if (GFX_VER == 12 && (bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)) {
if (current_pipeline == GPGPU) {
bits |= (ANV_PIPE_DATA_CACHE_FLUSH_BIT |
ANV_PIPE_L3_FABRIC_FLUSH_BIT |
ANV_PIPE_CS_STALL_BIT |
(GFX_VERx10 == 125 ? ANV_PIPE_CCS_CACHE_FLUSH_BIT: 0));
} else if (current_pipeline == _3D) {
bits |= (ANV_PIPE_DATA_CACHE_FLUSH_BIT |
ANV_PIPE_L3_FABRIC_FLUSH_BIT |
ANV_PIPE_CS_STALL_BIT |
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT |
(GFX_VERx10 == 125 ? ANV_PIPE_CCS_CACHE_FLUSH_BIT: 0));
}
}
/* If we're going to do an invalidate and we have a pending end-of-pipe
* sync that has yet to be resolved, we do the end-of-pipe sync now.
*/
if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
(bits & ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT)) {
bits |= ANV_PIPE_END_OF_PIPE_SYNC_BIT;
bits &= ~ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
if (INTEL_DEBUG(DEBUG_PIPE_CONTROL) && bits) {
fputs("acc: add ", stdout);
anv_dump_pipe_bits(ANV_PIPE_END_OF_PIPE_SYNC_BIT, stdout);
fprintf(stdout, "reason: Ensure flushes done before invalidate\n");
}
}
/* Project: SKL / Argument: LRI Post Sync Operation [23]
*
* "PIPECONTROL command with “Command Streamer Stall Enable” must be
* programmed prior to programming a PIPECONTROL command with "LRI
* Post Sync Operation" in GPGPU mode of operation (i.e when
* PIPELINE_SELECT command is set to GPGPU mode of operation)."
*
* The same text exists a few rows below for Post Sync Op.
*/
if (bits & ANV_PIPE_POST_SYNC_BIT) {
if (GFX_VER == 9 && current_pipeline == GPGPU)
bits |= ANV_PIPE_CS_STALL_BIT;
bits &= ~ANV_PIPE_POST_SYNC_BIT;
}
if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_STALL_BITS |
ANV_PIPE_END_OF_PIPE_SYNC_BIT)) {
enum anv_pipe_bits flush_bits =
bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_STALL_BITS |
ANV_PIPE_END_OF_PIPE_SYNC_BIT);
uint32_t sync_op = NoWrite;
struct anv_address addr = ANV_NULL_ADDRESS;
/* From Sandybridge PRM, volume 2, "1.7.3.1 Writing a Value to Memory":
*
* "The most common action to perform upon reaching a
* synchronization point is to write a value out to memory. An
* immediate value (included with the synchronization command) may
* be written."
*
*
* From Broadwell PRM, volume 7, "End-of-Pipe Synchronization":
*
* "In case the data flushed out by the render engine is to be
* read back in to the render engine in coherent manner, then the
* render engine has to wait for the fence completion before
* accessing the flushed data. This can be achieved by following
* means on various products: PIPE_CONTROL command with CS Stall
* and the required write caches flushed with Post-Sync-Operation
* as Write Immediate Data.
*
* Example:
* - Workload-1 (3D/GPGPU/MEDIA)
* - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
* Immediate Data, Required Write Cache Flush bits set)
* - Workload-2 (Can use the data produce or output by
* Workload-1)
*/
if (flush_bits & ANV_PIPE_END_OF_PIPE_SYNC_BIT) {
flush_bits |= ANV_PIPE_CS_STALL_BIT;
sync_op = WriteImmediateData;
addr = device->workaround_address;
}
/* Flush PC. */
genx_batch_emit_pipe_control_write(batch, device->info, current_pipeline,
sync_op, addr, 0, flush_bits);
/* If the caller wants to know what flushes have been emitted,
* provide the bits based off the PIPE_CONTROL programmed bits.
*/
if (emitted_flush_bits != NULL)
*emitted_flush_bits = flush_bits;
bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_STALL_BITS |
ANV_PIPE_END_OF_PIPE_SYNC_BIT);
}
if (bits & ANV_PIPE_INVALIDATE_BITS) {
uint32_t sync_op = NoWrite;
struct anv_address addr = ANV_NULL_ADDRESS;
/* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
*
* "When VF Cache Invalidate is set “Post Sync Operation” must be
* enabled to “Write Immediate Data” or “Write PS Depth Count” or
* “Write Timestamp”.
*/
if (GFX_VER == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
sync_op = WriteImmediateData;
addr = device->workaround_address;
}
/* Invalidate PC. */
genx_batch_emit_pipe_control_write(batch, device->info, current_pipeline,
sync_op, addr, 0, bits);
enum intel_engine_class engine_class =
current_pipeline == GPGPU ? INTEL_ENGINE_CLASS_COMPUTE :
INTEL_ENGINE_CLASS_RENDER;
genX(invalidate_aux_map)(batch, device, engine_class, bits);
bits &= ~ANV_PIPE_INVALIDATE_BITS;
}
#if GFX_VER >= 12
bits |= defer_bits;
#endif
return bits;
}
ALWAYS_INLINE void
genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
{
#if INTEL_NEEDS_WA_1508744258
/* If we're changing the state of the RHWO optimization, we need to have
* sb_stall+cs_stall.
*/
const bool rhwo_opt_change =
cmd_buffer->state.rhwo_optimization_enabled !=
cmd_buffer->state.pending_rhwo_optimization_enabled;
if (rhwo_opt_change) {
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_STALL_AT_SCOREBOARD_BIT |
ANV_PIPE_END_OF_PIPE_SYNC_BIT,
"change RHWO optimization");
}
#endif
enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
if (unlikely(cmd_buffer->device->physical->always_flush_cache))
bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
else if (bits == 0)
return;
if (anv_cmd_buffer_is_blitter_queue(cmd_buffer) ||
anv_cmd_buffer_is_video_queue(cmd_buffer)) {
if (bits & ANV_PIPE_INVALIDATE_BITS) {
genX(invalidate_aux_map)(&cmd_buffer->batch, cmd_buffer->device,
cmd_buffer->queue_family->engine_class, bits);
bits &= ~ANV_PIPE_INVALIDATE_BITS;
}
cmd_buffer->state.pending_pipe_bits = bits;
return;
}
if (GFX_VER == 9 &&
(bits & ANV_PIPE_CS_STALL_BIT) &&
(bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
/* If we are doing a VF cache invalidate AND a CS stall (it must be
* both) then we can reset our vertex cache tracking.
*/
memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
sizeof(cmd_buffer->state.gfx.ib_dirty_range));
}
enum anv_pipe_bits emitted_bits = 0;
cmd_buffer->state.pending_pipe_bits =
genX(emit_apply_pipe_flushes)(&cmd_buffer->batch,
cmd_buffer->device,
cmd_buffer->state.current_pipeline,
bits,
&emitted_bits);
anv_cmd_buffer_update_pending_query_bits(cmd_buffer, emitted_bits);
#if INTEL_NEEDS_WA_1508744258
if (rhwo_opt_change) {
anv_batch_write_reg(&cmd_buffer->batch, GENX(COMMON_SLICE_CHICKEN1), c1) {
c1.RCCRHWOOptimizationDisable =
!cmd_buffer->state.pending_rhwo_optimization_enabled;
c1.RCCRHWOOptimizationDisableMask = true;
}
cmd_buffer->state.rhwo_optimization_enabled =
cmd_buffer->state.pending_rhwo_optimization_enabled;
}
#endif
}
static inline struct anv_state
emit_dynamic_buffer_binding_table_entry(struct anv_cmd_buffer *cmd_buffer,
struct anv_cmd_pipeline_state *pipe_state,
struct anv_pipeline_binding *binding,
const struct anv_descriptor *desc)
{
if (!desc->buffer)
return anv_null_surface_state_for_binding_table(cmd_buffer->device);
/* Compute the offset within the buffer */
uint32_t dynamic_offset =
pipe_state->dynamic_offsets[
binding->set].offsets[binding->dynamic_offset_index];
uint64_t offset = desc->offset + dynamic_offset;
/* Clamp to the buffer size */
offset = MIN2(offset, desc->buffer->vk.size);
/* Clamp the range to the buffer size */
uint32_t range = MIN2(desc->range, desc->buffer->vk.size - offset);
/* Align the range to the reported bounds checking alignment
* VkPhysicalDeviceRobustness2PropertiesEXT::robustUniformBufferAccessSizeAlignment
*/
if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC)
range = align(range, ANV_UBO_ALIGNMENT);
struct anv_address address =
anv_address_add(desc->buffer->address, offset);
struct anv_state surface_state =
anv_cmd_buffer_alloc_surface_states(cmd_buffer, 1);
if (surface_state.map == NULL)
return ANV_STATE_NULL;
enum isl_format format =
anv_isl_format_for_descriptor_type(cmd_buffer->device,
desc->type);
isl_surf_usage_flags_t usage =
anv_isl_usage_for_descriptor_type(desc->type);
anv_fill_buffer_surface_state(cmd_buffer->device,
surface_state.map,
format, ISL_SWIZZLE_IDENTITY,
usage, address, range, 1);
return surface_state;
}
static uint32_t
emit_indirect_descriptor_binding_table_entry(struct anv_cmd_buffer *cmd_buffer,
struct anv_cmd_pipeline_state *pipe_state,
struct anv_pipeline_binding *binding,
const struct anv_descriptor *desc)
{
struct anv_device *device = cmd_buffer->device;
struct anv_state surface_state;
/* Relative offset in the STATE_BASE_ADDRESS::SurfaceStateBaseAddress heap.
* Depending on where the descriptor surface state is allocated, they can
* either come from device->internal_surface_state_pool or
* device->bindless_surface_state_pool.
*/
switch (desc->type) {
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: {
if (desc->image_view) {
const struct anv_surface_state *sstate =
anv_image_view_texture_surface_state(desc->image_view,
binding->plane,
desc->layout);
surface_state = desc->image_view->use_surface_state_stream ?
sstate->state :
anv_bindless_state_for_binding_table(device, sstate->state);
assert(surface_state.alloc_size);
} else {
surface_state = anv_null_surface_state_for_binding_table(device);
}
break;
}
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
if (desc->image_view) {
const struct anv_surface_state *sstate =
anv_image_view_storage_surface_state(desc->image_view);
surface_state = desc->image_view->use_surface_state_stream ?
sstate->state :
anv_bindless_state_for_binding_table(device, sstate->state);
assert(surface_state.alloc_size);
} else {
surface_state =
anv_null_surface_state_for_binding_table(device);
}
break;
}
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
if (desc->set_buffer_view) {
surface_state = desc->set_buffer_view->general.state;
assert(surface_state.alloc_size);
} else {
surface_state = anv_null_surface_state_for_binding_table(device);
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
if (desc->buffer_view) {
surface_state = anv_bindless_state_for_binding_table(
device,
desc->buffer_view->general.state);
assert(surface_state.alloc_size);
} else {
surface_state = anv_null_surface_state_for_binding_table(device);
}
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
surface_state =
emit_dynamic_buffer_binding_table_entry(cmd_buffer, pipe_state,
binding, desc);
break;
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
if (desc->buffer_view) {
surface_state = anv_bindless_state_for_binding_table(
device, desc->buffer_view->storage.state);
assert(surface_state.alloc_size);
} else {
surface_state = anv_null_surface_state_for_binding_table(device);
}
break;
default:
unreachable("Invalid descriptor type");
}
return surface_state.offset;
}
static uint32_t
emit_direct_descriptor_binding_table_entry(struct anv_cmd_buffer *cmd_buffer,
struct anv_cmd_pipeline_state *pipe_state,
const struct anv_descriptor_set *set,
struct anv_pipeline_binding *binding,
const struct anv_descriptor *desc)
{
uint32_t desc_offset;
/* Relative offset in the STATE_BASE_ADDRESS::SurfaceStateBaseAddress heap.
* Depending on where the descriptor surface state is allocated, they can
* either come from device->internal_surface_state_pool or
* device->bindless_surface_state_pool.
*/
switch (desc->type) {
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
desc_offset = set->desc_offset + binding->set_offset;
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
struct anv_state state =
emit_dynamic_buffer_binding_table_entry(cmd_buffer, pipe_state,
binding, desc);
desc_offset = state.offset;
break;
}
default:
unreachable("Invalid descriptor type");
}
return desc_offset;
}
static VkResult
emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
struct anv_cmd_pipeline_state *pipe_state,
struct anv_shader_bin *shader,
struct anv_state *bt_state)
{
uint32_t state_offset;
struct anv_pipeline_bind_map *map = &shader->bind_map;
if (map->surface_count == 0) {
*bt_state = (struct anv_state) { 0, };
return VK_SUCCESS;
}
*bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
map->surface_count,
&state_offset);
uint32_t *bt_map = bt_state->map;
if (bt_state->map == NULL)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
for (uint32_t s = 0; s < map->surface_count; s++) {
struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
struct anv_state surface_state;
switch (binding->set) {
case ANV_DESCRIPTOR_SET_NULL:
bt_map[s] = 0;
break;
case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
/* Color attachment binding */
assert(shader->stage == MESA_SHADER_FRAGMENT);
uint32_t index = binding->index < MAX_RTS ?
cmd_buffer->state.gfx.color_output_mapping[binding->index] :
binding->index;
if (index < cmd_buffer->state.gfx.color_att_count) {
assert(index < MAX_RTS);
const struct anv_attachment *att =
&cmd_buffer->state.gfx.color_att[index];
surface_state = att->surface_state.state;
} else {
surface_state = cmd_buffer->state.gfx.null_surface_state;
}
assert(surface_state.map);
bt_map[s] = surface_state.offset + state_offset;
break;
case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
struct anv_descriptor_set *set =
pipe_state->descriptors[binding->index];
/* If the shader doesn't access the set buffer, just put the null
* surface.
*/
if (set->is_push && !shader->push_desc_info.used_set_buffer) {
bt_map[s] = 0;
break;
}
/* This is a descriptor set buffer so the set index is actually
* given by binding->binding. (Yes, that's confusing.)
*/
assert(set->desc_surface_mem.alloc_size);
assert(set->desc_surface_state.alloc_size);
bt_map[s] = set->desc_surface_state.offset + state_offset;
add_surface_reloc(cmd_buffer, anv_descriptor_set_address(set));
break;
}
case ANV_DESCRIPTOR_SET_DESCRIPTORS_BUFFER: {
assert(pipe_state->descriptor_buffers[binding->index].state.alloc_size);
bt_map[s] = pipe_state->descriptor_buffers[binding->index].state.offset +
state_offset;
break;
}
default: {
assert(binding->set < MAX_SETS);
const struct anv_descriptor_set *set =
pipe_state->descriptors[binding->set];
if (binding->index >= set->descriptor_count) {
/* From the Vulkan spec section entitled "DescriptorSet and
* Binding Assignment":
*
* "If the array is runtime-sized, then array elements greater
* than or equal to the size of that binding in the bound
* descriptor set must not be used."
*
* Unfortunately, the compiler isn't smart enough to figure out
* when a dynamic binding isn't used so it may grab the whole
* array and stick it in the binding table. In this case, it's
* safe to just skip those bindings that are OOB.
*/
assert(binding->index < set->layout->descriptor_count);
continue;
}
/* For push descriptor, if the binding is fully promoted to push
* constants, just reference the null surface in the binding table.
* It's unused and we didn't allocate/pack a surface state for it .
*/
if (set->is_push) {
uint32_t desc_idx = set->layout->binding[binding->binding].descriptor_index;
assert(desc_idx < MAX_PUSH_DESCRIPTORS);
if (shader->push_desc_info.fully_promoted_ubo_descriptors & BITFIELD_BIT(desc_idx)) {
surface_state =
anv_null_surface_state_for_binding_table(cmd_buffer->device);
break;
}
}
const struct anv_descriptor *desc = &set->descriptors[binding->index];
if (desc->type == VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR ||
desc->type == VK_DESCRIPTOR_TYPE_SAMPLER) {
/* Nothing for us to do here */
continue;
}
const struct anv_pipeline *pipeline = pipe_state->pipeline;
uint32_t surface_state_offset;
if (pipeline->layout.type == ANV_PIPELINE_DESCRIPTOR_SET_LAYOUT_TYPE_INDIRECT) {
surface_state_offset =
emit_indirect_descriptor_binding_table_entry(cmd_buffer,
pipe_state,
binding, desc);
} else {
assert(pipeline->layout.type == ANV_PIPELINE_DESCRIPTOR_SET_LAYOUT_TYPE_DIRECT ||
pipeline->layout.type == ANV_PIPELINE_DESCRIPTOR_SET_LAYOUT_TYPE_BUFFER);
surface_state_offset =
emit_direct_descriptor_binding_table_entry(cmd_buffer, pipe_state,
set, binding, desc);
}
bt_map[s] = surface_state_offset + state_offset;
break;
}
}
}
return VK_SUCCESS;
}
static VkResult
emit_samplers(struct anv_cmd_buffer *cmd_buffer,
struct anv_cmd_pipeline_state *pipe_state,
struct anv_shader_bin *shader,
struct anv_state *state)
{
struct anv_pipeline_bind_map *map = &shader->bind_map;
if (map->sampler_count == 0) {
*state = (struct anv_state) { 0, };
return VK_SUCCESS;
}
uint32_t size = map->sampler_count * 16;
*state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
if (state->map == NULL)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
for (uint32_t s = 0; s < map->sampler_count; s++) {
struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
const struct anv_descriptor *desc =
&pipe_state->descriptors[binding->set]->descriptors[binding->index];
if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
continue;
struct anv_sampler *sampler = desc->sampler;
/* This can happen if we have an unfilled slot since TYPE_SAMPLER
* happens to be zero.
*/
if (sampler == NULL)
continue;
memcpy(state->map + (s * 16), sampler->state[binding->plane],
sizeof(sampler->state[0]));
}
return VK_SUCCESS;
}
uint32_t
genX(cmd_buffer_flush_descriptor_sets)(struct anv_cmd_buffer *cmd_buffer,
struct anv_cmd_pipeline_state *pipe_state,
const VkShaderStageFlags dirty,
struct anv_shader_bin **shaders,
uint32_t num_shaders)
{
VkShaderStageFlags flushed = 0;
VkResult result = VK_SUCCESS;
for (uint32_t i = 0; i < num_shaders; i++) {
if (!shaders[i])
continue;
gl_shader_stage stage = shaders[i]->stage;
VkShaderStageFlags vk_stage = mesa_to_vk_shader_stage(stage);
if ((vk_stage & dirty) == 0)
continue;
assert(stage < ARRAY_SIZE(cmd_buffer->state.samplers));
result = emit_samplers(cmd_buffer, pipe_state, shaders[i],
&cmd_buffer->state.samplers[stage]);
if (result != VK_SUCCESS)
break;
assert(stage < ARRAY_SIZE(cmd_buffer->state.binding_tables));
result = emit_binding_table(cmd_buffer, pipe_state, shaders[i],
&cmd_buffer->state.binding_tables[stage]);
if (result != VK_SUCCESS)
break;
flushed |= vk_stage;
}
if (result != VK_SUCCESS) {
assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
if (result != VK_SUCCESS)
return 0;
/* Re-emit the BT base address so we get the new surface state base
* address before we start emitting binding tables etc.
*/
genX(cmd_buffer_emit_bt_pool_base_address)(cmd_buffer);
/* Re-emit all active binding tables */
flushed = 0;
for (uint32_t i = 0; i < num_shaders; i++) {
if (!shaders[i])
continue;
gl_shader_stage stage = shaders[i]->stage;
result = emit_samplers(cmd_buffer, pipe_state, shaders[i],
&cmd_buffer->state.samplers[stage]);
if (result != VK_SUCCESS) {
anv_batch_set_error(&cmd_buffer->batch, result);
return 0;
}
result = emit_binding_table(cmd_buffer, pipe_state, shaders[i],
&cmd_buffer->state.binding_tables[stage]);
if (result != VK_SUCCESS) {
anv_batch_set_error(&cmd_buffer->batch, result);
return 0;
}
flushed |= mesa_to_vk_shader_stage(stage);
}
}
return flushed;
}
/* This function generates the surface state used to read the content of the
* descriptor buffer.
*/
void
genX(cmd_buffer_emit_push_descriptor_buffer_surface)(struct anv_cmd_buffer *cmd_buffer,
struct anv_descriptor_set *set)
{
assert(set->desc_surface_state.map == NULL);
struct anv_descriptor_set_layout *layout = set->layout;
enum isl_format format =
anv_isl_format_for_descriptor_type(cmd_buffer->device,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
set->desc_surface_state =
anv_cmd_buffer_alloc_surface_states(cmd_buffer, 1);
if (set->desc_surface_state.map == NULL)
return;
anv_fill_buffer_surface_state(cmd_buffer->device,
set->desc_surface_state.map,
format, ISL_SWIZZLE_IDENTITY,
ISL_SURF_USAGE_CONSTANT_BUFFER_BIT,
set->desc_surface_addr,
layout->descriptor_buffer_surface_size, 1);
}
/* This functions generates surface states used by a pipeline for push
* descriptors. This is delayed to the draw/dispatch time to avoid allocation
* and surface state generation when a pipeline is not going to use the
* binding table to access any push descriptor data.
*/
void
genX(cmd_buffer_emit_push_descriptor_surfaces)(struct anv_cmd_buffer *cmd_buffer,
struct anv_descriptor_set *set)
{
while (set->generate_surface_states) {
int desc_idx = u_bit_scan(&set->generate_surface_states);
struct anv_descriptor *desc = &set->descriptors[desc_idx];
struct anv_buffer_view *bview = desc->set_buffer_view;
if (bview != NULL && bview->general.state.map == NULL) {
bview->general.state =
anv_cmd_buffer_alloc_surface_states(cmd_buffer, 1);
if (bview->general.state.map == NULL)
return;
anv_descriptor_write_surface_state(cmd_buffer->device, desc,
bview->general.state);
}
}
}
static void
emit_pipe_control(struct anv_batch *batch,
const struct intel_device_info *devinfo,
uint32_t current_pipeline,
uint32_t post_sync_op,
struct anv_address address,
uint32_t imm_data,
enum anv_pipe_bits bits,
const char *reason)
{
if ((batch->engine_class == INTEL_ENGINE_CLASS_COPY) ||
(batch->engine_class == INTEL_ENGINE_CLASS_VIDEO))
unreachable("Trying to emit unsupported PIPE_CONTROL command.");
const bool trace_flush =
(bits & (ANV_PIPE_FLUSH_BITS |
ANV_PIPE_STALL_BITS |
ANV_PIPE_INVALIDATE_BITS |
ANV_PIPE_END_OF_PIPE_SYNC_BIT)) != 0;
if (trace_flush && batch->trace != NULL) {
// Store pipe control reasons if there is enough space
if (batch->pc_reasons_count < ARRAY_SIZE(batch->pc_reasons)) {
batch->pc_reasons[batch->pc_reasons_count++] = reason;
}
trace_intel_begin_stall(batch->trace);
}
/* XXX - insert all workarounds and GFX specific things below. */
#if INTEL_WA_1607156449_GFX_VER || INTEL_NEEDS_WA_18040903259
/* Wa_1607156449: For COMPUTE Workload - Any PIPE_CONTROL command with
* POST_SYNC Operation Enabled MUST be preceded by a PIPE_CONTROL with
* CS_STALL Bit set (with No POST_SYNC ENABLED)
*
* Wa_18040903259 says that timestamp are incorrect (not doing the CS Stall
* prior to writing the timestamp) with a command like this:
*
* PIPE_CONTROL(CS Stall, Post Sync = Timestamp)
*
* should be turned into :
*
* PIPE_CONTROL(CS Stall)
* PIPE_CONTROL(CS Stall, Post Sync = Timestamp)
*
* Also : "This WA needs to be applied only when we have done a Compute
* Walker and there is a request for a Timestamp."
*
* At the moment it's unclear whether all other parameters should go in the
* first or second PIPE_CONTROL. It seems logical that it should go to the
* first so that the timestamp accounts for all the associated flushes.
*/
if ((intel_needs_workaround(devinfo, 1607156449) ||
intel_needs_workaround(devinfo, 18040903259)) &&
current_pipeline == GPGPU &&
post_sync_op != NoWrite) {
emit_pipe_control(batch, devinfo, current_pipeline,
NoWrite, ANV_NULL_ADDRESS, 0,
bits, "Wa_18040903259/Wa_18040903259");
bits = ANV_PIPE_CS_STALL_BIT;
}
#endif
/* SKL PRMs, Volume 7: 3D-Media-GPGPU, Programming Restrictions for
* PIPE_CONTROL, Flush Types:
* "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
* For newer platforms this is documented in the PIPE_CONTROL instruction
* page.
*/
if (current_pipeline == GPGPU &&
(bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT))
bits |= ANV_PIPE_CS_STALL_BIT;
#if INTEL_NEEDS_WA_1409600907
/* Wa_1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
* be set with any PIPE_CONTROL with Depth Flush Enable bit set.
*/
if (bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT)
bits |= ANV_PIPE_DEPTH_STALL_BIT;
#endif
#if GFX_VERx10 >= 125
if (current_pipeline != GPGPU) {
if (bits & ANV_PIPE_HDC_PIPELINE_FLUSH_BIT)
bits |= ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT;
} else {
if (bits & (ANV_PIPE_HDC_PIPELINE_FLUSH_BIT |
ANV_PIPE_DATA_CACHE_FLUSH_BIT))
bits |= ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT;
}
/* BSpec 47112: PIPE_CONTROL::Untyped Data-Port Cache Flush:
*
* "'HDC Pipeline Flush' bit must be set for this bit to take
* effect."
*/
if (bits & ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT)
bits |= ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
#endif
#if GFX_VER < 12
if (bits & ANV_PIPE_HDC_PIPELINE_FLUSH_BIT)
bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
#endif
/* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
*
* "If the VF Cache Invalidation Enable is set to a 1 in a
* PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
* 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
* prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
* a 1."
*
* This appears to hang Broadwell, so we restrict it to just gfx9.
*/
if (GFX_VER == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
anv_batch_emit(batch, GENX(PIPE_CONTROL), pipe);
anv_batch_emit(batch, GENX(PIPE_CONTROL), pipe) {
#if GFX_VERx10 >= 125
pipe.UntypedDataPortCacheFlushEnable =
bits & ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT;
pipe.CCSFlushEnable = bits & ANV_PIPE_CCS_CACHE_FLUSH_BIT;
#endif
#if GFX_VER == 12
pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
pipe.L3FabricFlush = bits & ANV_PIPE_L3_FABRIC_FLUSH_BIT;
#endif
#if GFX_VER > 11
pipe.HDCPipelineFlushEnable = bits & ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
#endif
pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
pipe.RenderTargetCacheFlushEnable =
bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
pipe.TLBInvalidate = bits & ANV_PIPE_TLB_INVALIDATE_BIT;
#if GFX_VERx10 >= 125
pipe.PSSStallSyncEnable = bits & ANV_PIPE_PSS_STALL_SYNC_BIT;
#endif
pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
pipe.StateCacheInvalidationEnable =
bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
pipe.ConstantCacheInvalidationEnable =
bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
#if GFX_VER >= 12
/* Invalidates the L3 cache part in which index & vertex data is loaded
* when VERTEX_BUFFER_STATE::L3BypassDisable is set.
*/
pipe.L3ReadOnlyCacheInvalidationEnable =
bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
#endif
pipe.VFCacheInvalidationEnable =
bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
pipe.TextureCacheInvalidationEnable =
bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
pipe.InstructionCacheInvalidateEnable =
bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
pipe.PostSyncOperation = post_sync_op;
pipe.Address = address;
pipe.DestinationAddressType = DAT_PPGTT;
pipe.ImmediateData = imm_data;
anv_debug_dump_pc(pipe, reason);
}
if (trace_flush && batch->trace != NULL) {
trace_intel_end_stall(batch->trace, bits,
anv_pipe_flush_bit_to_ds_stall_flag,
batch->pc_reasons[0],
batch->pc_reasons[1],
batch->pc_reasons[2],
batch->pc_reasons[3]);
batch->pc_reasons[0] = NULL;
batch->pc_reasons[1] = NULL;
batch->pc_reasons[2] = NULL;
batch->pc_reasons[3] = NULL;
batch->pc_reasons_count = 0;
}
}
void
genX(batch_emit_pipe_control)(struct anv_batch *batch,
const struct intel_device_info *devinfo,
uint32_t current_pipeline,
enum anv_pipe_bits bits,
const char *reason)
{
emit_pipe_control(batch, devinfo, current_pipeline,
NoWrite, ANV_NULL_ADDRESS, 0, bits, reason);
}
void
genX(batch_emit_pipe_control_write)(struct anv_batch *batch,
const struct intel_device_info *devinfo,
uint32_t current_pipeline,
uint32_t post_sync_op,
struct anv_address address,
uint32_t imm_data,
enum anv_pipe_bits bits,
const char *reason)
{
emit_pipe_control(batch, devinfo, current_pipeline,
post_sync_op, address, imm_data, bits, reason);
}
/* Set preemption on/off. */
void
genX(batch_set_preemption)(struct anv_batch *batch,
struct anv_device *device,
uint32_t current_pipeline,
bool value)
{
#if INTEL_WA_16013994831_GFX_VER
if (!intel_needs_workaround(device->info, 16013994831))
return;
anv_batch_write_reg(batch, GENX(CS_CHICKEN1), cc1) {
cc1.DisablePreemptionandHighPriorityPausingdueto3DPRIMITIVECommand = !value;
cc1.DisablePreemptionandHighPriorityPausingdueto3DPRIMITIVECommandMask = true;
}
/* Wa_16013994831 - we need to insert CS_STALL and 250 noops. */
genx_batch_emit_pipe_control(batch, device->info, current_pipeline,
ANV_PIPE_CS_STALL_BIT);
for (unsigned i = 0; i < 250; i++)
anv_batch_emit(batch, GENX(MI_NOOP), noop);
#endif
}
void
genX(cmd_buffer_set_preemption)(struct anv_cmd_buffer *cmd_buffer, bool value)
{
#if GFX_VERx10 >= 120
if (cmd_buffer->state.gfx.object_preemption == value)
return;
genX(batch_set_preemption)(&cmd_buffer->batch, cmd_buffer->device,
cmd_buffer->state.current_pipeline,
value);
cmd_buffer->state.gfx.object_preemption = value;
#endif
}
ALWAYS_INLINE static void
update_descriptor_set_surface_state(struct anv_cmd_buffer *cmd_buffer,
struct anv_cmd_pipeline_state *pipe_state,
uint32_t set_idx)
{
if (!pipe_state->descriptor_buffers[set_idx].bound)
return;
const struct anv_physical_device *device = cmd_buffer->device->physical;
const int32_t buffer_index =
pipe_state->descriptor_buffers[set_idx].buffer_index;
const struct anv_va_range *push_va_range =
GFX_VERx10 >= 125 ?
&device->va.push_descriptor_buffer_pool :
&device->va.internal_surface_state_pool;
const struct anv_va_range *va_range =
buffer_index == -1 ? push_va_range : &device->va.dynamic_visible_pool;
const uint64_t descriptor_set_addr =
(buffer_index == -1 ? va_range->addr :
cmd_buffer->state.descriptor_buffers.address[buffer_index]) +
pipe_state->descriptor_buffers[set_idx].buffer_offset;
const uint64_t set_size =
MIN2(va_range->size - (descriptor_set_addr - va_range->addr),
anv_physical_device_bindless_heap_size(device, true));
if (descriptor_set_addr != pipe_state->descriptor_buffers[set_idx].address) {
pipe_state->descriptor_buffers[set_idx].address = descriptor_set_addr;
struct anv_state surface_state =
anv_cmd_buffer_alloc_surface_states(cmd_buffer, 1);
const enum isl_format format =
anv_isl_format_for_descriptor_type(cmd_buffer->device,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
anv_fill_buffer_surface_state(
cmd_buffer->device, surface_state.map,
format, ISL_SWIZZLE_IDENTITY,
ISL_SURF_USAGE_CONSTANT_BUFFER_BIT,
anv_address_from_u64(pipe_state->descriptor_buffers[set_idx].address),
set_size, 1);
pipe_state->descriptor_buffers[set_idx].state = surface_state;
}
}
ALWAYS_INLINE static uint32_t
compute_descriptor_set_surface_offset(const struct anv_cmd_buffer *cmd_buffer,
const struct anv_cmd_pipeline_state *pipe_state,
const uint32_t set_idx)
{
const struct anv_physical_device *device = cmd_buffer->device->physical;
if (device->uses_ex_bso) {
int32_t buffer_index =
pipe_state->descriptor_buffers[set_idx].buffer_index;
uint64_t buffer_address =
buffer_index == -1 ?
device->va.push_descriptor_buffer_pool.addr :
cmd_buffer->state.descriptor_buffers.address[buffer_index];
return (buffer_address - device->va.dynamic_visible_pool.addr) +
pipe_state->descriptor_buffers[set_idx].buffer_offset;
}
const uint32_t descriptor_buffer_align =
cmd_buffer->state.descriptor_buffers.surfaces_address % 4096;
return (descriptor_buffer_align +
pipe_state->descriptor_buffers[set_idx].buffer_offset) << 6;
}
ALWAYS_INLINE static uint32_t
compute_descriptor_set_sampler_offset(const struct anv_cmd_buffer *cmd_buffer,
const struct anv_cmd_pipeline_state *pipe_state,
const uint32_t set_idx)
{
const struct anv_physical_device *device = cmd_buffer->device->physical;
int32_t buffer_index =
pipe_state->descriptor_buffers[set_idx].buffer_index;
uint64_t buffer_address =
buffer_index == -1 ?
device->va.push_descriptor_buffer_pool.addr :
cmd_buffer->state.descriptor_buffers.address[buffer_index];
return (buffer_address - device->va.dynamic_state_pool.addr) +
pipe_state->descriptor_buffers[set_idx].buffer_offset;
}
void
genX(flush_descriptor_buffers)(struct anv_cmd_buffer *cmd_buffer,
struct anv_cmd_pipeline_state *pipe_state)
{
/* On Gfx12.5+ the STATE_BASE_ADDRESS BindlessSurfaceStateBaseAddress &
* DynamicStateBaseAddress are fixed. So as long as we stay in one
* descriptor buffer mode, there is no need to switch.
*/
#if GFX_VERx10 >= 125
if (cmd_buffer->state.current_db_mode !=
cmd_buffer->state.pending_db_mode)
genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
#else
if (cmd_buffer->state.descriptor_buffers.dirty)
genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
#endif
assert(cmd_buffer->state.current_db_mode !=
ANV_CMD_DESCRIPTOR_BUFFER_MODE_UNKNOWN);
if (cmd_buffer->state.current_db_mode == ANV_CMD_DESCRIPTOR_BUFFER_MODE_BUFFER &&
(cmd_buffer->state.descriptor_buffers.dirty ||
(pipe_state->pipeline->active_stages &
cmd_buffer->state.descriptor_buffers.offsets_dirty) != 0)) {
struct anv_push_constants *push_constants =
&pipe_state->push_constants;
for (uint32_t i = 0; i < ARRAY_SIZE(push_constants->desc_surface_offsets); i++) {
update_descriptor_set_surface_state(cmd_buffer, pipe_state, i);
push_constants->desc_surface_offsets[i] =
compute_descriptor_set_surface_offset(cmd_buffer, pipe_state, i);
push_constants->desc_sampler_offsets[i] =
compute_descriptor_set_sampler_offset(cmd_buffer, pipe_state, i);
}
#if GFX_VERx10 < 125
struct anv_device *device = cmd_buffer->device;
push_constants->surfaces_base_offset =
ROUND_DOWN_TO(
cmd_buffer->state.descriptor_buffers.surfaces_address,
4096) -
device->physical->va.dynamic_visible_pool.addr;
#endif
cmd_buffer->state.push_constants_dirty |=
(cmd_buffer->state.descriptor_buffers.offsets_dirty &
pipe_state->pipeline->active_stages);
pipe_state->push_constants_data_dirty = true;
cmd_buffer->state.descriptor_buffers.offsets_dirty &=
~pipe_state->pipeline->active_stages;
}
cmd_buffer->state.descriptor_buffers.dirty = false;
}
void
genX(cmd_buffer_begin_companion)(struct anv_cmd_buffer *cmd_buffer,
VkCommandBufferLevel level)
{
cmd_buffer->vk.level = level;
cmd_buffer->is_companion_rcs_cmd_buffer = true;
trace_intel_begin_cmd_buffer(&cmd_buffer->trace);
#if GFX_VER >= 12
/* Reenable prefetching at the beginning of secondary command buffers. We
* do this so that the return instruction edition is not prefetched before
* completion.
*/
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
anv_batch_emit(&cmd_buffer->batch, GENX(MI_ARB_CHECK), arb) {
arb.PreParserDisableMask = true;
arb.PreParserDisable = false;
}
}
#endif
/* A companion command buffer is only used for blorp commands atm, so
* default to the legacy mode.
*/
cmd_buffer->state.current_db_mode = ANV_CMD_DESCRIPTOR_BUFFER_MODE_LEGACY;
genX(cmd_buffer_emit_bt_pool_base_address)(cmd_buffer);
/* Invalidate the aux table in every primary command buffer. This ensures
* the command buffer see the last updates made by the host.
*/
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY &&
cmd_buffer->device->info->has_aux_map) {
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_AUX_TABLE_INVALIDATE_BIT,
"new cmd buffer with aux-tt");
}
}
static bool
aux_op_resolves(enum isl_aux_op aux_op)
{
return aux_op == ISL_AUX_OP_FULL_RESOLVE ||
aux_op == ISL_AUX_OP_PARTIAL_RESOLVE;
}
static bool
aux_op_clears(enum isl_aux_op aux_op)
{
return aux_op == ISL_AUX_OP_FAST_CLEAR ||
aux_op == ISL_AUX_OP_AMBIGUATE;
}
static bool
aux_op_renders(enum isl_aux_op aux_op)
{
return aux_op == ISL_AUX_OP_NONE;
}
static void
add_pending_pipe_bits_for_color_aux_op(struct anv_cmd_buffer *cmd_buffer,
enum isl_aux_op next_aux_op,
enum anv_pipe_bits pipe_bits)
{
const enum isl_aux_op last_aux_op = cmd_buffer->state.color_aux_op;
assert(next_aux_op != last_aux_op);
char flush_reason[64] = {};
if (INTEL_DEBUG(DEBUG_PIPE_CONTROL) ||
u_trace_enabled(&cmd_buffer->device->ds.trace_context)) {
int ret = snprintf(flush_reason, sizeof(flush_reason),
"color aux-op: %s -> %s",
isl_aux_op_to_name(last_aux_op),
isl_aux_op_to_name(next_aux_op));
assert(ret < sizeof(flush_reason));
}
anv_add_pending_pipe_bits(cmd_buffer, pipe_bits, flush_reason);
}
void
genX(cmd_buffer_update_color_aux_op)(struct anv_cmd_buffer *cmd_buffer,
enum isl_aux_op next_aux_op)
{
const enum isl_aux_op last_aux_op = cmd_buffer->state.color_aux_op;
if (!aux_op_clears(last_aux_op) && aux_op_clears(next_aux_op)) {
#if GFX_VER >= 20
/* From the Xe2 Bspec 57340 (r59562),
* "MCS/CCS Buffers, Fast Clear for Render Target(s)":
*
* Synchronization:
* Due to interaction of scaled clearing rectangle with pixel
* scoreboard, we require one of the following commands to be
* issued. [...]
*
* PIPE_CONTROL
* PSS Stall Sync Enable [...] 1b (Enable)
* Machine-wide Stall at Pixel Stage, wait for all Prior Pixel
* Work to Reach End of Pipe
* Render Target Cache Flush Enable [...] 1b (Enable)
* Post-Sync Op Flushes Render Cache before Unblocking Stall
*
* This synchronization step is required before and after the fast
* clear pass, to ensure correct ordering between pixels.
*/
add_pending_pipe_bits_for_color_aux_op(
cmd_buffer, next_aux_op,
ANV_PIPE_PSS_STALL_SYNC_BIT |
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT);
#elif GFX_VERx10 == 125
/* From the ACM Bspec 47704 (r52663), "Render Target Fast Clear":
*
* Preamble pre fast clear synchronization
*
* PIPE_CONTROL:
* PS sync stall = 1
* Tile Cache Flush = 1
* RT Write Flush = 1
* HDC Flush = 1
* DC Flush = 1
* Texture Invalidate = 1
*
* [...]
*
* Objective of the preamble flushes is to ensure all data is
* evicted from L1 caches prior to fast clear.
*/
add_pending_pipe_bits_for_color_aux_op(
cmd_buffer, next_aux_op,
ANV_PIPE_PSS_STALL_SYNC_BIT |
ANV_PIPE_TILE_CACHE_FLUSH_BIT |
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_HDC_PIPELINE_FLUSH_BIT |
ANV_PIPE_DATA_CACHE_FLUSH_BIT |
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT);
#elif GFX_VERx10 == 120
/* From the TGL Bspec 47704 (r52663), "Render Target Fast Clear":
*
* Preamble pre fast clear synchronization
*
* PIPE_CONTROL:
* Depth Stall = 1
* Tile Cache Flush = 1
* RT Write Flush = 1
* Texture Invalidate = 1
*
* [...]
*
* Objective of the preamble flushes is to ensure all data is
* evicted from L1 caches prior to fast clear.
*/
add_pending_pipe_bits_for_color_aux_op(
cmd_buffer, next_aux_op,
ANV_PIPE_DEPTH_STALL_BIT |
ANV_PIPE_TILE_CACHE_FLUSH_BIT |
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT);
#else
/* From the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
*
* Any transition from any value in {Clear, Render, Resolve} to a
* different value in {Clear, Render, Resolve} requires end of pipe
* synchronization.
*
* From the Sky Lake PRM Vol. 7, "Render Target Fast Clear":
*
* After Render target fast clear, pipe-control with color cache
* write-flush must be issued before sending any DRAW commands on
* that render target.
*
* The last comment is a bit cryptic and doesn't really tell you what's
* going or what's really needed. It appears that fast clear ops are
* not properly synchronized with other drawing. This means that we
* cannot have a fast clear operation in the pipe at the same time as
* other regular drawing operations. We need to use a PIPE_CONTROL
* to ensure that the contents of the previous draw hit the render
* target before we resolve and then use a second PIPE_CONTROL after
* the resolve to ensure that it is completed before any additional
* drawing occurs.
*/
add_pending_pipe_bits_for_color_aux_op(
cmd_buffer, next_aux_op,
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_END_OF_PIPE_SYNC_BIT);
#endif
} else if (aux_op_clears(last_aux_op) && !aux_op_clears(next_aux_op)) {
#if GFX_VERx10 >= 125
/* From the ACM PRM Vol. 9, "Color Fast Clear Synchronization":
*
* Postamble post fast clear synchronization
*
* PIPE_CONTROL:
* PS sync stall = 1
* RT flush = 1
*/
add_pending_pipe_bits_for_color_aux_op(
cmd_buffer, next_aux_op,
ANV_PIPE_PSS_STALL_SYNC_BIT |
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT);
#elif GFX_VERx10 == 120
/* From the TGL PRM Vol. 9, "Color Fast Clear Synchronization":
*
* Postamble post fast clear synchronization
*
* PIPE_CONTROL:
* Depth Stall = 1
* Tile Cache Flush = 1
* RT Write Flush = 1
*
* From the TGL PRM Vol. 2a, "PIPE_CONTROL::L3 Fabric Flush":
*
* For a sequence of color fast clears. A single PIPE_CONTROL
* command with Render Target Cache Flush, L3 Fabric Flush and Depth
* Stall set at the end of the sequence suffices.
*
* Replace the Tile Cache flush with an L3 fabric flush.
*/
add_pending_pipe_bits_for_color_aux_op(
cmd_buffer, next_aux_op,
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_L3_FABRIC_FLUSH_BIT |
ANV_PIPE_DEPTH_STALL_BIT);
#else
/* From the Sky Lake PRM Vol. 7, "Render Target Fast Clear":
*
* After Render target fast clear, pipe-control with color cache
* write-flush must be issued before sending any DRAW commands on
* that render target.
*
* From the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
*
* Any transition from any value in {Clear, Render, Resolve} to a
* different value in {Clear, Render, Resolve} requires end of pipe
* synchronization.
*/
add_pending_pipe_bits_for_color_aux_op(
cmd_buffer, next_aux_op,
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_END_OF_PIPE_SYNC_BIT);
#endif
} else if (aux_op_renders(last_aux_op) != aux_op_renders(next_aux_op)) {
assert(aux_op_resolves(last_aux_op) != aux_op_resolves(next_aux_op));
/* From the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
*
* Any transition from any value in {Clear, Render, Resolve} to a
* different value in {Clear, Render, Resolve} requires end of pipe
* synchronization.
*
* We perform a flush of the write cache before and after the clear and
* resolve operations to meet this requirement.
*
* Unlike other drawing, fast clear operations are not properly
* synchronized. The first PIPE_CONTROL here likely ensures that the
* contents of the previous render or clear hit the render target before
* we resolve and the second likely ensures that the resolve is complete
* before we do any more rendering or clearing.
*/
add_pending_pipe_bits_for_color_aux_op(
cmd_buffer, next_aux_op,
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_END_OF_PIPE_SYNC_BIT);
}
if (last_aux_op != ISL_AUX_OP_FAST_CLEAR &&
next_aux_op == ISL_AUX_OP_FAST_CLEAR &&
cmd_buffer->device->isl_dev.ss.clear_color_state_size > 0) {
/* From the ICL PRM Vol. 9, "State Caching":
*
* Any values referenced by pointers within the RENDER_SURFACE_STATE
* [...] (e.g. Clear Color Pointer, [...]) are considered to be part
* of that state and any changes to these referenced values requires
* an invalidation of the L1 state cache to ensure the new values are
* being used as part of the state. [...]
*
* We could alternatively perform this invalidation when we stop
* fast-clearing. A benefit to doing it now, when transitioning to a
* fast clear, is that we save a pipe control by combining the state
* cache invalidation with the texture cache invalidation done on gfx12.
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_STATE_CACHE_INVALIDATE_BIT,
"Invalidate for new clear color");
}
/* Update the auxiliary surface operation, but with one exception. */
if (last_aux_op == ISL_AUX_OP_FAST_CLEAR &&
next_aux_op == ISL_AUX_OP_AMBIGUATE) {
assert(aux_op_clears(last_aux_op) && aux_op_clears(next_aux_op));
/* Fast clears and ambiguates are in the same class of operation, but
* fast clears have more stringent synchronization requirements. For
* better performance, don't replace the current fast clear operation
* state with ambiguate. This allows us to perform one state cache
* invalidation when leaving a sequence which alternates between
* ambiguates and clears, instead of multiple such invalidations.
*/
} else {
cmd_buffer->state.color_aux_op = next_aux_op;
}
}
static void
genX(cmd_buffer_set_protected_memory)(struct anv_cmd_buffer *cmd_buffer,
bool enabled)
{
#if GFX_VER >= 12
if (enabled) {
anv_batch_emit(&cmd_buffer->batch, GENX(MI_SET_APPID), appid) {
/* Default value for single session. */
appid.ProtectedMemoryApplicationID = cmd_buffer->device->protected_session_id;
appid.ProtectedMemoryApplicationIDType = DISPLAY_APP;
}
}
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.PipeControlFlushEnable = true;
pc.DCFlushEnable = true;
pc.RenderTargetCacheFlushEnable = true;
pc.CommandStreamerStallEnable = true;
if (enabled)
pc.ProtectedMemoryEnable = true;
else
pc.ProtectedMemoryDisable = true;
}
#else
unreachable("Protected content not supported");
#endif
}
VkResult
genX(BeginCommandBuffer)(
VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo* pBeginInfo)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
VkResult result;
/* If this is the first vkBeginCommandBuffer, we must *initialize* the
* command buffer's state. Otherwise, we must *reset* its state. In both
* cases we reset it.
*
* From the Vulkan 1.0 spec:
*
* If a command buffer is in the executable state and the command buffer
* was allocated from a command pool with the
* VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
* vkBeginCommandBuffer implicitly resets the command buffer, behaving
* as if vkResetCommandBuffer had been called with
* VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
* the command buffer in the recording state.
*/
anv_cmd_buffer_reset(&cmd_buffer->vk, 0);
anv_cmd_buffer_reset_rendering(cmd_buffer);
cmd_buffer->usage_flags = pBeginInfo->flags;
/* VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT must be ignored for
* primary level command buffers.
*
* From the Vulkan 1.0 spec:
*
* VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT specifies that a
* secondary command buffer is considered to be entirely inside a render
* pass. If this is a primary command buffer, then this bit is ignored.
*/
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
cmd_buffer->usage_flags &= ~VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
#if GFX_VER >= 12
/* Reenable prefetching at the beginning of secondary command buffers. We
* do this so that the return instruction edition is not prefetched before
* completion.
*/
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
anv_batch_emit(&cmd_buffer->batch, GENX(MI_ARB_CHECK), arb) {
arb.PreParserDisableMask = true;
arb.PreParserDisable = false;
}
}
#endif
/* Assume the viewport has already been set in primary command buffers. */
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY)
cmd_buffer->state.gfx.viewport_set = true;
trace_intel_begin_cmd_buffer(&cmd_buffer->trace);
if (anv_cmd_buffer_is_video_queue(cmd_buffer) ||
anv_cmd_buffer_is_blitter_queue(cmd_buffer)) {
/* Invalidate the aux table in every primary command buffer. This
* ensures the command buffer see the last updates made by the host.
*/
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY &&
cmd_buffer->device->info->has_aux_map) {
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_AUX_TABLE_INVALIDATE_BIT,
"new cmd buffer with aux-tt");
}
return VK_SUCCESS;
}
#if GFX_VER >= 12
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY &&
cmd_buffer->vk.pool->flags & VK_COMMAND_POOL_CREATE_PROTECTED_BIT)
genX(cmd_buffer_set_protected_memory)(cmd_buffer, true);
#endif
if (cmd_buffer->device->vk.enabled_extensions.EXT_descriptor_buffer) {
genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
} else {
cmd_buffer->state.current_db_mode = ANV_CMD_DESCRIPTOR_BUFFER_MODE_LEGACY;
genX(cmd_buffer_emit_bt_pool_base_address)(cmd_buffer);
}
/* We sometimes store vertex data in the dynamic state buffer for blorp
* operations and our dynamic state stream may re-use data from previous
* command buffers. In order to prevent stale cache data, we flush the VF
* cache. We could do this on every blorp call but that's not really
* needed as all of the data will get written by the CPU prior to the GPU
* executing anything. The chances are fairly high that they will use
* blorp at least once per primary command buffer so it shouldn't be
* wasted.
*
* There is also a workaround on gfx8 which requires us to invalidate the
* VF cache occasionally. It's easier if we can assume we start with a
* fresh cache (See also genX(cmd_buffer_set_binding_for_gfx8_vb_flush).)
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_VF_CACHE_INVALIDATE_BIT,
"new cmd buffer");
/* Invalidate the aux table in every primary command buffer. This ensures
* the command buffer see the last updates made by the host.
*/
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY &&
cmd_buffer->device->info->has_aux_map) {
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_AUX_TABLE_INVALIDATE_BIT,
"new cmd buffer with aux-tt");
}
/* We send an "Indirect State Pointers Disable" packet at
* EndCommandBuffer, so all push constant packets are ignored during a
* context restore. Documentation says after that command, we need to
* emit push constants again before any rendering operation. So we
* flag them dirty here to make sure they get emitted.
*/
cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
cmd_buffer->state.gfx.base.push_constants_data_dirty = true;
if (cmd_buffer->usage_flags &
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
char gcbiar_data[VK_GCBIARR_DATA_SIZE(MAX_RTS)];
const VkRenderingInfo *resume_info =
vk_get_command_buffer_inheritance_as_rendering_resume(cmd_buffer->vk.level,
pBeginInfo,
gcbiar_data);
if (resume_info != NULL) {
genX(CmdBeginRendering)(commandBuffer, resume_info);
} else {
const VkCommandBufferInheritanceRenderingInfo *inheritance_info =
vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level,
pBeginInfo);
assert(inheritance_info);
gfx->rendering_flags = inheritance_info->flags;
gfx->render_area = (VkRect2D) { };
gfx->layer_count = 0;
gfx->samples = inheritance_info->rasterizationSamples;
gfx->view_mask = inheritance_info->viewMask;
uint32_t color_att_count = inheritance_info->colorAttachmentCount;
result = anv_cmd_buffer_init_attachments(cmd_buffer, color_att_count);
if (result != VK_SUCCESS)
return result;
for (uint32_t i = 0; i < color_att_count; i++) {
gfx->color_att[i].vk_format =
inheritance_info->pColorAttachmentFormats[i];
}
gfx->depth_att.vk_format =
inheritance_info->depthAttachmentFormat;
gfx->stencil_att.vk_format =
inheritance_info->stencilAttachmentFormat;
anv_cmd_graphic_state_update_has_uint_rt(gfx);
cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_AREA |
ANV_CMD_DIRTY_RENDER_TARGETS;
}
}
/* Emit the sample pattern at the beginning of the batch because the
* default locations emitted at the device initialization might have been
* changed by a previous command buffer.
*
* Do not change that when we're continuing a previous renderpass.
*/
if (cmd_buffer->device->vk.enabled_extensions.EXT_sample_locations &&
!(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT))
genX(emit_sample_pattern)(&cmd_buffer->batch, NULL);
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
/* If secondary buffer supports conditional rendering
* we should emit commands as if conditional rendering is enabled.
*/
cmd_buffer->state.conditional_render_enabled =
conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
if (pBeginInfo->pInheritanceInfo->occlusionQueryEnable) {
cmd_buffer->state.gfx.n_occlusion_queries = 1;
cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_OCCLUSION_QUERY_ACTIVE;
}
}
return VK_SUCCESS;
}
/* From the PRM, Volume 2a:
*
* "Indirect State Pointers Disable
*
* At the completion of the post-sync operation associated with this pipe
* control packet, the indirect state pointers in the hardware are
* considered invalid; the indirect pointers are not saved in the context.
* If any new indirect state commands are executed in the command stream
* while the pipe control is pending, the new indirect state commands are
* preserved.
*
* [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
* restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
* commands are only considered as Indirect State Pointers. Once ISP is
* issued in a context, SW must initialize by programming push constant
* commands for all the shaders (at least to zero length) before attempting
* any rendering operation for the same context."
*
* 3DSTATE_CONSTANT_* packets are restored during a context restore,
* even though they point to a BO that has been already unreferenced at
* the end of the previous batch buffer. This has been fine so far since
* we are protected by these scratch page (every address not covered by
* a BO should be pointing to the scratch page). But on CNL, it is
* causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
* instruction.
*
* The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
* hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
* context restore, so the mentioned hang doesn't happen. However,
* software must program push constant commands for all stages prior to
* rendering anything. So we flag them dirty in BeginCommandBuffer.
*
* Finally, we also make sure to stall at pixel scoreboard to make sure the
* constants have been loaded into the EUs prior to disable the push constants
* so that it doesn't hang a previous 3DPRIMITIVE.
*/
static void
emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
{
genx_batch_emit_pipe_control(&cmd_buffer->batch,
cmd_buffer->device->info,
cmd_buffer->state.current_pipeline,
ANV_PIPE_CS_STALL_BIT |
ANV_PIPE_STALL_AT_SCOREBOARD_BIT);
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
pc.IndirectStatePointersDisable = true;
pc.CommandStreamerStallEnable = true;
anv_debug_dump_pc(pc, __func__);
}
}
static VkResult
end_command_buffer(struct anv_cmd_buffer *cmd_buffer)
{
if (anv_batch_has_error(&cmd_buffer->batch))
return cmd_buffer->batch.status;
anv_measure_endcommandbuffer(cmd_buffer);
if (anv_cmd_buffer_is_video_queue(cmd_buffer) ||
anv_cmd_buffer_is_blitter_queue(cmd_buffer)) {
trace_intel_end_cmd_buffer(&cmd_buffer->trace,
(uintptr_t)(vk_command_buffer_to_handle(&cmd_buffer->vk)),
cmd_buffer->vk.level);
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
anv_cmd_buffer_end_batch_buffer(cmd_buffer);
return VK_SUCCESS;
}
/* Flush query clears using blorp so that secondary query writes do not
* race with the clear.
*/
if (cmd_buffer->state.queries.clear_bits) {
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_QUERY_BITS(cmd_buffer->state.queries.clear_bits),
"query clear flush prior command buffer end");
}
/* Flush any in-progress CCS/MCS operations in preparation for chaining. */
genX(cmd_buffer_update_color_aux_op(cmd_buffer, ISL_AUX_OP_NONE));
genX(cmd_buffer_flush_generated_draws)(cmd_buffer);
/* Turn on object level preemption if it is disabled to have it in known
* state at the beginning of new command buffer.
*/
if (!cmd_buffer->state.gfx.object_preemption)
genX(cmd_buffer_set_preemption)(cmd_buffer, true);
/* We want every command buffer to start with the PMA fix in a known state,
* so we disable it at the end of the command buffer.
*/
genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
/* Wa_14015814527
*
* Apply task URB workaround in the end of primary or secondary cmd_buffer.
*/
genX(apply_task_urb_workaround)(cmd_buffer);
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
emit_isp_disable(cmd_buffer);
#if GFX_VER >= 12
if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY &&
cmd_buffer->vk.pool->flags & VK_COMMAND_POOL_CREATE_PROTECTED_BIT)
genX(cmd_buffer_set_protected_memory)(cmd_buffer, false);
#endif
trace_intel_end_cmd_buffer(&cmd_buffer->trace,
(uintptr_t)(vk_command_buffer_to_handle(&cmd_buffer->vk)),
cmd_buffer->vk.level);
anv_cmd_buffer_end_batch_buffer(cmd_buffer);
return VK_SUCCESS;
}
VkResult
genX(EndCommandBuffer)(
VkCommandBuffer commandBuffer)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
VkResult status = end_command_buffer(cmd_buffer);
if (status != VK_SUCCESS)
return status;
/* If there is MSAA access over the compute/transfer queue, we can use the
* companion RCS command buffer and end it properly.
*/
if (cmd_buffer->companion_rcs_cmd_buffer) {
assert(anv_cmd_buffer_is_compute_queue(cmd_buffer) ||
anv_cmd_buffer_is_blitter_queue(cmd_buffer));
status = end_command_buffer(cmd_buffer->companion_rcs_cmd_buffer);
}
ANV_RMV(cmd_buffer_create, cmd_buffer->device, cmd_buffer);
return status;
}
void
genX(CmdExecuteCommands)(
VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer* pCmdBuffers)
{
ANV_FROM_HANDLE(anv_cmd_buffer, container, commandBuffer);
struct anv_device *device = container->device;
if (anv_batch_has_error(&container->batch))
return;
/* The secondary command buffers will assume that the PMA fix is disabled
* when they begin executing. Make sure this is true.
*/
genX(cmd_buffer_enable_pma_fix)(container, false);
/* Turn on preemption in case it was toggled off. */
if (!container->state.gfx.object_preemption)
genX(cmd_buffer_set_preemption)(container, true);
/* Wa_14015814527
*
* Apply task URB workaround before secondary cmd buffers.
*/
genX(apply_task_urb_workaround)(container);
/* Flush query clears using blorp so that secondary query writes do not
* race with the clear.
*/
if (container->state.queries.clear_bits) {
anv_add_pending_pipe_bits(container,
ANV_PIPE_QUERY_BITS(container->state.queries.clear_bits),
"query clear flush prior to secondary buffer");
}
/* Ensure we're in a regular drawing cache mode (assumption for all
* secondary).
*/
genX(cmd_buffer_update_color_aux_op(container, ISL_AUX_OP_NONE));
/* The secondary command buffer doesn't know which textures etc. have been
* flushed prior to their execution. Apply those flushes now.
*/
genX(cmd_buffer_apply_pipe_flushes)(container);
genX(cmd_buffer_flush_generated_draws)(container);
UNUSED enum anv_cmd_descriptor_buffer_mode db_mode =
container->state.current_db_mode;
/* Do a first pass to copy the surface state content of the render targets
* if needed.
*/
bool need_surface_state_copy = false;
for (uint32_t i = 0; i < commandBufferCount; i++) {
ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
if (secondary->usage_flags &
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
need_surface_state_copy = true;
break;
}
}
if (need_surface_state_copy) {
if (container->vk.pool->flags & VK_COMMAND_POOL_CREATE_PROTECTED_BIT)
genX(cmd_buffer_set_protected_memory)(container, false);
/* The memcpy will take care of the 3D preemption requirements. */
struct anv_memcpy_state memcpy_state;
genX(emit_so_memcpy_init)(&memcpy_state, device,
container, &container->batch);
for (uint32_t i = 0; i < commandBufferCount; i++) {
ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
assert(secondary->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
assert(!anv_batch_has_error(&secondary->batch));
if (secondary->usage_flags &
VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
/* If we're continuing a render pass from the container, we need
* to copy the surface states for the current subpass into the
* storage we allocated for them in BeginCommandBuffer.
*/
struct anv_state src_state = container->state.gfx.att_states;
struct anv_state dst_state = secondary->state.gfx.att_states;
assert(src_state.alloc_size == dst_state.alloc_size);
genX(emit_so_memcpy)(
&memcpy_state,
anv_state_pool_state_address(&device->internal_surface_state_pool,
dst_state),
anv_state_pool_state_address(&device->internal_surface_state_pool,
src_state),
src_state.alloc_size);
}
}
genX(emit_so_memcpy_fini)(&memcpy_state);
anv_add_pending_pipe_bits(container,
ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT,
"Wait for primary->secondary RP surface state copies");
genX(cmd_buffer_apply_pipe_flushes)(container);
if (container->vk.pool->flags & VK_COMMAND_POOL_CREATE_PROTECTED_BIT)
genX(cmd_buffer_set_protected_memory)(container, true);
}
/* Ensure preemption is enabled (assumption for all secondary) */
genX(cmd_buffer_set_preemption)(container, true);
for (uint32_t i = 0; i < commandBufferCount; i++) {
ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
assert(secondary->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
assert(!anv_batch_has_error(&secondary->batch));
if (secondary->state.conditional_render_enabled) {
if (!container->state.conditional_render_enabled) {
/* Secondary buffer is constructed as if it will be executed
* with conditional rendering, we should satisfy this dependency
* regardless of conditional rendering being enabled in container.
*/
struct mi_builder b;
mi_builder_init(&b, device->info, &container->batch);
mi_store(&b, mi_reg64(ANV_PREDICATE_RESULT_REG),
mi_imm(UINT64_MAX));
}
}
anv_cmd_buffer_add_secondary(container, secondary);
/* Add secondary buffer's RCS command buffer to container buffer's RCS
* command buffer for execution if secondary RCS is valid.
*/
if (secondary->companion_rcs_cmd_buffer != NULL) {
VkResult result = anv_cmd_buffer_ensure_rcs_companion(container);
if (result != VK_SUCCESS) {
anv_batch_set_error(&container->batch, result);
return;
}
anv_cmd_buffer_add_secondary(container->companion_rcs_cmd_buffer,
secondary->companion_rcs_cmd_buffer);
}
assert(secondary->perf_query_pool == NULL || container->perf_query_pool == NULL ||
secondary->perf_query_pool == container->perf_query_pool);
if (secondary->perf_query_pool)
container->perf_query_pool = secondary->perf_query_pool;
#if INTEL_NEEDS_WA_1808121037
if (secondary->state.gfx.depth_reg_mode != ANV_DEPTH_REG_MODE_UNKNOWN)
container->state.gfx.depth_reg_mode = secondary->state.gfx.depth_reg_mode;
#endif
container->state.gfx.viewport_set |= secondary->state.gfx.viewport_set;
db_mode = secondary->state.current_db_mode;
}
/* The secondary isn't counted in our VF cache tracking so we need to
* invalidate the whole thing.
*/
if (GFX_VER == 9) {
anv_add_pending_pipe_bits(container,
ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT,
"Secondary cmd buffer not tracked in VF cache");
}
#if INTEL_WA_16014538804_GFX_VER
if (anv_cmd_buffer_is_render_queue(container) &&
intel_needs_workaround(device->info, 16014538804))
anv_batch_emit(&container->batch, GENX(PIPE_CONTROL), pc);
#endif
/* The secondary may have selected a different pipeline (3D or compute) and
* may have changed the current L3$ configuration. Reset our tracking
* variables to invalid values to ensure that we re-emit these in the case
* where we do any draws or compute dispatches from the container after the
* secondary has returned.
*/
container->state.current_pipeline = UINT32_MAX;
container->state.current_l3_config = NULL;
container->state.current_hash_scale = 0;
container->state.gfx.push_constant_stages = 0;
memset(&container->state.gfx.urb_cfg, 0, sizeof(struct intel_urb_config));
/* Reemit all GFX instructions in container */
memcpy(container->state.gfx.dyn_state.dirty,
device->gfx_dirty_state,
sizeof(container->state.gfx.dyn_state.dirty));
if (container->device->vk.enabled_extensions.KHR_fragment_shading_rate) {
/* Also recompute the CPS_STATE offset */
struct vk_dynamic_graphics_state *dyn =
&container->vk.dynamic_graphics_state;
BITSET_SET(dyn->dirty, MESA_VK_DYNAMIC_FSR);
}
/* Each of the secondary command buffers will use its own state base
* address. We need to re-emit state base address for the container after
* all of the secondaries are done.
*/
if (container->device->vk.enabled_extensions.EXT_descriptor_buffer) {
#if GFX_VERx10 >= 125
/* If the last secondary had a different mode, reemit the last pending
* mode. Otherwise, we can do a lighter binding table pool update.
*/
if (db_mode != container->state.current_db_mode) {
container->state.current_db_mode = db_mode;
genX(cmd_buffer_emit_state_base_address)(container);
} else {
genX(cmd_buffer_emit_bt_pool_base_address)(container);
}
#else
genX(cmd_buffer_emit_state_base_address)(container);
#endif
} else {
genX(cmd_buffer_emit_bt_pool_base_address)(container);
}
/* Copy of utrace timestamp buffers from secondary into container */
if (u_trace_enabled(&device->ds.trace_context)) {
trace_intel_begin_trace_copy(&container->trace);
struct anv_memcpy_state memcpy_state;
genX(emit_so_memcpy_init)(&memcpy_state, device,
container, &container->batch);
uint32_t num_traces = 0;
for (uint32_t i = 0; i < commandBufferCount; i++) {
ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
num_traces += secondary->trace.num_traces;
u_trace_clone_append(u_trace_begin_iterator(&secondary->trace),
u_trace_end_iterator(&secondary->trace),
&container->trace,
&memcpy_state,
anv_device_utrace_emit_gfx_copy_buffer);
}
genX(emit_so_memcpy_fini)(&memcpy_state);
trace_intel_end_trace_copy(&container->trace, num_traces);
/* Memcpy is done using the 3D pipeline. */
container->state.current_pipeline = _3D;
}
}
static inline enum anv_pipe_bits
anv_pipe_flush_bits_for_access_flags(struct anv_cmd_buffer *cmd_buffer,
VkAccessFlags2 flags,
VkAccessFlagBits3KHR flags3)
{
enum anv_pipe_bits pipe_bits = 0;
u_foreach_bit64(b, flags) {
switch ((VkAccessFlags2)BITFIELD64_BIT(b)) {
case VK_ACCESS_2_SHADER_WRITE_BIT:
case VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT:
case VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR:
/* We're transitioning a buffer that was previously used as write
* destination through the data port. To make its content available
* to future operations, flush the hdc pipeline.
*/
pipe_bits |= ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
pipe_bits |= ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT:
/* We're transitioning a buffer that was previously used as render
* target. To make its content available to future operations, flush
* the render target cache.
*/
pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
/* We're transitioning a buffer that was previously used as depth
* buffer. To make its content available to future operations, flush
* the depth cache.
*/
pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_2_TRANSFER_WRITE_BIT:
/* We're transitioning a buffer that was previously used as a
* transfer write destination. Generic write operations include color
* & depth operations as well as buffer operations like :
* - vkCmdClearColorImage()
* - vkCmdClearDepthStencilImage()
* - vkCmdBlitImage()
* - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
*
* Most of these operations are implemented using Blorp which writes
* through the render target cache or the depth cache on the graphics
* queue. On the compute queue, the writes are done through the data
* port.
*/
if (anv_cmd_buffer_is_compute_queue(cmd_buffer)) {
pipe_bits |= ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
pipe_bits |= ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT;
} else {
/* We can use the data port when trying to stay in compute mode on
* the RCS.
*/
pipe_bits |= ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
pipe_bits |= ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT;
/* Most operations are done through RT/detph writes */
pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
}
break;
case VK_ACCESS_2_MEMORY_WRITE_BIT:
/* We're transitioning a buffer for generic write operations. Flush
* all the caches.
*/
pipe_bits |= ANV_PIPE_BARRIER_FLUSH_BITS;
break;
case VK_ACCESS_2_HOST_WRITE_BIT:
/* We're transitioning a buffer for access by CPU. Invalidate
* all the caches. Since data and tile caches don't have invalidate,
* we are forced to flush those as well.
*/
pipe_bits |= ANV_PIPE_BARRIER_FLUSH_BITS;
pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
break;
case VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT:
case VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT:
/* We're transitioning a buffer written either from VS stage or from
* the command streamer (see CmdEndTransformFeedbackEXT), we just
* need to stall the CS.
*
* Streamout writes apparently bypassing L3, in order to make them
* visible to the destination, we need to invalidate the other
* caches.
*/
pipe_bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_INVALIDATE_BITS;
break;
default:
break; /* Nothing to do */
}
}
return pipe_bits;
}
static inline enum anv_pipe_bits
anv_pipe_invalidate_bits_for_access_flags(struct anv_cmd_buffer *cmd_buffer,
VkAccessFlags2 flags,
VkAccessFlagBits3KHR flags3)
{
struct anv_device *device = cmd_buffer->device;
enum anv_pipe_bits pipe_bits = 0;
u_foreach_bit64(b, flags) {
switch ((VkAccessFlags2)BITFIELD64_BIT(b)) {
case VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT:
/* Indirect draw commands take a buffer as input that we're going to
* read from the command streamer to load some of the HW registers
* (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
* command streamer stall so that all the cache flushes have
* completed before the command streamer loads from memory.
*/
pipe_bits |= ANV_PIPE_CS_STALL_BIT;
if (device->info->ver == 9) {
/* Indirect draw commands on Gfx9 also set gl_BaseVertex &
* gl_BaseIndex through a vertex buffer, so invalidate that cache.
*/
pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
}
/* For CmdDipatchIndirect, we load indirect gl_NumWorkGroups through
* an A64 message, so we need to invalidate constant cache.
*/
pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
/* Tile & Data cache flush needed For Cmd*Indirect* commands since
* command streamer is not L3 coherent.
*/
pipe_bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT |
ANV_PIPE_DATA_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_2_INDEX_READ_BIT:
case VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT:
/* We transitioning a buffer to be used for as input for vkCmdDraw*
* commands, so we invalidate the VF cache to make sure there is no
* stale data when we start rendering.
*/
pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
break;
case VK_ACCESS_2_UNIFORM_READ_BIT:
case VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR:
/* We transitioning a buffer to be used as uniform data. Because
* uniform is accessed through the data port & sampler, we need to
* invalidate the texture cache (sampler) & constant cache (data
* port) to avoid stale data.
*/
pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
if (device->physical->compiler->indirect_ubos_use_sampler) {
pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
} else {
pipe_bits |= ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
pipe_bits |= ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT;
}
break;
case VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT:
case VK_ACCESS_2_TRANSFER_READ_BIT:
case VK_ACCESS_2_SHADER_SAMPLED_READ_BIT:
/* Transitioning a buffer to be read through the sampler, so
* invalidate the texture cache, we don't want any stale data.
*/
pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
break;
case VK_ACCESS_2_SHADER_READ_BIT:
/* Same as VK_ACCESS_2_UNIFORM_READ_BIT and
* VK_ACCESS_2_SHADER_SAMPLED_READ_BIT cases above
*/
pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT |
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
if (!device->physical->compiler->indirect_ubos_use_sampler) {
pipe_bits |= ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
pipe_bits |= ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT;
}
break;
case VK_ACCESS_2_MEMORY_READ_BIT:
/* Transitioning a buffer for generic read, invalidate all the
* caches.
*/
pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
break;
case VK_ACCESS_2_MEMORY_WRITE_BIT:
/* Generic write, make sure all previously written things land in
* memory.
*/
pipe_bits |= ANV_PIPE_BARRIER_FLUSH_BITS;
break;
case VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT:
case VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT:
/* Transitioning a buffer for conditional rendering or transform
* feedback. We'll load the content of this buffer into HW registers
* using the command streamer, so we need to stall the command
* streamer , so we need to stall the command streamer to make sure
* any in-flight flush operations have completed.
*/
pipe_bits |= ANV_PIPE_CS_STALL_BIT;
pipe_bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_2_HOST_READ_BIT:
/* We're transitioning a buffer that was written by CPU. Flush
* all the caches.
*/
pipe_bits |= ANV_PIPE_BARRIER_FLUSH_BITS;
break;
case VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT:
/* We're transitioning a buffer to be written by the streamout fixed
* function. This one is apparently not L3 coherent, so we need a
* tile cache flush to make sure any previous write is not going to
* create WaW hazards.
*/
pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
pipe_bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
break;
case VK_ACCESS_2_SHADER_STORAGE_READ_BIT:
/* VK_ACCESS_2_SHADER_STORAGE_READ_BIT specifies read access to a
* storage buffer, physical storage buffer, storage texel buffer, or
* storage image in any shader pipeline stage.
*
* Any storage buffers or images written to must be invalidated and
* flushed before the shader can access them.
*
* Both HDC & Untyped flushes also do invalidation. This is why we
* use this here on Gfx12+.
*
* Gfx11 and prior don't have HDC. Only Data cache flush is available
* and it only operates on the written cache lines.
*/
if (device->info->ver >= 12) {
pipe_bits |= ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT;
pipe_bits |= ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
}
break;
case VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT:
pipe_bits |= ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
break;
default:
break; /* Nothing to do */
}
}
return pipe_bits;
}
static inline bool
stage_is_shader(const VkPipelineStageFlags2 stage)
{
return (stage & (VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT |
VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT |
VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT |
VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT |
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT |
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT |
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT |
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR |
VK_PIPELINE_STAGE_2_TASK_SHADER_BIT_EXT |
VK_PIPELINE_STAGE_2_MESH_SHADER_BIT_EXT));
}
static inline bool
stage_is_transfer(const VkPipelineStageFlags2 stage)
{
return (stage & (VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT |
VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT));
}
static inline bool
stage_is_video(const VkPipelineStageFlags2 stage)
{
return (stage & (VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT |
#ifdef VK_ENABLE_BETA_EXTENSIONS
VK_PIPELINE_STAGE_2_VIDEO_ENCODE_BIT_KHR |
#endif
VK_PIPELINE_STAGE_2_VIDEO_DECODE_BIT_KHR));
}
static inline bool
mask_is_shader_write(const VkAccessFlags2 access,
const VkAccessFlagBits3KHR access3)
{
return (access & (VK_ACCESS_2_SHADER_WRITE_BIT |
VK_ACCESS_2_MEMORY_WRITE_BIT |
VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT));
}
static inline bool
mask_is_write(const VkAccessFlags2 access,
const VkAccessFlagBits3KHR access3)
{
return access & (VK_ACCESS_2_SHADER_WRITE_BIT |
VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_2_TRANSFER_WRITE_BIT |
VK_ACCESS_2_HOST_WRITE_BIT |
VK_ACCESS_2_MEMORY_WRITE_BIT |
VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT |
VK_ACCESS_2_VIDEO_DECODE_WRITE_BIT_KHR |
#ifdef VK_ENABLE_BETA_EXTENSIONS
VK_ACCESS_2_VIDEO_ENCODE_WRITE_BIT_KHR |
#endif
VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT |
VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT |
VK_ACCESS_2_COMMAND_PREPROCESS_WRITE_BIT_NV |
VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR |
VK_ACCESS_2_MICROMAP_WRITE_BIT_EXT |
VK_ACCESS_2_OPTICAL_FLOW_WRITE_BIT_NV);
}
static inline bool
mask_is_transfer_write(const VkAccessFlags2 access)
{
return access & (VK_ACCESS_2_TRANSFER_WRITE_BIT |
VK_ACCESS_2_MEMORY_WRITE_BIT);
}
static void
cmd_buffer_barrier_video(struct anv_cmd_buffer *cmd_buffer,
uint32_t n_dep_infos,
const VkDependencyInfo *dep_infos)
{
assert(anv_cmd_buffer_is_video_queue(cmd_buffer));
bool flush_llc = false;
bool flush_ccs = false;
for (uint32_t d = 0; d < n_dep_infos; d++) {
const VkDependencyInfo *dep_info = &dep_infos[d];
for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
const VkImageMemoryBarrier2 *img_barrier =
&dep_info->pImageMemoryBarriers[i];
ANV_FROM_HANDLE(anv_image, image, img_barrier->image);
const VkImageSubresourceRange *range = &img_barrier->subresourceRange;
/* If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, this
* memory barrier defines a queue family ownership transfer.
*/
if (img_barrier->srcQueueFamilyIndex != img_barrier->dstQueueFamilyIndex)
flush_llc = true;
VkImageAspectFlags img_aspects =
vk_image_expand_aspect_mask(&image->vk, range->aspectMask);
anv_foreach_image_aspect_bit(aspect_bit, image, img_aspects) {
const uint32_t plane =
anv_image_aspect_to_plane(image, 1UL << aspect_bit);
if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage)) {
flush_ccs = true;
}
}
}
for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
const VkBufferMemoryBarrier2 *buf_barrier =
&dep_info->pBufferMemoryBarriers[i];
const VkMemoryBarrierAccessFlags3KHR *barrier3 =
vk_find_struct_const(buf_barrier->pNext,
MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
/* Flush the cache if something is written by the video operations and
* used by any other stages except video encode/decode stages or if
* srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, this memory
* barrier defines a queue family ownership transfer.
*/
if ((stage_is_video(buf_barrier->srcStageMask) &&
mask_is_write(buf_barrier->srcAccessMask,
barrier3 ? barrier3->srcAccessMask3 : 0) &&
!stage_is_video(buf_barrier->dstStageMask)) ||
(buf_barrier->srcQueueFamilyIndex !=
buf_barrier->dstQueueFamilyIndex)) {
flush_llc = true;
break;
}
}
for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
const VkMemoryBarrier2 *mem_barrier = &dep_info->pMemoryBarriers[i];
const VkMemoryBarrierAccessFlags3KHR *barrier3 =
vk_find_struct_const(mem_barrier->pNext,
MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
/* Flush the cache if something is written by the video operations and
* used by any other stages except video encode/decode stage.
*/
if (stage_is_video(mem_barrier->srcStageMask) &&
mask_is_write(mem_barrier->srcAccessMask,
barrier3 ? barrier3->srcAccessMask3 : 0) &&
!stage_is_video(mem_barrier->dstStageMask)) {
flush_llc = true;
break;
}
}
/* We cannot gather more information than that. */
if (flush_ccs && flush_llc)
break;
}
if (flush_ccs || flush_llc) {
anv_batch_emit(&cmd_buffer->batch, GENX(MI_FLUSH_DW), fd) {
#if GFX_VERx10 >= 125
fd.FlushCCS = flush_ccs;
#endif
#if GFX_VER >= 12
/* Using this bit on Gfx9 triggers a GPU hang.
* This is undocumented behavior. Gfx12 seems fine.
* TODO: check Gfx11
*/
fd.FlushLLC = flush_llc;
#endif
}
}
}
static void
cmd_buffer_barrier_blitter(struct anv_cmd_buffer *cmd_buffer,
uint32_t n_dep_infos,
const VkDependencyInfo *dep_infos)
{
#if GFX_VERx10 >= 125
assert(anv_cmd_buffer_is_blitter_queue(cmd_buffer));
/* The blitter requires an MI_FLUSH_DW command when a buffer transitions
* from being a destination to a source.
*/
bool flush_llc = false;
bool flush_ccs = false;
for (uint32_t d = 0; d < n_dep_infos; d++) {
const VkDependencyInfo *dep_info = &dep_infos[d];
for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
const VkImageMemoryBarrier2 *img_barrier =
&dep_info->pImageMemoryBarriers[i];
ANV_FROM_HANDLE(anv_image, image, img_barrier->image);
const VkImageSubresourceRange *range = &img_barrier->subresourceRange;
/* If srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, this
* memory barrier defines a queue family transfer operation.
*/
if (img_barrier->srcQueueFamilyIndex != img_barrier->dstQueueFamilyIndex)
flush_llc = true;
/* Flush cache if transfer command reads the output of the previous
* transfer command, ideally we should just wait for the completion
* but for now just flush the cache to make the data visible.
*/
if ((img_barrier->oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL ||
img_barrier->oldLayout == VK_IMAGE_LAYOUT_GENERAL) &&
(img_barrier->newLayout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL ||
img_barrier->newLayout == VK_IMAGE_LAYOUT_GENERAL)) {
flush_llc = true;
}
VkImageAspectFlags img_aspects =
vk_image_expand_aspect_mask(&image->vk, range->aspectMask);
anv_foreach_image_aspect_bit(aspect_bit, image, img_aspects) {
const uint32_t plane =
anv_image_aspect_to_plane(image, 1UL << aspect_bit);
if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage)) {
flush_ccs = true;
}
}
}
for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
const VkBufferMemoryBarrier2 *buf_barrier =
&dep_info->pBufferMemoryBarriers[i];
const VkMemoryBarrierAccessFlags3KHR *barrier3 =
vk_find_struct_const(buf_barrier->pNext,
MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
/* Flush the cache if something is written by the transfer command
* and used by any other stages except transfer stage or if
* srcQueueFamilyIndex is not equal to dstQueueFamilyIndex, this
* memory barrier defines a queue family transfer operation.
*/
if ((stage_is_transfer(buf_barrier->srcStageMask) &&
mask_is_write(buf_barrier->srcAccessMask,
barrier3 ? barrier3->srcAccessMask3 : 0)) ||
(buf_barrier->srcQueueFamilyIndex !=
buf_barrier->dstQueueFamilyIndex)) {
flush_llc = true;
break;
}
}
for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
const VkMemoryBarrier2 *mem_barrier = &dep_info->pMemoryBarriers[i];
const VkMemoryBarrierAccessFlags3KHR *barrier3 =
vk_find_struct_const(mem_barrier->pNext,
MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
/* Flush the cache if something is written by the transfer command
* and used by any other stages except transfer stage.
*/
if (stage_is_transfer(mem_barrier->srcStageMask) &&
mask_is_write(mem_barrier->srcAccessMask,
barrier3 ? barrier3->srcAccessMask3 : 0)) {
flush_llc = true;
break;
}
}
/* We cannot gather more information than that. */
if (flush_ccs && flush_llc)
break;
}
if (flush_ccs || flush_llc) {
/* Wa_16018063123 - emit fast color dummy blit before MI_FLUSH_DW. */
if (intel_needs_workaround(cmd_buffer->device->info, 16018063123)) {
genX(batch_emit_fast_color_dummy_blit)(&cmd_buffer->batch,
cmd_buffer->device);
}
anv_batch_emit(&cmd_buffer->batch, GENX(MI_FLUSH_DW), fd) {
fd.FlushCCS = flush_ccs;
fd.FlushLLC = flush_llc;
}
}
#endif
}
static inline bool
cmd_buffer_has_pending_copy_query(struct anv_cmd_buffer *cmd_buffer)
{
/* Query copies are only written with dataport, so we only need to check
* that flag.
*/
return (cmd_buffer->state.queries.buffer_write_bits &
ANV_QUERY_WRITES_DATA_FLUSH) != 0;
}
static bool
img_barrier_has_acquire_unmodified(const VkImageMemoryBarrier2 *img_barrier)
{
/* The Vulkan 1.3.302 spec says:
*
* This struct [VkExternalMemoryAcquireUnmodifiedEXT] is ignored if the
* memory barrier's srcQueueFamilyIndex is not a special queue family
* reserved for external memory ownership transfers.
*/
if (!queue_family_is_external(img_barrier->srcQueueFamilyIndex))
return false;
const VkExternalMemoryAcquireUnmodifiedEXT *unmodified_info =
vk_find_struct_const(img_barrier->pNext,
EXTERNAL_MEMORY_ACQUIRE_UNMODIFIED_EXT);
return unmodified_info && unmodified_info->acquireUnmodifiedMemory;
}
static void
cmd_buffer_accumulate_barrier_bits(struct anv_cmd_buffer *cmd_buffer,
uint32_t n_dep_infos,
const VkDependencyInfo *dep_infos,
VkPipelineStageFlags2 *out_src_stages,
VkPipelineStageFlags2 *out_dst_stages,
enum anv_pipe_bits *out_bits)
{
/* XXX: Right now, we're really dumb and just flush whatever categories
* the app asks for. One of these days we may make this a bit better but
* right now that's all the hardware allows for in most areas.
*/
VkAccessFlags2 src_flags = 0;
VkAccessFlags2 dst_flags = 0;
VkAccessFlags3KHR src_flags3 = 0;
VkAccessFlags3KHR dst_flags3 = 0;
VkPipelineStageFlags2 src_stages = 0;
VkPipelineStageFlags2 dst_stages = 0;
#if GFX_VER < 20
bool apply_sparse_flushes = false;
struct anv_device *device = cmd_buffer->device;
#endif
bool flush_query_copies = false;
for (uint32_t d = 0; d < n_dep_infos; d++) {
const VkDependencyInfo *dep_info = &dep_infos[d];
for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
const VkMemoryBarrier2 *mem_barrier = &dep_info->pMemoryBarriers[i];
const VkMemoryBarrierAccessFlags3KHR *barrier3 =
vk_find_struct_const(mem_barrier->pNext,
MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
if (barrier3) {
src_flags3 |= barrier3->srcAccessMask3;
dst_flags3 |= barrier3->dstAccessMask3;
}
src_flags |= mem_barrier->srcAccessMask;
dst_flags |= mem_barrier->dstAccessMask;
src_stages |= mem_barrier->srcStageMask;
dst_stages |= mem_barrier->dstStageMask;
/* Shader writes to buffers that could then be written by a transfer
* command (including queries).
*/
if (stage_is_shader(mem_barrier->srcStageMask) &&
mask_is_shader_write(mem_barrier->srcAccessMask,
barrier3 ? barrier3->srcAccessMask3 : 0) &&
stage_is_transfer(mem_barrier->dstStageMask)) {
cmd_buffer->state.queries.buffer_write_bits |=
ANV_QUERY_COMPUTE_WRITES_PENDING_BITS;
}
if (stage_is_transfer(mem_barrier->srcStageMask) &&
mask_is_transfer_write(mem_barrier->srcAccessMask) &&
cmd_buffer_has_pending_copy_query(cmd_buffer))
flush_query_copies = true;
#if GFX_VER < 20
/* There's no way of knowing if this memory barrier is related to
* sparse buffers! This is pretty horrible.
*/
if (mask_is_write(src_flags,
barrier3 ? barrier3->srcAccessMask3 : 0) &&
p_atomic_read(&device->num_sparse_resources) > 0)
apply_sparse_flushes = true;
#endif
}
for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
const VkBufferMemoryBarrier2 *buf_barrier =
&dep_info->pBufferMemoryBarriers[i];
const VkMemoryBarrierAccessFlags3KHR *barrier3 =
vk_find_struct_const(buf_barrier->pNext,
MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
if (barrier3) {
src_flags3 |= barrier3->srcAccessMask3;
dst_flags3 |= barrier3->dstAccessMask3;
}
src_flags |= buf_barrier->srcAccessMask;
dst_flags |= buf_barrier->dstAccessMask;
src_stages |= buf_barrier->srcStageMask;
dst_stages |= buf_barrier->dstStageMask;
/* Shader writes to buffers that could then be written by a transfer
* command (including queries).
*/
if (stage_is_shader(buf_barrier->srcStageMask) &&
mask_is_shader_write(buf_barrier->srcAccessMask,
barrier3 ? barrier3->srcAccessMask3 : 0) &&
stage_is_transfer(buf_barrier->dstStageMask)) {
cmd_buffer->state.queries.buffer_write_bits |=
ANV_QUERY_COMPUTE_WRITES_PENDING_BITS;
}
if (stage_is_transfer(buf_barrier->srcStageMask) &&
mask_is_transfer_write(buf_barrier->srcAccessMask) &&
cmd_buffer_has_pending_copy_query(cmd_buffer))
flush_query_copies = true;
#if GFX_VER < 20
ANV_FROM_HANDLE(anv_buffer, buffer, buf_barrier->buffer);
if (anv_buffer_is_sparse(buffer) &&
mask_is_write(src_flags, barrier3 ? barrier3->srcAccessMask3 : 0))
apply_sparse_flushes = true;
#endif
}
for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
const VkImageMemoryBarrier2 *img_barrier =
&dep_info->pImageMemoryBarriers[i];
const VkMemoryBarrierAccessFlags3KHR *barrier3 =
vk_find_struct_const(img_barrier->pNext,
MEMORY_BARRIER_ACCESS_FLAGS_3_KHR);
if (barrier3) {
src_flags3 |= barrier3->srcAccessMask3;
dst_flags3 |= barrier3->dstAccessMask3;
}
src_flags |= img_barrier->srcAccessMask;
dst_flags |= img_barrier->dstAccessMask;
src_stages |= img_barrier->srcStageMask;
dst_stages |= img_barrier->dstStageMask;
ANV_FROM_HANDLE(anv_image, image, img_barrier->image);
const VkImageSubresourceRange *range = &img_barrier->subresourceRange;
uint32_t base_layer, layer_count;
if (image->vk.image_type == VK_IMAGE_TYPE_3D) {
base_layer = 0;
layer_count = u_minify(image->vk.extent.depth, range->baseMipLevel);
} else {
base_layer = range->baseArrayLayer;
layer_count = vk_image_subresource_layer_count(&image->vk, range);
}
const uint32_t level_count =
vk_image_subresource_level_count(&image->vk, range);
VkImageLayout old_layout = img_barrier->oldLayout;
VkImageLayout new_layout = img_barrier->newLayout;
/* If we're inside a render pass, the runtime might have converted
* some layouts from GENERAL to FEEDBACK_LOOP. Check if that's the
* case and reconvert back to the original layout so that application
* barriers within renderpass are operating with consistent layouts.
*/
if (!cmd_buffer->vk.runtime_rp_barrier &&
cmd_buffer->vk.render_pass != NULL &&
old_layout == VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT) {
/* Those assert are here to recognize the changes made by the
* runtime. If we fail them, we need to investigate what is going
* on.
*/
assert(anv_cmd_graphics_state_has_image_as_attachment(&cmd_buffer->state.gfx,
image));
VkImageLayout subpass_att_layout, subpass_stencil_att_layout;
vk_command_buffer_get_attachment_layout(
&cmd_buffer->vk, &image->vk,
&subpass_att_layout, &subpass_stencil_att_layout);
old_layout = subpass_att_layout;
new_layout = subpass_att_layout;
}
if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
transition_depth_buffer(cmd_buffer, image,
range->baseMipLevel, level_count,
base_layer, layer_count,
old_layout, new_layout,
false /* will_full_fast_clear */);
}
if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
transition_stencil_buffer(cmd_buffer, image,
range->baseMipLevel, level_count,
base_layer, layer_count,
old_layout, new_layout,
false /* will_full_fast_clear */);
}
if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
bool acquire_unmodified =
img_barrier_has_acquire_unmodified(img_barrier);
VkImageAspectFlags color_aspects =
vk_image_expand_aspect_mask(&image->vk, range->aspectMask);
anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
range->baseMipLevel, level_count,
base_layer, layer_count,
old_layout, new_layout,
img_barrier->srcQueueFamilyIndex,
img_barrier->dstQueueFamilyIndex,
false /* will_full_fast_clear */,
acquire_unmodified);
}
}
#if GFX_VER < 20
/* Mark image as compressed if the destination layout has untracked
* writes to the aux surface.
*/
VkImageAspectFlags aspects =
vk_image_expand_aspect_mask(&image->vk, range->aspectMask);
anv_foreach_image_aspect_bit(aspect_bit, image, aspects) {
VkImageAspectFlagBits aspect = 1UL << aspect_bit;
if (anv_layout_has_untracked_aux_writes(
device->info,
image, aspect,
img_barrier->newLayout,
cmd_buffer->queue_family->queueFlags)) {
for (uint32_t l = 0; l < level_count; l++) {
const uint32_t level = range->baseMipLevel + l;
const uint32_t aux_layers =
anv_image_aux_layers(image, aspect, level);
if (base_layer >= aux_layers)
break; /* We will only get fewer layers as level increases */
uint32_t level_layer_count =
MIN2(layer_count, aux_layers - base_layer);
set_image_compressed_bit(cmd_buffer, image, aspect,
level,
base_layer, level_layer_count,
true);
}
}
}
if (anv_image_is_sparse(image) &&
mask_is_write(src_flags, barrier3 ? barrier3->srcAccessMask3 : 0))
apply_sparse_flushes = true;
#endif
}
}
enum anv_pipe_bits bits =
anv_pipe_flush_bits_for_access_flags(cmd_buffer, src_flags, src_flags3) |
anv_pipe_invalidate_bits_for_access_flags(cmd_buffer, dst_flags, dst_flags3);
/* What stage require a stall at pixel scoreboard */
VkPipelineStageFlags2 pb_stall_stages =
VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT |
VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT |
VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT |
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
if (anv_cmd_buffer_is_render_queue(cmd_buffer)) {
/* On a render queue, the following stages can also use a pixel shader.
*/
pb_stall_stages |=
VK_PIPELINE_STAGE_2_TRANSFER_BIT |
VK_PIPELINE_STAGE_2_RESOLVE_BIT |
VK_PIPELINE_STAGE_2_BLIT_BIT |
VK_PIPELINE_STAGE_2_CLEAR_BIT;
}
VkPipelineStageFlags2 cs_stall_stages =
VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT |
VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT |
VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR |
VK_PIPELINE_STAGE_2_RAY_TRACING_SHADER_BIT_KHR |
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
if (anv_cmd_buffer_is_compute_queue(cmd_buffer)) {
/* On a compute queue, the following stages can also use a compute
* shader.
*/
cs_stall_stages |=
VK_PIPELINE_STAGE_2_TRANSFER_BIT |
VK_PIPELINE_STAGE_2_RESOLVE_BIT |
VK_PIPELINE_STAGE_2_BLIT_BIT |
VK_PIPELINE_STAGE_2_CLEAR_BIT;
} else if (anv_cmd_buffer_is_render_queue(cmd_buffer) &&
cmd_buffer->state.current_pipeline == GPGPU) {
/* In GPGPU mode, the render queue can also use a compute shader for
* transfer operations.
*/
cs_stall_stages |= VK_PIPELINE_STAGE_2_TRANSFER_BIT;
}
/* Prior to Gfx20, we can restrict pb-stall/cs-stall to some pipeline
* modes. Gfx20 doesn't do pipeline switches so we have to assume the worse
* case.
*/
const bool needs_pb_stall =
anv_cmd_buffer_is_render_queue(cmd_buffer) &&
#if GFX_VER < 20
cmd_buffer->state.current_pipeline == _3D &&
#endif
(src_stages & pb_stall_stages);
if (needs_pb_stall) {
bits |= GFX_VERx10 >= 125 ?
ANV_PIPE_PSS_STALL_SYNC_BIT :
ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
}
const bool needs_cs_stall =
anv_cmd_buffer_is_render_or_compute_queue(cmd_buffer) &&
#if GFX_VER < 20
cmd_buffer->state.current_pipeline == GPGPU &&
#endif
(src_stages & cs_stall_stages);
if (needs_cs_stall)
bits |= ANV_PIPE_CS_STALL_BIT;
#if GFX_VER < 20
/* Our HW implementation of the sparse feature prior to Xe2 lives in the
* GAM unit (interface between all the GPU caches and external memory).
* As a result writes to NULL bound images & buffers that should be
* ignored are actually still visible in the caches. The only way for us
* to get correct NULL bound regions to return 0s is to evict the caches
* to force the caches to be repopulated with 0s.
*
* Our understanding is that Xe2 started to tag the L3 cache with some
* kind physical address information rather. It is therefore able to
* detect that a cache line in the cache is going to a null tile and so
* the L3 cache also has a sparse compatible behavior and we don't need
* to flush anymore.
*/
if (apply_sparse_flushes)
bits |= ANV_PIPE_BARRIER_FLUSH_BITS;
#endif
/* Copies from query pools are executed with a shader writing through the
* dataport.
*/
if (flush_query_copies) {
bits |= (GFX_VER >= 12 ?
ANV_PIPE_HDC_PIPELINE_FLUSH_BIT : ANV_PIPE_DATA_CACHE_FLUSH_BIT);
}
if (dst_flags & VK_ACCESS_INDIRECT_COMMAND_READ_BIT)
genX(cmd_buffer_flush_generated_draws)(cmd_buffer);
*out_src_stages = src_stages;
*out_dst_stages = dst_stages;
*out_bits = bits;
}
static void
cmd_buffer_barrier(struct anv_cmd_buffer *cmd_buffer,
uint32_t n_dep_infos,
const VkDependencyInfo *dep_infos,
const char *reason)
{
switch (cmd_buffer->batch.engine_class) {
case INTEL_ENGINE_CLASS_VIDEO:
cmd_buffer_barrier_video(cmd_buffer, n_dep_infos, dep_infos);
break;
case INTEL_ENGINE_CLASS_COPY:
cmd_buffer_barrier_blitter(cmd_buffer, n_dep_infos, dep_infos);
break;
case INTEL_ENGINE_CLASS_RENDER:
case INTEL_ENGINE_CLASS_COMPUTE: {
VkPipelineStageFlags2 src_stages, dst_stages;
enum anv_pipe_bits bits;
cmd_buffer_accumulate_barrier_bits(cmd_buffer, n_dep_infos, dep_infos,
&src_stages, &dst_stages, &bits);
anv_add_pending_pipe_bits(cmd_buffer, bits, reason);
break;
}
default:
unreachable("Invalid engine class");
}
}
void genX(CmdPipelineBarrier2)(
VkCommandBuffer commandBuffer,
const VkDependencyInfo* pDependencyInfo)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer_barrier(cmd_buffer, 1, pDependencyInfo, "pipe barrier");
}
void
genX(batch_emit_breakpoint)(struct anv_batch *batch,
struct anv_device *device,
bool emit_before_draw)
{
/* Update draw call count once */
uint32_t draw_count = emit_before_draw ?
p_atomic_inc_return(&device->draw_call_count) :
p_atomic_read(&device->draw_call_count);
if (((draw_count == intel_debug_bkp_before_draw_count &&
emit_before_draw) ||
(draw_count == intel_debug_bkp_after_draw_count &&
!emit_before_draw))) {
struct anv_address wait_addr =
anv_state_pool_state_address(&device->dynamic_state_pool,
device->breakpoint);
anv_batch_emit(batch, GENX(MI_SEMAPHORE_WAIT), sem) {
sem.WaitMode = PollingMode;
sem.CompareOperation = COMPARE_SAD_EQUAL_SDD;
sem.SemaphoreDataDword = 0x1;
sem.SemaphoreAddress = wait_addr;
};
}
}
/* Only emit PIPELINE_SELECT, for the whole mode switch and flushing use
* flush_pipeline_select()
*/
void
genX(emit_pipeline_select)(struct anv_batch *batch, uint32_t pipeline,
const struct anv_device *device)
{
/* Bspec 55860: Xe2+ no longer requires PIPELINE_SELECT */
#if GFX_VER < 20
anv_batch_emit(batch, GENX(PIPELINE_SELECT), ps) {
ps.MaskBits = GFX_VERx10 >= 125 ? 0x93 : GFX_VER >= 12 ? 0x13 : 0x3;
#if GFX_VER == 12
ps.MediaSamplerDOPClockGateEnable = true;
#endif
ps.PipelineSelection = pipeline;
#if GFX_VERx10 == 125
/* It might still be better to only enable this when the compute
* pipeline will have DPAS instructions.
*/
ps.SystolicModeEnable = pipeline == GPGPU &&
device->vk.enabled_extensions.KHR_cooperative_matrix &&
device->vk.enabled_features.cooperativeMatrix;
#endif
}
#endif /* if GFX_VER < 20 */
}
static void
genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
uint32_t pipeline)
{
UNUSED const struct intel_device_info *devinfo = cmd_buffer->device->info;
if (cmd_buffer->state.current_pipeline == pipeline)
return;
#if GFX_VER == 9
/* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
*
* Software must clear the COLOR_CALC_STATE Valid field in
* 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
* with Pipeline Select set to GPGPU.
*
* The internal hardware docs recommend the same workaround for Gfx9
* hardware too.
*/
if (pipeline == GPGPU)
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
#endif
#if GFX_VERx10 == 120
/* Undocumented workaround to force the re-emission of
* MEDIA_INTERFACE_DESCRIPTOR_LOAD when switching from 3D to Compute
* pipeline without rebinding a pipeline :
* vkCmdBindPipeline(COMPUTE, cs_pipeline);
* vkCmdDispatch(...);
* vkCmdBindPipeline(GRAPHICS, gfx_pipeline);
* vkCmdDraw(...);
* vkCmdDispatch(...);
*/
if (pipeline == _3D)
cmd_buffer->state.compute.pipeline_dirty = true;
#endif
/* We apparently cannot flush the tile cache (color/depth) from the GPGPU
* pipeline. That means query clears will not be visible to query
* copy/write. So we need to flush it before going to GPGPU mode.
*/
if (cmd_buffer->state.current_pipeline == _3D &&
cmd_buffer->state.queries.clear_bits) {
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_QUERY_BITS(cmd_buffer->state.queries.clear_bits),
"query clear flush prior to GPGPU");
}
/* Flush and invalidate bits done needed prior PIPELINE_SELECT. */
enum anv_pipe_bits bits = 0;
#if GFX_VER >= 12
/* From Tigerlake PRM, Volume 2a, PIPELINE_SELECT:
*
* "Software must ensure Render Cache, Depth Cache and HDC Pipeline flush
* are flushed through a stalling PIPE_CONTROL command prior to
* programming of PIPELINE_SELECT command transitioning Pipeline Select
* from 3D to GPGPU/Media.
* Software must ensure HDC Pipeline flush and Generic Media State Clear
* is issued through a stalling PIPE_CONTROL command prior to programming
* of PIPELINE_SELECT command transitioning Pipeline Select from
* GPGPU/Media to 3D."
*
* Note: Issuing PIPE_CONTROL_MEDIA_STATE_CLEAR causes GPU hangs, probably
* because PIPE was not in MEDIA mode?!
*/
bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
if (cmd_buffer->state.current_pipeline == _3D) {
bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
} else {
bits |= ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT;
}
#else
/* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
* PIPELINE_SELECT [DevBWR+]":
*
* Project: DEVSNB+
*
* Software must ensure all the write caches are flushed through a
* stalling PIPE_CONTROL command followed by another PIPE_CONTROL
* command to invalidate read only caches prior to programming
* MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
*
* Note the cmd_buffer_apply_pipe_flushes will split this into two
* PIPE_CONTROLs.
*/
bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT |
ANV_PIPE_HDC_PIPELINE_FLUSH_BIT |
ANV_PIPE_CS_STALL_BIT |
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT |
ANV_PIPE_STATE_CACHE_INVALIDATE_BIT |
ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT |
ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT;
#endif
/* Wa_16013063087 - State Cache Invalidate must be issued prior to
* PIPELINE_SELECT when switching from 3D to Compute.
*
* SW must do this by programming of PIPECONTROL with “CS Stall” followed by
* a PIPECONTROL with State Cache Invalidate bit set.
*
*/
if (cmd_buffer->state.current_pipeline == _3D && pipeline == GPGPU &&
intel_needs_workaround(cmd_buffer->device->info, 16013063087))
bits |= ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
anv_add_pending_pipe_bits(cmd_buffer, bits, "flush/invalidate PIPELINE_SELECT");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
#if GFX_VER == 9
if (pipeline == _3D) {
/* There is a mid-object preemption workaround which requires you to
* re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
* even without preemption, we have issues with geometry flickering when
* GPGPU and 3D are back-to-back and this seems to fix it. We don't
* really know why.
*
* Also, from the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
*
* "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
* the only bits that are changed are scoreboard related ..."
*
* This is satisfied by applying pre-PIPELINE_SELECT pipe flushes above.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
vfe.MaximumNumberofThreads =
devinfo->max_cs_threads * devinfo->subslice_total - 1;
vfe.NumberofURBEntries = 2;
vfe.URBEntryAllocationSize = 2;
}
/* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
* invalid. Set the compute pipeline to dirty to force a re-emit of the
* pipeline in case we get back-to-back dispatch calls with the same
* pipeline and a PIPELINE_SELECT in between.
*/
cmd_buffer->state.compute.pipeline_dirty = true;
}
#endif
genX(emit_pipeline_select)(&cmd_buffer->batch, pipeline, cmd_buffer->device);
#if GFX_VER == 9
if (devinfo->platform == INTEL_PLATFORM_GLK) {
/* Project: DevGLK
*
* "This chicken bit works around a hardware issue with barrier logic
* encountered when switching between GPGPU and 3D pipelines. To
* workaround the issue, this mode bit should be set after a pipeline
* is selected."
*/
anv_batch_write_reg(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1), scec1) {
scec1.GLKBarrierMode = pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
: GLK_BARRIER_MODE_3D_HULL;
scec1.GLKBarrierModeMask = 1;
}
}
#endif
#if GFX_VER == 9
/* Undocumented workaround, we need to reemit MEDIA_CURBE_LOAD on Gfx9 when
* switching from 3D->GPGPU, otherwise the shader gets corrupted push
* constants. Note that this doesn't trigger a push constant reallocation,
* we just reprogram the same pointer.
*
* The issue reproduces pretty much 100% on
* dEQP-VK.memory_model.transitive.* tests. Reducing the number of
* iteration in the test from 50 to < 10 makes the tests flaky.
*/
if (pipeline == GPGPU)
cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
#endif
cmd_buffer->state.current_pipeline = pipeline;
}
void
genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
{
genX(flush_pipeline_select)(cmd_buffer, _3D);
}
void
genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
{
genX(flush_pipeline_select)(cmd_buffer, GPGPU);
}
void
genX(cmd_buffer_emit_gfx12_depth_wa)(struct anv_cmd_buffer *cmd_buffer,
const struct isl_surf *surf)
{
#if INTEL_NEEDS_WA_1808121037
const bool is_d16_1x_msaa = surf->format == ISL_FORMAT_R16_UNORM &&
surf->samples == 1;
switch (cmd_buffer->state.gfx.depth_reg_mode) {
case ANV_DEPTH_REG_MODE_HW_DEFAULT:
if (!is_d16_1x_msaa)
return;
break;
case ANV_DEPTH_REG_MODE_D16_1X_MSAA:
if (is_d16_1x_msaa)
return;
break;
case ANV_DEPTH_REG_MODE_UNKNOWN:
break;
}
/* We'll change some CHICKEN registers depending on the depth surface
* format. Do a depth flush and stall so the pipeline is not using these
* settings while we change the registers.
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT |
ANV_PIPE_DEPTH_STALL_BIT |
ANV_PIPE_END_OF_PIPE_SYNC_BIT,
"Workaround: Stop pipeline for 1808121037");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
/* Wa_1808121037
*
* To avoid sporadic corruptions “Set 0x7010[9] when Depth Buffer
* Surface Format is D16_UNORM , surface type is not NULL & 1X_MSAA”.
*/
anv_batch_write_reg(&cmd_buffer->batch, GENX(COMMON_SLICE_CHICKEN1), reg) {
reg.HIZPlaneOptimizationdisablebit = is_d16_1x_msaa;
reg.HIZPlaneOptimizationdisablebitMask = true;
}
cmd_buffer->state.gfx.depth_reg_mode =
is_d16_1x_msaa ? ANV_DEPTH_REG_MODE_D16_1X_MSAA :
ANV_DEPTH_REG_MODE_HW_DEFAULT;
#endif
}
#if GFX_VER == 9
/* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
*
* "The VF cache needs to be invalidated before binding and then using
* Vertex Buffers that overlap with any previously bound Vertex Buffer
* (at a 64B granularity) since the last invalidation. A VF cache
* invalidate is performed by setting the "VF Cache Invalidation Enable"
* bit in PIPE_CONTROL."
*
* This is implemented by carefully tracking all vertex and index buffer
* bindings and flushing if the cache ever ends up with a range in the cache
* that would exceed 4 GiB. This is implemented in three parts:
*
* 1. genX(cmd_buffer_set_binding_for_gfx8_vb_flush)() which must be called
* every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
* tracking code of the new binding. If this new binding would cause
* the cache to have a too-large range on the next draw call, a pipeline
* stall and VF cache invalidate are added to pending_pipeline_bits.
*
* 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
* empty whenever we emit a VF invalidate.
*
* 3. genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)() must be called
* after every 3DPRIMITIVE and copies the bound range into the dirty
* range for each used buffer. This has to be a separate step because
* we don't always re-bind all buffers and so 1. can't know which
* buffers are actually bound.
*/
void
genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
int vb_index,
struct anv_address vb_address,
uint32_t vb_size)
{
if (GFX_VER > 9)
return;
struct anv_vb_cache_range *bound, *dirty;
if (vb_index == -1) {
bound = &cmd_buffer->state.gfx.ib_bound_range;
dirty = &cmd_buffer->state.gfx.ib_dirty_range;
} else {
assert(vb_index >= 0);
assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
}
if (anv_gfx8_9_vb_cache_range_needs_workaround(bound, dirty,
vb_address,
vb_size)) {
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_CS_STALL_BIT |
ANV_PIPE_VF_CACHE_INVALIDATE_BIT,
"vb > 32b range");
}
}
void
genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
uint32_t access_type,
uint64_t vb_used)
{
if (access_type == RANDOM) {
/* We have an index buffer */
struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
anv_merge_vb_cache_range(dirty, bound);
}
uint64_t mask = vb_used;
while (mask) {
int i = u_bit_scan64(&mask);
assert(i >= 0);
assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
struct anv_vb_cache_range *bound, *dirty;
bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
anv_merge_vb_cache_range(dirty, bound);
}
}
#endif /* GFX_VER == 9 */
/**
* Update the pixel hashing modes that determine the balancing of PS threads
* across subslices and slices.
*
* \param width Width bound of the rendering area (already scaled down if \p
* scale is greater than 1).
* \param height Height bound of the rendering area (already scaled down if \p
* scale is greater than 1).
* \param scale The number of framebuffer samples that could potentially be
* affected by an individual channel of the PS thread. This is
* typically one for single-sampled rendering, but for operations
* like CCS resolves and fast clears a single PS invocation may
* update a huge number of pixels, in which case a finer
* balancing is desirable in order to maximally utilize the
* bandwidth available. UINT_MAX can be used as shorthand for
* "finest hashing mode available".
*/
void
genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
unsigned width, unsigned height,
unsigned scale)
{
#if GFX_VER == 9
const struct intel_device_info *devinfo = cmd_buffer->device->info;
const unsigned slice_hashing[] = {
/* Because all Gfx9 platforms with more than one slice require
* three-way subslice hashing, a single "normal" 16x16 slice hashing
* block is guaranteed to suffer from substantial imbalance, with one
* subslice receiving twice as much work as the other two in the
* slice.
*
* The performance impact of that would be particularly severe when
* three-way hashing is also in use for slice balancing (which is the
* case for all Gfx9 GT4 platforms), because one of the slices
* receives one every three 16x16 blocks in either direction, which
* is roughly the periodicity of the underlying subslice imbalance
* pattern ("roughly" because in reality the hardware's
* implementation of three-way hashing doesn't do exact modulo 3
* arithmetic, which somewhat decreases the magnitude of this effect
* in practice). This leads to a systematic subslice imbalance
* within that slice regardless of the size of the primitive. The
* 32x32 hashing mode guarantees that the subslice imbalance within a
* single slice hashing block is minimal, largely eliminating this
* effect.
*/
_32x32,
/* Finest slice hashing mode available. */
NORMAL
};
const unsigned subslice_hashing[] = {
/* 16x16 would provide a slight cache locality benefit especially
* visible in the sampler L1 cache efficiency of low-bandwidth
* non-LLC platforms, but it comes at the cost of greater subslice
* imbalance for primitives of dimensions approximately intermediate
* between 16x4 and 16x16.
*/
_16x4,
/* Finest subslice hashing mode available. */
_8x4
};
/* Dimensions of the smallest hashing block of a given hashing mode. If
* the rendering area is smaller than this there can't possibly be any
* benefit from switching to this mode, so we optimize out the
* transition.
*/
const unsigned min_size[][2] = {
{ 16, 4 },
{ 8, 4 }
};
const unsigned idx = scale > 1;
if (cmd_buffer->state.current_hash_scale != scale &&
(width > min_size[idx][0] || height > min_size[idx][1])) {
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_CS_STALL_BIT |
ANV_PIPE_STALL_AT_SCOREBOARD_BIT,
"change pixel hash mode");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
anv_batch_write_reg(&cmd_buffer->batch, GENX(GT_MODE), gt) {
gt.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
gt.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
gt.SubsliceHashing = subslice_hashing[idx];
gt.SubsliceHashingMask = -1;
}
cmd_buffer->state.current_hash_scale = scale;
}
#endif
}
static void
cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_device *device = cmd_buffer->device;
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
device->isl_dev.ds.size / 4);
if (dw == NULL)
return;
struct isl_view isl_view = {};
struct isl_depth_stencil_hiz_emit_info info = {
.view = &isl_view,
.mocs = anv_mocs(device, NULL, ISL_SURF_USAGE_DEPTH_BIT),
};
if (gfx->depth_att.iview != NULL) {
isl_view = gfx->depth_att.iview->planes[0].isl;
} else if (gfx->stencil_att.iview != NULL) {
isl_view = gfx->stencil_att.iview->planes[0].isl;
}
if (gfx->view_mask) {
assert(isl_view.array_len == 0 ||
isl_view.array_len >= util_last_bit(gfx->view_mask));
isl_view.array_len = util_last_bit(gfx->view_mask);
} else {
assert(isl_view.array_len == 0 ||
isl_view.array_len >= util_last_bit(gfx->layer_count));
isl_view.array_len = gfx->layer_count;
}
if (gfx->depth_att.iview != NULL) {
const struct anv_image_view *iview = gfx->depth_att.iview;
const struct anv_image *image = iview->image;
const uint32_t depth_plane =
anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_DEPTH_BIT);
const struct anv_surface *depth_surface =
&image->planes[depth_plane].primary_surface;
const struct anv_address depth_address =
anv_image_address(image, &depth_surface->memory_range);
anv_reloc_list_add_bo(cmd_buffer->batch.relocs, depth_address.bo);
info.depth_surf = &depth_surface->isl;
info.depth_address = anv_address_physical(depth_address);
info.mocs =
anv_mocs(device, depth_address.bo, ISL_SURF_USAGE_DEPTH_BIT);
info.hiz_usage = gfx->depth_att.aux_usage;
if (info.hiz_usage != ISL_AUX_USAGE_NONE) {
assert(isl_aux_usage_has_hiz(info.hiz_usage));
const struct anv_surface *hiz_surface =
&image->planes[depth_plane].aux_surface;
const struct anv_address hiz_address =
anv_image_address(image, &hiz_surface->memory_range);
anv_reloc_list_add_bo(cmd_buffer->batch.relocs, hiz_address.bo);
info.hiz_surf = &hiz_surface->isl;
info.hiz_address = anv_address_physical(hiz_address);
info.depth_clear_value = anv_image_hiz_clear_value(image).f32[0];
}
}
if (gfx->stencil_att.iview != NULL) {
const struct anv_image_view *iview = gfx->stencil_att.iview;
const struct anv_image *image = iview->image;
const uint32_t stencil_plane =
anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT);
const struct anv_surface *stencil_surface =
&image->planes[stencil_plane].primary_surface;
const struct anv_address stencil_address =
anv_image_address(image, &stencil_surface->memory_range);
anv_reloc_list_add_bo(cmd_buffer->batch.relocs, stencil_address.bo);
info.stencil_surf = &stencil_surface->isl;
info.stencil_aux_usage = image->planes[stencil_plane].aux_usage;
info.stencil_address = anv_address_physical(stencil_address);
info.mocs =
anv_mocs(device, stencil_address.bo, ISL_SURF_USAGE_STENCIL_BIT);
}
isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
if (intel_needs_workaround(cmd_buffer->device->info, 1408224581) ||
intel_needs_workaround(cmd_buffer->device->info, 14014097488) ||
intel_needs_workaround(cmd_buffer->device->info, 14016712196)) {
/* Wa_1408224581
*
* Workaround: Gfx12LP Astep only An additional pipe control with
* post-sync = store dword operation would be required.( w/a is to have
* an additional pipe control after the stencil state whenever the
* surface state bits of this state is changing).
*
* This also seems sufficient to handle Wa_14014097488 and
* Wa_14016712196.
*/
genx_batch_emit_pipe_control_write(&cmd_buffer->batch, device->info,
cmd_buffer->state.current_pipeline,
WriteImmediateData,
device->workaround_address, 0, 0);
}
if (info.depth_surf)
genX(cmd_buffer_emit_gfx12_depth_wa)(cmd_buffer, info.depth_surf);
cmd_buffer->state.gfx.hiz_enabled = isl_aux_usage_has_hiz(info.hiz_usage);
}
static void
cmd_buffer_emit_cps_control_buffer(struct anv_cmd_buffer *cmd_buffer,
const struct anv_image_view *fsr_iview)
{
#if GFX_VERx10 >= 125
struct anv_device *device = cmd_buffer->device;
if (!device->vk.enabled_extensions.KHR_fragment_shading_rate)
return;
uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
device->isl_dev.cpb.size / 4);
if (dw == NULL)
return;
struct isl_cpb_emit_info info = { };
if (fsr_iview) {
const struct anv_image_binding *binding = &fsr_iview->image->bindings[0];
anv_reloc_list_add_bo(cmd_buffer->batch.relocs, binding->address.bo);
struct anv_address addr =
anv_address_add(binding->address, binding->memory_range.offset);
info.view = &fsr_iview->planes[0].isl;
info.surf = &fsr_iview->image->planes[0].primary_surface.isl;
info.aux_usage = fsr_iview->image->planes[0].aux_usage;
info.address = anv_address_physical(addr);
info.mocs =
anv_mocs(device, fsr_iview->image->bindings[0].address.bo,
ISL_SURF_USAGE_CPB_BIT);
}
isl_emit_cpb_control_s(&device->isl_dev, dw, &info);
/* Wa_14016712196:
* Emit dummy pipe control after state that sends implicit depth flush.
*/
if (intel_needs_workaround(device->info, 14016712196)) {
genx_batch_emit_pipe_control_write(&cmd_buffer->batch, device->info,
cmd_buffer->state.current_pipeline,
WriteImmediateData,
device->workaround_address, 0, 0);
}
#endif /* GFX_VERx10 >= 125 */
}
static VkImageLayout
attachment_initial_layout(const VkRenderingAttachmentInfo *att)
{
const VkRenderingAttachmentInitialLayoutInfoMESA *layout_info =
vk_find_struct_const(att->pNext,
RENDERING_ATTACHMENT_INITIAL_LAYOUT_INFO_MESA);
if (layout_info != NULL)
return layout_info->initialLayout;
return att->imageLayout;
}
void genX(CmdBeginRendering)(
VkCommandBuffer commandBuffer,
const VkRenderingInfo* pRenderingInfo)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
VkResult result;
if (!anv_cmd_buffer_is_render_queue(cmd_buffer)) {
assert(!"Trying to start a render pass on non-render queue!");
anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_UNKNOWN);
return;
}
anv_measure_beginrenderpass(cmd_buffer);
trace_intel_begin_render_pass(&cmd_buffer->trace);
gfx->rendering_flags = pRenderingInfo->flags;
gfx->view_mask = pRenderingInfo->viewMask;
gfx->layer_count = pRenderingInfo->layerCount;
gfx->samples = 0;
if (gfx->render_area.offset.x != pRenderingInfo->renderArea.offset.x ||
gfx->render_area.offset.y != pRenderingInfo->renderArea.offset.y ||
gfx->render_area.extent.width != pRenderingInfo->renderArea.extent.width ||
gfx->render_area.extent.height != pRenderingInfo->renderArea.extent.height) {
gfx->render_area = pRenderingInfo->renderArea;
gfx->dirty |= ANV_CMD_DIRTY_RENDER_AREA;
}
const bool is_multiview = gfx->view_mask != 0;
const VkRect2D render_area = gfx->render_area;
const uint32_t layers =
is_multiview ? util_last_bit(gfx->view_mask) : gfx->layer_count;
/* The framebuffer size is at least large enough to contain the render
* area. Because a zero renderArea is possible, we MAX with 1.
*/
struct isl_extent3d fb_size = {
.w = MAX2(1, render_area.offset.x + render_area.extent.width),
.h = MAX2(1, render_area.offset.y + render_area.extent.height),
.d = layers,
};
const uint32_t color_att_count = pRenderingInfo->colorAttachmentCount;
result = anv_cmd_buffer_init_attachments(cmd_buffer, color_att_count);
if (result != VK_SUCCESS)
return;
genX(flush_pipeline_select_3d)(cmd_buffer);
UNUSED bool render_target_change = false;
for (uint32_t i = 0; i < gfx->color_att_count; i++) {
if (pRenderingInfo->pColorAttachments[i].imageView == VK_NULL_HANDLE) {
render_target_change |= gfx->color_att[i].iview != NULL;
gfx->color_att[i].vk_format = VK_FORMAT_UNDEFINED;
gfx->color_att[i].iview = NULL;
gfx->color_att[i].layout = VK_IMAGE_LAYOUT_UNDEFINED;
gfx->color_att[i].aux_usage = ISL_AUX_USAGE_NONE;
continue;
}
const VkRenderingAttachmentInfo *att =
&pRenderingInfo->pColorAttachments[i];
ANV_FROM_HANDLE(anv_image_view, iview, att->imageView);
const VkImageLayout initial_layout = attachment_initial_layout(att);
assert(render_area.offset.x + render_area.extent.width <=
iview->vk.extent.width);
assert(render_area.offset.y + render_area.extent.height <=
iview->vk.extent.height);
assert(layers <= iview->vk.layer_count);
fb_size.w = MAX2(fb_size.w, iview->vk.extent.width);
fb_size.h = MAX2(fb_size.h, iview->vk.extent.height);
assert(gfx->samples == 0 || gfx->samples == iview->vk.image->samples);
gfx->samples |= iview->vk.image->samples;
enum isl_aux_usage aux_usage =
anv_layout_to_aux_usage(cmd_buffer->device->info,
iview->image,
iview->vk.aspects,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
att->imageLayout,
cmd_buffer->queue_family->queueFlags);
render_target_change |= gfx->color_att[i].iview != iview;
gfx->color_att[i].vk_format = iview->vk.format;
gfx->color_att[i].iview = iview;
gfx->color_att[i].layout = att->imageLayout;
gfx->color_att[i].aux_usage = aux_usage;
union isl_color_value fast_clear_color = { .u32 = { 0, } };
if (att->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR &&
!(gfx->rendering_flags & VK_RENDERING_RESUMING_BIT)) {
uint32_t clear_view_mask = pRenderingInfo->viewMask;
VkClearRect clear_rect = {
.rect = render_area,
.baseArrayLayer = iview->vk.base_array_layer,
.layerCount = layers,
};
const union isl_color_value clear_color =
vk_to_isl_color_with_format(att->clearValue.color,
iview->planes[0].isl.format);
/* We only support fast-clears on the first layer */
const bool fast_clear =
(!is_multiview || (gfx->view_mask & 1)) &&
anv_can_fast_clear_color(cmd_buffer, iview->image,
iview->vk.base_mip_level,
&clear_rect, att->imageLayout,
iview->planes[0].isl.format,
clear_color);
if (att->imageLayout != initial_layout) {
assert(render_area.offset.x == 0 && render_area.offset.y == 0 &&
render_area.extent.width == iview->vk.extent.width &&
render_area.extent.height == iview->vk.extent.height);
if (is_multiview) {
u_foreach_bit(view, gfx->view_mask) {
transition_color_buffer(cmd_buffer, iview->image,
iview->vk.aspects,
iview->vk.base_mip_level, 1,
iview->vk.base_array_layer + view,
1, /* layer_count */
initial_layout, att->imageLayout,
VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED,
fast_clear,
false /* acquire_unmodified */);
}
} else {
transition_color_buffer(cmd_buffer, iview->image,
iview->vk.aspects,
iview->vk.base_mip_level, 1,
iview->vk.base_array_layer,
gfx->layer_count,
initial_layout, att->imageLayout,
VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED,
fast_clear,
false /* acquire_unmodified */);
}
}
if (fast_clear) {
/* We only support fast-clears on the first layer */
assert(iview->vk.base_mip_level == 0 &&
iview->vk.base_array_layer == 0);
fast_clear_color = clear_color;
if (iview->image->vk.samples == 1) {
anv_image_ccs_op(cmd_buffer, iview->image,
iview->planes[0].isl.format,
iview->planes[0].isl.swizzle,
iview->vk.aspects,
0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
&fast_clear_color,
false);
} else {
anv_image_mcs_op(cmd_buffer, iview->image,
iview->planes[0].isl.format,
iview->planes[0].isl.swizzle,
iview->vk.aspects,
0, 1, ISL_AUX_OP_FAST_CLEAR,
&fast_clear_color,
false);
}
clear_view_mask &= ~1u;
clear_rect.baseArrayLayer++;
clear_rect.layerCount--;
#if GFX_VER < 20
genX(set_fast_clear_state)(cmd_buffer, iview->image,
iview->planes[0].isl.format,
iview->planes[0].isl.swizzle,
clear_color);
#endif
}
if (is_multiview) {
u_foreach_bit(view, clear_view_mask) {
anv_image_clear_color(cmd_buffer, iview->image,
iview->vk.aspects,
aux_usage,
iview->planes[0].isl.format,
iview->planes[0].isl.swizzle,
iview->vk.base_mip_level,
iview->vk.base_array_layer + view, 1,
render_area, clear_color);
}
} else if (clear_rect.layerCount > 0) {
anv_image_clear_color(cmd_buffer, iview->image,
iview->vk.aspects,
aux_usage,
iview->planes[0].isl.format,
iview->planes[0].isl.swizzle,
iview->vk.base_mip_level,
clear_rect.baseArrayLayer,
clear_rect.layerCount,
render_area, clear_color);
}
} else {
/* If not LOAD_OP_CLEAR, we shouldn't have a layout transition. */
assert(att->imageLayout == initial_layout);
}
struct isl_view isl_view = iview->planes[0].isl;
if (pRenderingInfo->viewMask) {
assert(isl_view.array_len >= util_last_bit(pRenderingInfo->viewMask));
isl_view.array_len = util_last_bit(pRenderingInfo->viewMask);
} else {
assert(isl_view.array_len >= pRenderingInfo->layerCount);
isl_view.array_len = pRenderingInfo->layerCount;
}
anv_image_fill_surface_state(cmd_buffer->device,
iview->image,
iview->vk.aspects,
&isl_view,
ISL_SURF_USAGE_RENDER_TARGET_BIT,
aux_usage, &fast_clear_color,
0, /* anv_image_view_state_flags */
&gfx->color_att[i].surface_state);
add_surface_state_relocs(cmd_buffer, &gfx->color_att[i].surface_state);
if (GFX_VER < 10 &&
(att->loadOp == VK_ATTACHMENT_LOAD_OP_LOAD ||
render_area.extent.width != iview->vk.extent.width ||
render_area.extent.height != iview->vk.extent.height ||
(gfx->rendering_flags & VK_RENDERING_RESUMING_BIT)) &&
iview->image->planes[0].aux_usage != ISL_AUX_USAGE_NONE &&
iview->planes[0].isl.base_level == 0 &&
iview->planes[0].isl.base_array_layer == 0) {
struct anv_state surf_state = gfx->color_att[i].surface_state.state;
genX(cmd_buffer_load_clear_color)(cmd_buffer, surf_state, iview);
}
if (att->resolveMode != VK_RESOLVE_MODE_NONE) {
gfx->color_att[i].resolve_mode = att->resolveMode;
gfx->color_att[i].resolve_iview =
anv_image_view_from_handle(att->resolveImageView);
gfx->color_att[i].resolve_layout = att->resolveImageLayout;
}
}
anv_cmd_graphic_state_update_has_uint_rt(gfx);
const struct anv_image_view *fsr_iview = NULL;
const VkRenderingFragmentShadingRateAttachmentInfoKHR *fsr_att =
vk_find_struct_const(pRenderingInfo->pNext,
RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR);
if (fsr_att != NULL && fsr_att->imageView != VK_NULL_HANDLE) {
fsr_iview = anv_image_view_from_handle(fsr_att->imageView);
/* imageLayout and shadingRateAttachmentTexelSize are ignored */
}
const struct anv_image_view *ds_iview = NULL;
const VkRenderingAttachmentInfo *d_att = pRenderingInfo->pDepthAttachment;
const VkRenderingAttachmentInfo *s_att = pRenderingInfo->pStencilAttachment;
if ((d_att != NULL && d_att->imageView != VK_NULL_HANDLE) ||
(s_att != NULL && s_att->imageView != VK_NULL_HANDLE)) {
const struct anv_image_view *d_iview = NULL, *s_iview = NULL;
VkImageLayout depth_layout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageLayout stencil_layout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageLayout initial_depth_layout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageLayout initial_stencil_layout = VK_IMAGE_LAYOUT_UNDEFINED;
enum isl_aux_usage depth_aux_usage = ISL_AUX_USAGE_NONE;
enum isl_aux_usage stencil_aux_usage = ISL_AUX_USAGE_NONE;
VkClearDepthStencilValue clear_value = {};
if (d_att != NULL && d_att->imageView != VK_NULL_HANDLE) {
d_iview = anv_image_view_from_handle(d_att->imageView);
initial_depth_layout = attachment_initial_layout(d_att);
depth_layout = d_att->imageLayout;
depth_aux_usage =
anv_layout_to_aux_usage(cmd_buffer->device->info,
d_iview->image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
depth_layout,
cmd_buffer->queue_family->queueFlags);
clear_value.depth = d_att->clearValue.depthStencil.depth;
}
if (s_att != NULL && s_att->imageView != VK_NULL_HANDLE) {
s_iview = anv_image_view_from_handle(s_att->imageView);
initial_stencil_layout = attachment_initial_layout(s_att);
stencil_layout = s_att->imageLayout;
stencil_aux_usage =
anv_layout_to_aux_usage(cmd_buffer->device->info,
s_iview->image,
VK_IMAGE_ASPECT_STENCIL_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
stencil_layout,
cmd_buffer->queue_family->queueFlags);
clear_value.stencil = s_att->clearValue.depthStencil.stencil;
}
assert(s_iview == NULL || d_iview == NULL || s_iview == d_iview);
ds_iview = d_iview != NULL ? d_iview : s_iview;
assert(ds_iview != NULL);
assert(render_area.offset.x + render_area.extent.width <=
ds_iview->vk.extent.width);
assert(render_area.offset.y + render_area.extent.height <=
ds_iview->vk.extent.height);
assert(layers <= ds_iview->vk.layer_count);
fb_size.w = MAX2(fb_size.w, ds_iview->vk.extent.width);
fb_size.h = MAX2(fb_size.h, ds_iview->vk.extent.height);
assert(gfx->samples == 0 || gfx->samples == ds_iview->vk.image->samples);
gfx->samples |= ds_iview->vk.image->samples;
VkImageAspectFlags clear_aspects = 0;
if (d_iview != NULL && d_att->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR &&
!(gfx->rendering_flags & VK_RENDERING_RESUMING_BIT))
clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
if (s_iview != NULL && s_att->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR &&
!(gfx->rendering_flags & VK_RENDERING_RESUMING_BIT))
clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
if (clear_aspects != 0) {
const bool hiz_clear =
anv_can_hiz_clear_image(cmd_buffer, ds_iview->image,
depth_layout, clear_aspects,
clear_value.depth,
render_area,
ds_iview->vk.base_mip_level);
if (depth_layout != initial_depth_layout) {
assert(render_area.offset.x == 0 && render_area.offset.y == 0 &&
render_area.extent.width == d_iview->vk.extent.width &&
render_area.extent.height == d_iview->vk.extent.height);
if (is_multiview) {
u_foreach_bit(view, gfx->view_mask) {
transition_depth_buffer(cmd_buffer, d_iview->image,
d_iview->vk.base_mip_level, 1,
d_iview->vk.base_array_layer + view,
1 /* layer_count */,
initial_depth_layout, depth_layout,
hiz_clear);
}
} else {
transition_depth_buffer(cmd_buffer, d_iview->image,
d_iview->vk.base_mip_level, 1,
d_iview->vk.base_array_layer,
gfx->layer_count,
initial_depth_layout, depth_layout,
hiz_clear);
}
}
if (stencil_layout != initial_stencil_layout) {
assert(render_area.offset.x == 0 && render_area.offset.y == 0 &&
render_area.extent.width == s_iview->vk.extent.width &&
render_area.extent.height == s_iview->vk.extent.height);
if (is_multiview) {
u_foreach_bit(view, gfx->view_mask) {
transition_stencil_buffer(cmd_buffer, s_iview->image,
s_iview->vk.base_mip_level, 1,
s_iview->vk.base_array_layer + view,
1 /* layer_count */,
initial_stencil_layout,
stencil_layout,
hiz_clear);
}
} else {
transition_stencil_buffer(cmd_buffer, s_iview->image,
s_iview->vk.base_mip_level, 1,
s_iview->vk.base_array_layer,
gfx->layer_count,
initial_stencil_layout,
stencil_layout,
hiz_clear);
}
}
if (is_multiview) {
u_foreach_bit(view, gfx->view_mask) {
uint32_t level = ds_iview->vk.base_mip_level;
uint32_t layer = ds_iview->vk.base_array_layer + view;
if (hiz_clear) {
anv_image_hiz_clear(cmd_buffer, ds_iview->image,
clear_aspects,
level, layer, 1,
render_area, &clear_value);
} else {
anv_image_clear_depth_stencil(cmd_buffer, ds_iview->image,
clear_aspects,
depth_aux_usage,
level, layer, 1,
render_area, &clear_value);
}
}
} else {
uint32_t level = ds_iview->vk.base_mip_level;
uint32_t base_layer = ds_iview->vk.base_array_layer;
uint32_t layer_count = gfx->layer_count;
if (hiz_clear) {
anv_image_hiz_clear(cmd_buffer, ds_iview->image,
clear_aspects,
level, base_layer, layer_count,
render_area, &clear_value);
} else {
anv_image_clear_depth_stencil(cmd_buffer, ds_iview->image,
clear_aspects,
depth_aux_usage,
level, base_layer, layer_count,
render_area, &clear_value);
}
}
} else {
/* If not LOAD_OP_CLEAR, we shouldn't have a layout transition. */
assert(depth_layout == initial_depth_layout);
assert(stencil_layout == initial_stencil_layout);
}
if (d_iview != NULL) {
gfx->depth_att.vk_format = d_iview->vk.format;
gfx->depth_att.iview = d_iview;
gfx->depth_att.layout = depth_layout;
gfx->depth_att.aux_usage = depth_aux_usage;
if (d_att != NULL && d_att->resolveMode != VK_RESOLVE_MODE_NONE) {
assert(d_att->resolveImageView != VK_NULL_HANDLE);
gfx->depth_att.resolve_mode = d_att->resolveMode;
gfx->depth_att.resolve_iview =
anv_image_view_from_handle(d_att->resolveImageView);
gfx->depth_att.resolve_layout = d_att->resolveImageLayout;
}
}
if (s_iview != NULL) {
gfx->stencil_att.vk_format = s_iview->vk.format;
gfx->stencil_att.iview = s_iview;
gfx->stencil_att.layout = stencil_layout;
gfx->stencil_att.aux_usage = stencil_aux_usage;
if (s_att->resolveMode != VK_RESOLVE_MODE_NONE) {
assert(s_att->resolveImageView != VK_NULL_HANDLE);
gfx->stencil_att.resolve_mode = s_att->resolveMode;
gfx->stencil_att.resolve_iview =
anv_image_view_from_handle(s_att->resolveImageView);
gfx->stencil_att.resolve_layout = s_att->resolveImageLayout;
}
}
}
/* Finally, now that we know the right size, set up the null surface */
assert(util_bitcount(gfx->samples) <= 1);
isl_null_fill_state(&cmd_buffer->device->isl_dev,
gfx->null_surface_state.map,
.size = fb_size);
for (uint32_t i = 0; i < gfx->color_att_count; i++) {
if (pRenderingInfo->pColorAttachments[i].imageView != VK_NULL_HANDLE)
continue;
isl_null_fill_state(&cmd_buffer->device->isl_dev,
gfx->color_att[i].surface_state.state.map,
.size = fb_size);
}
/****** We can now start emitting code to begin the render pass ******/
gfx->dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
/* It is possible to start a render pass with an old pipeline. Because the
* render pass and subpass index are both baked into the pipeline, this is
* highly unlikely. In order to do so, it requires that you have a render
* pass with a single subpass and that you use that render pass twice
* back-to-back and use the same pipeline at the start of the second render
* pass as at the end of the first. In order to avoid unpredictable issues
* with this edge case, we just dirty the pipeline at the start of every
* subpass.
*/
gfx->dirty |= ANV_CMD_DIRTY_PIPELINE;
#if GFX_VER >= 11
if (render_target_change) {
/* The PIPE_CONTROL command description says:
*
* "Whenever a Binding Table Index (BTI) used by a Render Target Message
* points to a different RENDER_SURFACE_STATE, SW must issue a Render
* Target Cache Flush by enabling this bit. When render target flush
* is set due to new association of BTI, PS Scoreboard Stall bit must
* be set in this packet."
*
* We assume that a new BeginRendering is always changing the RTs, which
* may not be true and cause excessive flushing. We can trivially skip it
* in the case that there are no RTs (depth-only rendering), though.
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
ANV_PIPE_STALL_AT_SCOREBOARD_BIT,
"change RT");
}
#endif
cmd_buffer_emit_depth_stencil(cmd_buffer);
cmd_buffer_emit_cps_control_buffer(cmd_buffer, fsr_iview);
}
static void
cmd_buffer_mark_attachment_written(struct anv_cmd_buffer *cmd_buffer,
struct anv_attachment *att,
VkImageAspectFlagBits aspect)
{
#if GFX_VER < 20
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
const struct anv_image_view *iview = att->iview;
if (iview == NULL)
return;
if (aspect == 0)
aspect = iview->vk.aspects;
if (gfx->view_mask == 0) {
genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
aspect, att->aux_usage,
iview->planes[0].isl.base_level,
iview->planes[0].isl.base_array_layer,
gfx->layer_count);
} else {
uint32_t res_view_mask = gfx->view_mask;
while (res_view_mask) {
int i = u_bit_scan(&res_view_mask);
const uint32_t level = iview->planes[0].isl.base_level;
const uint32_t layer = iview->planes[0].isl.base_array_layer + i;
genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
aspect, att->aux_usage,
level, layer, 1);
}
}
#endif
}
void genX(CmdEndRendering)(
VkCommandBuffer commandBuffer)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
if (anv_batch_has_error(&cmd_buffer->batch))
return;
const bool is_multiview = gfx->view_mask != 0;
const uint32_t layers =
is_multiview ? util_last_bit(gfx->view_mask) : gfx->layer_count;
for (uint32_t i = 0; i < gfx->color_att_count; i++) {
cmd_buffer_mark_attachment_written(cmd_buffer, &gfx->color_att[i], 0);
}
cmd_buffer_mark_attachment_written(cmd_buffer, &gfx->depth_att,
VK_IMAGE_ASPECT_DEPTH_BIT);
cmd_buffer_mark_attachment_written(cmd_buffer, &gfx->stencil_att,
VK_IMAGE_ASPECT_STENCIL_BIT);
if (!(gfx->rendering_flags & VK_RENDERING_SUSPENDING_BIT)) {
bool has_color_resolve = false;
UNUSED bool has_sparse_color_resolve = false;
for (uint32_t i = 0; i < gfx->color_att_count; i++) {
if (gfx->color_att[i].resolve_mode != VK_RESOLVE_MODE_NONE) {
has_color_resolve = true;
has_sparse_color_resolve |=
anv_image_is_sparse(gfx->color_att[i].iview->image);
}
}
if (has_color_resolve) {
/* We are about to do some MSAA resolves. We need to flush so that
* the result of writes to the MSAA color attachments show up in the
* sampler when we blit to the single-sampled resolve target.
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT,
"MSAA resolve");
}
const bool has_depth_resolve =
gfx->depth_att.resolve_mode != VK_RESOLVE_MODE_NONE;
const bool has_stencil_resolve =
gfx->stencil_att.resolve_mode != VK_RESOLVE_MODE_NONE;
if (has_depth_resolve || has_stencil_resolve) {
/* We are about to do some MSAA resolves. We need to flush so that
* the result of writes to the MSAA depth attachments show up in the
* sampler when we blit to the single-sampled resolve target.
*/
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT,
"MSAA resolve");
}
#if GFX_VER < 20
const bool has_sparse_depth_resolve =
has_depth_resolve &&
anv_image_is_sparse(gfx->depth_att.iview->image);
const bool has_sparse_stencil_resolve =
has_stencil_resolve &&
anv_image_is_sparse(gfx->stencil_att.iview->image);
/* Our HW implementation of the sparse feature prior to Xe2 lives in the
* GAM unit (interface between all the GPU caches and external memory).
* As a result writes to NULL bound images & buffers that should be
* ignored are actually still visible in the caches. The only way for us
* to get correct NULL bound regions to return 0s is to evict the caches
* to force the caches to be repopulated with 0s.
*
* Our understanding is that Xe2 started to tag the L3 cache with some
* kind physical address information rather. It is therefore able to
* detect that a cache line in the cache is going to a null tile and so
* the L3 cache also has a sparse compatible behavior and we don't need
* to flush anymore.
*/
if (has_sparse_color_resolve || has_sparse_depth_resolve ||
has_sparse_stencil_resolve) {
/* If the resolve image is sparse we need some extra bits to make
* sure unbound regions read 0, as residencyNonResidentStrict
* mandates.
*/
anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_TILE_CACHE_FLUSH_BIT,
"sparse MSAA resolve");
}
#endif
for (uint32_t i = 0; i < gfx->color_att_count; i++) {
const struct anv_attachment *att = &gfx->color_att[i];
if (att->resolve_mode == VK_RESOLVE_MODE_NONE)
continue;
anv_attachment_msaa_resolve(cmd_buffer, att, att->layout,
VK_IMAGE_ASPECT_COLOR_BIT);
}
if (has_depth_resolve) {
const struct anv_image_view *src_iview = gfx->depth_att.iview;
/* MSAA resolves sample from the source attachment. Transition the
* depth attachment first to get rid of any HiZ that we may not be
* able to handle.
*/
transition_depth_buffer(cmd_buffer, src_iview->image, 0, 1,
src_iview->planes[0].isl.base_array_layer,
layers,
gfx->depth_att.layout,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
false /* will_full_fast_clear */);
anv_attachment_msaa_resolve(cmd_buffer, &gfx->depth_att,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_ASPECT_DEPTH_BIT);
/* Transition the source back to the original layout. This seems a
* bit inefficient but, since HiZ resolves aren't destructive, going
* from less HiZ to more is generally a no-op.
*/
transition_depth_buffer(cmd_buffer, src_iview->image, 0, 1,
src_iview->planes[0].isl.base_array_layer,
layers,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
gfx->depth_att.layout,
false /* will_full_fast_clear */);
}
if (has_stencil_resolve) {
anv_attachment_msaa_resolve(cmd_buffer, &gfx->stencil_att,
gfx->stencil_att.layout,
VK_IMAGE_ASPECT_STENCIL_BIT);
}
}
trace_intel_end_render_pass(&cmd_buffer->trace,
(uintptr_t)(vk_command_buffer_to_handle(&cmd_buffer->vk)),
gfx->render_area.extent.width,
gfx->render_area.extent.height,
gfx->color_att_count,
gfx->samples);
anv_cmd_buffer_reset_rendering(cmd_buffer);
}
void
genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
{
struct mi_builder b;
mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
mi_store(&b, mi_reg64(MI_PREDICATE_SRC0),
mi_reg32(ANV_PREDICATE_RESULT_REG));
mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
mip.LoadOperation = LOAD_LOADINV;
mip.CombineOperation = COMBINE_SET;
mip.CompareOperation = COMPARE_SRCS_EQUAL;
}
}
void genX(CmdBeginConditionalRenderingEXT)(
VkCommandBuffer commandBuffer,
const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
struct anv_cmd_state *cmd_state = &cmd_buffer->state;
struct anv_address value_address =
anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
const bool isInverted = pConditionalRenderingBegin->flags &
VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
cmd_state->conditional_render_enabled = true;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
struct mi_builder b;
mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
const uint32_t mocs = anv_mocs_for_address(cmd_buffer->device, &value_address);
mi_builder_set_mocs(&b, mocs);
/* Section 19.4 of the Vulkan 1.1.85 spec says:
*
* If the value of the predicate in buffer memory changes
* while conditional rendering is active, the rendering commands
* may be discarded in an implementation-dependent way.
* Some implementations may latch the value of the predicate
* upon beginning conditional rendering while others
* may read it before every rendering command.
*
* So it's perfectly fine to read a value from the buffer once.
*/
struct mi_value value = mi_mem32(value_address);
/* Precompute predicate result, it is necessary to support secondary
* command buffers since it is unknown if conditional rendering is
* inverted when populating them.
*/
mi_store(&b, mi_reg64(ANV_PREDICATE_RESULT_REG),
isInverted ? mi_uge(&b, mi_imm(0), value) :
mi_ult(&b, mi_imm(0), value));
}
void genX(CmdEndConditionalRenderingEXT)(
VkCommandBuffer commandBuffer)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_cmd_state *cmd_state = &cmd_buffer->state;
cmd_state->conditional_render_enabled = false;
}
/* Set of stage bits for which are pipelined, i.e. they get queued
* by the command streamer for later execution.
*/
#define ANV_PIPELINE_STAGE_PIPELINED_BITS \
~(VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT | \
VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | \
VK_PIPELINE_STAGE_2_HOST_BIT | \
VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT)
void genX(CmdSetEvent2)(
VkCommandBuffer commandBuffer,
VkEvent _event,
const VkDependencyInfo* pDependencyInfo)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_event, event, _event);
switch (cmd_buffer->batch.engine_class) {
case INTEL_ENGINE_CLASS_VIDEO:
case INTEL_ENGINE_CLASS_COPY:
anv_batch_emit(&cmd_buffer->batch, GENX(MI_FLUSH_DW), flush) {
flush.PostSyncOperation = WriteImmediateData;
flush.Address = anv_state_pool_state_address(
&cmd_buffer->device->dynamic_state_pool,
event->state);
flush.ImmediateData = VK_EVENT_SET;
}
break;
case INTEL_ENGINE_CLASS_RENDER:
case INTEL_ENGINE_CLASS_COMPUTE: {
VkPipelineStageFlags2 src_stages = 0;
for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++)
src_stages |= pDependencyInfo->pMemoryBarriers[i].srcStageMask;
for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++)
src_stages |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask;
for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++)
src_stages |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask;
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
enum anv_pipe_bits pc_bits = 0;
if (src_stages & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
pc_bits |= ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
pc_bits |= ANV_PIPE_CS_STALL_BIT;
}
genx_batch_emit_pipe_control_write
(&cmd_buffer->batch, cmd_buffer->device->info,
cmd_buffer->state.current_pipeline, WriteImmediateData,
anv_state_pool_state_address(&cmd_buffer->device->dynamic_state_pool,
event->state),
VK_EVENT_SET, pc_bits);
break;
}
default:
unreachable("Invalid engine class");
}
}
void genX(CmdResetEvent2)(
VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags2 stageMask)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_event, event, _event);
switch (cmd_buffer->batch.engine_class) {
case INTEL_ENGINE_CLASS_VIDEO:
case INTEL_ENGINE_CLASS_COPY:
anv_batch_emit(&cmd_buffer->batch, GENX(MI_FLUSH_DW), flush) {
flush.PostSyncOperation = WriteImmediateData;
flush.Address = anv_state_pool_state_address(
&cmd_buffer->device->dynamic_state_pool,
event->state);
flush.ImmediateData = VK_EVENT_RESET;
}
break;
case INTEL_ENGINE_CLASS_RENDER:
case INTEL_ENGINE_CLASS_COMPUTE: {
cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
enum anv_pipe_bits pc_bits = 0;
if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
pc_bits |= ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
pc_bits |= ANV_PIPE_CS_STALL_BIT;
}
genx_batch_emit_pipe_control_write
(&cmd_buffer->batch, cmd_buffer->device->info,
cmd_buffer->state.current_pipeline, WriteImmediateData,
anv_state_pool_state_address(&cmd_buffer->device->dynamic_state_pool,
event->state),
VK_EVENT_RESET,
pc_bits);
break;
}
default:
unreachable("Invalid engine class");
}
}
void genX(CmdWaitEvents2)(
VkCommandBuffer commandBuffer,
uint32_t eventCount,
const VkEvent* pEvents,
const VkDependencyInfo* pDependencyInfos)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
for (uint32_t i = 0; i < eventCount; i++) {
ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
sem.WaitMode = PollingMode;
sem.CompareOperation = COMPARE_SAD_EQUAL_SDD;
sem.SemaphoreDataDword = VK_EVENT_SET;
sem.SemaphoreAddress = anv_state_pool_state_address(
&cmd_buffer->device->dynamic_state_pool,
event->state);
}
}
cmd_buffer_barrier(cmd_buffer, eventCount, pDependencyInfos, "wait event");
}
VkResult genX(CmdSetPerformanceOverrideINTEL)(
VkCommandBuffer commandBuffer,
const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
switch (pOverrideInfo->type) {
case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
anv_batch_write_reg(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2), csdm2) {
csdm2._3DRenderingInstructionDisable = pOverrideInfo->enable;
csdm2.MediaInstructionDisable = pOverrideInfo->enable;
csdm2._3DRenderingInstructionDisableMask = true;
csdm2.MediaInstructionDisableMask = true;
}
break;
}
case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
if (pOverrideInfo->enable) {
/* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
anv_add_pending_pipe_bits(cmd_buffer,
ANV_PIPE_BARRIER_FLUSH_BITS |
ANV_PIPE_INVALIDATE_BITS,
"perf counter isolation");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
}
break;
default:
unreachable("Invalid override");
}
return VK_SUCCESS;
}
VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
VkCommandBuffer commandBuffer,
const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
{
/* TODO: Waiting on the register to write, might depend on generation. */
return VK_SUCCESS;
}
#define TIMESTAMP 0x2358
void genX(cmd_emit_timestamp)(struct anv_batch *batch,
struct anv_device *device,
struct anv_address addr,
enum anv_timestamp_capture_type type,
void *data) {
/* Make sure ANV_TIMESTAMP_CAPTURE_AT_CS_STALL and
* ANV_TIMESTAMP_REWRITE_COMPUTE_WALKER capture type are not set for
* transfer queue.
*/
if ((batch->engine_class == INTEL_ENGINE_CLASS_COPY) ||
(batch->engine_class == INTEL_ENGINE_CLASS_VIDEO)) {
assert(type != ANV_TIMESTAMP_CAPTURE_AT_CS_STALL &&
type != ANV_TIMESTAMP_REWRITE_COMPUTE_WALKER);
}
switch (type) {
case ANV_TIMESTAMP_CAPTURE_TOP_OF_PIPE: {
struct mi_builder b;
mi_builder_init(&b, device->info, batch);
mi_store(&b, mi_mem64(addr), mi_reg64(TIMESTAMP));
break;
}
case ANV_TIMESTAMP_CAPTURE_END_OF_PIPE: {
if ((batch->engine_class == INTEL_ENGINE_CLASS_COPY) ||
(batch->engine_class == INTEL_ENGINE_CLASS_VIDEO)) {
/* Wa_16018063123 - emit fast color dummy blit before MI_FLUSH_DW. */
if (intel_needs_workaround(device->info, 16018063123))
genX(batch_emit_fast_color_dummy_blit)(batch, device);
anv_batch_emit(batch, GENX(MI_FLUSH_DW), fd) {
fd.PostSyncOperation = WriteTimestamp;
fd.Address = addr;
}
} else {
genx_batch_emit_pipe_control_write(batch, device->info, 0,
WriteTimestamp, addr, 0, 0);
}
break;
}
case ANV_TIMESTAMP_CAPTURE_AT_CS_STALL:
genx_batch_emit_pipe_control_write
(batch, device->info, 0, WriteTimestamp, addr, 0,
ANV_PIPE_CS_STALL_BIT);
break;
#if GFX_VERx10 >= 125
case ANV_TIMESTAMP_REWRITE_COMPUTE_WALKER: {
uint32_t dwords[GENX(COMPUTE_WALKER_length)];
GENX(COMPUTE_WALKER_pack)(batch, dwords, &(struct GENX(COMPUTE_WALKER)) {
.body = {
.PostSync = (struct GENX(POSTSYNC_DATA)) {
.Operation = WriteTimestamp,
.DestinationAddress = addr,
.MOCS = anv_mocs(device, NULL, 0),
},
}
});
for (uint32_t i = 0; i < ARRAY_SIZE(dwords); i++) {
if (dwords[i])
((uint32_t *)data)[i] |= dwords[i];
}
break;
}
case ANV_TIMESTAMP_REWRITE_INDIRECT_DISPATCH: {
uint32_t dwords[GENX(EXECUTE_INDIRECT_DISPATCH_length)];
GENX(EXECUTE_INDIRECT_DISPATCH_pack)
(batch, dwords, &(struct GENX(EXECUTE_INDIRECT_DISPATCH)) {
.MOCS = anv_mocs(device, NULL, 0),
.COMPUTE_WALKER_BODY = {
.PostSync = (struct GENX(POSTSYNC_DATA)) {
.Operation = WriteTimestamp,
.DestinationAddress = addr,
.MOCS = anv_mocs(device, NULL, 0),
},
}
});
for (uint32_t i = 0; i < ARRAY_SIZE(dwords); i++) {
if (dwords[i])
((uint32_t *)data)[i] |= dwords[i];
}
break;
}
#endif
case ANV_TIMESTAMP_REPEAT_LAST:
/* Noop */
break;
default:
unreachable("invalid");
}
}
void genX(cmd_capture_data)(struct anv_batch *batch,
struct anv_device *device,
struct anv_address dst_addr,
struct anv_address src_addr,
uint32_t size_B) {
struct mi_builder b;
mi_builder_init(&b, device->info, batch);
mi_builder_set_mocs(&b, isl_mocs(&device->isl_dev, 0, false));
mi_memcpy(&b, dst_addr, src_addr, size_B);
}
void genX(batch_emit_secondary_call)(struct anv_batch *batch,
struct anv_device *device,
struct anv_address secondary_addr,
struct anv_address secondary_return_addr)
{
struct mi_builder b;
mi_builder_init(&b, device->info, batch);
mi_builder_set_mocs(&b, isl_mocs(&device->isl_dev, 0, false));
/* Make sure the write in the batch buffer lands before we just execute the
* jump.
*/
mi_builder_set_write_check(&b, true);
/* Emit a write to change the return address of the secondary */
struct mi_reloc_imm_token reloc =
mi_store_relocated_imm(&b, mi_mem64(secondary_return_addr));
/* Ensure the write have landed before CS reads the address written
* above
*/
mi_ensure_write_fence(&b);
#if GFX_VER >= 12
/* Disable prefetcher before jumping into a secondary */
anv_batch_emit(batch, GENX(MI_ARB_CHECK), arb) {
arb.PreParserDisableMask = true;
arb.PreParserDisable = true;
}
#endif
/* Jump into the secondary */
anv_batch_emit(batch, GENX(MI_BATCH_BUFFER_START), bbs) {
bbs.AddressSpaceIndicator = ASI_PPGTT;
bbs.SecondLevelBatchBuffer = Firstlevelbatch;
bbs.BatchBufferStartAddress = secondary_addr;
}
/* Replace the return address written by the MI_STORE_DATA_IMM above with
* the primary's current batch address (immediately after the jump).
*/
mi_relocate_store_imm(reloc,
anv_address_physical(
anv_batch_current_address(batch)));
}
void *
genX(batch_emit_return)(struct anv_batch *batch)
{
return anv_batch_emitn(batch,
GENX(MI_BATCH_BUFFER_START_length),
GENX(MI_BATCH_BUFFER_START),
.AddressSpaceIndicator = ASI_PPGTT,
.SecondLevelBatchBuffer = Firstlevelbatch);
}
/* Wa_16018063123 */
ALWAYS_INLINE void
genX(batch_emit_fast_color_dummy_blit)(struct anv_batch *batch,
struct anv_device *device)
{
#if GFX_VERx10 >= 125
anv_batch_emit(batch, GENX(XY_FAST_COLOR_BLT), blt) {
blt.DestinationBaseAddress = device->workaround_address;
#if GFX_VERx10 >= 200
blt.DestinationMOCSindex = MOCS_GET_INDEX(device->isl_dev.mocs.blitter_dst);
blt.DestinationEncryptEn = MOCS_GET_ENCRYPT_EN(device->isl_dev.mocs.blitter_dst);
#else
blt.DestinationMOCS = device->isl_dev.mocs.blitter_dst;
#endif
blt.DestinationPitch = 63;
blt.DestinationX2 = 1;
blt.DestinationY2 = 4;
blt.DestinationSurfaceWidth = 1;
blt.DestinationSurfaceHeight = 4;
blt.DestinationSurfaceType = XY_SURFTYPE_2D;
blt.DestinationSurfaceQPitch = 4;
blt.DestinationTiling = XY_TILE_LINEAR;
}
#endif
}
struct anv_state
genX(cmd_buffer_begin_companion_rcs_syncpoint)(
struct anv_cmd_buffer *cmd_buffer)
{
#if GFX_VERx10 >= 125
const struct intel_device_info *info = cmd_buffer->device->info;
struct anv_state syncpoint =
anv_cmd_buffer_alloc_temporary_state(cmd_buffer, 2 * sizeof(uint32_t), 4);
struct anv_address xcs_wait_addr =
anv_cmd_buffer_temporary_state_address(cmd_buffer, syncpoint);
struct anv_address rcs_wait_addr = anv_address_add(xcs_wait_addr, 4);
/* Reset the sync point */
memset(syncpoint.map, 0, 2 * sizeof(uint32_t));
struct mi_builder b;
/* On CCS:
* - flush all caches & invalidate
* - unblock RCS
* - wait on RCS to complete
* - clear the value we waited on
*/
if (anv_cmd_buffer_is_compute_queue(cmd_buffer)) {
anv_add_pending_pipe_bits(cmd_buffer, ANV_PIPE_BARRIER_FLUSH_BITS |
ANV_PIPE_INVALIDATE_BITS |
ANV_PIPE_STALL_BITS,
"post main cmd buffer invalidate");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
} else if (anv_cmd_buffer_is_blitter_queue(cmd_buffer)) {
/* Wa_16018063123 - emit fast color dummy blit before MI_FLUSH_DW. */
if (intel_needs_workaround(cmd_buffer->device->info, 16018063123)) {
genX(batch_emit_fast_color_dummy_blit)(&cmd_buffer->batch,
cmd_buffer->device);
}
anv_batch_emit(&cmd_buffer->batch, GENX(MI_FLUSH_DW), fd) {
fd.FlushCCS = true; /* Maybe handle Flush LLC */
}
}
{
mi_builder_init(&b, info, &cmd_buffer->batch);
mi_store(&b, mi_mem32(rcs_wait_addr), mi_imm(0x1));
anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
sem.WaitMode = PollingMode;
sem.CompareOperation = COMPARE_SAD_EQUAL_SDD;
sem.SemaphoreDataDword = 0x1;
sem.SemaphoreAddress = xcs_wait_addr;
}
/* Make sure to reset the semaphore in case the command buffer is run
* multiple times.
*/
mi_store(&b, mi_mem32(xcs_wait_addr), mi_imm(0x0));
}
/* On RCS:
* - wait on CCS signal
* - clear the value we waited on
*/
{
mi_builder_init(&b, info, &cmd_buffer->companion_rcs_cmd_buffer->batch);
anv_batch_emit(&cmd_buffer->companion_rcs_cmd_buffer->batch,
GENX(MI_SEMAPHORE_WAIT),
sem) {
sem.WaitMode = PollingMode;
sem.CompareOperation = COMPARE_SAD_EQUAL_SDD;
sem.SemaphoreDataDword = 0x1;
sem.SemaphoreAddress = rcs_wait_addr;
}
/* Make sure to reset the semaphore in case the command buffer is run
* multiple times.
*/
mi_store(&b, mi_mem32(rcs_wait_addr), mi_imm(0x0));
}
return syncpoint;
#else
unreachable("Not implemented");
#endif
}
void
genX(cmd_buffer_end_companion_rcs_syncpoint)(struct anv_cmd_buffer *cmd_buffer,
struct anv_state syncpoint)
{
#if GFX_VERx10 >= 125
struct anv_address xcs_wait_addr =
anv_cmd_buffer_temporary_state_address(cmd_buffer, syncpoint);
struct mi_builder b;
/* On RCS:
* - flush all caches & invalidate
* - unblock the CCS
*/
anv_add_pending_pipe_bits(cmd_buffer->companion_rcs_cmd_buffer,
ANV_PIPE_BARRIER_FLUSH_BITS |
ANV_PIPE_INVALIDATE_BITS |
ANV_PIPE_STALL_BITS,
"post rcs flush");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer->companion_rcs_cmd_buffer);
mi_builder_init(&b, cmd_buffer->device->info,
&cmd_buffer->companion_rcs_cmd_buffer->batch);
mi_store(&b, mi_mem32(xcs_wait_addr), mi_imm(0x1));
#else
unreachable("Not implemented");
#endif
}
void
genX(write_trtt_entries)(struct anv_async_submit *submit,
struct anv_trtt_bind *l3l2_binds,
uint32_t n_l3l2_binds,
struct anv_trtt_bind *l1_binds,
uint32_t n_l1_binds)
{
#if GFX_VER >= 12
const struct intel_device_info *devinfo =
submit->queue->device->info;
struct anv_batch *batch = &submit->batch;
/* BSpec says:
* "DWord Length programmed must not exceed 0x3FE."
* For a single dword write the programmed length is 2, and for a single
* qword it's 3. This is the value we actually write to the register field,
* so it's not considering the bias.
*/
uint32_t dword_write_len = 2;
uint32_t qword_write_len = 3;
uint32_t max_dword_extra_writes = 0x3FE - dword_write_len;
uint32_t max_qword_extra_writes = (0x3FE - qword_write_len) / 2;
/* What makes the code below quite complicated is the fact that we can
* write multiple values with MI_STORE_DATA_IMM as long as the writes go to
* contiguous addresses.
*/
for (uint32_t i = 0; i < n_l3l2_binds; i++) {
int extra_writes = 0;
for (uint32_t j = i + 1;
j < n_l3l2_binds && extra_writes <= max_qword_extra_writes;
j++) {
if (l3l2_binds[i].pte_addr + (j - i) * 8 == l3l2_binds[j].pte_addr) {
extra_writes++;
} else {
break;
}
}
bool is_last_write = n_l1_binds == 0 &&
i + extra_writes + 1 == n_l3l2_binds;
uint32_t total_len = GENX(MI_STORE_DATA_IMM_length_bias) +
qword_write_len + (extra_writes * 2);
uint32_t *dw;
dw = anv_batch_emitn(batch, total_len, GENX(MI_STORE_DATA_IMM),
.ForceWriteCompletionCheck = is_last_write,
.StoreQword = true,
.Address = anv_address_from_u64(l3l2_binds[i].pte_addr),
);
dw += 3;
for (uint32_t j = 0; j < extra_writes + 1; j++) {
uint64_t entry_addr_64b = l3l2_binds[i + j].entry_addr;
*dw = entry_addr_64b & 0xFFFFFFFF;
dw++;
*dw = (entry_addr_64b >> 32) & 0xFFFFFFFF;
dw++;
}
assert(dw == batch->next);
i += extra_writes;
}
for (uint32_t i = 0; i < n_l1_binds; i++) {
int extra_writes = 0;
for (uint32_t j = i + 1;
j < n_l1_binds && extra_writes <= max_dword_extra_writes;
j++) {
if (l1_binds[i].pte_addr + (j - i) * 4 ==
l1_binds[j].pte_addr) {
extra_writes++;
} else {
break;
}
}
bool is_last_write = i + extra_writes + 1 == n_l1_binds;
uint32_t total_len = GENX(MI_STORE_DATA_IMM_length_bias) +
dword_write_len + extra_writes;
uint32_t *dw;
dw = anv_batch_emitn(batch, total_len, GENX(MI_STORE_DATA_IMM),
.ForceWriteCompletionCheck = is_last_write,
.Address = anv_address_from_u64(l1_binds[i].pte_addr),
);
dw += 3;
for (uint32_t j = 0; j < extra_writes + 1; j++) {
*dw = (l1_binds[i + j].entry_addr >> 16) & 0xFFFFFFFF;
dw++;
}
assert(dw == batch->next);
i += extra_writes;
}
genx_batch_emit_pipe_control(batch, devinfo, _3D,
ANV_PIPE_CS_STALL_BIT |
ANV_PIPE_TLB_INVALIDATE_BIT);
#else
unreachable("Not implemented");
#endif
}
void
genX(async_submit_end)(struct anv_async_submit *submit)
{
struct anv_batch *batch = &submit->batch;
anv_batch_emit(batch, GENX(MI_BATCH_BUFFER_END), bbe);
}
void
genX(CmdWriteBufferMarker2AMD)(VkCommandBuffer commandBuffer,
VkPipelineStageFlags2 stage,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
uint32_t marker)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, dstBuffer);
/* The barriers inserted by the application to make dstBuffer writable
* should already have the L1/L2 cache flushes. On platforms where the
* command streamer is not coherent with L3, we need an additional set of
* cache flushes.
*/
enum anv_pipe_bits bits =
(ANV_DEVINFO_HAS_COHERENT_L3_CS(cmd_buffer->device->info) ? 0 :
(ANV_PIPE_DATA_CACHE_FLUSH_BIT | ANV_PIPE_TILE_CACHE_FLUSH_BIT)) |
ANV_PIPE_END_OF_PIPE_SYNC_BIT;
trace_intel_begin_write_buffer_marker(&cmd_buffer->trace);
anv_add_pending_pipe_bits(cmd_buffer, bits, "write buffer marker");
genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
struct mi_builder b;
mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
/* Emitting a PIPE_CONTROL with Post-Sync Op = Write Immediate Data
* would be the logical way to implement this extension, as it could
* do a pipelined marker write. Unfortunately, it requires writing
* whole 64-bit QWords, and VK_AMD_buffer_marker requires writing a
* 32-bit value. MI_STORE_DATA_IMM is the only good way to do that,
* and unfortunately it requires stalling.
*/
mi_store(&b, mi_mem32(anv_address_add(buffer->address, dstOffset)),
mi_imm(marker));
trace_intel_end_write_buffer_marker(&cmd_buffer->trace);
}
void
genX(cmd_write_buffer_cp)(struct anv_cmd_buffer *cmd_buffer,
VkDeviceAddress dstAddr,
void *data,
uint32_t size)
{
assert(size % 4 == 0);
struct anv_address addr = anv_address_from_u64(dstAddr);
struct mi_builder b;
mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
for (uint32_t i = 0; i < size; i += 8) {
mi_builder_set_write_check(&b, i >= size - 8);
if (size - i < 8) {
mi_store(&b, mi_mem32(anv_address_add(addr, i)),
mi_imm(*((uint32_t *)((char*)data + i))));
} else {
mi_store(&b, mi_mem64(anv_address_add(addr, i)),
mi_imm(*((uint64_t *)((char*)data + i))));
}
}
}