blob: 1ae344a62cc554753d9d5b81d6df47f1bc4bab90 [file] [log] [blame]
/*
* Copyright 2012 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Christian König <christian.koenig@amd.com>
* Marek Olšák <maraeo@gmail.com>
*/
#include "si_pipe.h"
#include "sid.h"
#include "radeon/r600_cs.h"
#include "tgsi/tgsi_parse.h"
#include "tgsi/tgsi_ureg.h"
#include "util/hash_table.h"
#include "util/crc32.h"
#include "util/u_memory.h"
#include "util/u_prim.h"
/* SHADER_CACHE */
/**
* Return the TGSI binary in a buffer. The first 4 bytes contain its size as
* integer.
*/
static void *si_get_tgsi_binary(struct si_shader_selector *sel)
{
unsigned tgsi_size = tgsi_num_tokens(sel->tokens) *
sizeof(struct tgsi_token);
unsigned size = 4 + tgsi_size + sizeof(sel->so);
char *result = (char*)MALLOC(size);
if (!result)
return NULL;
*((uint32_t*)result) = size;
memcpy(result + 4, sel->tokens, tgsi_size);
memcpy(result + 4 + tgsi_size, &sel->so, sizeof(sel->so));
return result;
}
/** Copy "data" to "ptr" and return the next dword following copied data. */
static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
{
/* data may be NULL if size == 0 */
if (size)
memcpy(ptr, data, size);
ptr += DIV_ROUND_UP(size, 4);
return ptr;
}
/** Read data from "ptr". Return the next dword following the data. */
static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
{
memcpy(data, ptr, size);
ptr += DIV_ROUND_UP(size, 4);
return ptr;
}
/**
* Write the size as uint followed by the data. Return the next dword
* following the copied data.
*/
static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
{
*ptr++ = size;
return write_data(ptr, data, size);
}
/**
* Read the size as uint followed by the data. Return both via parameters.
* Return the next dword following the data.
*/
static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
{
*size = *ptr++;
assert(*data == NULL);
if (!*size)
return ptr;
*data = malloc(*size);
return read_data(ptr, *data, *size);
}
/**
* Return the shader binary in a buffer. The first 4 bytes contain its size
* as integer.
*/
static void *si_get_shader_binary(struct si_shader *shader)
{
/* There is always a size of data followed by the data itself. */
unsigned relocs_size = shader->binary.reloc_count *
sizeof(shader->binary.relocs[0]);
unsigned disasm_size = strlen(shader->binary.disasm_string) + 1;
unsigned llvm_ir_size = shader->binary.llvm_ir_string ?
strlen(shader->binary.llvm_ir_string) + 1 : 0;
unsigned size =
4 + /* total size */
4 + /* CRC32 of the data below */
align(sizeof(shader->config), 4) +
align(sizeof(shader->info), 4) +
4 + align(shader->binary.code_size, 4) +
4 + align(shader->binary.rodata_size, 4) +
4 + align(relocs_size, 4) +
4 + align(disasm_size, 4) +
4 + align(llvm_ir_size, 4);
void *buffer = CALLOC(1, size);
uint32_t *ptr = (uint32_t*)buffer;
if (!buffer)
return NULL;
*ptr++ = size;
ptr++; /* CRC32 is calculated at the end. */
ptr = write_data(ptr, &shader->config, sizeof(shader->config));
ptr = write_data(ptr, &shader->info, sizeof(shader->info));
ptr = write_chunk(ptr, shader->binary.code, shader->binary.code_size);
ptr = write_chunk(ptr, shader->binary.rodata, shader->binary.rodata_size);
ptr = write_chunk(ptr, shader->binary.relocs, relocs_size);
ptr = write_chunk(ptr, shader->binary.disasm_string, disasm_size);
ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
assert((char *)ptr - (char *)buffer == size);
/* Compute CRC32. */
ptr = (uint32_t*)buffer;
ptr++;
*ptr = util_hash_crc32(ptr + 1, size - 8);
return buffer;
}
static bool si_load_shader_binary(struct si_shader *shader, void *binary)
{
uint32_t *ptr = (uint32_t*)binary;
uint32_t size = *ptr++;
uint32_t crc32 = *ptr++;
unsigned chunk_size;
if (util_hash_crc32(ptr, size - 8) != crc32) {
fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
return false;
}
ptr = read_data(ptr, &shader->config, sizeof(shader->config));
ptr = read_data(ptr, &shader->info, sizeof(shader->info));
ptr = read_chunk(ptr, (void**)&shader->binary.code,
&shader->binary.code_size);
ptr = read_chunk(ptr, (void**)&shader->binary.rodata,
&shader->binary.rodata_size);
ptr = read_chunk(ptr, (void**)&shader->binary.relocs, &chunk_size);
shader->binary.reloc_count = chunk_size / sizeof(shader->binary.relocs[0]);
ptr = read_chunk(ptr, (void**)&shader->binary.disasm_string, &chunk_size);
ptr = read_chunk(ptr, (void**)&shader->binary.llvm_ir_string, &chunk_size);
return true;
}
/**
* Insert a shader into the cache. It's assumed the shader is not in the cache.
* Use si_shader_cache_load_shader before calling this.
*
* Returns false on failure, in which case the tgsi_binary should be freed.
*/
static bool si_shader_cache_insert_shader(struct si_screen *sscreen,
void *tgsi_binary,
struct si_shader *shader)
{
void *hw_binary;
struct hash_entry *entry;
entry = _mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
if (entry)
return false; /* already added */
hw_binary = si_get_shader_binary(shader);
if (!hw_binary)
return false;
if (_mesa_hash_table_insert(sscreen->shader_cache, tgsi_binary,
hw_binary) == NULL) {
FREE(hw_binary);
return false;
}
return true;
}
static bool si_shader_cache_load_shader(struct si_screen *sscreen,
void *tgsi_binary,
struct si_shader *shader)
{
struct hash_entry *entry =
_mesa_hash_table_search(sscreen->shader_cache, tgsi_binary);
if (!entry)
return false;
if (!si_load_shader_binary(shader, entry->data))
return false;
p_atomic_inc(&sscreen->b.num_shader_cache_hits);
return true;
}
static uint32_t si_shader_cache_key_hash(const void *key)
{
/* The first dword is the key size. */
return util_hash_crc32(key, *(uint32_t*)key);
}
static bool si_shader_cache_key_equals(const void *a, const void *b)
{
uint32_t *keya = (uint32_t*)a;
uint32_t *keyb = (uint32_t*)b;
/* The first dword is the key size. */
if (*keya != *keyb)
return false;
return memcmp(keya, keyb, *keya) == 0;
}
static void si_destroy_shader_cache_entry(struct hash_entry *entry)
{
FREE((void*)entry->key);
FREE(entry->data);
}
bool si_init_shader_cache(struct si_screen *sscreen)
{
pipe_mutex_init(sscreen->shader_cache_mutex);
sscreen->shader_cache =
_mesa_hash_table_create(NULL,
si_shader_cache_key_hash,
si_shader_cache_key_equals);
return sscreen->shader_cache != NULL;
}
void si_destroy_shader_cache(struct si_screen *sscreen)
{
if (sscreen->shader_cache)
_mesa_hash_table_destroy(sscreen->shader_cache,
si_destroy_shader_cache_entry);
pipe_mutex_destroy(sscreen->shader_cache_mutex);
}
/* SHADER STATES */
static void si_set_tesseval_regs(struct si_screen *sscreen,
struct si_shader *shader,
struct si_pm4_state *pm4)
{
struct tgsi_shader_info *info = &shader->selector->info;
unsigned tes_prim_mode = info->properties[TGSI_PROPERTY_TES_PRIM_MODE];
unsigned tes_spacing = info->properties[TGSI_PROPERTY_TES_SPACING];
bool tes_vertex_order_cw = info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW];
bool tes_point_mode = info->properties[TGSI_PROPERTY_TES_POINT_MODE];
unsigned type, partitioning, topology, distribution_mode;
switch (tes_prim_mode) {
case PIPE_PRIM_LINES:
type = V_028B6C_TESS_ISOLINE;
break;
case PIPE_PRIM_TRIANGLES:
type = V_028B6C_TESS_TRIANGLE;
break;
case PIPE_PRIM_QUADS:
type = V_028B6C_TESS_QUAD;
break;
default:
assert(0);
return;
}
switch (tes_spacing) {
case PIPE_TESS_SPACING_FRACTIONAL_ODD:
partitioning = V_028B6C_PART_FRAC_ODD;
break;
case PIPE_TESS_SPACING_FRACTIONAL_EVEN:
partitioning = V_028B6C_PART_FRAC_EVEN;
break;
case PIPE_TESS_SPACING_EQUAL:
partitioning = V_028B6C_PART_INTEGER;
break;
default:
assert(0);
return;
}
if (tes_point_mode)
topology = V_028B6C_OUTPUT_POINT;
else if (tes_prim_mode == PIPE_PRIM_LINES)
topology = V_028B6C_OUTPUT_LINE;
else if (tes_vertex_order_cw)
/* for some reason, this must be the other way around */
topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
else
topology = V_028B6C_OUTPUT_TRIANGLE_CW;
if (sscreen->has_distributed_tess) {
if (sscreen->b.family == CHIP_FIJI ||
sscreen->b.family >= CHIP_POLARIS10)
distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
else
distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
} else
distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
si_pm4_set_reg(pm4, R_028B6C_VGT_TF_PARAM,
S_028B6C_TYPE(type) |
S_028B6C_PARTITIONING(partitioning) |
S_028B6C_TOPOLOGY(topology) |
S_028B6C_DISTRIBUTION_MODE(distribution_mode));
}
static struct si_pm4_state *si_get_shader_pm4_state(struct si_shader *shader)
{
if (shader->pm4)
si_pm4_clear_state(shader->pm4);
else
shader->pm4 = CALLOC_STRUCT(si_pm4_state);
return shader->pm4;
}
static void si_shader_ls(struct si_shader *shader)
{
struct si_pm4_state *pm4;
unsigned vgpr_comp_cnt;
uint64_t va;
pm4 = si_get_shader_pm4_state(shader);
if (!pm4)
return;
va = shader->bo->gpu_address;
si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
/* We need at least 2 components for LS.
* VGPR0-3: (VertexID, RelAutoindex, ???, InstanceID). */
vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 1;
si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
si_pm4_set_reg(pm4, R_00B524_SPI_SHADER_PGM_HI_LS, va >> 40);
shader->config.rsrc1 = S_00B528_VGPRS((shader->config.num_vgprs - 1) / 4) |
S_00B528_SGPRS((shader->config.num_sgprs - 1) / 8) |
S_00B528_VGPR_COMP_CNT(vgpr_comp_cnt) |
S_00B528_DX10_CLAMP(1) |
S_00B528_FLOAT_MODE(shader->config.float_mode);
shader->config.rsrc2 = S_00B52C_USER_SGPR(SI_LS_NUM_USER_SGPR) |
S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
}
static void si_shader_hs(struct si_shader *shader)
{
struct si_pm4_state *pm4;
uint64_t va;
pm4 = si_get_shader_pm4_state(shader);
if (!pm4)
return;
va = shader->bo->gpu_address;
si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS, va >> 40);
si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
S_00B428_VGPRS((shader->config.num_vgprs - 1) / 4) |
S_00B428_SGPRS((shader->config.num_sgprs - 1) / 8) |
S_00B428_DX10_CLAMP(1) |
S_00B428_FLOAT_MODE(shader->config.float_mode));
si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
S_00B42C_USER_SGPR(SI_TCS_NUM_USER_SGPR) |
S_00B42C_OC_LDS_EN(1) |
S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
}
static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
{
struct si_pm4_state *pm4;
unsigned num_user_sgprs;
unsigned vgpr_comp_cnt;
uint64_t va;
unsigned oc_lds_en;
pm4 = si_get_shader_pm4_state(shader);
if (!pm4)
return;
va = shader->bo->gpu_address;
si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
if (shader->selector->type == PIPE_SHADER_VERTEX) {
vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : 0;
num_user_sgprs = SI_ES_NUM_USER_SGPR;
} else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
vgpr_comp_cnt = 3; /* all components are needed for TES */
num_user_sgprs = SI_TES_NUM_USER_SGPR;
} else
unreachable("invalid shader selector type");
oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
si_pm4_set_reg(pm4, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
shader->selector->esgs_itemsize / 4);
si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES, va >> 40);
si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
S_00B328_VGPRS((shader->config.num_vgprs - 1) / 4) |
S_00B328_SGPRS((shader->config.num_sgprs - 1) / 8) |
S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
S_00B328_DX10_CLAMP(1) |
S_00B328_FLOAT_MODE(shader->config.float_mode));
si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
S_00B32C_USER_SGPR(num_user_sgprs) |
S_00B32C_OC_LDS_EN(oc_lds_en) |
S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
si_set_tesseval_regs(sscreen, shader, pm4);
}
/**
* Calculate the appropriate setting of VGT_GS_MODE when \p shader is a
* geometry shader.
*/
static uint32_t si_vgt_gs_mode(struct si_shader_selector *sel)
{
unsigned gs_max_vert_out = sel->gs_max_out_vertices;
unsigned cut_mode;
if (gs_max_vert_out <= 128) {
cut_mode = V_028A40_GS_CUT_128;
} else if (gs_max_vert_out <= 256) {
cut_mode = V_028A40_GS_CUT_256;
} else if (gs_max_vert_out <= 512) {
cut_mode = V_028A40_GS_CUT_512;
} else {
assert(gs_max_vert_out <= 1024);
cut_mode = V_028A40_GS_CUT_1024;
}
return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
S_028A40_CUT_MODE(cut_mode)|
S_028A40_ES_WRITE_OPTIMIZE(1) |
S_028A40_GS_WRITE_OPTIMIZE(1);
}
static void si_shader_gs(struct si_shader *shader)
{
struct si_shader_selector *sel = shader->selector;
const ubyte *num_components = sel->info.num_stream_output_components;
unsigned gs_num_invocations = sel->gs_num_invocations;
struct si_pm4_state *pm4;
uint64_t va;
unsigned max_stream = sel->max_gs_stream;
unsigned offset;
pm4 = si_get_shader_pm4_state(shader);
if (!pm4)
return;
si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(shader->selector));
offset = num_components[0] * sel->gs_max_out_vertices;
si_pm4_set_reg(pm4, R_028A60_VGT_GSVS_RING_OFFSET_1, offset);
if (max_stream >= 1)
offset += num_components[1] * sel->gs_max_out_vertices;
si_pm4_set_reg(pm4, R_028A64_VGT_GSVS_RING_OFFSET_2, offset);
if (max_stream >= 2)
offset += num_components[2] * sel->gs_max_out_vertices;
si_pm4_set_reg(pm4, R_028A68_VGT_GSVS_RING_OFFSET_3, offset);
if (max_stream >= 3)
offset += num_components[3] * sel->gs_max_out_vertices;
si_pm4_set_reg(pm4, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
/* The GSVS_RING_ITEMSIZE register takes 15 bits */
assert(offset < (1 << 15));
si_pm4_set_reg(pm4, R_028B38_VGT_GS_MAX_VERT_OUT, shader->selector->gs_max_out_vertices);
si_pm4_set_reg(pm4, R_028B5C_VGT_GS_VERT_ITEMSIZE, num_components[0]);
si_pm4_set_reg(pm4, R_028B60_VGT_GS_VERT_ITEMSIZE_1, (max_stream >= 1) ? num_components[1] : 0);
si_pm4_set_reg(pm4, R_028B64_VGT_GS_VERT_ITEMSIZE_2, (max_stream >= 2) ? num_components[2] : 0);
si_pm4_set_reg(pm4, R_028B68_VGT_GS_VERT_ITEMSIZE_3, (max_stream >= 3) ? num_components[3] : 0);
si_pm4_set_reg(pm4, R_028B90_VGT_GS_INSTANCE_CNT,
S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
S_028B90_ENABLE(gs_num_invocations > 0));
va = shader->bo->gpu_address;
si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS, va >> 40);
si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
S_00B228_VGPRS((shader->config.num_vgprs - 1) / 4) |
S_00B228_SGPRS((shader->config.num_sgprs - 1) / 8) |
S_00B228_DX10_CLAMP(1) |
S_00B228_FLOAT_MODE(shader->config.float_mode));
si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
S_00B22C_USER_SGPR(SI_GS_NUM_USER_SGPR) |
S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
}
/**
* Compute the state for \p shader, which will run as a vertex shader on the
* hardware.
*
* If \p gs is non-NULL, it points to the geometry shader for which this shader
* is the copy shader.
*/
static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
struct si_shader_selector *gs)
{
struct si_pm4_state *pm4;
unsigned num_user_sgprs;
unsigned nparams, vgpr_comp_cnt;
uint64_t va;
unsigned oc_lds_en;
unsigned window_space =
shader->selector->info.properties[TGSI_PROPERTY_VS_WINDOW_SPACE_POSITION];
bool enable_prim_id = si_vs_exports_prim_id(shader);
pm4 = si_get_shader_pm4_state(shader);
if (!pm4)
return;
/* We always write VGT_GS_MODE in the VS state, because every switch
* between different shader pipelines involving a different GS or no
* GS at all involves a switch of the VS (different GS use different
* copy shaders). On the other hand, when the API switches from a GS to
* no GS and then back to the same GS used originally, the GS state is
* not sent again.
*/
if (!gs) {
si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE,
S_028A40_MODE(enable_prim_id ? V_028A40_GS_SCENARIO_A : 0));
si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, enable_prim_id);
} else {
si_pm4_set_reg(pm4, R_028A40_VGT_GS_MODE, si_vgt_gs_mode(gs));
si_pm4_set_reg(pm4, R_028A84_VGT_PRIMITIVEID_EN, 0);
}
va = shader->bo->gpu_address;
si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
if (gs) {
vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
} else if (shader->selector->type == PIPE_SHADER_VERTEX) {
vgpr_comp_cnt = shader->info.uses_instanceid ? 3 : (enable_prim_id ? 2 : 0);
num_user_sgprs = SI_VS_NUM_USER_SGPR;
} else if (shader->selector->type == PIPE_SHADER_TESS_EVAL) {
vgpr_comp_cnt = 3; /* all components are needed for TES */
num_user_sgprs = SI_TES_NUM_USER_SGPR;
} else
unreachable("invalid shader selector type");
/* VS is required to export at least one param. */
nparams = MAX2(shader->info.nr_param_exports, 1);
si_pm4_set_reg(pm4, R_0286C4_SPI_VS_OUT_CONFIG,
S_0286C4_VS_EXPORT_COUNT(nparams - 1));
si_pm4_set_reg(pm4, R_02870C_SPI_SHADER_POS_FORMAT,
S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ?
V_02870C_SPI_SHADER_4COMP :
V_02870C_SPI_SHADER_NONE) |
S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ?
V_02870C_SPI_SHADER_4COMP :
V_02870C_SPI_SHADER_NONE) |
S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ?
V_02870C_SPI_SHADER_4COMP :
V_02870C_SPI_SHADER_NONE));
oc_lds_en = shader->selector->type == PIPE_SHADER_TESS_EVAL ? 1 : 0;
si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS, va >> 40);
si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS,
S_00B128_VGPRS((shader->config.num_vgprs - 1) / 4) |
S_00B128_SGPRS((shader->config.num_sgprs - 1) / 8) |
S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
S_00B128_DX10_CLAMP(1) |
S_00B128_FLOAT_MODE(shader->config.float_mode));
si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS,
S_00B12C_USER_SGPR(num_user_sgprs) |
S_00B12C_OC_LDS_EN(oc_lds_en) |
S_00B12C_SO_BASE0_EN(!!shader->selector->so.stride[0]) |
S_00B12C_SO_BASE1_EN(!!shader->selector->so.stride[1]) |
S_00B12C_SO_BASE2_EN(!!shader->selector->so.stride[2]) |
S_00B12C_SO_BASE3_EN(!!shader->selector->so.stride[3]) |
S_00B12C_SO_EN(!!shader->selector->so.num_outputs) |
S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
if (window_space)
si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1));
else
si_pm4_set_reg(pm4, R_028818_PA_CL_VTE_CNTL,
S_028818_VTX_W0_FMT(1) |
S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
if (shader->selector->type == PIPE_SHADER_TESS_EVAL)
si_set_tesseval_regs(sscreen, shader, pm4);
}
static unsigned si_get_ps_num_interp(struct si_shader *ps)
{
struct tgsi_shader_info *info = &ps->selector->info;
unsigned num_colors = !!(info->colors_read & 0x0f) +
!!(info->colors_read & 0xf0);
unsigned num_interp = ps->selector->info.num_inputs +
(ps->key.part.ps.prolog.color_two_side ? num_colors : 0);
assert(num_interp <= 32);
return MIN2(num_interp, 32);
}
static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
{
unsigned value = shader->key.part.ps.epilog.spi_shader_col_format;
unsigned i, num_targets = (util_last_bit(value) + 3) / 4;
/* If the i-th target format is set, all previous target formats must
* be non-zero to avoid hangs.
*/
for (i = 0; i < num_targets; i++)
if (!(value & (0xf << (i * 4))))
value |= V_028714_SPI_SHADER_32_R << (i * 4);
return value;
}
static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
{
unsigned i, cb_shader_mask = 0;
for (i = 0; i < 8; i++) {
switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
case V_028714_SPI_SHADER_ZERO:
break;
case V_028714_SPI_SHADER_32_R:
cb_shader_mask |= 0x1 << (i * 4);
break;
case V_028714_SPI_SHADER_32_GR:
cb_shader_mask |= 0x3 << (i * 4);
break;
case V_028714_SPI_SHADER_32_AR:
cb_shader_mask |= 0x9 << (i * 4);
break;
case V_028714_SPI_SHADER_FP16_ABGR:
case V_028714_SPI_SHADER_UNORM16_ABGR:
case V_028714_SPI_SHADER_SNORM16_ABGR:
case V_028714_SPI_SHADER_UINT16_ABGR:
case V_028714_SPI_SHADER_SINT16_ABGR:
case V_028714_SPI_SHADER_32_ABGR:
cb_shader_mask |= 0xf << (i * 4);
break;
default:
assert(0);
}
}
return cb_shader_mask;
}
static void si_shader_ps(struct si_shader *shader)
{
struct tgsi_shader_info *info = &shader->selector->info;
struct si_pm4_state *pm4;
unsigned spi_ps_in_control, spi_shader_col_format, cb_shader_mask;
unsigned spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
uint64_t va;
unsigned input_ena = shader->config.spi_ps_input_ena;
/* we need to enable at least one of them, otherwise we hang the GPU */
assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
G_0286CC_PERSP_CENTER_ENA(input_ena) ||
G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
G_0286CC_LINEAR_SAMPLE_ENA(input_ena) ||
G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
G_0286CC_LINEAR_CENTROID_ENA(input_ena) ||
G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
/* POS_W_FLOAT_ENA requires one of the perspective weights. */
assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) ||
G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
G_0286CC_PERSP_CENTER_ENA(input_ena) ||
G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
/* Validate interpolation optimization flags (read as implications). */
assert(!shader->key.part.ps.prolog.bc_optimize_for_persp ||
(G_0286CC_PERSP_CENTER_ENA(input_ena) &&
G_0286CC_PERSP_CENTROID_ENA(input_ena)));
assert(!shader->key.part.ps.prolog.bc_optimize_for_linear ||
(G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
assert(!shader->key.part.ps.prolog.force_persp_center_interp ||
(!G_0286CC_PERSP_SAMPLE_ENA(input_ena) &&
!G_0286CC_PERSP_CENTROID_ENA(input_ena)));
assert(!shader->key.part.ps.prolog.force_linear_center_interp ||
(!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) &&
!G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
assert(!shader->key.part.ps.prolog.force_persp_sample_interp ||
(!G_0286CC_PERSP_CENTER_ENA(input_ena) &&
!G_0286CC_PERSP_CENTROID_ENA(input_ena)));
assert(!shader->key.part.ps.prolog.force_linear_sample_interp ||
(!G_0286CC_LINEAR_CENTER_ENA(input_ena) &&
!G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
/* Validate cases when the optimizations are off (read as implications). */
assert(shader->key.part.ps.prolog.bc_optimize_for_persp ||
!G_0286CC_PERSP_CENTER_ENA(input_ena) ||
!G_0286CC_PERSP_CENTROID_ENA(input_ena));
assert(shader->key.part.ps.prolog.bc_optimize_for_linear ||
!G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
!G_0286CC_LINEAR_CENTROID_ENA(input_ena));
pm4 = si_get_shader_pm4_state(shader);
if (!pm4)
return;
/* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
* Possible vaules:
* 0 -> Position = pixel center
* 1 -> Position = pixel centroid
* 2 -> Position = at sample position
*
* From GLSL 4.5 specification, section 7.1:
* "The variable gl_FragCoord is available as an input variable from
* within fragment shaders and it holds the window relative coordinates
* (x, y, z, 1/w) values for the fragment. If multi-sampling, this
* value can be for any location within the pixel, or one of the
* fragment samples. The use of centroid does not further restrict
* this value to be inside the current primitive."
*
* Meaning that centroid has no effect and we can return anything within
* the pixel. Thus, return the value at sample position, because that's
* the most accurate one shaders can get.
*/
spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
if (info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
TGSI_FS_COORD_PIXEL_CENTER_INTEGER)
spi_baryc_cntl |= S_0286E0_POS_FLOAT_ULC(1);
spi_shader_col_format = si_get_spi_shader_col_format(shader);
cb_shader_mask = si_get_cb_shader_mask(spi_shader_col_format);
/* Ensure that some export memory is always allocated, for two reasons:
*
* 1) Correctness: The hardware ignores the EXEC mask if no export
* memory is allocated, so KILL and alpha test do not work correctly
* without this.
* 2) Performance: Every shader needs at least a NULL export, even when
* it writes no color/depth output. The NULL export instruction
* stalls without this setting.
*
* Don't add this to CB_SHADER_MASK.
*/
if (!spi_shader_col_format &&
!info->writes_z && !info->writes_stencil && !info->writes_samplemask)
spi_shader_col_format = V_028714_SPI_SHADER_32_R;
si_pm4_set_reg(pm4, R_0286CC_SPI_PS_INPUT_ENA, input_ena);
si_pm4_set_reg(pm4, R_0286D0_SPI_PS_INPUT_ADDR,
shader->config.spi_ps_input_addr);
/* Set interpolation controls. */
spi_ps_in_control = S_0286D8_NUM_INTERP(si_get_ps_num_interp(shader));
/* Set registers. */
si_pm4_set_reg(pm4, R_0286E0_SPI_BARYC_CNTL, spi_baryc_cntl);
si_pm4_set_reg(pm4, R_0286D8_SPI_PS_IN_CONTROL, spi_ps_in_control);
si_pm4_set_reg(pm4, R_028710_SPI_SHADER_Z_FORMAT,
si_get_spi_shader_z_format(info->writes_z,
info->writes_stencil,
info->writes_samplemask));
si_pm4_set_reg(pm4, R_028714_SPI_SHADER_COL_FORMAT, spi_shader_col_format);
si_pm4_set_reg(pm4, R_02823C_CB_SHADER_MASK, cb_shader_mask);
va = shader->bo->gpu_address;
si_pm4_add_bo(pm4, shader->bo, RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS, va >> 40);
si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
S_00B028_VGPRS((shader->config.num_vgprs - 1) / 4) |
S_00B028_SGPRS((shader->config.num_sgprs - 1) / 8) |
S_00B028_DX10_CLAMP(1) |
S_00B028_FLOAT_MODE(shader->config.float_mode));
si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
}
static void si_shader_init_pm4_state(struct si_screen *sscreen,
struct si_shader *shader)
{
switch (shader->selector->type) {
case PIPE_SHADER_VERTEX:
if (shader->key.as_ls)
si_shader_ls(shader);
else if (shader->key.as_es)
si_shader_es(sscreen, shader);
else
si_shader_vs(sscreen, shader, NULL);
break;
case PIPE_SHADER_TESS_CTRL:
si_shader_hs(shader);
break;
case PIPE_SHADER_TESS_EVAL:
if (shader->key.as_es)
si_shader_es(sscreen, shader);
else
si_shader_vs(sscreen, shader, NULL);
break;
case PIPE_SHADER_GEOMETRY:
si_shader_gs(shader);
break;
case PIPE_SHADER_FRAGMENT:
si_shader_ps(shader);
break;
default:
assert(0);
}
}
static unsigned si_get_alpha_test_func(struct si_context *sctx)
{
/* Alpha-test should be disabled if colorbuffer 0 is integer. */
if (sctx->queued.named.dsa)
return sctx->queued.named.dsa->alpha_func;
return PIPE_FUNC_ALWAYS;
}
static void si_shader_selector_key_hw_vs(struct si_context *sctx,
struct si_shader_selector *vs,
struct si_shader_key *key)
{
struct si_shader_selector *ps = sctx->ps_shader.cso;
key->opt.hw_vs.clip_disable =
sctx->queued.named.rasterizer->clip_plane_enable == 0 &&
(vs->info.clipdist_writemask ||
vs->info.writes_clipvertex) &&
!vs->info.culldist_writemask;
/* Find out if PS is disabled. */
bool ps_disabled = true;
if (ps) {
bool ps_modifies_zs = ps->info.uses_kill ||
ps->info.writes_z ||
ps->info.writes_stencil ||
ps->info.writes_samplemask ||
si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS;
unsigned ps_colormask = sctx->framebuffer.colorbuf_enabled_4bit &
sctx->queued.named.blend->cb_target_mask;
if (!ps->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS])
ps_colormask &= ps->colors_written_4bit;
ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
(!ps_colormask &&
!ps_modifies_zs &&
!ps->info.writes_memory);
}
/* Find out which VS outputs aren't used by the PS. */
uint64_t outputs_written = vs->outputs_written;
uint32_t outputs_written2 = vs->outputs_written2;
uint64_t inputs_read = 0;
uint32_t inputs_read2 = 0;
outputs_written &= ~0x3; /* ignore POSITION, PSIZE */
if (!ps_disabled) {
inputs_read = ps->inputs_read;
inputs_read2 = ps->inputs_read2;
}
uint64_t linked = outputs_written & inputs_read;
uint32_t linked2 = outputs_written2 & inputs_read2;
key->opt.hw_vs.kill_outputs = ~linked & outputs_written;
key->opt.hw_vs.kill_outputs2 = ~linked2 & outputs_written2;
}
/* Compute the key for the hw shader variant */
static inline void si_shader_selector_key(struct pipe_context *ctx,
struct si_shader_selector *sel,
struct si_shader_key *key)
{
struct si_context *sctx = (struct si_context *)ctx;
unsigned i;
memset(key, 0, sizeof(*key));
switch (sel->type) {
case PIPE_SHADER_VERTEX:
if (sctx->vertex_elements) {
unsigned count = MIN2(sel->info.num_inputs,
sctx->vertex_elements->count);
for (i = 0; i < count; ++i)
key->part.vs.prolog.instance_divisors[i] =
sctx->vertex_elements->elements[i].instance_divisor;
key->mono.vs.fix_fetch =
sctx->vertex_elements->fix_fetch &
u_bit_consecutive64(0, 4 * count);
}
if (sctx->tes_shader.cso)
key->as_ls = 1;
else if (sctx->gs_shader.cso)
key->as_es = 1;
else {
si_shader_selector_key_hw_vs(sctx, sel, key);
if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
key->part.vs.epilog.export_prim_id = 1;
}
break;
case PIPE_SHADER_TESS_CTRL:
key->part.tcs.epilog.prim_mode =
sctx->tes_shader.cso->info.properties[TGSI_PROPERTY_TES_PRIM_MODE];
if (sel == sctx->fixed_func_tcs_shader.cso)
key->mono.tcs.inputs_to_copy = sctx->vs_shader.cso->outputs_written;
break;
case PIPE_SHADER_TESS_EVAL:
if (sctx->gs_shader.cso)
key->as_es = 1;
else {
si_shader_selector_key_hw_vs(sctx, sel, key);
if (sctx->ps_shader.cso && sctx->ps_shader.cso->info.uses_primid)
key->part.tes.epilog.export_prim_id = 1;
}
break;
case PIPE_SHADER_GEOMETRY:
key->part.gs.prolog.tri_strip_adj_fix = sctx->gs_tri_strip_adj_fix;
break;
case PIPE_SHADER_FRAGMENT: {
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
struct si_state_blend *blend = sctx->queued.named.blend;
if (sel->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
sel->info.colors_written == 0x1)
key->part.ps.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
if (blend) {
/* Select the shader color format based on whether
* blending or alpha are needed.
*/
key->part.ps.epilog.spi_shader_col_format =
(blend->blend_enable_4bit & blend->need_src_alpha_4bit &
sctx->framebuffer.spi_shader_col_format_blend_alpha) |
(blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
sctx->framebuffer.spi_shader_col_format_blend) |
(~blend->blend_enable_4bit & blend->need_src_alpha_4bit &
sctx->framebuffer.spi_shader_col_format_alpha) |
(~blend->blend_enable_4bit & ~blend->need_src_alpha_4bit &
sctx->framebuffer.spi_shader_col_format);
/* The output for dual source blending should have
* the same format as the first output.
*/
if (blend->dual_src_blend)
key->part.ps.epilog.spi_shader_col_format |=
(key->part.ps.epilog.spi_shader_col_format & 0xf) << 4;
} else
key->part.ps.epilog.spi_shader_col_format = sctx->framebuffer.spi_shader_col_format;
/* If alpha-to-coverage is enabled, we have to export alpha
* even if there is no color buffer.
*/
if (!(key->part.ps.epilog.spi_shader_col_format & 0xf) &&
blend && blend->alpha_to_coverage)
key->part.ps.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
/* On SI and CIK except Hawaii, the CB doesn't clamp outputs
* to the range supported by the type if a channel has less
* than 16 bits and the export format is 16_ABGR.
*/
if (sctx->b.chip_class <= CIK && sctx->b.family != CHIP_HAWAII)
key->part.ps.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
/* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
if (!key->part.ps.epilog.last_cbuf) {
key->part.ps.epilog.spi_shader_col_format &= sel->colors_written_4bit;
key->part.ps.epilog.color_is_int8 &= sel->info.colors_written;
}
if (rs) {
bool is_poly = (sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES &&
sctx->current_rast_prim <= PIPE_PRIM_POLYGON) ||
sctx->current_rast_prim >= PIPE_PRIM_TRIANGLES_ADJACENCY;
bool is_line = !is_poly && sctx->current_rast_prim != PIPE_PRIM_POINTS;
key->part.ps.prolog.color_two_side = rs->two_side && sel->info.colors_read;
key->part.ps.prolog.flatshade_colors = rs->flatshade && sel->info.colors_read;
if (sctx->queued.named.blend) {
key->part.ps.epilog.alpha_to_one = sctx->queued.named.blend->alpha_to_one &&
rs->multisample_enable;
}
key->part.ps.prolog.poly_stipple = rs->poly_stipple_enable && is_poly;
key->part.ps.epilog.poly_line_smoothing = ((is_poly && rs->poly_smooth) ||
(is_line && rs->line_smooth)) &&
sctx->framebuffer.nr_samples <= 1;
key->part.ps.epilog.clamp_color = rs->clamp_fragment_color;
if (rs->force_persample_interp &&
rs->multisample_enable &&
sctx->framebuffer.nr_samples > 1 &&
sctx->ps_iter_samples > 1) {
key->part.ps.prolog.force_persp_sample_interp =
sel->info.uses_persp_center ||
sel->info.uses_persp_centroid;
key->part.ps.prolog.force_linear_sample_interp =
sel->info.uses_linear_center ||
sel->info.uses_linear_centroid;
} else if (rs->multisample_enable &&
sctx->framebuffer.nr_samples > 1) {
key->part.ps.prolog.bc_optimize_for_persp =
sel->info.uses_persp_center &&
sel->info.uses_persp_centroid;
key->part.ps.prolog.bc_optimize_for_linear =
sel->info.uses_linear_center &&
sel->info.uses_linear_centroid;
} else {
/* Make sure SPI doesn't compute more than 1 pair
* of (i,j), which is the optimization here. */
key->part.ps.prolog.force_persp_center_interp =
sel->info.uses_persp_center +
sel->info.uses_persp_centroid +
sel->info.uses_persp_sample > 1;
key->part.ps.prolog.force_linear_center_interp =
sel->info.uses_linear_center +
sel->info.uses_linear_centroid +
sel->info.uses_linear_sample > 1;
}
}
key->part.ps.epilog.alpha_func = si_get_alpha_test_func(sctx);
break;
}
default:
assert(0);
}
}
static void si_build_shader_variant(void *job, int thread_index)
{
struct si_shader *shader = (struct si_shader *)job;
struct si_shader_selector *sel = shader->selector;
struct si_screen *sscreen = sel->screen;
LLVMTargetMachineRef tm;
struct pipe_debug_callback *debug = &sel->debug;
int r;
if (thread_index >= 0) {
assert(thread_index < ARRAY_SIZE(sscreen->tm));
tm = sscreen->tm[thread_index];
if (!debug->async)
debug = NULL;
} else {
tm = sel->tm;
}
r = si_shader_create(sscreen, tm, shader, debug);
if (unlikely(r)) {
R600_ERR("Failed to build shader variant (type=%u) %d\n",
sel->type, r);
shader->compilation_failed = true;
return;
}
if (sel->is_debug_context) {
FILE *f = open_memstream(&shader->shader_log,
&shader->shader_log_size);
if (f) {
si_shader_dump(sscreen, shader, NULL, sel->type, f, false);
fclose(f);
}
}
si_shader_init_pm4_state(sscreen, shader);
}
/* Select the hw shader variant depending on the current state. */
static int si_shader_select_with_key(struct si_screen *sscreen,
struct si_shader_ctx_state *state,
struct si_shader_key *key,
int thread_index)
{
static const struct si_shader_key zeroed;
struct si_shader_selector *sel = state->cso;
struct si_shader *current = state->current;
struct si_shader *iter, *shader = NULL;
if (unlikely(sscreen->b.debug_flags & DBG_NO_OPT_VARIANT)) {
memset(&key->opt, 0, sizeof(key->opt));
}
again:
/* Check if we don't need to change anything.
* This path is also used for most shaders that don't need multiple
* variants, it will cost just a computation of the key and this
* test. */
if (likely(current &&
memcmp(&current->key, key, sizeof(*key)) == 0 &&
(!current->is_optimized ||
util_queue_fence_is_signalled(&current->optimized_ready))))
return 0;
/* This must be done before the mutex is locked, because async GS
* compilation calls this function too, and therefore must enter
* the mutex first.
*
* Only wait if we are in a draw call. Don't wait if we are
* in a compiler thread.
*/
if (thread_index < 0)
util_queue_job_wait(&sel->ready);
pipe_mutex_lock(sel->mutex);
/* Find the shader variant. */
for (iter = sel->first_variant; iter; iter = iter->next_variant) {
/* Don't check the "current" shader. We checked it above. */
if (current != iter &&
memcmp(&iter->key, key, sizeof(*key)) == 0) {
/* If it's an optimized shader and its compilation has
* been started but isn't done, use the unoptimized
* shader so as not to cause a stall due to compilation.
*/
if (iter->is_optimized &&
!util_queue_fence_is_signalled(&iter->optimized_ready)) {
memset(&key->opt, 0, sizeof(key->opt));
pipe_mutex_unlock(sel->mutex);
goto again;
}
if (iter->compilation_failed) {
pipe_mutex_unlock(sel->mutex);
return -1; /* skip the draw call */
}
state->current = iter;
pipe_mutex_unlock(sel->mutex);
return 0;
}
}
/* Build a new shader. */
shader = CALLOC_STRUCT(si_shader);
if (!shader) {
pipe_mutex_unlock(sel->mutex);
return -ENOMEM;
}
shader->selector = sel;
shader->key = *key;
/* Monolithic-only shaders don't make a distinction between optimized
* and unoptimized. */
shader->is_monolithic =
!sel->main_shader_part ||
sel->main_shader_part->key.as_ls != key->as_ls ||
sel->main_shader_part->key.as_es != key->as_es ||
memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0 ||
memcmp(&key->mono, &zeroed.mono, sizeof(key->mono)) != 0;
shader->is_optimized =
!sscreen->use_monolithic_shaders &&
memcmp(&key->opt, &zeroed.opt, sizeof(key->opt)) != 0;
if (shader->is_optimized)
util_queue_fence_init(&shader->optimized_ready);
if (!sel->last_variant) {
sel->first_variant = shader;
sel->last_variant = shader;
} else {
sel->last_variant->next_variant = shader;
sel->last_variant = shader;
}
/* If it's an optimized shader, compile it asynchronously. */
if (shader->is_optimized &&
thread_index < 0) {
/* Compile it asynchronously. */
util_queue_add_job(&sscreen->shader_compiler_queue,
shader, &shader->optimized_ready,
si_build_shader_variant, NULL);
/* Use the default (unoptimized) shader for now. */
memset(&key->opt, 0, sizeof(key->opt));
pipe_mutex_unlock(sel->mutex);
goto again;
}
assert(!shader->is_optimized);
si_build_shader_variant(shader, thread_index);
if (!shader->compilation_failed)
state->current = shader;
pipe_mutex_unlock(sel->mutex);
return shader->compilation_failed ? -1 : 0;
}
static int si_shader_select(struct pipe_context *ctx,
struct si_shader_ctx_state *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_shader_key key;
si_shader_selector_key(ctx, state->cso, &key);
return si_shader_select_with_key(sctx->screen, state, &key, -1);
}
static void si_parse_next_shader_property(const struct tgsi_shader_info *info,
struct si_shader_key *key)
{
unsigned next_shader = info->properties[TGSI_PROPERTY_NEXT_SHADER];
switch (info->processor) {
case PIPE_SHADER_VERTEX:
switch (next_shader) {
case PIPE_SHADER_GEOMETRY:
key->as_es = 1;
break;
case PIPE_SHADER_TESS_CTRL:
case PIPE_SHADER_TESS_EVAL:
key->as_ls = 1;
break;
default:
/* If POSITION isn't written, it can't be a HW VS.
* Assume that it's a HW LS. (the next shader is TCS)
* This heuristic is needed for separate shader objects.
*/
if (!info->writes_position)
key->as_ls = 1;
}
break;
case PIPE_SHADER_TESS_EVAL:
if (next_shader == PIPE_SHADER_GEOMETRY ||
!info->writes_position)
key->as_es = 1;
break;
}
}
/**
* Compile the main shader part or the monolithic shader as part of
* si_shader_selector initialization. Since it can be done asynchronously,
* there is no way to report compile failures to applications.
*/
void si_init_shader_selector_async(void *job, int thread_index)
{
struct si_shader_selector *sel = (struct si_shader_selector *)job;
struct si_screen *sscreen = sel->screen;
LLVMTargetMachineRef tm;
struct pipe_debug_callback *debug = &sel->debug;
unsigned i;
if (thread_index >= 0) {
assert(thread_index < ARRAY_SIZE(sscreen->tm));
tm = sscreen->tm[thread_index];
if (!debug->async)
debug = NULL;
} else {
tm = sel->tm;
}
/* Compile the main shader part for use with a prolog and/or epilog.
* If this fails, the driver will try to compile a monolithic shader
* on demand.
*/
if (!sscreen->use_monolithic_shaders) {
struct si_shader *shader = CALLOC_STRUCT(si_shader);
void *tgsi_binary;
if (!shader) {
fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
return;
}
shader->selector = sel;
si_parse_next_shader_property(&sel->info, &shader->key);
tgsi_binary = si_get_tgsi_binary(sel);
/* Try to load the shader from the shader cache. */
pipe_mutex_lock(sscreen->shader_cache_mutex);
if (tgsi_binary &&
si_shader_cache_load_shader(sscreen, tgsi_binary, shader)) {
FREE(tgsi_binary);
pipe_mutex_unlock(sscreen->shader_cache_mutex);
} else {
pipe_mutex_unlock(sscreen->shader_cache_mutex);
/* Compile the shader if it hasn't been loaded from the cache. */
if (si_compile_tgsi_shader(sscreen, tm, shader, false,
debug) != 0) {
FREE(shader);
FREE(tgsi_binary);
fprintf(stderr, "radeonsi: can't compile a main shader part\n");
return;
}
if (tgsi_binary) {
pipe_mutex_lock(sscreen->shader_cache_mutex);
if (!si_shader_cache_insert_shader(sscreen, tgsi_binary, shader))
FREE(tgsi_binary);
pipe_mutex_unlock(sscreen->shader_cache_mutex);
}
}
sel->main_shader_part = shader;
/* Unset "outputs_written" flags for outputs converted to
* DEFAULT_VAL, so that later inter-shader optimizations don't
* try to eliminate outputs that don't exist in the final
* shader.
*
* This is only done if non-monolithic shaders are enabled.
*/
if ((sel->type == PIPE_SHADER_VERTEX ||
sel->type == PIPE_SHADER_TESS_EVAL) &&
!shader->key.as_ls &&
!shader->key.as_es) {
unsigned i;
for (i = 0; i < sel->info.num_outputs; i++) {
unsigned offset = shader->info.vs_output_param_offset[i];
if (offset <= EXP_PARAM_OFFSET_31)
continue;
unsigned name = sel->info.output_semantic_name[i];
unsigned index = sel->info.output_semantic_index[i];
unsigned id;
switch (name) {
case TGSI_SEMANTIC_GENERIC:
/* don't process indices the function can't handle */
if (index >= 60)
break;
/* fall through */
case TGSI_SEMANTIC_CLIPDIST:
id = si_shader_io_get_unique_index(name, index);
sel->outputs_written &= ~(1ull << id);
break;
case TGSI_SEMANTIC_POSITION: /* ignore these */
case TGSI_SEMANTIC_PSIZE:
case TGSI_SEMANTIC_CLIPVERTEX:
case TGSI_SEMANTIC_EDGEFLAG:
break;
default:
id = si_shader_io_get_unique_index2(name, index);
sel->outputs_written2 &= ~(1u << id);
}
}
}
}
/* Pre-compilation. */
if (sscreen->b.debug_flags & DBG_PRECOMPILE) {
struct si_shader_ctx_state state = {sel};
struct si_shader_key key;
memset(&key, 0, sizeof(key));
si_parse_next_shader_property(&sel->info, &key);
/* Set reasonable defaults, so that the shader key doesn't
* cause any code to be eliminated.
*/
switch (sel->type) {
case PIPE_SHADER_TESS_CTRL:
key.part.tcs.epilog.prim_mode = PIPE_PRIM_TRIANGLES;
break;
case PIPE_SHADER_FRAGMENT:
key.part.ps.prolog.bc_optimize_for_persp =
sel->info.uses_persp_center &&
sel->info.uses_persp_centroid;
key.part.ps.prolog.bc_optimize_for_linear =
sel->info.uses_linear_center &&
sel->info.uses_linear_centroid;
key.part.ps.epilog.alpha_func = PIPE_FUNC_ALWAYS;
for (i = 0; i < 8; i++)
if (sel->info.colors_written & (1 << i))
key.part.ps.epilog.spi_shader_col_format |=
V_028710_SPI_SHADER_FP16_ABGR << (i * 4);
break;
}
if (si_shader_select_with_key(sscreen, &state, &key, thread_index))
fprintf(stderr, "radeonsi: can't create a monolithic shader\n");
}
/* The GS copy shader is always pre-compiled. */
if (sel->type == PIPE_SHADER_GEOMETRY) {
sel->gs_copy_shader = si_generate_gs_copy_shader(sscreen, tm, sel, debug);
if (!sel->gs_copy_shader) {
fprintf(stderr, "radeonsi: can't create GS copy shader\n");
return;
}
si_shader_vs(sscreen, sel->gs_copy_shader, sel);
}
}
static void *si_create_shader_selector(struct pipe_context *ctx,
const struct pipe_shader_state *state)
{
struct si_screen *sscreen = (struct si_screen *)ctx->screen;
struct si_context *sctx = (struct si_context*)ctx;
struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
int i;
if (!sel)
return NULL;
sel->screen = sscreen;
sel->tm = sctx->tm;
sel->debug = sctx->b.debug;
sel->is_debug_context = sctx->is_debug;
sel->tokens = tgsi_dup_tokens(state->tokens);
if (!sel->tokens) {
FREE(sel);
return NULL;
}
sel->so = state->stream_output;
tgsi_scan_shader(state->tokens, &sel->info);
sel->type = sel->info.processor;
p_atomic_inc(&sscreen->b.num_shaders_created);
/* Set which opcode uses which (i,j) pair. */
if (sel->info.uses_persp_opcode_interp_centroid)
sel->info.uses_persp_centroid = true;
if (sel->info.uses_linear_opcode_interp_centroid)
sel->info.uses_linear_centroid = true;
if (sel->info.uses_persp_opcode_interp_offset ||
sel->info.uses_persp_opcode_interp_sample)
sel->info.uses_persp_center = true;
if (sel->info.uses_linear_opcode_interp_offset ||
sel->info.uses_linear_opcode_interp_sample)
sel->info.uses_linear_center = true;
switch (sel->type) {
case PIPE_SHADER_GEOMETRY:
sel->gs_output_prim =
sel->info.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
sel->gs_max_out_vertices =
sel->info.properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
sel->gs_num_invocations =
sel->info.properties[TGSI_PROPERTY_GS_INVOCATIONS];
sel->gsvs_vertex_size = sel->info.num_outputs * 16;
sel->max_gsvs_emit_size = sel->gsvs_vertex_size *
sel->gs_max_out_vertices;
sel->max_gs_stream = 0;
for (i = 0; i < sel->so.num_outputs; i++)
sel->max_gs_stream = MAX2(sel->max_gs_stream,
sel->so.output[i].stream);
sel->gs_input_verts_per_prim =
u_vertices_per_prim(sel->info.properties[TGSI_PROPERTY_GS_INPUT_PRIM]);
break;
case PIPE_SHADER_TESS_CTRL:
/* Always reserve space for these. */
sel->patch_outputs_written |=
(1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0)) |
(1llu << si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0));
/* fall through */
case PIPE_SHADER_VERTEX:
case PIPE_SHADER_TESS_EVAL:
for (i = 0; i < sel->info.num_outputs; i++) {
unsigned name = sel->info.output_semantic_name[i];
unsigned index = sel->info.output_semantic_index[i];
switch (name) {
case TGSI_SEMANTIC_TESSINNER:
case TGSI_SEMANTIC_TESSOUTER:
case TGSI_SEMANTIC_PATCH:
sel->patch_outputs_written |=
1llu << si_shader_io_get_unique_index(name, index);
break;
case TGSI_SEMANTIC_GENERIC:
/* don't process indices the function can't handle */
if (index >= 60)
break;
/* fall through */
case TGSI_SEMANTIC_POSITION:
case TGSI_SEMANTIC_PSIZE:
case TGSI_SEMANTIC_CLIPDIST:
sel->outputs_written |=
1llu << si_shader_io_get_unique_index(name, index);
break;
case TGSI_SEMANTIC_CLIPVERTEX: /* ignore these */
case TGSI_SEMANTIC_EDGEFLAG:
break;
default:
sel->outputs_written2 |=
1u << si_shader_io_get_unique_index2(name, index);
}
}
sel->esgs_itemsize = util_last_bit64(sel->outputs_written) * 16;
break;
case PIPE_SHADER_FRAGMENT:
for (i = 0; i < sel->info.num_inputs; i++) {
unsigned name = sel->info.input_semantic_name[i];
unsigned index = sel->info.input_semantic_index[i];
switch (name) {
case TGSI_SEMANTIC_CLIPDIST:
case TGSI_SEMANTIC_GENERIC:
sel->inputs_read |=
1llu << si_shader_io_get_unique_index(name, index);
break;
case TGSI_SEMANTIC_PCOORD: /* ignore this */
break;
default:
sel->inputs_read2 |=
1u << si_shader_io_get_unique_index2(name, index);
}
}
for (i = 0; i < 8; i++)
if (sel->info.colors_written & (1 << i))
sel->colors_written_4bit |= 0xf << (4 * i);
for (i = 0; i < sel->info.num_inputs; i++) {
if (sel->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR) {
int index = sel->info.input_semantic_index[i];
sel->color_attr_index[index] = i;
}
}
break;
}
/* DB_SHADER_CONTROL */
sel->db_shader_control =
S_02880C_Z_EXPORT_ENABLE(sel->info.writes_z) |
S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(sel->info.writes_stencil) |
S_02880C_MASK_EXPORT_ENABLE(sel->info.writes_samplemask) |
S_02880C_KILL_ENABLE(sel->info.uses_kill);
switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
case TGSI_FS_DEPTH_LAYOUT_GREATER:
sel->db_shader_control |=
S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
break;
case TGSI_FS_DEPTH_LAYOUT_LESS:
sel->db_shader_control |=
S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
break;
}
/* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
*
* | early Z/S | writes_mem | allow_ReZ? | Z_ORDER | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
* --|-----------|------------|------------|--------------------|-------------------|-------------
* 1a| false | false | true | EarlyZ_Then_ReZ | 0 | 0
* 1b| false | false | false | EarlyZ_Then_LateZ | 0 | 0
* 2 | false | true | n/a | LateZ | 1 | 0
* 3 | true | false | n/a | EarlyZ_Then_LateZ | 0 | 0
* 4 | true | true | n/a | EarlyZ_Then_LateZ | 0 | 1
*
* In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
* In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
*
* Don't use ReZ without profiling !!!
*
* ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
* shaders.
*/
if (sel->info.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL]) {
/* Cases 3, 4. */
sel->db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
S_02880C_EXEC_ON_NOOP(sel->info.writes_memory);
} else if (sel->info.writes_memory) {
/* Case 2. */
sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
S_02880C_EXEC_ON_HIER_FAIL(1);
} else {
/* Case 1. */
sel->db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
}
pipe_mutex_init(sel->mutex);
util_queue_fence_init(&sel->ready);
if ((sctx->b.debug.debug_message && !sctx->b.debug.async) ||
sctx->is_debug ||
r600_can_dump_shader(&sscreen->b, sel->info.processor) ||
!util_queue_is_initialized(&sscreen->shader_compiler_queue))
si_init_shader_selector_async(sel, -1);
else
util_queue_add_job(&sscreen->shader_compiler_queue, sel,
&sel->ready, si_init_shader_selector_async,
NULL);
return sel;
}
static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_shader_selector *sel = state;
if (sctx->vs_shader.cso == sel)
return;
sctx->vs_shader.cso = sel;
sctx->vs_shader.current = sel ? sel->first_variant : NULL;
sctx->do_update_shaders = true;
si_mark_atom_dirty(sctx, &sctx->clip_regs);
r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
}
static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_shader_selector *sel = state;
bool enable_changed = !!sctx->gs_shader.cso != !!sel;
if (sctx->gs_shader.cso == sel)
return;
sctx->gs_shader.cso = sel;
sctx->gs_shader.current = sel ? sel->first_variant : NULL;
sctx->do_update_shaders = true;
si_mark_atom_dirty(sctx, &sctx->clip_regs);
sctx->last_rast_prim = -1; /* reset this so that it gets updated */
if (enable_changed)
si_shader_change_notify(sctx);
r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
}
static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_shader_selector *sel = state;
bool enable_changed = !!sctx->tcs_shader.cso != !!sel;
if (sctx->tcs_shader.cso == sel)
return;
sctx->tcs_shader.cso = sel;
sctx->tcs_shader.current = sel ? sel->first_variant : NULL;
sctx->do_update_shaders = true;
if (enable_changed)
sctx->last_tcs = NULL; /* invalidate derived tess state */
}
static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_shader_selector *sel = state;
bool enable_changed = !!sctx->tes_shader.cso != !!sel;
if (sctx->tes_shader.cso == sel)
return;
sctx->tes_shader.cso = sel;
sctx->tes_shader.current = sel ? sel->first_variant : NULL;
sctx->do_update_shaders = true;
si_mark_atom_dirty(sctx, &sctx->clip_regs);
sctx->last_rast_prim = -1; /* reset this so that it gets updated */
if (enable_changed) {
si_shader_change_notify(sctx);
sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
}
r600_update_vs_writes_viewport_index(&sctx->b, si_get_vs_info(sctx));
}
static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_shader_selector *sel = state;
/* skip if supplied shader is one already in use */
if (sctx->ps_shader.cso == sel)
return;
sctx->ps_shader.cso = sel;
sctx->ps_shader.current = sel ? sel->first_variant : NULL;
sctx->do_update_shaders = true;
si_mark_atom_dirty(sctx, &sctx->cb_render_state);
}
static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
{
if (shader->is_optimized) {
util_queue_job_wait(&shader->optimized_ready);
util_queue_fence_destroy(&shader->optimized_ready);
}
if (shader->pm4) {
switch (shader->selector->type) {
case PIPE_SHADER_VERTEX:
if (shader->key.as_ls)
si_pm4_delete_state(sctx, ls, shader->pm4);
else if (shader->key.as_es)
si_pm4_delete_state(sctx, es, shader->pm4);
else
si_pm4_delete_state(sctx, vs, shader->pm4);
break;
case PIPE_SHADER_TESS_CTRL:
si_pm4_delete_state(sctx, hs, shader->pm4);
break;
case PIPE_SHADER_TESS_EVAL:
if (shader->key.as_es)
si_pm4_delete_state(sctx, es, shader->pm4);
else
si_pm4_delete_state(sctx, vs, shader->pm4);
break;
case PIPE_SHADER_GEOMETRY:
if (shader->is_gs_copy_shader)
si_pm4_delete_state(sctx, vs, shader->pm4);
else
si_pm4_delete_state(sctx, gs, shader->pm4);
break;
case PIPE_SHADER_FRAGMENT:
si_pm4_delete_state(sctx, ps, shader->pm4);
break;
}
}
si_shader_destroy(shader);
free(shader);
}
static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_shader_selector *sel = (struct si_shader_selector *)state;
struct si_shader *p = sel->first_variant, *c;
struct si_shader_ctx_state *current_shader[SI_NUM_SHADERS] = {
[PIPE_SHADER_VERTEX] = &sctx->vs_shader,
[PIPE_SHADER_TESS_CTRL] = &sctx->tcs_shader,
[PIPE_SHADER_TESS_EVAL] = &sctx->tes_shader,
[PIPE_SHADER_GEOMETRY] = &sctx->gs_shader,
[PIPE_SHADER_FRAGMENT] = &sctx->ps_shader,
};
util_queue_job_wait(&sel->ready);
if (current_shader[sel->type]->cso == sel) {
current_shader[sel->type]->cso = NULL;
current_shader[sel->type]->current = NULL;
}
while (p) {
c = p->next_variant;
si_delete_shader(sctx, p);
p = c;
}
if (sel->main_shader_part)
si_delete_shader(sctx, sel->main_shader_part);
if (sel->gs_copy_shader)
si_delete_shader(sctx, sel->gs_copy_shader);
util_queue_fence_destroy(&sel->ready);
pipe_mutex_destroy(sel->mutex);
free(sel->tokens);
free(sel);
}
static unsigned si_get_ps_input_cntl(struct si_context *sctx,
struct si_shader *vs, unsigned name,
unsigned index, unsigned interpolate)
{
struct tgsi_shader_info *vsinfo = &vs->selector->info;
unsigned j, offset, ps_input_cntl = 0;
if (interpolate == TGSI_INTERPOLATE_CONSTANT ||
(interpolate == TGSI_INTERPOLATE_COLOR && sctx->flatshade))
ps_input_cntl |= S_028644_FLAT_SHADE(1);
if (name == TGSI_SEMANTIC_PCOORD ||
(name == TGSI_SEMANTIC_TEXCOORD &&
sctx->sprite_coord_enable & (1 << index))) {
ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
}
for (j = 0; j < vsinfo->num_outputs; j++) {
if (name == vsinfo->output_semantic_name[j] &&
index == vsinfo->output_semantic_index[j]) {
offset = vs->info.vs_output_param_offset[j];
if (offset <= EXP_PARAM_OFFSET_31) {
/* The input is loaded from parameter memory. */
ps_input_cntl |= S_028644_OFFSET(offset);
} else if (!G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
if (offset == EXP_PARAM_UNDEFINED) {
/* This can happen with depth-only rendering. */
offset = 0;
} else {
/* The input is a DEFAULT_VAL constant. */
assert(offset >= EXP_PARAM_DEFAULT_VAL_0000 &&
offset <= EXP_PARAM_DEFAULT_VAL_1111);
offset -= EXP_PARAM_DEFAULT_VAL_0000;
}
ps_input_cntl = S_028644_OFFSET(0x20) |
S_028644_DEFAULT_VAL(offset);
}
break;
}
}
if (name == TGSI_SEMANTIC_PRIMID)
/* PrimID is written after the last output. */
ps_input_cntl |= S_028644_OFFSET(vs->info.vs_output_param_offset[vsinfo->num_outputs]);
else if (j == vsinfo->num_outputs && !G_028644_PT_SPRITE_TEX(ps_input_cntl)) {
/* No corresponding output found, load defaults into input.
* Don't set any other bits.
* (FLAT_SHADE=1 completely changes behavior) */
ps_input_cntl = S_028644_OFFSET(0x20);
/* D3D 9 behaviour. GL is undefined */
if (name == TGSI_SEMANTIC_COLOR && index == 0)
ps_input_cntl |= S_028644_DEFAULT_VAL(3);
}
return ps_input_cntl;
}
static void si_emit_spi_map(struct si_context *sctx, struct r600_atom *atom)
{
struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
struct si_shader *ps = sctx->ps_shader.current;
struct si_shader *vs = si_get_vs_state(sctx);
struct tgsi_shader_info *psinfo = ps ? &ps->selector->info : NULL;
unsigned i, num_interp, num_written = 0, bcol_interp[2];
if (!ps || !ps->selector->info.num_inputs)
return;
num_interp = si_get_ps_num_interp(ps);
assert(num_interp > 0);
radeon_set_context_reg_seq(cs, R_028644_SPI_PS_INPUT_CNTL_0, num_interp);
for (i = 0; i < psinfo->num_inputs; i++) {
unsigned name = psinfo->input_semantic_name[i];
unsigned index = psinfo->input_semantic_index[i];
unsigned interpolate = psinfo->input_interpolate[i];
radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, name, index,
interpolate));
num_written++;
if (name == TGSI_SEMANTIC_COLOR) {
assert(index < ARRAY_SIZE(bcol_interp));
bcol_interp[index] = interpolate;
}
}
if (ps->key.part.ps.prolog.color_two_side) {
unsigned bcol = TGSI_SEMANTIC_BCOLOR;
for (i = 0; i < 2; i++) {
if (!(psinfo->colors_read & (0xf << (i * 4))))
continue;
radeon_emit(cs, si_get_ps_input_cntl(sctx, vs, bcol,
i, bcol_interp[i]));
num_written++;
}
}
assert(num_interp == num_written);
}
/**
* Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
*/
static void si_init_config_add_vgt_flush(struct si_context *sctx)
{
if (sctx->init_config_has_vgt_flush)
return;
/* Done by Vulkan before VGT_FLUSH. */
si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
si_pm4_cmd_add(sctx->init_config,
EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
si_pm4_cmd_end(sctx->init_config, false);
/* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
si_pm4_cmd_begin(sctx->init_config, PKT3_EVENT_WRITE);
si_pm4_cmd_add(sctx->init_config, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
si_pm4_cmd_end(sctx->init_config, false);
sctx->init_config_has_vgt_flush = true;
}
/* Initialize state related to ESGS / GSVS ring buffers */
static bool si_update_gs_ring_buffers(struct si_context *sctx)
{
struct si_shader_selector *es =
sctx->tes_shader.cso ? sctx->tes_shader.cso : sctx->vs_shader.cso;
struct si_shader_selector *gs = sctx->gs_shader.cso;
struct si_pm4_state *pm4;
/* Chip constants. */
unsigned num_se = sctx->screen->b.info.max_se;
unsigned wave_size = 64;
unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */
unsigned alignment = 256 * num_se;
/* The maximum size is 63.999 MB per SE. */
unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
/* Calculate the minimum size. */
unsigned min_esgs_ring_size = align(es->esgs_itemsize * gs_vertex_reuse *
wave_size, alignment);
/* These are recommended sizes, not minimum sizes. */
unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
es->esgs_itemsize * gs->gs_input_verts_per_prim;
unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
gs->max_gsvs_emit_size;
min_esgs_ring_size = align(min_esgs_ring_size, alignment);
esgs_ring_size = align(esgs_ring_size, alignment);
gsvs_ring_size = align(gsvs_ring_size, alignment);
esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
/* Some rings don't have to be allocated if shaders don't use them.
* (e.g. no varyings between ES and GS or GS and VS)
*/
bool update_esgs = esgs_ring_size &&
(!sctx->esgs_ring ||
sctx->esgs_ring->width0 < esgs_ring_size);
bool update_gsvs = gsvs_ring_size &&
(!sctx->gsvs_ring ||
sctx->gsvs_ring->width0 < gsvs_ring_size);
if (!update_esgs && !update_gsvs)
return true;
if (update_esgs) {
pipe_resource_reference(&sctx->esgs_ring, NULL);
sctx->esgs_ring = pipe_buffer_create(sctx->b.b.screen, 0,
PIPE_USAGE_DEFAULT,
esgs_ring_size);
if (!sctx->esgs_ring)
return false;
}
if (update_gsvs) {
pipe_resource_reference(&sctx->gsvs_ring, NULL);
sctx->gsvs_ring = pipe_buffer_create(sctx->b.b.screen, 0,
PIPE_USAGE_DEFAULT,
gsvs_ring_size);
if (!sctx->gsvs_ring)
return false;
}
/* Create the "init_config_gs_rings" state. */
pm4 = CALLOC_STRUCT(si_pm4_state);
if (!pm4)
return false;
if (sctx->b.chip_class >= CIK) {
if (sctx->esgs_ring)
si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
sctx->esgs_ring->width0 / 256);
if (sctx->gsvs_ring)
si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
sctx->gsvs_ring->width0 / 256);
} else {
if (sctx->esgs_ring)
si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
sctx->esgs_ring->width0 / 256);
if (sctx->gsvs_ring)
si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
sctx->gsvs_ring->width0 / 256);
}
/* Set the state. */
if (sctx->init_config_gs_rings)
si_pm4_free_state(sctx, sctx->init_config_gs_rings, ~0);
sctx->init_config_gs_rings = pm4;
if (!sctx->init_config_has_vgt_flush) {
si_init_config_add_vgt_flush(sctx);
si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
}
/* Flush the context to re-emit both init_config states. */
sctx->b.initial_gfx_cs_size = 0; /* force flush */
si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
/* Set ring bindings. */
if (sctx->esgs_ring) {
si_set_ring_buffer(&sctx->b.b, SI_ES_RING_ESGS,
sctx->esgs_ring, 0, sctx->esgs_ring->width0,
true, true, 4, 64, 0);
si_set_ring_buffer(&sctx->b.b, SI_GS_RING_ESGS,
sctx->esgs_ring, 0, sctx->esgs_ring->width0,
false, false, 0, 0, 0);
}
if (sctx->gsvs_ring) {
si_set_ring_buffer(&sctx->b.b, SI_RING_GSVS,
sctx->gsvs_ring, 0, sctx->gsvs_ring->width0,
false, false, 0, 0, 0);
}
return true;
}
/**
* @returns 1 if \p sel has been updated to use a new scratch buffer
* 0 if not
* < 0 if there was a failure
*/
static int si_update_scratch_buffer(struct si_context *sctx,
struct si_shader *shader)
{
uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
int r;
if (!shader)
return 0;
/* This shader doesn't need a scratch buffer */
if (shader->config.scratch_bytes_per_wave == 0)
return 0;
/* This shader is already configured to use the current
* scratch buffer. */
if (shader->scratch_bo == sctx->scratch_buffer)
return 0;
assert(sctx->scratch_buffer);
si_shader_apply_scratch_relocs(sctx, shader, &shader->config, scratch_va);
/* Replace the shader bo with a new bo that has the relocs applied. */
r = si_shader_binary_upload(sctx->screen, shader);
if (r)
return r;
/* Update the shader state to use the new shader bo. */
si_shader_init_pm4_state(sctx->screen, shader);
r600_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
return 1;
}
static unsigned si_get_current_scratch_buffer_size(struct si_context *sctx)
{
return sctx->scratch_buffer ? sctx->scratch_buffer->b.b.width0 : 0;
}
static unsigned si_get_scratch_buffer_bytes_per_wave(struct si_shader *shader)
{
return shader ? shader->config.scratch_bytes_per_wave : 0;
}
static unsigned si_get_max_scratch_bytes_per_wave(struct si_context *sctx)
{
unsigned bytes = 0;
bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->ps_shader.current));
bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->gs_shader.current));
bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->vs_shader.current));
bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tcs_shader.current));
bytes = MAX2(bytes, si_get_scratch_buffer_bytes_per_wave(sctx->tes_shader.current));
return bytes;
}
static bool si_update_spi_tmpring_size(struct si_context *sctx)
{
unsigned current_scratch_buffer_size =
si_get_current_scratch_buffer_size(sctx);
unsigned scratch_bytes_per_wave =
si_get_max_scratch_bytes_per_wave(sctx);
unsigned scratch_needed_size = scratch_bytes_per_wave *
sctx->scratch_waves;
unsigned spi_tmpring_size;
int r;
if (scratch_needed_size > 0) {
if (scratch_needed_size > current_scratch_buffer_size) {
/* Create a bigger scratch buffer */
r600_resource_reference(&sctx->scratch_buffer, NULL);
sctx->scratch_buffer = (struct r600_resource*)
pipe_buffer_create(&sctx->screen->b.b, 0,
PIPE_USAGE_DEFAULT, scratch_needed_size);
if (!sctx->scratch_buffer)
return false;
sctx->emit_scratch_reloc = true;
}
/* Update the shaders, so they are using the latest scratch. The
* scratch buffer may have been changed since these shaders were
* last used, so we still need to try to update them, even if
* they require scratch buffers smaller than the current size.
*/
r = si_update_scratch_buffer(sctx, sctx->ps_shader.current);
if (r < 0)
return false;
if (r == 1)
si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
r = si_update_scratch_buffer(sctx, sctx->gs_shader.current);
if (r < 0)
return false;
if (r == 1)
si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
r = si_update_scratch_buffer(sctx, sctx->tcs_shader.current);
if (r < 0)
return false;
if (r == 1)
si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
/* VS can be bound as LS, ES, or VS. */
r = si_update_scratch_buffer(sctx, sctx->vs_shader.current);
if (r < 0)
return false;
if (r == 1) {
if (sctx->tes_shader.current)
si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
else if (sctx->gs_shader.current)
si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
else
si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
}
/* TES can be bound as ES or VS. */
r = si_update_scratch_buffer(sctx, sctx->tes_shader.current);
if (r < 0)
return false;
if (r == 1) {
if (sctx->gs_shader.current)
si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
else
si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
}
}
/* The LLVM shader backend should be reporting aligned scratch_sizes. */
assert((scratch_needed_size & ~0x3FF) == scratch_needed_size &&
"scratch size should already be aligned correctly.");
spi_tmpring_size = S_0286E8_WAVES(sctx->scratch_waves) |
S_0286E8_WAVESIZE(scratch_bytes_per_wave >> 10);
if (spi_tmpring_size != sctx->spi_tmpring_size) {
sctx->spi_tmpring_size = spi_tmpring_size;
sctx->emit_scratch_reloc = true;
}
return true;
}
static void si_init_tess_factor_ring(struct si_context *sctx)
{
bool double_offchip_buffers = sctx->b.chip_class >= CIK;
unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
unsigned max_offchip_buffers = max_offchip_buffers_per_se *
sctx->screen->b.info.max_se;
unsigned offchip_granularity;
switch (sctx->screen->tess_offchip_block_dw_size) {
default:
assert(0);
/* fall through */
case 8192:
offchip_granularity = V_03093C_X_8K_DWORDS;
break;
case 4096:
offchip_granularity = V_03093C_X_4K_DWORDS;
break;
}
switch (sctx->b.chip_class) {
case SI:
max_offchip_buffers = MIN2(max_offchip_buffers, 126);
break;
case CIK:
max_offchip_buffers = MIN2(max_offchip_buffers, 508);
break;
case VI:
default:
max_offchip_buffers = MIN2(max_offchip_buffers, 512);
break;
}
assert(!sctx->tf_ring);
sctx->tf_ring = pipe_buffer_create(sctx->b.b.screen, 0,
PIPE_USAGE_DEFAULT,
32768 * sctx->screen->b.info.max_se);
if (!sctx->tf_ring)
return;
assert(((sctx->tf_ring->width0 / 4) & C_030938_SIZE) == 0);
sctx->tess_offchip_ring = pipe_buffer_create(sctx->b.b.screen, 0,
PIPE_USAGE_DEFAULT,
max_offchip_buffers *
sctx->screen->tess_offchip_block_dw_size * 4);
if (!sctx->tess_offchip_ring)
return;
si_init_config_add_vgt_flush(sctx);
/* Append these registers to the init config state. */
if (sctx->b.chip_class >= CIK) {
if (sctx->b.chip_class >= VI)
--max_offchip_buffers;
si_pm4_set_reg(sctx->init_config, R_030938_VGT_TF_RING_SIZE,
S_030938_SIZE(sctx->tf_ring->width0 / 4));
si_pm4_set_reg(sctx->init_config, R_030940_VGT_TF_MEMORY_BASE,
r600_resource(sctx->tf_ring)->gpu_address >> 8);
si_pm4_set_reg(sctx->init_config, R_03093C_VGT_HS_OFFCHIP_PARAM,
S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
S_03093C_OFFCHIP_GRANULARITY(offchip_granularity));
} else {
assert(offchip_granularity == V_03093C_X_8K_DWORDS);
si_pm4_set_reg(sctx->init_config, R_008988_VGT_TF_RING_SIZE,
S_008988_SIZE(sctx->tf_ring->width0 / 4));
si_pm4_set_reg(sctx->init_config, R_0089B8_VGT_TF_MEMORY_BASE,
r600_resource(sctx->tf_ring)->gpu_address >> 8);
si_pm4_set_reg(sctx->init_config, R_0089B0_VGT_HS_OFFCHIP_PARAM,
S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers));
}
/* Flush the context to re-emit the init_config state.
* This is done only once in a lifetime of a context.
*/
si_pm4_upload_indirect_buffer(sctx, sctx->init_config);
sctx->b.initial_gfx_cs_size = 0; /* force flush */
si_context_gfx_flush(sctx, RADEON_FLUSH_ASYNC, NULL);
si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_FACTOR, sctx->tf_ring,
0, sctx->tf_ring->width0, false, false, 0, 0, 0);
si_set_ring_buffer(&sctx->b.b, SI_HS_RING_TESS_OFFCHIP,
sctx->tess_offchip_ring, 0,
sctx->tess_offchip_ring->width0, false, false, 0, 0, 0);
}
/**
* This is used when TCS is NULL in the VS->TCS->TES chain. In this case,
* VS passes its outputs to TES directly, so the fixed-function shader only
* has to write TESSOUTER and TESSINNER.
*/
static void si_generate_fixed_func_tcs(struct si_context *sctx)
{
struct ureg_src outer, inner;
struct ureg_dst tessouter, tessinner;
struct ureg_program *ureg = ureg_create(PIPE_SHADER_TESS_CTRL);
if (!ureg)
return; /* if we get here, we're screwed */
assert(!sctx->fixed_func_tcs_shader.cso);
outer = ureg_DECL_system_value(ureg,
TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI, 0);
inner = ureg_DECL_system_value(ureg,
TGSI_SEMANTIC_DEFAULT_TESSINNER_SI, 0);
tessouter = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSOUTER, 0);
tessinner = ureg_DECL_output(ureg, TGSI_SEMANTIC_TESSINNER, 0);
ureg_MOV(ureg, tessouter, outer);
ureg_MOV(ureg, tessinner, inner);
ureg_END(ureg);
sctx->fixed_func_tcs_shader.cso =
ureg_create_shader_and_destroy(ureg, &sctx->b.b);
}
static void si_update_vgt_shader_config(struct si_context *sctx)
{
/* Calculate the index of the config.
* 0 = VS, 1 = VS+GS, 2 = VS+Tess, 3 = VS+Tess+GS */
unsigned index = 2*!!sctx->tes_shader.cso + !!sctx->gs_shader.cso;
struct si_pm4_state **pm4 = &sctx->vgt_shader_config[index];
if (!*pm4) {
uint32_t stages = 0;
*pm4 = CALLOC_STRUCT(si_pm4_state);
if (sctx->tes_shader.cso) {
stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
if (sctx->gs_shader.cso)
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
S_028B54_GS_EN(1) |
S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
else
stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
} else if (sctx->gs_shader.cso) {
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
S_028B54_GS_EN(1) |
S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
}
si_pm4_set_reg(*pm4, R_028B54_VGT_SHADER_STAGES_EN, stages);
}
si_pm4_bind_state(sctx, vgt_shader_config, *pm4);
}
static void si_update_so(struct si_context *sctx, struct si_shader_selector *shader)
{
struct pipe_stream_output_info *so = &shader->so;
uint32_t enabled_stream_buffers_mask = 0;
int i;
for (i = 0; i < so->num_outputs; i++)
enabled_stream_buffers_mask |= (1 << so->output[i].output_buffer) << (so->output[i].stream * 4);
sctx->b.streamout.enabled_stream_buffers_mask = enabled_stream_buffers_mask;
sctx->b.streamout.stride_in_dw = shader->so.stride;
}
bool si_update_shaders(struct si_context *sctx)
{
struct pipe_context *ctx = (struct pipe_context*)sctx;
struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
struct si_shader *old_vs = si_get_vs_state(sctx);
bool old_clip_disable = old_vs ? old_vs->key.opt.hw_vs.clip_disable : false;
int r;
/* Update stages before GS. */
if (sctx->tes_shader.cso) {
if (!sctx->tf_ring) {
si_init_tess_factor_ring(sctx);
if (!sctx->tf_ring)
return false;
}
/* VS as LS */
r = si_shader_select(ctx, &sctx->vs_shader);
if (r)
return false;
si_pm4_bind_state(sctx, ls, sctx->vs_shader.current->pm4);
if (sctx->tcs_shader.cso) {
r = si_shader_select(ctx, &sctx->tcs_shader);
if (r)
return false;
si_pm4_bind_state(sctx, hs, sctx->tcs_shader.current->pm4);
} else {
if (!sctx->fixed_func_tcs_shader.cso) {
si_generate_fixed_func_tcs(sctx);
if (!sctx->fixed_func_tcs_shader.cso)
return false;
}
r = si_shader_select(ctx, &sctx->fixed_func_tcs_shader);
if (r)
return false;
si_pm4_bind_state(sctx, hs,
sctx->fixed_func_tcs_shader.current->pm4);
}
r = si_shader_select(ctx, &sctx->tes_shader);
if (r)
return false;
if (sctx->gs_shader.cso) {
/* TES as ES */
si_pm4_bind_state(sctx, es, sctx->tes_shader.current->pm4);
} else {
/* TES as VS */
si_pm4_bind_state(sctx, vs, sctx->tes_shader.current->pm4);
si_update_so(sctx, sctx->tes_shader.cso);
}
} else if (sctx->gs_shader.cso) {
/* VS as ES */
r = si_shader_select(ctx, &sctx->vs_shader);
if (r)
return false;
si_pm4_bind_state(sctx, es, sctx->vs_shader.current->pm4);
} else {
/* VS as VS */
r = si_shader_select(ctx, &sctx->vs_shader);
if (r)
return false;
si_pm4_bind_state(sctx, vs, sctx->vs_shader.current->pm4);
si_update_so(sctx, sctx->vs_shader.cso);
}
/* Update GS. */
if (sctx->gs_shader.cso) {
r = si_shader_select(ctx, &sctx->gs_shader);
if (r)
return false;
si_pm4_bind_state(sctx, gs, sctx->gs_shader.current->pm4);
si_pm4_bind_state(sctx, vs, sctx->gs_shader.cso->gs_copy_shader->pm4);
si_update_so(sctx, sctx->gs_shader.cso);
if (!si_update_gs_ring_buffers(sctx))
return false;
} else {
si_pm4_bind_state(sctx, gs, NULL);
si_pm4_bind_state(sctx, es, NULL);
}
si_update_vgt_shader_config(sctx);
if (old_clip_disable != si_get_vs_state(sctx)->key.opt.hw_vs.clip_disable)
si_mark_atom_dirty(sctx, &sctx->clip_regs);
if (sctx->ps_shader.cso) {
unsigned db_shader_control;
r = si_shader_select(ctx, &sctx->ps_shader);
if (r)
return false;
si_pm4_bind_state(sctx, ps, sctx->ps_shader.current->pm4);
db_shader_control =
sctx->ps_shader.cso->db_shader_control |
S_02880C_KILL_ENABLE(si_get_alpha_test_func(sctx) != PIPE_FUNC_ALWAYS);
if (si_pm4_state_changed(sctx, ps) || si_pm4_state_changed(sctx, vs) ||
sctx->sprite_coord_enable != rs->sprite_coord_enable ||
sctx->flatshade != rs->flatshade) {
sctx->sprite_coord_enable = rs->sprite_coord_enable;
sctx->flatshade = rs->flatshade;
si_mark_atom_dirty(sctx, &sctx->spi_map);
}
if (sctx->b.family == CHIP_STONEY && si_pm4_state_changed(sctx, ps))
si_mark_atom_dirty(sctx, &sctx->cb_render_state);
if (sctx->ps_db_shader_control != db_shader_control) {
sctx->ps_db_shader_control = db_shader_control;
si_mark_atom_dirty(sctx, &sctx->db_render_state);
}
if (sctx->smoothing_enabled != sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing) {
sctx->smoothing_enabled = sctx->ps_shader.current->key.part.ps.epilog.poly_line_smoothing;
si_mark_atom_dirty(sctx, &sctx->msaa_config);
if (sctx->b.chip_class == SI)
si_mark_atom_dirty(sctx, &sctx->db_render_state);
if (sctx->framebuffer.nr_samples <= 1)
si_mark_atom_dirty(sctx, &sctx->msaa_sample_locs.atom);
}
}
if (si_pm4_state_changed(sctx, ls) ||
si_pm4_state_changed(sctx, hs) ||
si_pm4_state_changed(sctx, es) ||
si_pm4_state_changed(sctx, gs) ||
si_pm4_state_changed(sctx, vs) ||
si_pm4_state_changed(sctx, ps)) {
if (!si_update_spi_tmpring_size(sctx))
return false;
}
sctx->do_update_shaders = false;
return true;
}
void si_init_shader_functions(struct si_context *sctx)
{
si_init_atom(sctx, &sctx->spi_map, &sctx->atoms.s.spi_map, si_emit_spi_map);
sctx->b.b.create_vs_state = si_create_shader_selector;
sctx->b.b.create_tcs_state = si_create_shader_selector;
sctx->b.b.create_tes_state = si_create_shader_selector;
sctx->b.b.create_gs_state = si_create_shader_selector;
sctx->b.b.create_fs_state = si_create_shader_selector;
sctx->b.b.bind_vs_state = si_bind_vs_shader;
sctx->b.b.bind_tcs_state = si_bind_tcs_shader;
sctx->b.b.bind_tes_state = si_bind_tes_shader;
sctx->b.b.bind_gs_state = si_bind_gs_shader;
sctx->b.b.bind_fs_state = si_bind_ps_shader;
sctx->b.b.delete_vs_state = si_delete_shader_selector;
sctx->b.b.delete_tcs_state = si_delete_shader_selector;
sctx->b.b.delete_tes_state = si_delete_shader_selector;
sctx->b.b.delete_gs_state = si_delete_shader_selector;
sctx->b.b.delete_fs_state = si_delete_shader_selector;
}