blob: af4385b531e65e45dac7b4cb45b9f947915db596 [file] [log] [blame]
/*
* Copyright © 2010 - 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#pragma once
#include <stdio.h>
#include "c11/threads.h"
#include "dev/intel_device_info.h"
#include "isl/isl.h"
#include "util/macros.h"
#include "util/mesa-sha1.h"
#include "util/enum_operators.h"
#include "util/ralloc.h"
#include "util/u_math.h"
#include "util/u_printf.h"
#include "brw_isa_info.h"
#include "intel_shader_enums.h"
#ifdef __cplusplus
extern "C" {
#endif
struct ra_regs;
struct nir_shader;
struct shader_info;
struct nir_shader_compiler_options;
typedef struct nir_shader nir_shader;
#define REG_CLASS_COUNT 20
struct brw_compiler {
const struct intel_device_info *devinfo;
/* This lock must be taken if the compiler is to be modified in any way,
* including adding something to the ralloc child list.
*/
mtx_t mutex;
struct brw_isa_info isa;
struct {
struct ra_regs *regs;
/**
* Array of the ra classes for the unaligned contiguous register
* block sizes used, indexed by register size.
*/
struct ra_class *classes[REG_CLASS_COUNT];
} reg_set;
void (*shader_debug_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
void (*shader_perf_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
bool use_tcs_multi_patch;
struct nir_shader_compiler_options *nir_options[MESA_ALL_SHADER_STAGES];
/**
* Apply workarounds for SIN and COS output range problems.
* This can negatively impact performance.
*/
bool precise_trig;
/**
* Whether indirect UBO loads should use the sampler or go through the
* data/constant cache. For the sampler, UBO surface states have to be set
* up with VK_FORMAT_R32G32B32A32_FLOAT whereas if it's going through the
* constant or data cache, UBOs must use VK_FORMAT_RAW.
*/
bool indirect_ubos_use_sampler;
/**
* Gfx12.5+ has a bit in the SEND instruction extending the bindless
* surface offset range from 20 to 26 bits, effectively giving us 4Gb of
* bindless surface descriptors instead of 64Mb previously.
*/
bool extended_bindless_surface_offset;
/**
* Gfx11+ has a bit in the dword 3 of the sampler message header that
* indicates whether the sampler handle is relative to the dynamic state
* base address (0) or the bindless sampler base address (1). The driver
* can select this.
*/
bool use_bindless_sampler_offset;
/**
* Should DPAS instructions be lowered?
*
* This will be set for all platforms before Gfx12.5. It may also be set
* platforms that support DPAS for testing purposes.
*/
bool lower_dpas;
/**
* Calling the ra_allocate function after each register spill can take
* several minutes. This option speeds up shader compilation by spilling
* more registers after the ra_allocate failure. Required for
* Cyberpunk 2077, which uses a watchdog thread to terminate the process
* in case the render thread hasn't responded within 2 minutes.
*/
int spilling_rate;
struct nir_shader *clc_shader;
};
#define brw_shader_debug_log(compiler, data, fmt, ... ) do { \
static unsigned id = 0; \
compiler->shader_debug_log(data, &id, fmt, ##__VA_ARGS__); \
} while (0)
#define brw_shader_perf_log(compiler, data, fmt, ... ) do { \
static unsigned id = 0; \
compiler->shader_perf_log(data, &id, fmt, ##__VA_ARGS__); \
} while (0)
/**
* We use a constant subgroup size of 32. It really only needs to be a
* maximum and, since we do SIMD32 for compute shaders in some cases, it
* needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
* subgroup size of 32 but will act as if 16 or 24 of those channels are
* disabled.
*/
#define BRW_SUBGROUP_SIZE 32
static inline bool
brw_shader_stage_is_bindless(gl_shader_stage stage)
{
return stage >= MESA_SHADER_RAYGEN &&
stage <= MESA_SHADER_CALLABLE;
}
static inline bool
brw_shader_stage_requires_bindless_resources(gl_shader_stage stage)
{
return brw_shader_stage_is_bindless(stage) || gl_shader_stage_is_mesh(stage);
}
static inline bool
brw_shader_stage_has_inline_data(const struct intel_device_info *devinfo,
gl_shader_stage stage)
{
return stage == MESA_SHADER_MESH || stage == MESA_SHADER_TASK ||
(stage == MESA_SHADER_COMPUTE && devinfo->verx10 >= 125);
}
/**
* Program key structures.
*
* When drawing, we look for the currently bound shaders in the program
* cache. This is essentially a hash table lookup, and these are the keys.
*
* Sometimes OpenGL features specified as state need to be simulated via
* shader code, due to a mismatch between the API and the hardware. This
* is often referred to as "non-orthagonal state" or "NOS". We store NOS
* in the program key so it's considered when searching for a program. If
* we haven't seen a particular combination before, we have to recompile a
* new specialized version.
*
* Shader compilation should not look up state in gl_context directly, but
* instead use the copy in the program key. This guarantees recompiles will
* happen correctly.
*
* @{
*/
#define BRW_MAX_SAMPLERS 32
/* Provide explicit padding for each member, to ensure that the compiler
* initializes every bit in the shader cache keys. The keys will be compared
* with memcmp.
*/
PRAGMA_DIAGNOSTIC_PUSH
PRAGMA_DIAGNOSTIC_ERROR(-Wpadded)
enum brw_robustness_flags {
BRW_ROBUSTNESS_UBO = BITFIELD_BIT(0),
BRW_ROBUSTNESS_SSBO = BITFIELD_BIT(1),
};
struct brw_base_prog_key {
unsigned program_string_id;
enum brw_robustness_flags robust_flags:2;
bool uses_inline_push_addr:1;
enum intel_vue_layout vue_layout:2;
/**
* Apply workarounds for SIN and COS input range problems.
* This limits input range for SIN and COS to [-2p : 2p] to
* avoid precision issues.
*/
bool limit_trig_input_range:1;
unsigned padding:26;
};
/**
* OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
* [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
* input vertex attributes. In Vulkan, we expose up to 29 user vertex input
* attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
*/
#define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
#define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 29)
#define MAX_HW_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 34)
/**
* Use the last 2 slots :
* - slot 32: start vertex, vertex count, instance count, start instance
* - slot 33: base vertex, base instance, draw id
*/
#define BRW_SVGS_VE_INDEX (32)
#define BRW_DRAWID_VE_INDEX (33)
/** The program key for Vertex Shaders.
*
* Notes about slot compaction & component packing:
*
* VF slot compaction is our default compiler behavior. The compiler looks at
* used inputs locations, for example [0, 2, 3], and will arrange things such
* that the payload only includes 3 vec4 in that case. Location 1 is
* completely dropped. The driver is expected to program
* 3DSTATE_VERTEX_ELEMENTS to match this. So even if the location 1 is
* described in the API input, the driver will not program it in
* 3DSTATE_VERTEX_ELEMENTS because it sees the compiler is not using it.
*
* Component compaction is a HW feature that removes unused components (for
* whatever slot [0, 31]) from the payload. Those values are stored in the URB
* by the VF but they get scrapped when the payload is generated. For example
* with input locations [ 0 vec2, 1 vec1, 2 vec4 ], the register payload for
* VF inputs will be made up of 7 GRFs (2 + 1 + 4). Without component
* compaction, the payload would be 12 GRFs (3 * 4).
*
* The HW component compaction feature only works on first 32 slots, so
* anything after that will deliver the full vec4.
*/
struct brw_vs_prog_key {
struct brw_base_prog_key base;
/** Enable component packing
*
* Using this option requires that the driver programs
* 3DSTATE_VF_COMPONENT_PACKING with the values provided in
* brw_vs_prog_data::vf_component_packing
*/
bool vf_component_packing : 1;
/** Prevent compaction of slots of VF inputs
*
* So that 3DSTATE_VERTEX_ELEMENTS programming remains independent of
* shader inputs (essentially an unused location should have an associated
* VERTEX_ELEMENT_STATE).
*/
bool no_vf_slot_compaction : 1;
uint32_t padding : 30;
};
/** The program key for Tessellation Control Shaders. */
struct brw_tcs_prog_key
{
struct brw_base_prog_key base;
/** A bitfield of per-vertex outputs written. */
uint64_t outputs_written;
enum tess_primitive_mode _tes_primitive_mode;
/** Number of input vertices, 0 means dynamic */
unsigned input_vertices;
/** A bitfield of per-patch outputs written. */
uint32_t patch_outputs_written;
uint32_t padding;
};
#define BRW_MAX_TCS_INPUT_VERTICES (32)
static inline uint32_t
brw_tcs_prog_key_input_vertices(const struct brw_tcs_prog_key *key)
{
return key->input_vertices != 0 ?
key->input_vertices : BRW_MAX_TCS_INPUT_VERTICES;
}
/** The program key for Tessellation Evaluation Shaders. */
struct brw_tes_prog_key
{
struct brw_base_prog_key base;
/** A bitfield of per-vertex inputs read. */
uint64_t inputs_read;
/** A bitfield of per-patch inputs read. */
uint32_t patch_inputs_read;
uint32_t padding;
};
/** The program key for Geometry Shaders. */
struct brw_gs_prog_key
{
struct brw_base_prog_key base;
};
struct brw_task_prog_key
{
struct brw_base_prog_key base;
};
struct brw_mesh_prog_key
{
struct brw_base_prog_key base;
};
/** The program key for Fragment/Pixel Shaders. */
struct brw_wm_prog_key {
struct brw_base_prog_key base;
uint64_t input_slots_valid;
uint8_t color_outputs_valid;
/* Some collection of BRW_WM_IZ_* */
bool flat_shade:1;
unsigned nr_color_regions:5;
bool alpha_test_replicate_alpha:1;
enum intel_sometimes alpha_to_coverage:2;
bool clamp_fragment_color:1;
bool force_dual_color_blend:1;
/** Whether or inputs are interpolated at sample rate by default
*
* This corresponds to the sample shading API bit in Vulkan or OpenGL which
* controls how inputs with no interpolation qualifier are interpolated.
* This is distinct from the way that using gl_SampleID or similar requires
* us to run per-sample. Even when running per-sample due to gl_SampleID,
* we may still interpolate unqualified inputs at the pixel center.
*/
enum intel_sometimes persample_interp:2;
/* Whether or not we are running on a multisampled framebuffer */
enum intel_sometimes multisample_fbo:2;
/* Whether the shader is dispatch with a preceeding mesh shader */
enum intel_sometimes mesh_input:2;
bool coherent_fb_fetch:1;
bool ignore_sample_mask_out:1;
bool coarse_pixel:1;
bool null_push_constant_tbimr_workaround:1;
uint64_t padding:35;
};
static inline bool
brw_wm_prog_key_is_dynamic(const struct brw_wm_prog_key *key)
{
return
key->mesh_input == INTEL_SOMETIMES ||
key->alpha_to_coverage == INTEL_SOMETIMES ||
key->persample_interp == INTEL_SOMETIMES ||
key->multisample_fbo == INTEL_SOMETIMES ||
key->base.vue_layout == INTEL_VUE_LAYOUT_SEPARATE_MESH;
}
struct brw_cs_prog_key {
struct brw_base_prog_key base;
};
struct brw_bs_prog_key {
struct brw_base_prog_key base;
/* Represents enum enum brw_rt_ray_flags values given at pipeline creation
* to be combined with ray_flags handed to the traceRayEXT() calls by the
* shader.
*/
uint32_t pipeline_ray_flags;
};
/* brw_any_prog_key is any of the keys that map to an API stage */
union brw_any_prog_key {
struct brw_base_prog_key base;
struct brw_vs_prog_key vs;
struct brw_tcs_prog_key tcs;
struct brw_tes_prog_key tes;
struct brw_gs_prog_key gs;
struct brw_wm_prog_key wm;
struct brw_cs_prog_key cs;
struct brw_bs_prog_key bs;
struct brw_task_prog_key task;
struct brw_mesh_prog_key mesh;
};
PRAGMA_DIAGNOSTIC_POP
/** Max number of render targets in a shader */
#define BRW_MAX_DRAW_BUFFERS 8
struct brw_ubo_range
{
uint16_t block;
/* In units of 32-byte registers */
uint8_t start;
uint8_t length;
};
/* We reserve the first 2^16 values for builtins */
#define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
enum brw_param_builtin {
BRW_PARAM_BUILTIN_ZERO,
BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
BRW_PARAM_BUILTIN_SUBGROUP_ID,
BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X,
BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Y,
BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z,
BRW_PARAM_BUILTIN_WORK_DIM,
};
#define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
(BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
#define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
(param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
#define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
(((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
#define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
(((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
#define BRW_MAX_EMBEDDED_SAMPLERS (4096)
enum brw_shader_reloc_id {
BRW_SHADER_RELOC_CONST_DATA_ADDR_LOW,
BRW_SHADER_RELOC_CONST_DATA_ADDR_HIGH,
BRW_SHADER_RELOC_SHADER_START_OFFSET,
BRW_SHADER_RELOC_RESUME_SBT_ADDR_LOW,
BRW_SHADER_RELOC_RESUME_SBT_ADDR_HIGH,
BRW_SHADER_RELOC_DESCRIPTORS_ADDR_HIGH,
BRW_SHADER_RELOC_DESCRIPTORS_BUFFER_ADDR_HIGH,
BRW_SHADER_RELOC_EMBEDDED_SAMPLER_HANDLE,
BRW_SHADER_RELOC_LAST_EMBEDDED_SAMPLER_HANDLE =
BRW_SHADER_RELOC_EMBEDDED_SAMPLER_HANDLE + BRW_MAX_EMBEDDED_SAMPLERS - 1,
BRW_SHADER_RELOC_PRINTF_BUFFER_ADDR_LOW,
BRW_SHADER_RELOC_PRINTF_BUFFER_ADDR_HIGH,
BRW_SHADER_RELOC_PRINTF_BUFFER_SIZE,
};
enum brw_shader_reloc_type {
/** An arbitrary 32-bit value */
BRW_SHADER_RELOC_TYPE_U32,
/** A MOV instruction with an immediate source */
BRW_SHADER_RELOC_TYPE_MOV_IMM,
};
/** Represents a code relocation
*
* Relocatable constants are immediates in the code which we want to be able
* to replace post-compile with the actual value.
*/
struct brw_shader_reloc {
/** The 32-bit ID of the relocatable constant */
uint32_t id;
/** Type of this relocation */
enum brw_shader_reloc_type type;
/** The offset in the shader to the relocated value
*
* For MOV_IMM relocs, this is an offset to the MOV instruction. This
* allows us to do some sanity checking while we update the value.
*/
uint32_t offset;
/** Value to be added to the relocated value before it is written */
uint32_t delta;
};
/** A value to write to a relocation */
struct brw_shader_reloc_value {
/** The 32-bit ID of the relocatable constant */
uint32_t id;
/** The value with which to replace the relocated immediate */
uint32_t value;
};
struct brw_stage_prog_data {
struct brw_ubo_range ubo_ranges[4];
unsigned nr_params; /**< number of float params/constants */
gl_shader_stage stage;
/* zero_push_reg is a bitfield which indicates what push registers (if any)
* should be zeroed by SW at the start of the shader. The corresponding
* push_reg_mask_param specifies the param index (in 32-bit units) where
* the actual runtime 64-bit mask will be pushed. The shader will zero
* push reg i if
*
* reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i)
*
* If this field is set, brw_compiler::compact_params must be false.
*/
uint64_t zero_push_reg;
unsigned push_reg_mask_param;
unsigned curb_read_length;
unsigned total_scratch;
unsigned total_shared;
unsigned program_size;
unsigned const_data_size;
unsigned const_data_offset;
unsigned num_relocs;
const struct brw_shader_reloc *relocs;
/** Does this program pull from any UBO or other constant buffers? */
bool has_ubo_pull;
/** How many ray queries objects in this shader. */
unsigned ray_queries;
/**
* Register where the thread expects to find input data from the URB
* (typically uniforms, followed by vertex or fragment attributes).
*/
unsigned dispatch_grf_start_reg;
/** Number of GRF registers used. */
unsigned grf_used;
bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
uint32_t source_hash;
/* 32-bit identifiers for all push/pull parameters. These can be anything
* the driver wishes them to be; the core of the back-end compiler simply
* re-arranges them. The one restriction is that the bottom 2^16 values
* are reserved for builtins defined in the brw_param_builtin enum defined
* above.
*/
uint32_t *param;
/* Whether shader uses atomic operations. */
bool uses_atomic_load_store;
/* Printf descriptions contained by the shader */
uint32_t printf_info_count;
u_printf_info *printf_info;
};
/**
* Convert a number of GRF registers used (grf_used in prog_data) into
* a number of GRF register blocks supported by the hardware on PTL+.
*/
static inline unsigned
ptl_register_blocks(unsigned grf_used)
{
const unsigned n = DIV_ROUND_UP(grf_used, 32) - 1;
return (n < 6 ? n : 7);
}
static inline uint32_t *
brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
unsigned nr_new_params)
{
unsigned old_nr_params = prog_data->nr_params;
prog_data->nr_params += nr_new_params;
prog_data->param = reralloc(ralloc_parent(prog_data->param),
prog_data->param, uint32_t,
prog_data->nr_params);
return prog_data->param + old_nr_params;
}
void
brw_stage_prog_data_add_printf(struct brw_stage_prog_data *prog_data,
void *mem_ctx,
const u_printf_info *print);
enum brw_pixel_shader_computed_depth_mode {
BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
};
/* Data about a particular attempt to compile a program. Note that
* there can be many of these, each in a different GL state
* corresponding to a different brw_wm_prog_key struct, with different
* compiled programs.
*/
struct brw_wm_prog_data {
struct brw_stage_prog_data base;
/**
* Number of slots (16B) chunks dedicated to per primitive payload.
*/
unsigned num_per_primitive_inputs;
/**
* Number of slots (16B) chunks dedicated to per vertex payload.
*/
unsigned num_varying_inputs;
uint8_t dispatch_grf_start_reg_16;
uint8_t dispatch_grf_start_reg_32;
uint32_t prog_offset_16;
uint32_t prog_offset_32;
uint8_t computed_depth_mode;
/**
* Number of polygons handled in parallel by the multi-polygon PS
* kernel.
*/
uint8_t max_polygons;
/**
* Dispatch width of the multi-polygon PS kernel, or 0 if no
* multi-polygon kernel was built.
*/
uint8_t dispatch_multi;
bool computed_stencil;
bool early_fragment_tests;
bool post_depth_coverage;
bool inner_coverage;
bool dispatch_8;
bool dispatch_16;
bool dispatch_32;
bool dual_src_blend;
bool uses_pos_offset;
bool uses_omask;
bool uses_kill;
bool uses_src_depth;
bool uses_src_w;
bool uses_depth_w_coefficients;
bool uses_pc_bary_coefficients;
bool uses_npc_bary_coefficients;
bool uses_sample_offsets;
bool uses_sample_mask;
bool uses_vmask;
bool has_side_effects;
bool pulls_bary;
bool contains_flat_varying;
bool contains_noperspective_varying;
/** Fragment shader barycentrics
*
* Request that the HW delta computation of attributes be turned off. This is needed
* when the FS has per-vertex inputs or reads BaryCoordKHR/BaryCoordNoPerspKHR.
*/
bool vertex_attributes_bypass;
/** True if the shader wants sample shading
*
* This corresponds to whether or not a gl_SampleId, gl_SamplePosition, or
* a sample-qualified input are used in the shader. It is independent of
* GL_MIN_SAMPLE_SHADING_VALUE in GL or minSampleShading in Vulkan.
*/
bool sample_shading;
/** Min sample shading value
*
* Not used by the compiler, but useful for restore from the cache. The
* driver is expected to write the value it wants.
*/
float min_sample_shading;
/** Should this shader be dispatched per-sample */
enum intel_sometimes persample_dispatch;
/**
* Shader is ran at the coarse pixel shading dispatch rate (3DSTATE_CPS).
*/
enum intel_sometimes coarse_pixel_dispatch;
/**
* Shader writes the SampleMask and this is AND-ed with the API's
* SampleMask to generate a new coverage mask.
*/
enum intel_sometimes alpha_to_coverage;
/**
* Whether the shader is dispatch with a preceeding mesh shader.
*/
enum intel_sometimes mesh_input;
/**
* Push constant location of intel_msaa_flags (dynamic configuration of the
* pixel shader).
*/
unsigned msaa_flags_param;
/**
* Mask of which interpolation modes are required by the fragment shader.
* Those interpolations are delivered as part of the thread payload. Used
* in hardware setup on gfx6+.
*/
uint32_t barycentric_interp_modes;
/**
* Whether nonperspective interpolation modes are used by the
* barycentric_interp_modes or fragment shader through interpolator messages.
*/
bool uses_nonperspective_interp_modes;
/**
* Mask of which FS inputs are marked flat by the shader source. This is
* needed for setting up 3DSTATE_SF/SBE.
*/
uint32_t flat_inputs;
/**
* The FS inputs
*/
uint64_t inputs;
/**
* The FS per-primitive inputs (some bits can be in both inputs &
* per_primitive_inputs if the shader is compiled without being linked to
* the previous stage)
*/
uint64_t per_primitive_inputs;
/**
* Map from gl_varying_slot to the position within the FS setup data
* payload where the varying's attribute vertex deltas should be delivered.
* For varying slots that are not used by the FS, the value is -1.
*/
int urb_setup[VARYING_SLOT_MAX];
int urb_setup_channel[VARYING_SLOT_MAX];
/**
* Cache structure into the urb_setup array above that contains the
* attribute numbers of active varyings out of urb_setup.
* The actual count is stored in urb_setup_attribs_count.
*/
uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
uint8_t urb_setup_attribs_count;
};
static inline bool
brw_wm_prog_data_is_dynamic(const struct brw_wm_prog_data *prog_data)
{
return prog_data->mesh_input == INTEL_SOMETIMES ||
prog_data->alpha_to_coverage == INTEL_SOMETIMES ||
prog_data->coarse_pixel_dispatch == INTEL_SOMETIMES ||
prog_data->persample_dispatch == INTEL_SOMETIMES;
}
#ifdef GFX_VERx10
#if GFX_VERx10 >= 200
/** Returns the SIMD width corresponding to a given KSP index
*
* The "Variable Pixel Dispatch" table in the PRM (which can be found, for
* example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
* kernel start pointer (KSP) indices that is based on what dispatch widths
* are enabled. This function provides, effectively, the reverse mapping.
*
* If the given KSP is enabled, a SIMD width of 8, 16, or 32 is
* returned. Note that for a multipolygon dispatch kernel 8 is always
* returned, since multipolygon kernels use the "_8" fields from
* brw_wm_prog_data regardless of their SIMD width. If the KSP is
* invalid, 0 is returned.
*/
static inline unsigned
brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool enabled, unsigned width_sel)
{
assert(ksp_idx < 2);
return !enabled ? 0 :
width_sel ? 32 :
16;
}
#define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
(ksp_idx == 0 && (wm_state).Kernel0MaximumPolysperThread ? 8 : \
ksp_idx == 0 ? brw_fs_simd_width_for_ksp(ksp_idx, (wm_state).Kernel0Enable, \
(wm_state).Kernel0SIMDWidth): \
brw_fs_simd_width_for_ksp(ksp_idx, (wm_state).Kernel1Enable, \
(wm_state).Kernel1SIMDWidth))
#else
/** Returns the SIMD width corresponding to a given KSP index
*
* The "Variable Pixel Dispatch" table in the PRM (which can be found, for
* example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
* kernel start pointer (KSP) indices that is based on what dispatch widths
* are enabled. This function provides, effectively, the reverse mapping.
*
* If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
* width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
*/
static inline unsigned
brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
bool simd16_enabled, bool simd32_enabled)
{
/* This function strictly ignores contiguous dispatch */
switch (ksp_idx) {
case 0:
return simd8_enabled ? 8 :
(simd16_enabled && !simd32_enabled) ? 16 :
(simd32_enabled && !simd16_enabled) ? 32 : 0;
case 1:
return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
case 2:
return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
default:
unreachable("Invalid KSP index");
}
}
#define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
(wm_state)._16PixelDispatchEnable, \
(wm_state)._32PixelDispatchEnable)
#endif
#endif
#define brw_wm_state_has_ksp(wm_state, ksp_idx) \
(brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
static inline uint32_t
_brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
unsigned simd_width)
{
switch (simd_width) {
case 8: return 0;
case 16: return prog_data->prog_offset_16;
case 32: return prog_data->prog_offset_32;
default: return 0;
}
}
#define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
_brw_wm_prog_data_prog_offset(prog_data, \
brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
static inline uint8_t
_brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
unsigned simd_width)
{
switch (simd_width) {
case 8: return prog_data->base.dispatch_grf_start_reg;
case 16: return prog_data->dispatch_grf_start_reg_16;
case 32: return prog_data->dispatch_grf_start_reg_32;
default: return 0;
}
}
#define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
_brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
static inline bool
brw_wm_prog_data_is_persample(const struct brw_wm_prog_data *prog_data,
enum intel_msaa_flags pushed_msaa_flags)
{
return intel_fs_is_persample(prog_data->persample_dispatch,
prog_data->sample_shading,
pushed_msaa_flags);
}
static inline uint32_t
wm_prog_data_barycentric_modes(const struct brw_wm_prog_data *prog_data,
enum intel_msaa_flags pushed_msaa_flags)
{
return intel_fs_barycentric_modes(prog_data->persample_dispatch,
prog_data->barycentric_interp_modes,
pushed_msaa_flags);
}
static inline bool
brw_wm_prog_data_is_coarse(const struct brw_wm_prog_data *prog_data,
enum intel_msaa_flags pushed_msaa_flags)
{
return intel_fs_is_coarse(prog_data->coarse_pixel_dispatch,
pushed_msaa_flags);
}
struct brw_push_const_block {
unsigned dwords; /* Dword count, not reg aligned */
unsigned regs;
unsigned size; /* Bytes, register aligned */
};
struct brw_cs_prog_data {
struct brw_stage_prog_data base;
unsigned local_size[3];
/* Program offsets for the 8/16/32 SIMD variants. Multiple variants are
* kept when using variable group size, and the right one can only be
* decided at dispatch time.
*/
unsigned prog_offset[3];
/* Bitmask indicating which program offsets are valid. */
unsigned prog_mask;
/* Bitmask indicating which programs have spilled. */
unsigned prog_spilled;
bool uses_barrier;
bool uses_num_work_groups;
bool uses_inline_data;
/** Whether inline push data is used to provide a 64bit pointer to push
* constants
*/
bool uses_inline_push_addr;
bool uses_btd_stack_ids;
bool uses_systolic;
uint8_t generate_local_id;
enum intel_compute_walk_order walk_order;
/* True if shader has any sample operation */
bool uses_sampler;
struct {
struct brw_push_const_block cross_thread;
struct brw_push_const_block per_thread;
} push;
};
static inline uint32_t
brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data *prog_data,
unsigned dispatch_width)
{
assert(dispatch_width == 8 ||
dispatch_width == 16 ||
dispatch_width == 32);
const unsigned index = dispatch_width / 16;
assert(prog_data->prog_mask & (1 << index));
return prog_data->prog_offset[index];
}
struct brw_bs_prog_data {
struct brw_stage_prog_data base;
/** Whether inline push data is used to provide a 64bit pointer to push
* constants
*/
bool uses_inline_push_addr;
/** SIMD size of the root shader */
uint8_t simd_size;
/** Maximum stack size of all shaders */
uint32_t max_stack_size;
/** Offset into the shader where the resume SBT is located */
uint32_t resume_sbt_offset;
/** Number of resume shaders */
uint32_t num_resume_shaders;
};
/**
* Enum representing the i965-specific vertex results that don't correspond
* exactly to any element of gl_varying_slot. The values of this enum are
* assigned such that they don't conflict with gl_varying_slot.
*/
typedef enum
{
BRW_VARYING_SLOT_PAD = VARYING_SLOT_MAX,
BRW_VARYING_SLOT_COUNT
} brw_varying_slot;
#define BRW_VUE_HEADER_VARYING_MASK \
(VARYING_BIT_VIEWPORT | \
VARYING_BIT_LAYER | \
VARYING_BIT_PRIMITIVE_SHADING_RATE | \
VARYING_BIT_PSIZ)
/**
* Bitmask indicating which fragment shader inputs represent varyings (and
* hence have to be delivered to the fragment shader by the SF/SBE stage).
*/
#define BRW_FS_VARYING_INPUT_MASK \
(BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
~VARYING_BIT_POS & ~VARYING_BIT_FACE)
void brw_print_vue_map(FILE *fp, const struct intel_vue_map *vue_map,
gl_shader_stage stage);
/**
* Convert a VUE slot number into a byte offset within the VUE.
*/
static inline unsigned brw_vue_slot_to_offset(unsigned slot)
{
return 16*slot;
}
/**
* Convert a vertex output (brw_varying_slot) into a byte offset within the
* VUE.
*/
static inline unsigned
brw_varying_to_offset(const struct intel_vue_map *vue_map, unsigned varying)
{
return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
}
void
brw_compute_per_primitive_map(int *out_per_primitive_map,
uint32_t *out_per_primitive_stride,
uint32_t *out_first_offset,
uint32_t base_offset,
nir_shader *nir,
uint32_t variables_mode,
uint64_t slots_valid,
bool separate_shader);
void brw_compute_vue_map(const struct intel_device_info *devinfo,
struct intel_vue_map *vue_map,
uint64_t slots_valid,
enum intel_vue_layout layout,
uint32_t pos_slots);
void brw_compute_tess_vue_map(struct intel_vue_map *const vue_map,
uint64_t slots_valid,
uint32_t is_patch);
struct brw_vue_prog_data {
struct brw_stage_prog_data base;
struct intel_vue_map vue_map;
/** Should the hardware deliver input VUE handles for URB pull loads? */
bool include_vue_handles;
unsigned urb_read_length;
unsigned total_grf;
uint32_t clip_distance_mask;
uint32_t cull_distance_mask;
/* Used for calculating urb partitions. In the VS, this is the size of the
* URB entry used for both input and output to the thread. In the GS, this
* is the size of the URB entry used for output.
*/
unsigned urb_entry_size;
enum intel_shader_dispatch_mode dispatch_mode;
};
struct brw_vs_prog_data {
struct brw_vue_prog_data base;
uint64_t inputs_read;
uint64_t double_inputs_read;
bool uses_vertexid;
bool uses_instanceid;
bool uses_is_indexed_draw;
bool uses_firstvertex;
bool uses_baseinstance;
bool uses_drawid;
bool no_vf_slot_compaction;
uint32_t vf_component_packing[4];
};
struct brw_tcs_prog_data
{
struct brw_vue_prog_data base;
/** Number of input vertices, 0 means dynamic */
unsigned input_vertices;
/** Should the non-SINGLE_PATCH payload provide primitive ID? */
bool include_primitive_id;
/** Number vertices in output patch */
int instances;
/** Track patch count threshold */
int patch_count_threshold;
};
struct brw_tes_prog_data
{
struct brw_vue_prog_data base;
enum intel_tess_partitioning partitioning;
enum intel_tess_output_topology output_topology;
enum intel_tess_domain domain;
bool include_primitive_id;
};
struct brw_gs_prog_data
{
struct brw_vue_prog_data base;
unsigned vertices_in;
/**
* Size of an output vertex, measured in HWORDS (32 bytes).
*/
unsigned output_vertex_size_hwords;
unsigned output_topology;
/**
* Size of the control data (cut bits or StreamID bits), in hwords (32
* bytes). 0 if there is no control data.
*/
unsigned control_data_header_size_hwords;
/**
* Format of the control data (either GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
* if the control data is StreamID bits, or
* GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
* Ignored if control_data_header_size is 0.
*/
unsigned control_data_format;
bool include_primitive_id;
/**
* The number of vertices emitted, if constant - otherwise -1.
*/
int static_vertex_count;
int invocations;
};
struct brw_tue_map {
uint32_t size_dw;
uint32_t per_task_data_start_dw;
};
struct brw_mue_map {
/* Total size in bytes of the MUE (32B aligned) */
uint32_t size;
uint32_t max_primitives;
uint32_t max_vertices;
/* Stride in bytes between sets of primitive indices */
uint32_t per_primitive_indices_stride;
/* Per primitive offset from the start of the MUE (32B aligned) */
uint32_t per_primitive_offset;
/* Per primitive stride in bytes (32B aligned) */
uint32_t per_primitive_stride;
/* Whether the per primitive block includes a header */
bool has_per_primitive_header;
/* Per vertex offset in bytes from the start of the MUE (32B aligned) */
uint32_t per_vertex_offset;
/* Size of the per vertex header (32B aligned) */
uint32_t per_vertex_header_size;
/* Per vertex stride in bytes (32B aligned) */
uint32_t per_vertex_stride;
/* VUE map for the per vertex attributes */
struct intel_vue_map vue_map;
/* Offset in bytes of each per primitive relative to
* per_primitive_offset (-1 if unused)
*/
int per_primitive_offsets[VARYING_SLOT_MAX];
};
struct brw_task_prog_data {
struct brw_cs_prog_data base;
struct brw_tue_map map;
bool uses_drawid;
};
enum brw_mesh_index_format {
BRW_INDEX_FORMAT_U32,
BRW_INDEX_FORMAT_U888X,
};
struct brw_mesh_prog_data {
struct brw_cs_prog_data base;
struct brw_mue_map map;
uint32_t clip_distance_mask;
uint32_t cull_distance_mask;
uint16_t primitive_type;
enum brw_mesh_index_format index_format;
bool uses_drawid;
bool autostrip_enable;
};
/* brw_any_prog_data is prog_data for any stage that maps to an API stage */
union brw_any_prog_data {
struct brw_stage_prog_data base;
struct brw_vue_prog_data vue;
struct brw_vs_prog_data vs;
struct brw_tcs_prog_data tcs;
struct brw_tes_prog_data tes;
struct brw_gs_prog_data gs;
struct brw_wm_prog_data wm;
struct brw_cs_prog_data cs;
struct brw_bs_prog_data bs;
struct brw_task_prog_data task;
struct brw_mesh_prog_data mesh;
};
#define DEFINE_PROG_DATA_DOWNCAST(STAGE, CHECK) \
static inline struct brw_##STAGE##_prog_data * \
brw_##STAGE##_prog_data(struct brw_stage_prog_data *prog_data) \
{ \
if (prog_data) \
assert(CHECK); \
return (struct brw_##STAGE##_prog_data *) prog_data; \
} \
static inline const struct brw_##STAGE##_prog_data * \
brw_##STAGE##_prog_data_const(const struct brw_stage_prog_data *prog_data) \
{ \
if (prog_data) \
assert(CHECK); \
return (const struct brw_##STAGE##_prog_data *) prog_data; \
}
DEFINE_PROG_DATA_DOWNCAST(vs, prog_data->stage == MESA_SHADER_VERTEX)
DEFINE_PROG_DATA_DOWNCAST(tcs, prog_data->stage == MESA_SHADER_TESS_CTRL)
DEFINE_PROG_DATA_DOWNCAST(tes, prog_data->stage == MESA_SHADER_TESS_EVAL)
DEFINE_PROG_DATA_DOWNCAST(gs, prog_data->stage == MESA_SHADER_GEOMETRY)
DEFINE_PROG_DATA_DOWNCAST(wm, prog_data->stage == MESA_SHADER_FRAGMENT)
DEFINE_PROG_DATA_DOWNCAST(cs, gl_shader_stage_uses_workgroup(prog_data->stage))
DEFINE_PROG_DATA_DOWNCAST(bs, brw_shader_stage_is_bindless(prog_data->stage))
DEFINE_PROG_DATA_DOWNCAST(vue, prog_data->stage == MESA_SHADER_VERTEX ||
prog_data->stage == MESA_SHADER_TESS_CTRL ||
prog_data->stage == MESA_SHADER_TESS_EVAL ||
prog_data->stage == MESA_SHADER_GEOMETRY)
DEFINE_PROG_DATA_DOWNCAST(task, prog_data->stage == MESA_SHADER_TASK)
DEFINE_PROG_DATA_DOWNCAST(mesh, prog_data->stage == MESA_SHADER_MESH)
#undef DEFINE_PROG_DATA_DOWNCAST
struct brw_compile_stats {
uint32_t dispatch_width; /**< 0 for vec4 */
uint32_t max_polygons;
uint32_t max_dispatch_width;
uint32_t instructions;
uint32_t sends;
uint32_t loops;
uint32_t cycles;
uint32_t spills;
uint32_t fills;
uint32_t max_live_registers;
uint32_t non_ssa_registers_after_nir;
};
/** @} */
struct brw_compiler *
brw_compiler_create(void *mem_ctx, const struct intel_device_info *devinfo);
/**
* Returns a compiler configuration for use with disk shader cache
*
* This value only needs to change for settings that can cause different
* program generation between two runs on the same hardware.
*
* For example, it doesn't need to be different for gen 8 and gen 9 hardware,
* but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
*/
uint64_t
brw_get_compiler_config_value(const struct brw_compiler *compiler);
/* Provides a string sha1 hash of all device information fields that could
* affect shader compilation.
*/
void
brw_device_sha1(char *hex, const struct intel_device_info *devinfo);
/* For callers computing their own UUID or hash. Hashes all device
* information fields that could affect shader compilation into the provided
* sha1_ctx.
*/
void
brw_device_sha1_update(struct mesa_sha1 *sha1_ctx,
const struct intel_device_info *devinfo);
unsigned
brw_prog_data_size(gl_shader_stage stage);
unsigned
brw_prog_key_size(gl_shader_stage stage);
struct brw_compile_params {
void *mem_ctx;
nir_shader *nir;
struct brw_compile_stats *stats;
void *log_data;
char *error_str;
uint64_t debug_flag;
uint32_t source_hash;
};
/**
* Parameters for compiling a vertex shader.
*
* Some of these will be modified during the shader compilation.
*/
struct brw_compile_vs_params {
struct brw_compile_params base;
const struct brw_vs_prog_key *key;
struct brw_vs_prog_data *prog_data;
};
/**
* Compile a vertex shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
brw_compile_vs(const struct brw_compiler *compiler,
struct brw_compile_vs_params *params);
/**
* Parameters for compiling a tessellation control shader.
*
* Some of these will be modified during the shader compilation.
*/
struct brw_compile_tcs_params {
struct brw_compile_params base;
const struct brw_tcs_prog_key *key;
struct brw_tcs_prog_data *prog_data;
};
/**
* Compile a tessellation control shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
brw_compile_tcs(const struct brw_compiler *compiler,
struct brw_compile_tcs_params *params);
/**
* Parameters for compiling a tessellation evaluation shader.
*
* Some of these will be modified during the shader compilation.
*/
struct brw_compile_tes_params {
struct brw_compile_params base;
const struct brw_tes_prog_key *key;
struct brw_tes_prog_data *prog_data;
const struct intel_vue_map *input_vue_map;
};
/**
* Compile a tessellation evaluation shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
brw_compile_tes(const struct brw_compiler *compiler,
struct brw_compile_tes_params *params);
/**
* Parameters for compiling a geometry shader.
*
* Some of these will be modified during the shader compilation.
*/
struct brw_compile_gs_params {
struct brw_compile_params base;
const struct brw_gs_prog_key *key;
struct brw_gs_prog_data *prog_data;
};
/**
* Compile a geometry shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
brw_compile_gs(const struct brw_compiler *compiler,
struct brw_compile_gs_params *params);
struct brw_compile_task_params {
struct brw_compile_params base;
const struct brw_task_prog_key *key;
struct brw_task_prog_data *prog_data;
};
const unsigned *
brw_compile_task(const struct brw_compiler *compiler,
struct brw_compile_task_params *params);
struct brw_compile_mesh_params {
struct brw_compile_params base;
const struct brw_mesh_prog_key *key;
struct brw_mesh_prog_data *prog_data;
const struct brw_tue_map *tue_map;
};
const unsigned *
brw_compile_mesh(const struct brw_compiler *compiler,
struct brw_compile_mesh_params *params);
/**
* Parameters for compiling a fragment shader.
*
* Some of these will be modified during the shader compilation.
*/
struct brw_compile_fs_params {
struct brw_compile_params base;
const struct brw_wm_prog_key *key;
struct brw_wm_prog_data *prog_data;
const struct intel_vue_map *vue_map;
const struct brw_mue_map *mue_map;
bool allow_spilling;
bool use_rep_send;
uint8_t max_polygons;
};
/**
* Compile a fragment shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
brw_compile_fs(const struct brw_compiler *compiler,
struct brw_compile_fs_params *params);
/**
* Parameters for compiling a compute shader.
*
* Some of these will be modified during the shader compilation.
*/
struct brw_compile_cs_params {
struct brw_compile_params base;
const struct brw_cs_prog_key *key;
struct brw_cs_prog_data *prog_data;
};
/**
* Compile a compute shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
brw_compile_cs(const struct brw_compiler *compiler,
struct brw_compile_cs_params *params);
/**
* Parameters for compiling a Bindless shader.
*
* Some of these will be modified during the shader compilation.
*/
struct brw_compile_bs_params {
struct brw_compile_params base;
const struct brw_bs_prog_key *key;
struct brw_bs_prog_data *prog_data;
unsigned num_resume_shaders;
struct nir_shader **resume_shaders;
};
/**
* Compile a Bindless shader.
*
* Returns the final assembly and updates the parameters structure.
*/
const unsigned *
brw_compile_bs(const struct brw_compiler *compiler,
struct brw_compile_bs_params *params);
void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
gl_shader_stage stage,
const struct brw_base_prog_key *old_key,
const struct brw_base_prog_key *key);
unsigned
brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
unsigned threads);
void
brw_write_shader_relocs(const struct brw_isa_info *isa,
void *program,
const struct brw_stage_prog_data *prog_data,
struct brw_shader_reloc_value *values,
unsigned num_values);
/**
* Get the dispatch information for a shader to be used with GPGPU_WALKER and
* similar instructions.
*
* If override_local_size is not NULL, it must to point to a 3-element that
* will override the value from prog_data->local_size. This is used by
* ARB_compute_variable_group_size, where the size is set only at dispatch
* time (so prog_data is outdated).
*/
struct intel_cs_dispatch_info
brw_cs_get_dispatch_info(const struct intel_device_info *devinfo,
const struct brw_cs_prog_data *prog_data,
const unsigned *override_local_size);
/**
* Return true if the given shader stage is dispatched contiguously by the
* relevant fixed function starting from channel 0 of the SIMD thread, which
* implies that the dispatch mask of a thread can be assumed to have the form
* '2^n - 1' for some n.
*/
static inline bool
brw_stage_has_packed_dispatch(ASSERTED const struct intel_device_info *devinfo,
gl_shader_stage stage, unsigned max_polygons,
const struct brw_stage_prog_data *prog_data)
{
/* The code below makes assumptions about the hardware's thread dispatch
* behavior that could be proven wrong in future generations -- Make sure
* to do a full test run with brw_test_dispatch_packing() hooked up to
* the NIR front-end before changing this assertion. It can be temporarily
* enabled by setting the macro below to true.
*/
#define ENABLE_TEST_DISPATCH_PACKING false
assert(devinfo->ver <= 30);
switch (stage) {
case MESA_SHADER_FRAGMENT: {
/* The PSD discards subspans coming in with no lit samples, which in the
* per-pixel shading case implies that each subspan will either be fully
* lit (due to the VMask being used to allow derivative computations),
* or not dispatched at all. In per-sample dispatch mode individual
* samples from the same subspan have a fixed relative location within
* the SIMD thread, so dispatch of unlit samples cannot be avoided in
* general and we should return false.
*/
const struct brw_wm_prog_data *wm_prog_data =
(const struct brw_wm_prog_data *)prog_data;
return devinfo->verx10 < 125 &&
!wm_prog_data->persample_dispatch &&
wm_prog_data->uses_vmask &&
max_polygons < 2;
}
case MESA_SHADER_COMPUTE:
/* Compute shaders will be spawned with either a fully enabled dispatch
* mask or with whatever bottom/right execution mask was given to the
* GPGPU walker command to be used along the workgroup edges -- In both
* cases the dispatch mask is required to be tightly packed for our
* invocation index calculations to work.
*/
return true;
default:
/* Most remaining fixed functions are limited to use a packed dispatch
* mask due to the hardware representation of the dispatch mask as a
* single counter representing the number of enabled channels.
*/
return true;
}
}
/**
* Computes the first varying slot in the URB produced by the previous stage
* that is used in the next stage. We do this by testing the varying slots in
* the previous stage's vue map against the inputs read in the next stage.
*
* Note that each URB offset contains two varying slots and we can only skip a
* full offset if both slots are unused, so the value we return here is always
* rounded down to the closest multiple of two.
*/
int
brw_compute_first_fs_urb_slot_required(uint64_t inputs_read,
const struct intel_vue_map *prev_stage_vue_map,
bool mesh);
void
brw_compute_sbe_per_vertex_urb_read(const struct intel_vue_map *prev_stage_vue_map,
bool mesh,
const struct brw_wm_prog_data *wm_prog_data,
uint32_t *out_first_slot,
uint32_t *num_slots,
uint32_t *out_num_varyings,
uint32_t *out_primitive_id_offset);
/**
* Computes the URB offset at which SBE should read the per primitive date
* written by the mesh shader.
*/
void
brw_compute_sbe_per_primitive_urb_read(uint64_t inputs_read,
uint32_t num_varyings,
const struct brw_mue_map *mue_map,
uint32_t *out_read_offset,
uint32_t *out_read_length);
/* From InlineData in 3DSTATE_TASK_SHADER_DATA and 3DSTATE_MESH_SHADER_DATA. */
#define BRW_TASK_MESH_INLINE_DATA_SIZE_DW 8
/* InlineData[0-1] is used for Vulkan descriptor. */
#define BRW_TASK_MESH_PUSH_CONSTANTS_START_DW 2
#define BRW_TASK_MESH_PUSH_CONSTANTS_SIZE_DW \
(BRW_TASK_MESH_INLINE_DATA_SIZE_DW - BRW_TASK_MESH_PUSH_CONSTANTS_START_DW)
/**
* This enum is used as the base indice of the nir_load_topology_id_intel
* intrinsic. This is used to return different values based on some aspect of
* the topology of the device.
*/
enum brw_topology_id
{
/* A value based of the DSS identifier the shader is currently running on.
* Be mindful that the DSS ID can be higher than the total number of DSS on
* the device. This is because of the fusing that can occur on different
* parts.
*/
BRW_TOPOLOGY_ID_DSS,
/* A value composed of EU ID, thread ID & SIMD lane ID. */
BRW_TOPOLOGY_ID_EU_THREAD_SIMD,
};
#ifdef __cplusplus
} /* extern "C" */
#endif