blob: b72c247bffba5ff2b95e0b8e963c2c5c16ffb0b1 [file] [log] [blame]
/*
* Copyright 2003 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "drm-uapi/drm_fourcc.h"
#include <errno.h>
#include <time.h>
#include <unistd.h>
#include "main/context.h"
#include "main/framebuffer.h"
#include "main/renderbuffer.h"
#include "main/texobj.h"
#include "main/hash.h"
#include "main/fbobject.h"
#include "main/version.h"
#include "main/glthread.h"
#include "swrast/s_renderbuffer.h"
#include "util/ralloc.h"
#include "util/disk_cache.h"
#include "brw_defines.h"
#include "brw_state.h"
#include "compiler/nir/nir.h"
#include "utils.h"
#include "util/disk_cache.h"
#include "util/driconf.h"
#include "util/u_memory.h"
#include "common/gen_defines.h"
static const __DRIconfigOptionsExtension brw_config_options = {
.base = { __DRI_CONFIG_OPTIONS, 1 },
.xml =
DRI_CONF_BEGIN
DRI_CONF_SECTION_PERFORMANCE
/* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
* DRI_CONF_BO_REUSE_ALL
*/
DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
DRI_CONF_DESC_BEGIN("Buffer object reuse")
DRI_CONF_ENUM(0, "Disable buffer object reuse")
DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
DRI_CONF_DESC_END
DRI_CONF_OPT_END
DRI_CONF_MESA_NO_ERROR("false")
DRI_CONF_MESA_GLTHREAD("false")
DRI_CONF_SECTION_END
DRI_CONF_SECTION_QUALITY
DRI_CONF_PRECISE_TRIG("false")
DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
DRI_CONF_DESC("Clamp the value of GL_MAX_SAMPLES to the "
"given integer. If negative, then do not clamp.")
DRI_CONF_OPT_END
DRI_CONF_SECTION_END
DRI_CONF_SECTION_DEBUG
DRI_CONF_ALWAYS_FLUSH_BATCH("false")
DRI_CONF_ALWAYS_FLUSH_CACHE("false")
DRI_CONF_DISABLE_THROTTLING("false")
DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
DRI_CONF_FORCE_GLSL_VERSION(0)
DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
DRI_CONF_FORCE_COMPAT_PROFILE("false")
DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
DRI_CONF_DESC("Perform code generation at shader link time.")
DRI_CONF_OPT_END
DRI_CONF_SECTION_END
DRI_CONF_SECTION_MISCELLANEOUS
DRI_CONF_GLSL_ZERO_INIT("false")
DRI_CONF_VS_POSITION_ALWAYS_INVARIANT("false")
DRI_CONF_ALLOW_RGB10_CONFIGS("false")
DRI_CONF_ALLOW_RGB565_CONFIGS("true")
DRI_CONF_ALLOW_FP16_CONFIGS("false")
DRI_CONF_SECTION_END
DRI_CONF_END
};
#include "intel_batchbuffer.h"
#include "intel_buffers.h"
#include "brw_bufmgr.h"
#include "intel_fbo.h"
#include "intel_mipmap_tree.h"
#include "intel_screen.h"
#include "intel_tex.h"
#include "intel_image.h"
#include "brw_context.h"
#include "drm-uapi/i915_drm.h"
/**
* For debugging purposes, this returns a time in seconds.
*/
double
get_time(void)
{
struct timespec tp;
clock_gettime(CLOCK_MONOTONIC, &tp);
return tp.tv_sec + tp.tv_nsec / 1000000000.0;
}
static const __DRItexBufferExtension intelTexBufferExtension = {
.base = { __DRI_TEX_BUFFER, 3 },
.setTexBuffer = intelSetTexBuffer,
.setTexBuffer2 = intelSetTexBuffer2,
.releaseTexBuffer = intelReleaseTexBuffer,
};
static void
intel_dri2_flush_with_flags(__DRIcontext *cPriv,
__DRIdrawable *dPriv,
unsigned flags,
enum __DRI2throttleReason reason)
{
struct brw_context *brw = cPriv->driverPrivate;
if (!brw)
return;
struct gl_context *ctx = &brw->ctx;
_mesa_glthread_finish(ctx);
FLUSH_VERTICES(ctx, 0);
if (flags & __DRI2_FLUSH_DRAWABLE)
intel_resolve_for_dri2_flush(brw, dPriv);
if (reason == __DRI2_THROTTLE_SWAPBUFFER)
brw->need_swap_throttle = true;
if (reason == __DRI2_THROTTLE_FLUSHFRONT)
brw->need_flush_throttle = true;
intel_batchbuffer_flush(brw);
}
/**
* Provides compatibility with loaders that only support the older (version
* 1-3) flush interface.
*
* That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
*/
static void
intel_dri2_flush(__DRIdrawable *drawable)
{
intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
__DRI2_FLUSH_DRAWABLE,
__DRI2_THROTTLE_SWAPBUFFER);
}
static const struct __DRI2flushExtensionRec intelFlushExtension = {
.base = { __DRI2_FLUSH, 4 },
.flush = intel_dri2_flush,
.invalidate = dri2InvalidateDrawable,
.flush_with_flags = intel_dri2_flush_with_flags,
};
static const struct intel_image_format intel_image_formats[] = {
{ DRM_FORMAT_ABGR16161616F, __DRI_IMAGE_COMPONENTS_RGBA, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR16161616F, 8 } } },
{ DRM_FORMAT_XBGR16161616F, __DRI_IMAGE_COMPONENTS_RGB, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR16161616F, 8 } } },
{ DRM_FORMAT_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
{ DRM_FORMAT_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
{ DRM_FORMAT_ABGR2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR2101010, 4 } } },
{ DRM_FORMAT_XBGR2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR2101010, 4 } } },
{ DRM_FORMAT_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
{ DRM_FORMAT_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
{ __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
{ __DRI_IMAGE_FOURCC_SXRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_SXRGB8, 4 } } },
{ DRM_FORMAT_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
{ DRM_FORMAT_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
{ DRM_FORMAT_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
{ DRM_FORMAT_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
{ DRM_FORMAT_R8, __DRI_IMAGE_COMPONENTS_R, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
{ DRM_FORMAT_R16, __DRI_IMAGE_COMPONENTS_R, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
{ DRM_FORMAT_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
{ DRM_FORMAT_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
{ DRM_FORMAT_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ DRM_FORMAT_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ DRM_FORMAT_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ DRM_FORMAT_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ DRM_FORMAT_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ DRM_FORMAT_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ DRM_FORMAT_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ DRM_FORMAT_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ DRM_FORMAT_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ DRM_FORMAT_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
{ DRM_FORMAT_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
{ DRM_FORMAT_P010, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
{ 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
{ DRM_FORMAT_P012, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
{ 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
{ DRM_FORMAT_P016, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
{ 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
{ DRM_FORMAT_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
{ 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
{ DRM_FORMAT_AYUV, __DRI_IMAGE_COMPONENTS_AYUV, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
{ DRM_FORMAT_XYUV8888, __DRI_IMAGE_COMPONENTS_XYUV, 1,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 } } },
/* For YUYV and UYVY buffers, we set up two overlapping DRI images
* and treat them as planar buffers in the compositors.
* Plane 0 is GR88 and samples YU or YV pairs and places Y into
* the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
* clusters and places pairs and places U into the G component and
* V into A. This lets the texture sampler interpolate the Y
* components correctly when sampling from plane 0, and interpolate
* U and V correctly when sampling from plane 1. */
{ DRM_FORMAT_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
{ 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
{ DRM_FORMAT_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
{ { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
{ 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
};
static const struct {
uint64_t modifier;
unsigned since_gen;
} supported_modifiers[] = {
{ .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
{ .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
{ .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
{ .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
};
static bool
modifier_is_supported(const struct gen_device_info *devinfo,
const struct intel_image_format *fmt, int dri_format,
uint64_t modifier)
{
const struct isl_drm_modifier_info *modinfo =
isl_drm_modifier_get_info(modifier);
int i;
/* ISL had better know about the modifier */
if (!modinfo)
return false;
if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
/* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
return false;
/* CCS_E is not supported for planar images */
if (fmt && fmt->nplanes > 1)
return false;
if (fmt) {
assert(dri_format == 0);
dri_format = fmt->planes[0].dri_format;
}
mesa_format format = driImageFormatToGLFormat(dri_format);
/* Whether or not we support compression is based on the RGBA non-sRGB
* version of the format.
*/
format = _mesa_format_fallback_rgbx_to_rgba(format);
format = _mesa_get_srgb_format_linear(format);
if (!isl_format_supports_ccs_e(devinfo,
brw_isl_format_for_mesa_format(format)))
return false;
}
for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
if (supported_modifiers[i].modifier != modifier)
continue;
return supported_modifiers[i].since_gen <= devinfo->gen;
}
return false;
}
static uint64_t
tiling_to_modifier(uint32_t tiling)
{
static const uint64_t map[] = {
[I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
[I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
[I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
};
assert(tiling < ARRAY_SIZE(map));
return map[tiling];
}
static void
intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
{
uint32_t tiling, swizzle;
brw_bo_get_tiling(image->bo, &tiling, &swizzle);
if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
_mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
func, image->offset);
}
}
static const struct intel_image_format *
intel_image_format_lookup(int fourcc)
{
for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
if (intel_image_formats[i].fourcc == fourcc)
return &intel_image_formats[i];
}
return NULL;
}
static bool
intel_image_get_fourcc(__DRIimage *image, int *fourcc)
{
if (image->planar_format) {
*fourcc = image->planar_format->fourcc;
return true;
}
for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
if (intel_image_formats[i].planes[0].dri_format == image->dri_format) {
*fourcc = intel_image_formats[i].fourcc;
return true;
}
}
return false;
}
static __DRIimage *
intel_allocate_image(struct intel_screen *screen, int dri_format,
void *loaderPrivate)
{
__DRIimage *image;
image = calloc(1, sizeof *image);
if (image == NULL)
return NULL;
image->screen = screen;
image->dri_format = dri_format;
image->offset = 0;
image->format = driImageFormatToGLFormat(dri_format);
if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
image->format == MESA_FORMAT_NONE) {
free(image);
return NULL;
}
image->internal_format = _mesa_get_format_base_format(image->format);
image->data = loaderPrivate;
return image;
}
/**
* Sets up a DRIImage structure to point to a slice out of a miptree.
*/
static void
intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
struct intel_mipmap_tree *mt, GLuint level,
GLuint zoffset)
{
intel_miptree_make_shareable(brw, mt);
intel_miptree_check_level_layer(mt, level, zoffset);
image->width = minify(mt->surf.phys_level0_sa.width,
level - mt->first_level);
image->height = minify(mt->surf.phys_level0_sa.height,
level - mt->first_level);
image->pitch = mt->surf.row_pitch_B;
image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
&image->tile_x,
&image->tile_y);
brw_bo_unreference(image->bo);
image->bo = mt->bo;
brw_bo_reference(mt->bo);
}
static __DRIimage *
intel_create_image_from_name(__DRIscreen *dri_screen,
int width, int height, int format,
int name, int pitch, void *loaderPrivate)
{
struct intel_screen *screen = dri_screen->driverPrivate;
__DRIimage *image;
int cpp;
image = intel_allocate_image(screen, format, loaderPrivate);
if (image == NULL)
return NULL;
if (image->format == MESA_FORMAT_NONE)
cpp = 1;
else
cpp = _mesa_get_format_bytes(image->format);
image->width = width;
image->height = height;
image->pitch = pitch * cpp;
image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
name);
if (!image->bo) {
free(image);
return NULL;
}
image->modifier = tiling_to_modifier(image->bo->tiling_mode);
return image;
}
static __DRIimage *
intel_create_image_from_renderbuffer(__DRIcontext *context,
int renderbuffer, void *loaderPrivate)
{
__DRIimage *image;
struct brw_context *brw = context->driverPrivate;
struct gl_context *ctx = &brw->ctx;
struct gl_renderbuffer *rb;
struct intel_renderbuffer *irb;
rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
if (!rb) {
_mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
return NULL;
}
irb = intel_renderbuffer(rb);
intel_miptree_make_shareable(brw, irb->mt);
image = calloc(1, sizeof *image);
if (image == NULL)
return NULL;
image->internal_format = rb->InternalFormat;
image->format = rb->Format;
image->modifier = tiling_to_modifier(
isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
image->offset = 0;
image->data = loaderPrivate;
brw_bo_unreference(image->bo);
image->bo = irb->mt->bo;
brw_bo_reference(irb->mt->bo);
image->width = rb->Width;
image->height = rb->Height;
image->pitch = irb->mt->surf.row_pitch_B;
image->dri_format = driGLFormatToImageFormat(image->format);
image->has_depthstencil = irb->mt->stencil_mt? true : false;
rb->NeedsFinishRenderTexture = true;
return image;
}
static __DRIimage *
intel_create_image_from_texture(__DRIcontext *context, int target,
unsigned texture, int zoffset,
int level,
unsigned *error,
void *loaderPrivate)
{
__DRIimage *image;
struct brw_context *brw = context->driverPrivate;
struct gl_texture_object *obj;
struct intel_texture_object *iobj;
GLuint face = 0;
obj = _mesa_lookup_texture(&brw->ctx, texture);
if (!obj || obj->Target != target) {
*error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
return NULL;
}
if (target == GL_TEXTURE_CUBE_MAP)
face = zoffset;
_mesa_test_texobj_completeness(&brw->ctx, obj);
iobj = intel_texture_object(obj);
if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
*error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
return NULL;
}
if (level < obj->BaseLevel || level > obj->_MaxLevel) {
*error = __DRI_IMAGE_ERROR_BAD_MATCH;
return NULL;
}
if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
*error = __DRI_IMAGE_ERROR_BAD_MATCH;
return NULL;
}
image = calloc(1, sizeof *image);
if (image == NULL) {
*error = __DRI_IMAGE_ERROR_BAD_ALLOC;
return NULL;
}
image->internal_format = obj->Image[face][level]->InternalFormat;
image->format = obj->Image[face][level]->TexFormat;
image->modifier = tiling_to_modifier(
isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
image->data = loaderPrivate;
intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
image->dri_format = driGLFormatToImageFormat(image->format);
image->has_depthstencil = iobj->mt->stencil_mt? true : false;
image->planar_format = iobj->planar_format;
if (image->dri_format == __DRI_IMAGE_FORMAT_NONE) {
*error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
free(image);
return NULL;
}
*error = __DRI_IMAGE_ERROR_SUCCESS;
return image;
}
static void
intel_destroy_image(__DRIimage *image)
{
brw_bo_unreference(image->bo);
free(image);
}
enum modifier_priority {
MODIFIER_PRIORITY_INVALID = 0,
MODIFIER_PRIORITY_LINEAR,
MODIFIER_PRIORITY_X,
MODIFIER_PRIORITY_Y,
MODIFIER_PRIORITY_Y_CCS,
};
const uint64_t priority_to_modifier[] = {
[MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
[MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
[MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
[MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
[MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
};
static uint64_t
select_best_modifier(struct gen_device_info *devinfo,
int dri_format,
const uint64_t *modifiers,
const unsigned count)
{
enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
for (int i = 0; i < count; i++) {
if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
continue;
switch (modifiers[i]) {
case I915_FORMAT_MOD_Y_TILED_CCS:
prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
break;
case I915_FORMAT_MOD_Y_TILED:
prio = MAX2(prio, MODIFIER_PRIORITY_Y);
break;
case I915_FORMAT_MOD_X_TILED:
prio = MAX2(prio, MODIFIER_PRIORITY_X);
break;
case DRM_FORMAT_MOD_LINEAR:
prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
break;
case DRM_FORMAT_MOD_INVALID:
default:
break;
}
}
return priority_to_modifier[prio];
}
static __DRIimage *
intel_create_image_common(__DRIscreen *dri_screen,
int width, int height, int format,
unsigned int use,
const uint64_t *modifiers,
unsigned count,
void *loaderPrivate)
{
__DRIimage *image;
struct intel_screen *screen = dri_screen->driverPrivate;
uint64_t modifier = DRM_FORMAT_MOD_INVALID;
bool ok;
/* Callers of this may specify a modifier, or a dri usage, but not both. The
* newer modifier interface deprecates the older usage flags.
*/
assert(!(use && count));
if (use & __DRI_IMAGE_USE_CURSOR) {
if (width != 64 || height != 64)
return NULL;
modifier = DRM_FORMAT_MOD_LINEAR;
}
if (use & __DRI_IMAGE_USE_LINEAR)
modifier = DRM_FORMAT_MOD_LINEAR;
if (modifier == DRM_FORMAT_MOD_INVALID) {
if (modifiers) {
/* User requested specific modifiers */
modifier = select_best_modifier(&screen->devinfo, format,
modifiers, count);
if (modifier == DRM_FORMAT_MOD_INVALID)
return NULL;
} else {
/* Historically, X-tiled was the default, and so lack of modifier means
* X-tiled.
*/
modifier = I915_FORMAT_MOD_X_TILED;
}
}
image = intel_allocate_image(screen, format, loaderPrivate);
if (image == NULL)
return NULL;
const struct isl_drm_modifier_info *mod_info =
isl_drm_modifier_get_info(modifier);
struct isl_surf surf;
ok = isl_surf_init(&screen->isl_dev, &surf,
.dim = ISL_SURF_DIM_2D,
.format = brw_isl_format_for_mesa_format(image->format),
.width = width,
.height = height,
.depth = 1,
.levels = 1,
.array_len = 1,
.samples = 1,
.usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
ISL_SURF_USAGE_TEXTURE_BIT |
ISL_SURF_USAGE_STORAGE_BIT |
((use & __DRI_IMAGE_USE_SCANOUT) ?
ISL_SURF_USAGE_DISPLAY_BIT : 0),
.tiling_flags = (1 << mod_info->tiling));
assert(ok);
if (!ok) {
free(image);
return NULL;
}
struct isl_surf aux_surf = {0,};
if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, NULL, 0);
if (!ok) {
free(image);
return NULL;
}
} else {
assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
aux_surf.size_B = 0;
}
/* We request that the bufmgr zero the buffer for us for two reasons:
*
* 1) If a buffer gets re-used from the pool, we don't want to leak random
* garbage from our process to some other.
*
* 2) For images with CCS_E, we want to ensure that the CCS starts off in
* a valid state. A CCS value of 0 indicates that the given block is
* in the pass-through state which is what we want.
*/
image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
surf.size_B + aux_surf.size_B,
BRW_MEMZONE_OTHER,
isl_tiling_to_i915_tiling(mod_info->tiling),
surf.row_pitch_B, BO_ALLOC_ZEROED);
if (image->bo == NULL) {
free(image);
return NULL;
}
image->width = width;
image->height = height;
image->pitch = surf.row_pitch_B;
image->modifier = modifier;
if (aux_surf.size_B) {
image->aux_offset = surf.size_B;
image->aux_pitch = aux_surf.row_pitch_B;
image->aux_size = aux_surf.size_B;
}
return image;
}
static __DRIimage *
intel_create_image(__DRIscreen *dri_screen,
int width, int height, int format,
unsigned int use,
void *loaderPrivate)
{
return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
loaderPrivate);
}
static void *
intel_map_image(__DRIcontext *context, __DRIimage *image,
int x0, int y0, int width, int height,
unsigned int flags, int *stride, void **map_info)
{
struct brw_context *brw = NULL;
struct brw_bo *bo = NULL;
void *raw_data = NULL;
GLuint pix_w = 1;
GLuint pix_h = 1;
GLint pix_bytes = 1;
if (!context || !image || !stride || !map_info || *map_info)
return NULL;
if (x0 < 0 || x0 >= image->width || width > image->width - x0)
return NULL;
if (y0 < 0 || y0 >= image->height || height > image->height - y0)
return NULL;
if (flags & MAP_INTERNAL_MASK)
return NULL;
brw = context->driverPrivate;
bo = image->bo;
assert(brw);
assert(bo);
/* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
raw_data = brw_bo_map(brw, bo, flags);
if (!raw_data)
return NULL;
_mesa_get_format_block_size(image->format, &pix_w, &pix_h);
pix_bytes = _mesa_get_format_bytes(image->format);
assert(pix_w);
assert(pix_h);
assert(pix_bytes > 0);
raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
brw_bo_reference(bo);
*stride = image->pitch;
*map_info = bo;
return raw_data;
}
static void
intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
{
struct brw_bo *bo = map_info;
brw_bo_unmap(bo);
brw_bo_unreference(bo);
}
static __DRIimage *
intel_create_image_with_modifiers(__DRIscreen *dri_screen,
int width, int height, int format,
const uint64_t *modifiers,
const unsigned count,
void *loaderPrivate)
{
return intel_create_image_common(dri_screen, width, height, format, 0,
modifiers, count, loaderPrivate);
}
static GLboolean
intel_query_image(__DRIimage *image, int attrib, int *value)
{
switch (attrib) {
case __DRI_IMAGE_ATTRIB_STRIDE:
*value = image->pitch;
return true;
case __DRI_IMAGE_ATTRIB_HANDLE: {
__DRIscreen *dri_screen = image->screen->driScrnPriv;
uint32_t handle;
if (brw_bo_export_gem_handle_for_device(image->bo,
dri_screen->fd,
&handle))
return false;
*value = handle;
return true;
}
case __DRI_IMAGE_ATTRIB_NAME:
return !brw_bo_flink(image->bo, (uint32_t *) value);
case __DRI_IMAGE_ATTRIB_FORMAT:
*value = image->dri_format;
return true;
case __DRI_IMAGE_ATTRIB_WIDTH:
*value = image->width;
return true;
case __DRI_IMAGE_ATTRIB_HEIGHT:
*value = image->height;
return true;
case __DRI_IMAGE_ATTRIB_COMPONENTS:
if (image->planar_format == NULL)
return false;
*value = image->planar_format->components;
return true;
case __DRI_IMAGE_ATTRIB_FD:
return !brw_bo_gem_export_to_prime(image->bo, value);
case __DRI_IMAGE_ATTRIB_FOURCC:
return intel_image_get_fourcc(image, value);
case __DRI_IMAGE_ATTRIB_NUM_PLANES:
if (isl_drm_modifier_has_aux(image->modifier)) {
assert(!image->planar_format || image->planar_format->nplanes == 1);
*value = 2;
} else if (image->planar_format) {
*value = image->planar_format->nplanes;
} else {
*value = 1;
}
return true;
case __DRI_IMAGE_ATTRIB_OFFSET:
*value = image->offset;
return true;
case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
*value = (image->modifier & 0xffffffff);
return true;
case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
*value = ((image->modifier >> 32) & 0xffffffff);
return true;
default:
return false;
}
}
static GLboolean
intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
uint32_t fourcc, uint64_t modifier,
int attrib, uint64_t *value)
{
struct intel_screen *screen = dri_screen->driverPrivate;
const struct intel_image_format *f = intel_image_format_lookup(fourcc);
if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
return false;
switch (attrib) {
case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
*value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
return true;
default:
return false;
}
}
static __DRIimage *
intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
{
__DRIimage *image;
image = calloc(1, sizeof *image);
if (image == NULL)
return NULL;
brw_bo_reference(orig_image->bo);
image->screen = orig_image->screen;
image->bo = orig_image->bo;
image->internal_format = orig_image->internal_format;
image->planar_format = orig_image->planar_format;
image->dri_format = orig_image->dri_format;
image->format = orig_image->format;
image->modifier = orig_image->modifier;
image->offset = orig_image->offset;
image->width = orig_image->width;
image->height = orig_image->height;
image->pitch = orig_image->pitch;
image->tile_x = orig_image->tile_x;
image->tile_y = orig_image->tile_y;
image->has_depthstencil = orig_image->has_depthstencil;
image->data = loaderPrivate;
image->aux_offset = orig_image->aux_offset;
image->aux_pitch = orig_image->aux_pitch;
memcpy(image->strides, orig_image->strides, sizeof(image->strides));
memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
return image;
}
static GLboolean
intel_validate_usage(__DRIimage *image, unsigned int use)
{
if (use & __DRI_IMAGE_USE_CURSOR) {
if (image->width != 64 || image->height != 64)
return GL_FALSE;
}
return GL_TRUE;
}
static __DRIimage *
intel_create_image_from_names(__DRIscreen *dri_screen,
int width, int height, int fourcc,
int *names, int num_names,
int *strides, int *offsets,
void *loaderPrivate)
{
const struct intel_image_format *f = NULL;
__DRIimage *image;
int i, index;
if (dri_screen == NULL || names == NULL || num_names != 1)
return NULL;
f = intel_image_format_lookup(fourcc);
if (f == NULL)
return NULL;
image = intel_create_image_from_name(dri_screen, width, height,
__DRI_IMAGE_FORMAT_NONE,
names[0], strides[0],
loaderPrivate);
if (image == NULL)
return NULL;
image->planar_format = f;
for (i = 0; i < f->nplanes; i++) {
index = f->planes[i].buffer_index;
image->offsets[index] = offsets[index];
image->strides[index] = strides[index];
}
return image;
}
static __DRIimage *
intel_create_image_from_fds_common(__DRIscreen *dri_screen,
int width, int height, int fourcc,
uint64_t modifier, int *fds, int num_fds,
int *strides, int *offsets,
void *loaderPrivate)
{
struct intel_screen *screen = dri_screen->driverPrivate;
const struct intel_image_format *f;
__DRIimage *image;
int i, index;
bool ok;
if (fds == NULL || num_fds < 1)
return NULL;
f = intel_image_format_lookup(fourcc);
if (f == NULL)
return NULL;
if (modifier != DRM_FORMAT_MOD_INVALID &&
!modifier_is_supported(&screen->devinfo, f, 0, modifier))
return NULL;
if (f->nplanes == 1)
image = intel_allocate_image(screen, f->planes[0].dri_format,
loaderPrivate);
else
image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
loaderPrivate);
if (image == NULL)
return NULL;
image->width = width;
image->height = height;
image->pitch = strides[0];
image->planar_format = f;
if (modifier != DRM_FORMAT_MOD_INVALID) {
const struct isl_drm_modifier_info *mod_info =
isl_drm_modifier_get_info(modifier);
uint32_t tiling = isl_tiling_to_i915_tiling(mod_info->tiling);
image->bo = brw_bo_gem_create_from_prime_tiled(screen->bufmgr, fds[0],
tiling, strides[0]);
} else {
image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
}
if (image->bo == NULL) {
free(image);
return NULL;
}
/* We only support all planes from the same bo.
* brw_bo_gem_create_from_prime() should return the same pointer for all
* fds received here */
for (i = 1; i < num_fds; i++) {
struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
brw_bo_unreference(aux);
if (aux != image->bo) {
brw_bo_unreference(image->bo);
free(image);
return NULL;
}
}
if (modifier != DRM_FORMAT_MOD_INVALID)
image->modifier = modifier;
else
image->modifier = tiling_to_modifier(image->bo->tiling_mode);
const struct isl_drm_modifier_info *mod_info =
isl_drm_modifier_get_info(image->modifier);
int size = 0;
struct isl_surf surf;
for (i = 0; i < f->nplanes; i++) {
index = f->planes[i].buffer_index;
image->offsets[index] = offsets[index];
image->strides[index] = strides[index];
mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
/* The images we will create are actually based on the RGBA non-sRGB
* version of the format.
*/
format = _mesa_format_fallback_rgbx_to_rgba(format);
format = _mesa_get_srgb_format_linear(format);
ok = isl_surf_init(&screen->isl_dev, &surf,
.dim = ISL_SURF_DIM_2D,
.format = brw_isl_format_for_mesa_format(format),
.width = image->width >> f->planes[i].width_shift,
.height = image->height >> f->planes[i].height_shift,
.depth = 1,
.levels = 1,
.array_len = 1,
.samples = 1,
.row_pitch_B = strides[index],
.usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
ISL_SURF_USAGE_TEXTURE_BIT |
ISL_SURF_USAGE_STORAGE_BIT,
.tiling_flags = (1 << mod_info->tiling));
if (!ok) {
brw_bo_unreference(image->bo);
free(image);
return NULL;
}
const int end = offsets[index] + surf.size_B;
if (size < end)
size = end;
}
if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
/* Even though we initialize surf in the loop above, we know that
* anything with CCS_E will have exactly one plane so surf is properly
* initialized when we get here.
*/
assert(f->nplanes == 1);
image->aux_offset = offsets[1];
image->aux_pitch = strides[1];
/* Scanout hardware requires that the CCS be placed after the main
* surface in memory. We consider any CCS that is placed any earlier in
* memory to be invalid and reject it.
*
* At some point in the future, this restriction may be relaxed if the
* hardware becomes less strict but we may need a new modifier for that.
*/
assert(size > 0);
if (image->aux_offset < size) {
brw_bo_unreference(image->bo);
free(image);
return NULL;
}
struct isl_surf aux_surf = {0,};
ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, NULL,
image->aux_pitch);
if (!ok) {
brw_bo_unreference(image->bo);
free(image);
return NULL;
}
image->aux_size = aux_surf.size_B;
const int end = image->aux_offset + aux_surf.size_B;
if (size < end)
size = end;
} else {
assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
}
/* Check that the requested image actually fits within the BO. 'size'
* is already relative to the offsets, so we don't need to add that. */
if (image->bo->size == 0) {
image->bo->size = size;
} else if (size > image->bo->size) {
brw_bo_unreference(image->bo);
free(image);
return NULL;
}
if (f->nplanes == 1) {
image->offset = image->offsets[0];
intel_image_warn_if_unaligned(image, __func__);
}
return image;
}
static __DRIimage *
intel_create_image_from_fds(__DRIscreen *dri_screen,
int width, int height, int fourcc,
int *fds, int num_fds, int *strides, int *offsets,
void *loaderPrivate)
{
return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
DRM_FORMAT_MOD_INVALID,
fds, num_fds, strides, offsets,
loaderPrivate);
}
static __DRIimage *
intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
int width, int height,
int fourcc, uint64_t modifier,
int *fds, int num_fds,
int *strides, int *offsets,
enum __DRIYUVColorSpace yuv_color_space,
enum __DRISampleRange sample_range,
enum __DRIChromaSiting horizontal_siting,
enum __DRIChromaSiting vertical_siting,
unsigned *error,
void *loaderPrivate)
{
__DRIimage *image;
const struct intel_image_format *f = intel_image_format_lookup(fourcc);
if (!f) {
*error = __DRI_IMAGE_ERROR_BAD_MATCH;
return NULL;
}
image = intel_create_image_from_fds_common(dri_screen, width, height,
fourcc, modifier,
fds, num_fds, strides, offsets,
loaderPrivate);
/*
* Invalid parameters and any inconsistencies between are assumed to be
* checked by the caller. Therefore besides unsupported formats one can fail
* only in allocation.
*/
if (!image) {
*error = __DRI_IMAGE_ERROR_BAD_ALLOC;
return NULL;
}
image->yuv_color_space = yuv_color_space;
image->sample_range = sample_range;
image->horizontal_siting = horizontal_siting;
image->vertical_siting = vertical_siting;
image->imported_dmabuf = true;
*error = __DRI_IMAGE_ERROR_SUCCESS;
return image;
}
static __DRIimage *
intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
int width, int height, int fourcc,
int *fds, int num_fds,
int *strides, int *offsets,
enum __DRIYUVColorSpace yuv_color_space,
enum __DRISampleRange sample_range,
enum __DRIChromaSiting horizontal_siting,
enum __DRIChromaSiting vertical_siting,
unsigned *error,
void *loaderPrivate)
{
return intel_create_image_from_dma_bufs2(dri_screen, width, height,
fourcc, DRM_FORMAT_MOD_INVALID,
fds, num_fds, strides, offsets,
yuv_color_space,
sample_range,
horizontal_siting,
vertical_siting,
error,
loaderPrivate);
}
static bool
intel_image_format_is_supported(const struct gen_device_info *devinfo,
const struct intel_image_format *fmt)
{
/* Currently, all formats with an intel_image_format are available on all
* platforms so there's really nothing to check there.
*/
#ifndef NDEBUG
if (fmt->nplanes == 1) {
mesa_format format = driImageFormatToGLFormat(fmt->planes[0].dri_format);
/* The images we will create are actually based on the RGBA non-sRGB
* version of the format.
*/
format = _mesa_format_fallback_rgbx_to_rgba(format);
format = _mesa_get_srgb_format_linear(format);
enum isl_format isl_format = brw_isl_format_for_mesa_format(format);
assert(isl_format_supports_rendering(devinfo, isl_format));
}
#endif
return true;
}
static GLboolean
intel_query_dma_buf_formats(__DRIscreen *_screen, int max,
int *formats, int *count)
{
struct intel_screen *screen = _screen->driverPrivate;
int num_formats = 0, i;
for (i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
/* These formats are valid DRI formats but do not exist in drm_fourcc.h
* in the Linux kernel. We don't want to accidentally advertise them
* them through the EGL layer.
*/
if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888 ||
intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SABGR8888 ||
intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SXRGB8888)
continue;
if (!intel_image_format_is_supported(&screen->devinfo,
&intel_image_formats[i]))
continue;
num_formats++;
if (max == 0)
continue;
formats[num_formats - 1] = intel_image_formats[i].fourcc;
if (num_formats >= max)
break;
}
*count = num_formats;
return true;
}
static GLboolean
intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
uint64_t *modifiers,
unsigned int *external_only,
int *count)
{
struct intel_screen *screen = _screen->driverPrivate;
const struct intel_image_format *f;
int num_mods = 0, i;
f = intel_image_format_lookup(fourcc);
if (f == NULL)
return false;
if (!intel_image_format_is_supported(&screen->devinfo, f))
return false;
for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
uint64_t modifier = supported_modifiers[i].modifier;
if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
continue;
num_mods++;
if (max == 0)
continue;
modifiers[num_mods - 1] = modifier;
if (num_mods >= max)
break;
}
if (external_only != NULL) {
for (i = 0; i < num_mods && i < max; i++) {
if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
f->components == __DRI_IMAGE_COMPONENTS_AYUV ||
f->components == __DRI_IMAGE_COMPONENTS_XYUV ||
f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV ||
f->components == __DRI_IMAGE_COMPONENTS_Y_UXVX) {
external_only[i] = GL_TRUE;
}
else {
external_only[i] = GL_FALSE;
}
}
}
*count = num_mods;
return true;
}
static __DRIimage *
intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
{
int width, height, offset, stride, size, dri_format;
__DRIimage *image;
if (parent == NULL)
return NULL;
width = parent->width;
height = parent->height;
const struct intel_image_format *f = parent->planar_format;
if (f && plane < f->nplanes) {
/* Use the planar format definition. */
width >>= f->planes[plane].width_shift;
height >>= f->planes[plane].height_shift;
dri_format = f->planes[plane].dri_format;
int index = f->planes[plane].buffer_index;
offset = parent->offsets[index];
stride = parent->strides[index];
size = height * stride;
} else if (plane == 0) {
/* The only plane of a non-planar image: copy the parent definition
* directly. */
dri_format = parent->dri_format;
offset = parent->offset;
stride = parent->pitch;
size = height * stride;
} else if (plane == 1 && parent->modifier != DRM_FORMAT_MOD_INVALID &&
isl_drm_modifier_has_aux(parent->modifier)) {
/* Auxiliary plane */
dri_format = parent->dri_format;
offset = parent->aux_offset;
stride = parent->aux_pitch;
size = parent->aux_size;
} else {
return NULL;
}
if (offset + size > parent->bo->size) {
_mesa_warning(NULL, "intel_from_planar: subimage out of bounds");
return NULL;
}
image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
if (image == NULL)
return NULL;
image->bo = parent->bo;
brw_bo_reference(parent->bo);
image->modifier = parent->modifier;
image->width = width;
image->height = height;
image->pitch = stride;
image->offset = offset;
intel_image_warn_if_unaligned(image, __func__);
return image;
}
static const __DRIimageExtension intelImageExtension = {
.base = { __DRI_IMAGE, 16 },
.createImageFromName = intel_create_image_from_name,
.createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
.destroyImage = intel_destroy_image,
.createImage = intel_create_image,
.queryImage = intel_query_image,
.dupImage = intel_dup_image,
.validateUsage = intel_validate_usage,
.createImageFromNames = intel_create_image_from_names,
.fromPlanar = intel_from_planar,
.createImageFromTexture = intel_create_image_from_texture,
.createImageFromFds = intel_create_image_from_fds,
.createImageFromDmaBufs = intel_create_image_from_dma_bufs,
.blitImage = NULL,
.getCapabilities = NULL,
.mapImage = intel_map_image,
.unmapImage = intel_unmap_image,
.createImageWithModifiers = intel_create_image_with_modifiers,
.createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
.queryDmaBufFormats = intel_query_dma_buf_formats,
.queryDmaBufModifiers = intel_query_dma_buf_modifiers,
.queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
};
static int
brw_query_renderer_integer(__DRIscreen *dri_screen,
int param, unsigned int *value)
{
const struct intel_screen *const screen =
(struct intel_screen *) dri_screen->driverPrivate;
switch (param) {
case __DRI2_RENDERER_VENDOR_ID:
value[0] = 0x8086;
return 0;
case __DRI2_RENDERER_DEVICE_ID:
value[0] = screen->deviceID;
return 0;
case __DRI2_RENDERER_ACCELERATED:
value[0] = 1;
return 0;
case __DRI2_RENDERER_VIDEO_MEMORY: {
/* Once a batch uses more than 75% of the maximum mappable size, we
* assume that there's some fragmentation, and we start doing extra
* flushing, etc. That's the big cliff apps will care about.
*/
const unsigned gpu_mappable_megabytes =
screen->aperture_threshold / (1024 * 1024);
const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
const long system_page_size = sysconf(_SC_PAGE_SIZE);
if (system_memory_pages <= 0 || system_page_size <= 0)
return -1;
const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
* (uint64_t) system_page_size;
const unsigned system_memory_megabytes =
(unsigned) (system_memory_bytes / (1024 * 1024));
value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
return 0;
}
case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
value[0] = 1;
return 0;
case __DRI2_RENDERER_HAS_TEXTURE_3D:
value[0] = 1;
return 0;
case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
value[0] = 0;
if (brw_hw_context_set_priority(screen->bufmgr,
0, GEN_CONTEXT_HIGH_PRIORITY) == 0)
value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
if (brw_hw_context_set_priority(screen->bufmgr,
0, GEN_CONTEXT_LOW_PRIORITY) == 0)
value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
/* reset to default last, just in case */
if (brw_hw_context_set_priority(screen->bufmgr,
0, GEN_CONTEXT_MEDIUM_PRIORITY) == 0)
value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
return 0;
case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
value[0] = 1;
return 0;
default:
return driQueryRendererIntegerCommon(dri_screen, param, value);
}
return -1;
}
static int
brw_query_renderer_string(__DRIscreen *dri_screen,
int param, const char **value)
{
const struct intel_screen *screen =
(struct intel_screen *) dri_screen->driverPrivate;
switch (param) {
case __DRI2_RENDERER_VENDOR_ID:
value[0] = brw_vendor_string;
return 0;
case __DRI2_RENDERER_DEVICE_ID:
value[0] = brw_get_renderer_string(screen);
return 0;
default:
break;
}
return -1;
}
static void
brw_set_cache_funcs(__DRIscreen *dri_screen,
__DRIblobCacheSet set, __DRIblobCacheGet get)
{
const struct intel_screen *const screen =
(struct intel_screen *) dri_screen->driverPrivate;
if (!screen->disk_cache)
return;
disk_cache_set_callbacks(screen->disk_cache, set, get);
}
static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
.base = { __DRI2_RENDERER_QUERY, 1 },
.queryInteger = brw_query_renderer_integer,
.queryString = brw_query_renderer_string
};
static const __DRIrobustnessExtension dri2Robustness = {
.base = { __DRI2_ROBUSTNESS, 1 }
};
static const __DRI2blobExtension intelBlobExtension = {
.base = { __DRI2_BLOB, 1 },
.set_cache_funcs = brw_set_cache_funcs
};
static const __DRImutableRenderBufferDriverExtension intelMutableRenderBufferExtension = {
.base = { __DRI_MUTABLE_RENDER_BUFFER_DRIVER, 1 },
};
static const __DRIextension *screenExtensions[] = {
&intelTexBufferExtension.base,
&intelFenceExtension.base,
&intelFlushExtension.base,
&intelImageExtension.base,
&intelRendererQueryExtension.base,
&intelMutableRenderBufferExtension.base,
&dri2ConfigQueryExtension.base,
&dri2NoErrorExtension.base,
&intelBlobExtension.base,
NULL
};
static const __DRIextension *intelRobustScreenExtensions[] = {
&intelTexBufferExtension.base,
&intelFenceExtension.base,
&intelFlushExtension.base,
&intelImageExtension.base,
&intelRendererQueryExtension.base,
&intelMutableRenderBufferExtension.base,
&dri2ConfigQueryExtension.base,
&dri2Robustness.base,
&dri2NoErrorExtension.base,
&intelBlobExtension.base,
NULL
};
static int
intel_get_param(struct intel_screen *screen, int param, int *value)
{
int ret = 0;
struct drm_i915_getparam gp;
memset(&gp, 0, sizeof(gp));
gp.param = param;
gp.value = value;
if (drmIoctl(screen->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
ret = -errno;
if (ret != -EINVAL)
_mesa_warning(NULL, "drm_i915_getparam: %d", ret);
}
return ret;
}
static bool
intel_get_boolean(struct intel_screen *screen, int param)
{
int value = 0;
return (intel_get_param(screen, param, &value) == 0) && value;
}
static int
intel_get_integer(struct intel_screen *screen, int param)
{
int value = -1;
if (intel_get_param(screen, param, &value) == 0)
return value;
return -1;
}
static void
intelDestroyScreen(__DRIscreen * sPriv)
{
struct intel_screen *screen = sPriv->driverPrivate;
brw_bufmgr_unref(screen->bufmgr);
driDestroyOptionInfo(&screen->optionCache);
disk_cache_destroy(screen->disk_cache);
ralloc_free(screen);
sPriv->driverPrivate = NULL;
}
/**
* Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
*
*_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
* when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
* this does not allocate GPU memory.
*/
static GLboolean
intelCreateBuffer(__DRIscreen *dri_screen,
__DRIdrawable * driDrawPriv,
const struct gl_config * mesaVis, GLboolean isPixmap)
{
struct intel_renderbuffer *rb;
struct intel_screen *screen = (struct intel_screen *)
dri_screen->driverPrivate;
mesa_format rgbFormat;
unsigned num_samples =
intel_quantize_num_samples(screen, mesaVis->samples);
if (isPixmap)
return false;
struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
if (!fb)
return false;
_mesa_initialize_window_framebuffer(fb, mesaVis);
if (screen->winsys_msaa_samples_override != -1) {
num_samples = screen->winsys_msaa_samples_override;
fb->Visual.samples = num_samples;
}
if (mesaVis->redBits == 16 && mesaVis->alphaBits > 0 && mesaVis->floatMode) {
rgbFormat = MESA_FORMAT_RGBA_FLOAT16;
} else if (mesaVis->redBits == 16 && mesaVis->floatMode) {
rgbFormat = MESA_FORMAT_RGBX_FLOAT16;
} else if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
: MESA_FORMAT_R10G10B10A2_UNORM;
} else if (mesaVis->redBits == 10) {
rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
: MESA_FORMAT_R10G10B10X2_UNORM;
} else if (mesaVis->redBits == 5) {
rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
: MESA_FORMAT_B5G6R5_UNORM;
} else if (mesaVis->alphaBits == 0) {
rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_SRGB
: MESA_FORMAT_B8G8R8X8_SRGB;
fb->Visual.sRGBCapable = true;
} else if (mesaVis->sRGBCapable) {
rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
: MESA_FORMAT_B8G8R8A8_SRGB;
fb->Visual.sRGBCapable = true;
} else {
rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
: MESA_FORMAT_B8G8R8A8_SRGB;
fb->Visual.sRGBCapable = true;
}
/* mesaVis->sRGBCapable was set, user is asking for sRGB */
bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
/* setup the hardware-based renderbuffers */
rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
_mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
rb->need_srgb = srgb_cap_set;
if (mesaVis->doubleBufferMode) {
rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
_mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
rb->need_srgb = srgb_cap_set;
}
/*
* Assert here that the gl_config has an expected depth/stencil bit
* combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
* which constructs the advertised configs.)
*/
if (mesaVis->depthBits == 24) {
assert(mesaVis->stencilBits == 8);
if (screen->devinfo.has_hiz_and_separate_stencil) {
rb = intel_create_private_renderbuffer(screen,
MESA_FORMAT_Z24_UNORM_X8_UINT,
num_samples);
_mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
num_samples);
_mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
} else {
/*
* Use combined depth/stencil. Note that the renderbuffer is
* attached to two attachment points.
*/
rb = intel_create_private_renderbuffer(screen,
MESA_FORMAT_Z24_UNORM_S8_UINT,
num_samples);
_mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
_mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
}
}
else if (mesaVis->depthBits == 16) {
assert(mesaVis->stencilBits == 0);
rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
num_samples);
_mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
}
else {
assert(mesaVis->depthBits == 0);
assert(mesaVis->stencilBits == 0);
}
/* now add any/all software-based renderbuffers we may need */
_swrast_add_soft_renderbuffers(fb,
false, /* never sw color */
false, /* never sw depth */
false, /* never sw stencil */
mesaVis->accumRedBits > 0,
false, /* never sw alpha */
false /* never sw aux */ );
driDrawPriv->driverPrivate = fb;
return true;
}
static void
intelDestroyBuffer(__DRIdrawable * driDrawPriv)
{
struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
_mesa_reference_framebuffer(&fb, NULL);
}
static void
intel_cs_timestamp_frequency(struct intel_screen *screen)
{
/* We shouldn't need to update gen_device_info.timestamp_frequency prior to
* gen10, PCI-id is enough to figure it out.
*/
assert(screen->devinfo.gen >= 10);
int ret, freq;
ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
&freq);
if (ret < 0) {
_mesa_warning(NULL,
"Kernel 4.15 required to read the CS timestamp frequency.\n");
return;
}
screen->devinfo.timestamp_frequency = freq;
}
static void
intel_detect_sseu(struct intel_screen *screen)
{
assert(screen->devinfo.gen >= 8);
int ret;
screen->subslice_total = -1;
screen->eu_total = -1;
ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
&screen->subslice_total);
if (ret < 0 && ret != -EINVAL)
goto err_out;
ret = intel_get_param(screen,
I915_PARAM_EU_TOTAL, &screen->eu_total);
if (ret < 0 && ret != -EINVAL)
goto err_out;
/* Without this information, we cannot get the right Braswell brandstrings,
* and we have to use conservative numbers for GPGPU on many platforms, but
* otherwise, things will just work.
*/
if (screen->subslice_total < 1 || screen->eu_total < 1)
_mesa_warning(NULL,
"Kernel 4.1 required to properly query GPU properties.\n");
return;
err_out:
screen->subslice_total = -1;
screen->eu_total = -1;
_mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
}
static bool
intel_init_bufmgr(struct intel_screen *screen)
{
__DRIscreen *dri_screen = screen->driScrnPriv;
if (getenv("INTEL_NO_HW") != NULL)
screen->no_hw = true;
bool bo_reuse = false;
int bo_reuse_mode = driQueryOptioni(&screen->optionCache, "bo_reuse");
switch (bo_reuse_mode) {
case DRI_CONF_BO_REUSE_DISABLED:
break;
case DRI_CONF_BO_REUSE_ALL:
bo_reuse = true;
break;
}
screen->bufmgr = brw_bufmgr_get_for_fd(&screen->devinfo, dri_screen->fd, bo_reuse);
if (screen->bufmgr == NULL) {
fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
__func__, __LINE__);
return false;
}
screen->fd = brw_bufmgr_get_fd(screen->bufmgr);
if (!intel_get_boolean(screen, I915_PARAM_HAS_EXEC_NO_RELOC)) {
fprintf(stderr, "[%s: %u] Kernel 3.9 required.\n", __func__, __LINE__);
return false;
}
return true;
}
static bool
intel_detect_swizzling(struct intel_screen *screen)
{
/* Broadwell PRM says:
*
* "Before Gen8, there was a historical configuration control field to
* swizzle address bit[6] for in X/Y tiling modes. This was set in three
* different places: TILECTL[1:0], ARB_MODE[5:4], and
* DISP_ARB_CTL[14:13].
*
* For Gen8 and subsequent generations, the swizzle fields are all
* reserved, and the CPU's memory controller performs all address
* swizzling modifications."
*/
if (screen->devinfo.gen >= 8)
return false;
uint32_t tiling = I915_TILING_X;
uint32_t swizzle_mode = 0;
struct brw_bo *buffer =
brw_bo_alloc_tiled(screen->bufmgr, "swizzle test", 32768,
BRW_MEMZONE_OTHER, tiling, 512, 0);
if (buffer == NULL)
return false;
brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
brw_bo_unreference(buffer);
return swizzle_mode != I915_BIT_6_SWIZZLE_NONE;
}
static int
intel_detect_timestamp(struct intel_screen *screen)
{
uint64_t dummy = 0, last = 0;
int upper, lower, loops;
/* On 64bit systems, some old kernels trigger a hw bug resulting in the
* TIMESTAMP register being shifted and the low 32bits always zero.
*
* More recent kernels offer an interface to read the full 36bits
* everywhere.
*/
if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
return 3;
/* Determine if we have a 32bit or 64bit kernel by inspecting the
* upper 32bits for a rapidly changing timestamp.
*/
if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
return 0;
upper = lower = 0;
for (loops = 0; loops < 10; loops++) {
/* The TIMESTAMP should change every 80ns, so several round trips
* through the kernel should be enough to advance it.
*/
if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
return 0;
upper += (dummy >> 32) != (last >> 32);
if (upper > 1) /* beware 32bit counter overflow */
return 2; /* upper dword holds the low 32bits of the timestamp */
lower += (dummy & 0xffffffff) != (last & 0xffffffff);
if (lower > 1)
return 1; /* timestamp is unshifted */
last = dummy;
}
/* No advancement? No timestamp! */
return 0;
}
/**
* Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
*
* Some combinations of hardware and kernel versions allow this feature,
* while others don't. Instead of trying to enumerate every case, just
* try and write a register and see if works.
*/
static bool
intel_detect_pipelined_register(struct intel_screen *screen,
int reg, uint32_t expected_value, bool reset)
{
if (screen->no_hw)
return false;
struct brw_bo *results, *bo;
uint32_t *batch;
uint32_t offset = 0;
void *map;
bool success = false;
/* Create a zero'ed temporary buffer for reading our results */
results = brw_bo_alloc(screen->bufmgr, "registers", 4096, BRW_MEMZONE_OTHER);
if (results == NULL)
goto err;
bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, BRW_MEMZONE_OTHER);
if (bo == NULL)
goto err_results;
map = brw_bo_map(NULL, bo, MAP_WRITE);
if (!map)
goto err_batch;
batch = map;
/* Write the register. */
*batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
*batch++ = reg;
*batch++ = expected_value;
/* Save the register's value back to the buffer. */
*batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
*batch++ = reg;
struct drm_i915_gem_relocation_entry reloc = {
.offset = (char *) batch - (char *) map,
.delta = offset * sizeof(uint32_t),
.target_handle = results->gem_handle,
.read_domains = I915_GEM_DOMAIN_INSTRUCTION,
.write_domain = I915_GEM_DOMAIN_INSTRUCTION,
};
*batch++ = reloc.presumed_offset + reloc.delta;
/* And afterwards clear the register */
if (reset) {
*batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
*batch++ = reg;
*batch++ = 0;
}
*batch++ = MI_BATCH_BUFFER_END;
struct drm_i915_gem_exec_object2 exec_objects[2] = {
{
.handle = results->gem_handle,
},
{
.handle = bo->gem_handle,
.relocation_count = 1,
.relocs_ptr = (uintptr_t) &reloc,
}
};
struct drm_i915_gem_execbuffer2 execbuf = {
.buffers_ptr = (uintptr_t) exec_objects,
.buffer_count = 2,
.batch_len = ALIGN((char *) batch - (char *) map, 8),
.flags = I915_EXEC_RENDER,
};
/* Don't bother with error checking - if the execbuf fails, the
* value won't be written and we'll just report that there's no access.
*/
drmIoctl(screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
/* Check whether the value got written. */
void *results_map = brw_bo_map(NULL, results, MAP_READ);
if (results_map) {
success = *((uint32_t *)results_map + offset) == expected_value;
brw_bo_unmap(results);
}
err_batch:
brw_bo_unreference(bo);
err_results:
brw_bo_unreference(results);
err:
return success;
}
static bool
intel_detect_pipelined_so(struct intel_screen *screen)
{
const struct gen_device_info *devinfo = &screen->devinfo;
/* Supposedly, Broadwell just works. */
if (devinfo->gen >= 8)
return true;
if (devinfo->gen <= 6)
return false;
/* See the big explanation about command parser versions below */
if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
return true;
/* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
* statistics registers), and we already reset it to zero before using it.
*/
return intel_detect_pipelined_register(screen,
GEN7_SO_WRITE_OFFSET(0),
0x1337d0d0,
false);
}
/**
* Return array of MSAA modes supported by the hardware. The array is
* zero-terminated and sorted in decreasing order.
*/
const int*
intel_supported_msaa_modes(const struct intel_screen *screen)
{
static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
static const int gen8_modes[] = {8, 4, 2, 0, -1};
static const int gen7_modes[] = {8, 4, 0, -1};
static const int gen6_modes[] = {4, 0, -1};
static const int gen4_modes[] = {0, -1};
if (screen->devinfo.gen >= 9) {
return gen9_modes;
} else if (screen->devinfo.gen >= 8) {
return gen8_modes;
} else if (screen->devinfo.gen >= 7) {
return gen7_modes;
} else if (screen->devinfo.gen == 6) {
return gen6_modes;
} else {
return gen4_modes;
}
}
static unsigned
intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
{
if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
dri_screen->dri2.loader->getCapability)
return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
dri_screen->image.loader->getCapability)
return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
return 0;
}
static bool
intel_allowed_format(__DRIscreen *dri_screen, mesa_format format)
{
struct intel_screen *screen = dri_screen->driverPrivate;
/* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
bool allow_rgba_ordering = intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING);
if (!allow_rgba_ordering &&
(format == MESA_FORMAT_R8G8B8A8_UNORM ||
format == MESA_FORMAT_R8G8B8X8_UNORM ||
format == MESA_FORMAT_R8G8B8A8_SRGB))
return false;
/* Shall we expose 10 bpc formats? */
bool allow_rgb10_configs = driQueryOptionb(&screen->optionCache,
"allow_rgb10_configs");
if (!allow_rgb10_configs &&
(format == MESA_FORMAT_B10G10R10A2_UNORM ||
format == MESA_FORMAT_B10G10R10X2_UNORM))
return false;
/* Shall we expose 565 formats? */
bool allow_rgb565_configs = driQueryOptionb(&screen->optionCache,
"allow_rgb565_configs");
if (!allow_rgb565_configs && format == MESA_FORMAT_B5G6R5_UNORM)
return false;
/* Shall we expose fp16 formats? */
bool allow_fp16_configs = driQueryOptionb(&screen->optionCache,
"allow_fp16_configs");
allow_fp16_configs &= intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_FP16);
if (!allow_fp16_configs &&
(format == MESA_FORMAT_RGBA_FLOAT16 ||
format == MESA_FORMAT_RGBX_FLOAT16))
return false;
return true;
}
static __DRIconfig**
intel_screen_make_configs(__DRIscreen *dri_screen)
{
static const mesa_format formats[] = {
MESA_FORMAT_B5G6R5_UNORM,
MESA_FORMAT_B8G8R8A8_UNORM,
MESA_FORMAT_B8G8R8X8_UNORM,
MESA_FORMAT_B8G8R8A8_SRGB,
MESA_FORMAT_B8G8R8X8_SRGB,
/* For 10 bpc, 30 bit depth framebuffers. */
MESA_FORMAT_B10G10R10A2_UNORM,
MESA_FORMAT_B10G10R10X2_UNORM,
MESA_FORMAT_RGBA_FLOAT16,
MESA_FORMAT_RGBX_FLOAT16,
/* The 32-bit RGBA format must not precede the 32-bit BGRA format.
* Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
* server may disagree on which format the GLXFBConfig represents,
* resulting in swapped color channels.
*
* The problem, as of 2017-05-30:
* When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
* order and chooses the first __DRIconfig with the expected channel
* sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
* __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
*
* EGL does not suffer from this problem. It correctly compares the
* channel masks when matching EGLConfig to __DRIconfig.
*/
/* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
MESA_FORMAT_R8G8B8A8_UNORM,
/* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
MESA_FORMAT_R8G8B8X8_UNORM,
MESA_FORMAT_R8G8B8A8_SRGB,
};
/* __DRI_ATTRIB_SWAP_COPY is not supported due to page flipping. */
static const GLenum back_buffer_modes[] = {
__DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
};
static const uint8_t singlesample_samples[1] = {0};
struct intel_screen *screen = dri_screen->driverPrivate;
const struct gen_device_info *devinfo = &screen->devinfo;
uint8_t depth_bits[4], stencil_bits[4];
__DRIconfig **configs = NULL;
unsigned num_formats = ARRAY_SIZE(formats);
/* Generate singlesample configs, each without accumulation buffer
* and with EGL_MUTABLE_RENDER_BUFFER_BIT_KHR.
*/
for (unsigned i = 0; i < num_formats; i++) {
__DRIconfig **new_configs;
int num_depth_stencil_bits = 1;
if (!intel_allowed_format(dri_screen, formats[i]))
continue;
/* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
* buffer that has a different number of bits per pixel than the color
* buffer, gen >= 6 supports this.
*/
depth_bits[0] = 0;
stencil_bits[0] = 0;
if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
if (devinfo->gen >= 8) {
depth_bits[num_depth_stencil_bits] = 16;
stencil_bits[num_depth_stencil_bits] = 0;
num_depth_stencil_bits++;
}
if (devinfo->gen >= 6) {
depth_bits[num_depth_stencil_bits] = 24;
stencil_bits[num_depth_stencil_bits] = 8;
num_depth_stencil_bits++;
}
} else {
depth_bits[num_depth_stencil_bits] = 24;
stencil_bits[num_depth_stencil_bits] = 8;
num_depth_stencil_bits++;
}
new_configs = driCreateConfigs(formats[i],
depth_bits,
stencil_bits,
num_depth_stencil_bits,
back_buffer_modes, 2,
singlesample_samples, 1,
false, false,
/*mutable_render_buffer*/ true);
configs = driConcatConfigs(configs, new_configs);
}
/* Generate the minimum possible set of configs that include an
* accumulation buffer.
*/
for (unsigned i = 0; i < num_formats; i++) {
__DRIconfig **new_configs;
if (!intel_allowed_format(dri_screen, formats[i]))
continue;
if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
if (devinfo->gen >= 8) {
depth_bits[0] = 16;
stencil_bits[0] = 0;
} else if (devinfo->gen >= 6) {
depth_bits[0] = 24;
stencil_bits[0] = 8;
} else {
depth_bits[0] = 0;
stencil_bits[0] = 0;
}
} else {
depth_bits[0] = 24;
stencil_bits[0] = 8;
}
new_configs = driCreateConfigs(formats[i],
depth_bits, stencil_bits, 1,
back_buffer_modes, 1,
singlesample_samples, 1,
true, false, false);
configs = driConcatConfigs(configs, new_configs);
}
/* Generate multisample configs.
*
* This loop breaks early, and hence is a no-op, on gen < 6.
*
* Multisample configs must follow the singlesample configs in order to
* work around an X server bug present in 1.12. The X server chooses to
* associate the first listed RGBA888-Z24S8 config, regardless of its
* sample count, with the 32-bit depth visual used for compositing.
*
* Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
* supported. Singlebuffer configs are not supported because no one wants
* them.
*/
for (unsigned i = 0; i < num_formats; i++) {
if (devinfo->gen < 6)
break;
if (!intel_allowed_format(dri_screen, formats[i]))
continue;
__DRIconfig **new_configs;
const int num_depth_stencil_bits = 2;
int num_msaa_modes = 0;
const uint8_t *multisample_samples = NULL;
depth_bits[0] = 0;
stencil_bits[0] = 0;
if (formats[i] == MESA_FORMAT_B5G6R5_UNORM && devinfo->gen >= 8) {
depth_bits[1] = 16;
stencil_bits[1] = 0;
} else {
depth_bits[1] = 24;
stencil_bits[1] = 8;
}
if (devinfo->gen >= 9) {
static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
multisample_samples = multisample_samples_gen9;
num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
} else if (devinfo->gen == 8) {
static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
multisample_samples = multisample_samples_gen8;
num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
} else if (devinfo->gen == 7) {
static const uint8_t multisample_samples_gen7[] = {4, 8};
multisample_samples = multisample_samples_gen7;
num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
} else if (devinfo->gen == 6) {
static const uint8_t multisample_samples_gen6[] = {4};
multisample_samples = multisample_samples_gen6;
num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
}
new_configs = driCreateConfigs(formats[i],
depth_bits,
stencil_bits,
num_depth_stencil_bits,
back_buffer_modes, 1,
multisample_samples,
num_msaa_modes,
false, false, false);
configs = driConcatConfigs(configs, new_configs);
}
if (configs == NULL) {
fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
__LINE__);
return NULL;
}
return configs;
}
static void
set_max_gl_versions(struct intel_screen *screen)
{
__DRIscreen *dri_screen = screen->driScrnPriv;
const bool has_astc = screen->devinfo.gen >= 9;
switch (screen->devinfo.gen) {
case 11:
case 10:
case 9:
case 8:
dri_screen->max_gl_core_version = 46;
dri_screen->max_gl_compat_version = 30;
dri_screen->max_gl_es1_version = 11;
dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
break;
case 7:
dri_screen->max_gl_core_version = 33;
if (can_do_pipelined_register_writes(screen)) {
dri_screen->max_gl_core_version = 42;
if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
dri_screen->max_gl_core_version = 43;
if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
dri_screen->max_gl_core_version = 45;
}
dri_screen->max_gl_compat_version = 30;
dri_screen->max_gl_es1_version = 11;
dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
break;
case 6:
dri_screen->max_gl_core_version = 33;
dri_screen->max_gl_compat_version = 30;
dri_screen->max_gl_es1_version = 11;
dri_screen->max_gl_es2_version = 30;
break;
case 5:
case 4:
dri_screen->max_gl_core_version = 0;
dri_screen->max_gl_compat_version = 21;
dri_screen->max_gl_es1_version = 11;
dri_screen->max_gl_es2_version = 20;
break;
default:
unreachable("unrecognized intel_screen::gen");
}
}
static void
shader_debug_log_mesa(void *data, const char *fmt, ...)
{
struct brw_context *brw = (struct brw_context *)data;
va_list args;
va_start(args, fmt);
GLuint msg_id = 0;
_mesa_gl_vdebugf(&brw->ctx, &msg_id,
MESA_DEBUG_SOURCE_SHADER_COMPILER,
MESA_DEBUG_TYPE_OTHER,
MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
va_end(args);
}
static void
shader_perf_log_mesa(void *data, const char *fmt, ...)
{
struct brw_context *brw = (struct brw_context *)data;
va_list args;
va_start(args, fmt);
if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
va_list args_copy;
va_copy(args_copy, args);
vfprintf(stderr, fmt, args_copy);
va_end(args_copy);
}
if (brw->perf_debug) {
GLuint msg_id = 0;
_mesa_gl_vdebugf(&brw->ctx, &msg_id,
MESA_DEBUG_SOURCE_SHADER_COMPILER,
MESA_DEBUG_TYPE_PERFORMANCE,
MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
}
va_end(args);
}
/**
* This is the driver specific part of the createNewScreen entry point.
* Called when using DRI2.
*
* \return the struct gl_config supported by this driver
*/
static const
__DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
{
struct intel_screen *screen;
if (dri_screen->image.loader) {
} else if (dri_screen->dri2.loader->base.version <= 2 ||
dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
fprintf(stderr,
"\nERROR! DRI2 loader with getBuffersWithFormat() "
"support required\n");
return NULL;
}
/* Allocate the private area */
screen = rzalloc(NULL, struct intel_screen);
if (!screen) {
fprintf(stderr, "\nERROR! Allocating private area failed\n");
return NULL;
}
/* parse information in __driConfigOptions */
driOptionCache options;
memset(&options, 0, sizeof(options));
driParseOptionInfo(&options, brw_config_options.xml);
driParseConfigFiles(&screen->optionCache, &options, dri_screen->myNum,
"i965", NULL, NULL, 0);
driDestroyOptionCache(&options);
screen->driScrnPriv = dri_screen;
dri_screen->driverPrivate = (void *) screen;
if (!gen_get_device_info_from_fd(dri_screen->fd, &screen->devinfo))
return NULL;
const struct gen_device_info *devinfo = &screen->devinfo;
screen->deviceID = devinfo->chipset_id;
screen->no_hw = devinfo->no_hw;
if (devinfo->gen >= 12) {
fprintf(stderr, "gen12 and newer are not supported on i965\n");
return NULL;
}
if (!intel_init_bufmgr(screen))
return NULL;
brw_process_intel_debug_variable();
if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
fprintf(stderr,
"shader_time debugging requires gen7 (Ivybridge) or better.\n");
INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
}
if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
/* Theorectically unlimited! At least for individual objects...
*
* Currently the entire (global) address space for all GTT maps is
* limited to 64bits. That is all objects on the system that are
* setup for GTT mmapping must fit within 64bits. An attempt to use
* one that exceeds the limit with fail in brw_bo_map_gtt().
*
* Long before we hit that limit, we will be practically limited by
* that any single object must fit in physical memory (RAM). The upper
* limit on the CPU's address space is currently 48bits (Skylake), of
* which only 39bits can be physical memory. (The GPU itself also has
* a 48bit addressable virtual space.) We can fit over 32 million
* objects of the current maximum allocable size before running out
* of mmap space.
*/
screen->max_gtt_map_object_size = UINT64_MAX;
} else {
/* Estimate the size of the mappable aperture into the GTT. There's an
* ioctl to get the whole GTT size, but not one to get the mappable subset.
* It turns out it's basically always 256MB, though some ancient hardware
* was smaller.
*/
uint32_t gtt_size = 256 * 1024 * 1024;
/* We don't want to map two objects such that a memcpy between them would
* just fault one mapping in and then the other over and over forever. So
* we would need to divide the GTT size by 2. Additionally, some GTT is
* taken up by things like the framebuffer and the ringbuffer and such, so
* be more conservative.
*/
screen->max_gtt_map_object_size = gtt_size / 4;
}
screen->aperture_threshold = devinfo->aperture_bytes * 3 / 4;
screen->hw_has_swizzling = intel_detect_swizzling(screen);
screen->hw_has_timestamp = intel_detect_timestamp(screen);
isl_device_init(&screen->isl_dev, &screen->devinfo,
screen->hw_has_swizzling);
if (devinfo->gen >= 10)
intel_cs_timestamp_frequency(screen);
/* GENs prior to 8 do not support EU/Subslice info */
if (devinfo->gen >= 8) {
intel_detect_sseu(screen);
} else if (devinfo->gen == 7) {
screen->subslice_total = 1 << (devinfo->gt - 1);
}
/* Gen7-7.5 kernel requirements / command parser saga:
*
* - pre-v3.16:
* Haswell and Baytrail cannot use any privileged batchbuffer features.
*
* Ivybridge has aliasing PPGTT on by default, which accidentally marks
* all batches secure, allowing them to use any feature with no checking.
* This is effectively equivalent to a command parser version of
* \infinity - everything is possible.
*
* The command parser does not exist, and querying the version will
* return -EINVAL.
*
* - v3.16:
* The kernel enables the command parser by default, for systems with
* aliasing PPGTT enabled (Ivybridge and Haswell). However, the
* hardware checker is still enabled, so Haswell and Baytrail cannot
* do anything.
*
* Ivybridge goes from "everything is possible" to "only what the
* command parser allows" (if the user boots with i915.cmd_parser=0,
* then everything is possible again). We can only safely use features
* allowed by the supported command parser version.
*
* Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
* implemented by the kernel, even if it's turned off. So, checking
* for version > 0 does not mean that you can write registers. We have
* to try it and see. The version does, however, indicate the age of
* the kernel.
*
* Instead of matching the hardware checker's behavior of converting
* privileged commands to MI_NOOP, it makes execbuf2 start returning
* -EINVAL, making it dangerous to try and use privileged features.
*
* Effective command parser versions:
* - Haswell: 0 (reporting 1, writes don't work)
* - Baytrail: 0 (reporting 1, writes don't work)
* - Ivybridge: 1 (enabled) or infinite (disabled)
*
* - v3.17:
* Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
* effectively version 1 (enabled) or infinite (disabled).
*
* - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
* Command parser v2 supports predicate writes.
*
* - Haswell: 0 (reporting 1, writes don't work)
* - Baytrail: 2 (enabled) or infinite (disabled)
* - Ivybridge: 2 (enabled) or infinite (disabled)
*
* So version >= 2 is enough to know that Ivybridge and Baytrail
* will work. Haswell still can't do anything.
*
* - v4.0: Version 3 happened. Largely not relevant.
*
* - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
* L3 config registers are properly saved and restored as part
* of the hardware context. We can approximately detect this point
* in time by checking if I915_PARAM_REVISION is recognized - it
* landed in a later commit, but in the same release cycle.
*
* - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
* Command parser finally gains secure batch promotion. On Haswell,
* the hardware checker gets disabled, which finally allows it to do
* privileged commands.
*
* I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
* - Haswell: 3 (enabled) or 0 (disabled)
* - Baytrail: 3 (enabled) or infinite (disabled)
* - Ivybridge: 3 (enabled) or infinite (disabled)
*
* Unfortunately, detecting this point in time is tricky, because
* no version bump happened when this important change occurred.
* On Haswell, if we can write any register, then the kernel is at
* least this new, and we can start trusting the version number.
*
* - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
* Command parser reaches version 4, allowing access to Haswell
* atomic scratch and chicken3 registers. If version >= 4, we know
* the kernel is new enough to support privileged features on all
* hardware. However, the user might have disabled it...and the
* kernel will still report version 4. So we still have to guess
* and check.
*
* - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
* Command parser v5 whitelists indirect compute shader dispatch
* registers, needed for OpenGL 4.3 and later.
*
* - v4.8:
* Command parser v7 lets us use MI_MATH on Haswell.
*
* Additionally, the kernel begins reporting version 0 when
* the command parser is disabled, allowing us to skip the
* guess-and-check step on Haswell. Unfortunately, this also
* means that we can no longer use it as an indicator of the
* age of the kernel.
*/
if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
&screen->cmd_parser_version) < 0) {
/* Command parser does not exist - getparam is unrecognized */
screen->cmd_parser_version = 0;
}
/* Kernel 4.13 retuired for exec object capture */
if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
}
if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
}
if (!intel_detect_pipelined_so(screen)) {
/* We can't do anything, so the effective version is 0. */
screen->cmd_parser_version = 0;
} else {
screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
}
if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
/* Haswell requires command parser version 4 in order to have L3
* atomic scratch1 and chicken3 bits
*/
if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
screen->kernel_features |=
KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
}
/* Haswell requires command parser version 6 in order to write to the
* MI_MATH GPR registers, and version 7 in order to use
* MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
*/
if (devinfo->gen >= 8 ||
(devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
}
/* Gen7 needs at least command parser version 5 to support compute */
if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
if (intel_get_boolean(screen, I915_PARAM_HAS_CONTEXT_ISOLATION))
screen->kernel_features |= KERNEL_ALLOWS_CONTEXT_ISOLATION;
const char *force_msaa = getenv("INTEL_FORCE_MSAA");
if (force_msaa) {
screen->winsys_msaa_samples_override =
intel_quantize_num_samples(screen, atoi(force_msaa));
printf("Forcing winsys sample count to %d\n",
screen->winsys_msaa_samples_override);
} else {
screen->winsys_msaa_samples_override = -1;
}
set_max_gl_versions(screen);
/* Notification of GPU resets requires hardware contexts and a kernel new
* enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
* supported, calling it with a context of 0 will either generate EPERM or
* no error. If the ioctl is not supported, it always generate EINVAL.
* Use this to determine whether to advertise the __DRI2_ROBUSTNESS
* extension to the loader.
*
* Don't even try on pre-Gen6, since we don't attempt to use contexts there.
*/
if (devinfo->gen >= 6) {
struct drm_i915_reset_stats stats;
memset(&stats, 0, sizeof(stats));
const int ret = drmIoctl(screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
screen->has_context_reset_notification =
(ret != -1 || errno != EINVAL);
}
dri_screen->extensions = !screen->has_context_reset_notification
? screenExtensions : intelRobustScreenExtensions;
screen->compiler = brw_compiler_create(screen, devinfo);
screen->compiler->shader_debug_log = shader_debug_log_mesa;
screen->compiler->shader_perf_log = shader_perf_log_mesa;
/* Changing the meaning of constant buffer pointers from a dynamic state
* offset to an absolute address is only safe if the kernel isolates other
* contexts from our changes.
*/
screen->compiler->constant_buffer_0_is_relative = devinfo->gen < 8 ||
!(screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION);
screen->compiler->glsl_compiler_options[MESA_SHADER_VERTEX].PositionAlwaysInvariant = driQueryOptionb(&screen->optionCache, "vs_position_always_invariant");
screen->compiler->supports_pull_constants = true;
screen->compiler->compact_params = true;
screen->compiler->lower_variable_group_size = true;
screen->has_exec_fence =
intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
intel_screen_init_surface_formats(screen);
if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
if (caps) {
fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
if (caps & I915_SCHEDULER_CAP_PRIORITY)
fprintf(stderr, " - User priority sorting enabled\n");
if (caps & I915_SCHEDULER_CAP_PREEMPTION)
fprintf(stderr, " - Preemption enabled\n");
}
}
brw_disk_cache_init(screen);
return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
}
struct intel_buffer {
__DRIbuffer base;
struct brw_bo *bo;
};
static __DRIbuffer *
intelAllocateBuffer(__DRIscreen *dri_screen,
unsigned attachment, unsigned format,
int width, int height)
{
struct intel_buffer *intelBuffer;
struct intel_screen *screen = dri_screen->driverPrivate;
assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
attachment == __DRI_BUFFER_BACK_LEFT);
intelBuffer = calloc(1, sizeof *intelBuffer);
if (intelBuffer == NULL)
return NULL;
/* The front and back buffers are color buffers, which are X tiled. GEN9+
* supports Y tiled and compressed buffers, but there is no way to plumb that
* through to here. */
uint32_t pitch;
int cpp = format / 8;
intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
"intelAllocateBuffer",
width,
height,
cpp,
BRW_MEMZONE_OTHER,
I915_TILING_X, &pitch,
BO_ALLOC_BUSY);
if (intelBuffer->bo == NULL) {
free(intelBuffer);
return NULL;
}
brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
intelBuffer->base.attachment = attachment;
intelBuffer->base.cpp = cpp;
intelBuffer->base.pitch = pitch;
return &intelBuffer->base;
}
static void
intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
{
struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
brw_bo_unreference(intelBuffer->bo);
free(intelBuffer);
}
static const struct __DriverAPIRec brw_driver_api = {
.InitScreen = intelInitScreen2,
.DestroyScreen = intelDestroyScreen,
.CreateContext = brwCreateContext,
.DestroyContext = intelDestroyContext,
.CreateBuffer = intelCreateBuffer,
.DestroyBuffer = intelDestroyBuffer,
.MakeCurrent = intelMakeCurrent,
.UnbindContext = intelUnbindContext,
.AllocateBuffer = intelAllocateBuffer,
.ReleaseBuffer = intelReleaseBuffer
};
static const struct __DRIDriverVtableExtensionRec brw_vtable = {
.base = { __DRI_DRIVER_VTABLE, 1 },
.vtable = &brw_driver_api,
};
static const __DRIextension *brw_driver_extensions[] = {
&driCoreExtension.base,
&driImageDriverExtension.base,
&driDRI2Extension.base,
&brw_vtable.base,
&brw_config_options.base,
NULL
};
PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
{
globalDriverAPI = &brw_driver_api;
return brw_driver_extensions;
}